
Information Complexity for Multiparty Communication∗

Diptarka Chakraborty† Elazar Goldenberg‡ Michal Koucký §
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Abstract

In this paper, we have studied the information complexity for the communication model
involving more than two parties. A lot of work has already been done on the information
complexity in two party communication model and the question of extending the definition
of information complexity to the multiparty communication model was posed in [Bra12]. In
this paper, we first give a definition of internal information cost for a protocol involving more
than two parties and our definition matches the definition known for two party model. Our
definition is valid for both in NIH model and NOF model. We also extend several results known
for information complexity of two party model to multiparty communication setting. One of
them is the additivity property, which eventually gives us the direct sum theorem for both
information cost and distributional information cost. We give a lower bound for the information
complexity of a function involving more that two parties in terms of communication complexity
and this lower bound matches with the bound known for the function evaluated by only two
parties. We also show that the amortized communication complexity of a function computed by
k parties is lower bounded by the information complexity and upper bounded by (k−1) times the
information complexity and this relation is true for both distributional and non-distributional
case.

1 Introduction

The study of information theory was initiated by Shannon [Sha48] to answer the questions in the
areas of data compression and transmission. It is known from Shannon’s noiseless coding theorem
that over a noiseless channel, the cost of transmission of a message X is closely related to the
entropy H(X). This result establishes a connection between the communication cost of sending a
message from one party to another with the information content of that message. Later, Slepian-
Wolf [SW73] showed that amortized communication cost of transmitting a message is equal to the
conditional entropy. These two results act as initial stepping stones towards the connection between
the domain of communication complexity and information theory .

Over the last decade, information-theoretic techniques have been appeared as one of the main
tolls to prove lower bounds of various problems in different communication settings. In case of one

∗Research supported in part by Research-I Foundation and (FP7/2007-2013)/ERC Consolidator grant LBCAD
no. 616787. A part of the research was done while the first author was visiting Charles University in Prague.
†Indian Institute of Technology Kanpur diptarka@cse.iitk.ac.in
‡Charles University in Prague elazargo@iuuk.mff.cuni.cz
§Charles University in Prague koucky@iuuk.mff.cuni.cz

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 132 (2014)



simultaneous round of communication model, to prove a direct sum theorem, which is to deter-
mine the relationship between the amortized communication complexity and the communication
complexity of the function, Chakrabarti et. al. [CSWY01] developed the notion of external infor-
mation cost of a protocol. Later that was used in [BJKS04] to show a linear lower bound of the
two-party disjointness function. Similar type of information-theoretic techniques can also be found
in several recent results [DW07], [JKR09], [LS09], [JKZ10]. The information cost of a protocol
over an a-priori input distribution for two-party communication model was mentioned explicitly in
[BBCR10], which also provides us the definition of the information complexity of a function com-
puted by two parties. It was shown that for two-party communication model, internal information
cost of a protocol over an input distribution is always upper bounded by the external cost of that
protocol and for product distribution, these two costs are equal. In [BR11], authors proved that
in distributional case, the internal information complexity of a function involving two parties is
equal to the amortized communication complexity of computing independent copies of the same
function. The result was shown by providing a way to compress one round communication protocol
depending on the internal information cost. Later, this result was extended in non-distributional
setting [Bra12]. By [Bra12], we also have a lower bound for information complexity of a function
in terms of communication complexity. Recently, Ganor et. al. [GKR14] showed an exponential
gap between the communication complexity and information complexity by providing an explicit
example and according to [Bra12], this is the largest possible.

In [Bra12], the author posed the question whether it is possible to extend the definition of
internal information cost of a protocol to the multiparty communication model, in both number-in-
hand and number-on-forehead model. To the best of our knowledge, the question is still open. In
this paper, we give an positive answer to this question by providing with an definition of internal
information cost of a communication protocol involving more than two parties. This immediately
gives us the definition of information complexity of a function computed by more that two parties.
Our definition is valid for the number-in-hand as well as the number-on-forehead model and is
equivalent to the definition known for two party communication model. In this paper, we consider
the general public and private randomness, i.e., all the parties have access to a shared tape of
randomness and along with that, each party has access to its own private randomness. We show
that our definition of internal information cost will always be bounded by external information
cost just like two party model. Our definition obeys the additivity property and that leads to
the direct sum theorem for both the information cost and distributional information cost. By
extending the sampling lemma mentioned in [Bra12], we provide a lower bound for the information
complexity of a function involving more that two parties in terms of communication complexity and
this lower bound matches with the bound known for the function evaluated by only two parties. We
also establish a connection between the information complexity and the amortized complexity, for
distributional as well as non-distributional case. However, unlike two party communication model,
for both the cases, we have only been able to show that amortized complexity will be lower bounded
by information complexity and upper bounded by (k− 1) times the information complexity, where
k denotes the number of parties involved. It is clear from the expression that for k = 2, the relation
will become equality. Our proof technique is a straight forward generalization of that used in [BR11]
and [Bra12] to show the equality between these two quantity in two party communication model.
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2 Preliminaries

2.1 Information Theory

Definition 2.1 (Entropy). The entropy of a discrete random variable X is defined as

H(X) := −
∑
x

Pr[X = x] logPr[X = x] = −Ex∼X [logPr[X = x]].

The joint entropy H(X,Y ) is defined to be −Ex∼X,y∼Y [logPr[X = x, Y = y]] and the conditional
entropy H(Y | X) is defined to be Ex∼X [H(Y | X = x)].

Proposition 2.1 (Chain Rule of Entropy).

H(X,Y ) = H(X) +H(Y | X).

Definition 2.2 (Mutual Information). The mutual information between two random variables X
and Y is

I(X;Y ) := H(X)−H(X | Y ) = H(Y )−H(Y | X).

Likewise, the conditional mutual information I(X;Y | Z) is H(X | Z)−H(X | Y Z).

Similar to the Chain Rule of Entropy, we have

Proposition 2.2 (Chain Rule of Mutual Information).

I(X1X2;Y | Z) = I(X1;Y | Z) + I(X2;Y | X1Z).

Definition 2.3 (Relative Entropy). The relative entropy or Kullback-Leibler distance or diver-
gence between two distributions P and Q is defined as

D(P‖Q) :=
∑
x

P (x) log
P (x)

Q(x)
.

Proposition 2.3.
D(P1 × P2‖Q1 ×Q2) = D(P1‖Q1) + D(P2‖Q2).

Proposition 2.4. Suppose X,Y and Z are three random variables in the same probability space.
For every x in the support of X and z in the support of Z, let Yz denotes Y | Z = z and Yxz denotes
Y | X = x, Z = z. Then, I(X;Y | Z) = Ex∼X,z∼Z [D(Yxz‖Yz)].

In this paper, we will extensively use the following two propositions which are just the corollaries
of the chain rule of mutual information and are taken from [Bra12].

Proposition 2.5. Suppose A,B,C and D are four random variables such that I(B;D | AC) = 0,
then

I(A;B | C) ≥ I(A;B | CD).

Proposition 2.6. Suppose A,B,C and D are four random variables such that I(B;D | C) = 0,
then

I(A;B | C) ≤ I(A;B | CD).
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2.2 Multiparty Communication Complexity

Consider a function f : X1×X2× · · · ×Xk → ZK . There are k parties P1, P2, · · · , Pk, each having
unbounded computation power and their task is to evaluate f by some sort of collaboration among
themselves. The communication between the parties is through broadcast which can be thought of
as writing on a board, i.e., any bit sent by any party is visible to all other parties. This exchange
of messages between the parties is done according to a previously fixed protocol. The protocol’s
task is the following:

• To determine whether to continue or not and if yes then the protocol should return the value
computed by the protocol and the value should be solely determined by the information
written on the board.

• If continue then the protocol should specify the party that will write down the next bit and
this as well should completely be determined by the information written on the board so far.

• Whatever a party writes down on the board should be a function of the input possessed by it,
the information written on the board so far. If the protocol under consideration is a private
coin protocol then a party can also use the private randomness available to it to write down
the next bit.

A public coin protocol is a protocol where there is a shared randomness available along with the
private coin randomness accessible to each party. This shared randomness can be thought of as a
random bit string written on the board before the protocol starts.

There are several models for multiparty communication. They can be broadly split into the
number-in-hand (NIH) model and the number-on-forehead (NOF) model. In NIH model, the i-th
party is given the input xi and in NOF model, the i-th party knows all the inputs except xi, which
is denoted as xi. In this paper, sometimes we will use x to denote the concatenation of all the
inputs, i.e., x1x2 · · ·xk.

Given a protocol π involving k parties, π(x1, x2, · · · , xk) the transcript of that protocol, which
is the concatenation of public randomness and all the messages communicated during the protocol.
When rather than a specific transcript, we refer a random variable denoting a transcript, we denote
it by Π(x1, x2, · · · , xk) or just Π.

Definition 2.4 (Communication Cost). The communication cost of a protocol π is the number of
bits written on the board for worst case input and is denoted by CC(π).

Definition 2.5 (Distributional Complexity). Let µ be a probability distribution on X1×X2×· · ·×
Xk. For a function f : X1×X2× · · · ×Xk → ZK , the distributional complexity of f , Dµ

ρ (f) is the
communication cost of the best deterministic protocol that outputs the correct value of f on at least
1− ρ fraction of all inputs in X1 ×X2 × · · · ×Xk.

Definition 2.6. The cost of the best randomized public coin protocol for computing the function f
with error at most ρ on every inputs is denoted by Rρ(f).

Theorem 2.1 (Yao’s Min-Max Theorem).

Rρ(f) = max
µ

Dµ
ρ (f).
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3 Information Cost for Multiparty Communication

In this section, we try to extend the definition of information complexity for two party com-
munication protocol to multiparty setting. The notion of information complexity for two party
communication was implicitly mentioned in [BJKS04] and was defined explicitly in [BBCR10].

Definition 3.1 (Internal Information Cost). Suppose there are k parties P1, P2, · · · , Pk, where i-th
party holds the input XPi and there is a function f : X → ZK , where the input X is distributed
according to the probability distribution µ. Then the information complexity of a protocol π is
defined as

ICkµ(π) :=
1

k − 1

k∑
i=1

I(Π;XPi | XPi)

where XPi = X \XPi.

It can be noted that the above definition matches the definition of internal information complex-
ity for two party system (when k = 2) defined in [BBCR10]. Consider the function f : X → ZK ,
where X = X1 ×X2 × · · · ×Xk. Then note that, for NIH model, XPi = Xi and for NOF model,
XPi = Xi.
We now mention a lemma which is just an easy extension of a lemma from [BR11] and the proof
is also same, hence omitted.

Lemma 3.1. Let R be the public randomness available to all the k parties. Then

ICkµ(π) = ER[ICkµ(πR)].

The next lemma will upper bound the internal information complexity by the communication
cost of a protocol. The proof is also similar to the two party case, but for the sake of clarity, we
provide the proof here.

Lemma 3.2. For any distribution µ, ICkµ(π) ≤ CC(π).

Proof. Let us first consider that the protocol π is a private coin protocol and let πn be the n-th bit
written on the board. Then,

ICkµ(π) =
1

k − 1

k∑
i=1

I(π(X);XPi | XPi)

=
1

k − 1

CC(π)∑
n=1

k∑
i=1

I(πn;XPi | π1π2 · · ·πn−1XPi) by Proposition 2.2

=
1

k − 1

CC(π)∑
n=1

k∑
i=1

Eγ∈Rπ1π2···πn−1 [I(πn;XPi | EγXPi)].

where Eγ denotes the event that the first n − 1 bits of communication is equal to γ. If γ is such
that it is the i-th party’s turn to write on board and thus I(πn;XPi | XPi) = 0 and for all j 6= i,
I(πn;XPj | XPj ) ≤ 1 as πn contains only one bit. Hence, ICkµ(π) ≤ CC(π).
If π is allowed to use public randomness, then by Lemma 3.1, we can write

ICkµ(π) = ER[ICkµ(πR)] ≤ CC(π)

where R denotes the public randomness of π.
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3.1 Relationship with External Information Cost

We adopt the definition of external information complexity of a problem from [Bra12].

Definition 3.2 (External Information Cost). The external information cost of a protocol π with
respect to a probability distribution µ on input X as

ICextµ (π) := I(X; Π).

In this section, we establish a relation between it and internal information cost of a protocol
π. The relation is same as that for two party communication setting, however the proof differs in
essential details.

Theorem 3.1. For any function f and distribution µ,

ICkµ(π) ≤ ICextµ (π).

Proof. First consider the internal information cost,

ICkµ(π) =
1

k − 1

k∑
i=1

I(Π;XPi | XPi)

=
1

k − 1

CC(π)∑
n=1

k∑
i=1

I(Πn;XPi | Π1Π2 · · ·Πn−1XPi) by Proposition 2.2

Whereas the external information cost is

ICextµ (π) = I(X; Π)

=

CC(π)∑
n=1

I(X; Πn | Π1Π2 · · ·Πn−1) by Proposition 2.2

Suppose at the n-th step of communication, it was j-th party’s turn. Then,

I(X; Πn | Π1Π2 · · ·Πn−1) = I(XPj ; Πn | Π1Π2 · · ·Πn−1)+

I(XPj ; Πn | Π1Π2 · · ·Πn−1XPj ) by Proposition 2.2

= I(XPj ; Πn | Π1Π2 · · ·Πn−1).

Now observe the following,

k∑
i=1

I(XPi ; Πn | Π1Π2 · · ·Πn−1XPi) =

k∑
i=1

[I(XPj ; Πn | Π1Π2 · · ·Πn−1XPi)+

I(XPi \XPj ; Πn | Π1Π2 · · ·Πn−1XPiXPj )] by Proposition 2.2

=

k∑
i=1

I(XPj ; Πn | Π1Π2 · · ·Πn−1XPi)

≤ (k − 1)I(XPj ; Πn | Π1Π2 · · ·Πn−1)

= (k − 1)I(X; Πn | Π1Π2 · · ·Πn−1).
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The last inequality is due to an application of Proposition 2.5, by considering A = XPj , B =
Πn, C = Π1Π2 · · ·Πn−1 and D = XPi and also note that k − 1 factor comes in the inequality
because I(XPj ; Πn | Π1Π2 · · ·Πn−1XPi) = 0 when i = j. Hence, we get that,

ICkµ(π) ≤ ICextµ (π).

4 The prior-free Information Complexity

One of our main motivation is to make the information cost independent of any prior distribution,
just like in the two party case and also we want to investigate the information cost of a given
function instead of a protocol that evaluates that function. We define the information complexity
of a function for mutiparty setting same as that for two party setting.

Definition 4.1. Consider a function f : X → {0, 1} and an error parameter ε ≥ 0.

• The k-party max-distributional information complexity is defined as

ICkD(f, ε) := max
µ a distribution on X

ICkµ(f, ε)

where ICkµ(f, ε) := infπ:Prx∼µ[π(x)6=f(x)]≤ε IC
k
µ(π).

• The k-party prior-free informational complexity is

ICk(f, ε) := inf
π is a protocol s.t. ∀x, Pr[π(x)6=f(x)]≤ε

max
µ

ICkµ(π).

Note that in the definition of ICk(f, ε), the probability is over the public and private coin
randomness used in the protocol. Clearly, ICk(f, ε) ≥ ICkD(f, ε). For the opposite direction, we
have the following two theorems.

Theorem 4.1. Consider a function f : X → {0, 1} and an error parameter ε ≥ 0. For any α,
0 < α < 1,

ICk(f,
ε

α
) ≤

ICkD(f, ε)

1− α
.

For zero-error case, the above two notions will coincide.

Theorem 4.2. Consider a function f : X → {0, 1}. Then,

ICk(f, 0) = ICkD(f, 0).

The proofs of above two theorems are same as that for two party setting [Bra12] and hence we
omit the details here.

Another important property of information complexity is convexity and the proof does not
depend on the number of parties and hence is same as that for two party system.

Theorem 4.3 ([Bra12]). For any f , the functions ICk(f, ε) and ICkD(f, ε) are convex on the
interval ε ∈ [0, 1].
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5 The additivity of Information Complexity

A task T (x1, · · · , xk) is a relation R(x1, · · · , xk, OP1 , · · · , OPk) along with a required success crite-
rion, where x = x1 · · ·xk is the input and OPi corresponds to the output of i-th party. Informally
a task is anything that can be solved by a k-party communication protocol. The information cost
of a task is defined similarly to the information cost of a function [Bra12]. Here we assume that
each xi ∈ {0, 1}n and D be a set of distributions on {0, 1}n × · · · × {0, 1}n.

Definition 5.1 ([Bra12]). The cost of a task T with respect to a set of distributions D is defined
as

ICk(T,D) := inf
π succeeds to perform T

sup
µ∈D

ICkµ(π).

Let T1(x
1
1, · · · , x1k) and T2(x

2
1, · · · , x2k) be two tasks and T1 × T2 := T (x11, · · · , x1k, x21, · · · , x2k)

be the task to perform both t1 and T2 in parallel on two set of inputs. A protocol is said to be
successful on T1 × T2 if it succeeds both on T1 and T2 separately.
Now lets define two products of sets of distributions. Let D1 and D2 be two sets of distributions
on (x11, · · · , x1k) and (x21, · · · , x2k) respectively. Denote

• D1 ×D2 := {µ1 × µ2 : µ1 ∈ D1, µ2 ∈ D2}.

• D1 ⊗D2 := {µ : µ |(X1
1 ,··· ,X1

k)
∈ D1, µ |(X2

1 ,··· ,X2
k)
∈ D2}.

Theorem 5.1. Let T1(x
1
1, · · · , x1k) and T2(x

2
1, · · · , x2k) be two tasks and D1 and D2 be two sets of

distributions on (x11, · · · , x1k) and (x21, · · · , x2k) respectively. Then for T = T1 × T2,

ICk(T,D1 ×D2) = ICk(T,D1 ⊗D2) = ICk(T1,D1) + ICk(T2,D2).

Proof. ICk(T,D1 ×D2) ≤ ICk(T,D1 ⊗D2). This follows from Definition 5.1 since D1 × D2 ⊂
D1 ⊗D2.

ICk(T,D1 ⊗D2) ≤ ICk(T1,D1) + ICk(T2,D2). Consider ε > 0 and let π1 and π2 be two proto-
col succeeding on tasks T1 and T2 respectively such that for all µ1 ∈ D1 and µ2 ∈ D2,

ICkµ1(π1) < ICk(T1,D1) + ε and ICkµ2(π2) < ICk(T2,D2) + ε.

Now consider a protocol π that on random inputs X1
1 , · · · , X1

k , X
2
1 , · · · , X2

k runs π1 on X1
1 , · · · , X1

k

and π2 on X2
1 , · · · , X2

k independently. Clearly π succeeds on T . Let us consider a distribution
µ ∈ D1 ⊗D2. We will show that

ICkµ(π) < ICk(T1,D1) + ICk(T2,D2) + 2ε.

Suppose µ1 := µ |(X1
1 ,··· ,X1

k)
∈ D1 and µ2 := µ |(X2

1 ,··· ,X2
k)
∈ D2. We have that

1

k − 1

k∑
i=1

I(X1
Pi

; Π1 | X1
Pi) = ICkµ1(π1) < ICk(T1,D1) + ε.

and

1

k − 1

k∑
i=1

I(X2
Pi

; Π2 | X2
Pi) = ICkµ2(π2) < ICk(T2,D2) + ε.
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Now consider the following

ICkµ(π) =
1

k − 1

k∑
i=1

I(Π;X1
Pi
X2
Pi
| X1

PiX
2
Pi)

=
1

k − 1

k∑
i=1

I(Π1Π2;X1
Pi
X2
Pi
| X1

PiX
2
Pi)

=
1

k − 1

k∑
i=1

[I(Π1;X1
Pi
X2
Pi
| X1

PiX
2
Pi) + I(Π2;X1

Pi
X2
Pi
| X1

PiX
2
PiΠ1)] by Proposition 2.2

=
1

k − 1

k∑
i=1

[I(Π1;X1
Pi
| X1

PiX
2
Pi) + I(Π1;X2

Pi
| X1

PiX
2
PiX

1
Pi

)

+ I(Π2;X2
Pi
| X1

PiX
2
PiΠ1) + I(Π2;X1

Pi
| X1

PiX
2
PiΠ1X2

Pi
)] by Proposition 2.2

=
1

k − 1

k∑
i=1

[I(Π1;X1
Pi
| X1

PiX
2
Pi) + I(Π2;X2

Pi
| X1

PiX
2
PiΠ1)]

≤ 1

k − 1

k∑
i=1

[I(Π1;X1
Pi
| X1

Pi) + I(Π2;X2
Pi
| X2

Pi)]

= ICkµ1(π1) + ICkµ2(π2) < ICk(T1,D1) + ICk(T2,D2) + 2ε.

The first inequality is due to the application of Proposition 2.5 on two terms: in the first term,
by assuming A = X1

Pi
, B = Π1, C = X1

Pi
and D = X2

Pi
and in second term, by assuming

A = X2
Pi
, B = Π2, C = X2

Pi
and D = X1

Pi
Π1.

ICk(T1,D1) + ICk(T2,D2) ≤ ICk(T,D1 ×D2). Let µ1 ∈ D1 and µ2 ∈ D2 be two distributions
and ε > 0 be an error parameter. We will show that there are protocols π1 and π2 that succeeds to
complete tasks T1 and T2 respectively such that

ICkµ1(π1) + ICkµ2(π2) < ICk(T,D1 ×D2) + ε.

By the definition of ICk(T,D1 × D2), there is a protocol π that succeeds to complete the task
T1 × T2 such that

ICkµ1×µ2(π) < ICk(T,D1 ×D2) + ε.

Now define the protocols π1 and π2 as follows:
Protocol π1(x

1
1, · · ·x1k):

1. Using the public randomness, the parties together sample X2 = X2
1 , · · · , X2

k according to µ2.

2. The parties run π(x11, · · ·x1k, X2
1 , · · · , X2

k) and output the value of the task T1.

Protocol π2(x
2
1, · · ·x2k):

1. Using the public randomness, the parties together sample X1 = X1
1 , · · · , X1

k according to µ1.

2. The parties run π(X1
1 , · · ·X1

k , x
2
1, · · · , x2k) and output the value of the task T2.
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By the definition of T1 × T2, the protocols π1 and π2 succeed to complete the tasks T1 and T2
respectively. Now we have

ICkµ1(π1) =
1

k − 1

k∑
i=1

I(Π1;X1
Pi
| X1

Pi)

=
1

k − 1

k∑
i=1

I(ΠX2;X1
Pi
| X1

Pi)

=
1

k − 1

k∑
i=1

[I(X2;X1
Pi
| X1

Pi) + I(Π;X1
Pi
| X1

PiX
2)] by Proposition 2.2

=
1

k − 1

k∑
i=1

I(Π;X1
Pi
| X1

PiX
2).

and

ICkµ2(π2) =
1

k − 1

k∑
i=1

I(Π2;X2
Pi
| X2

Pi)

=
1

k − 1

k∑
i=1

I(ΠX1;X2
Pi
| X2

Pi)

=
1

k − 1

k∑
i=1

[I(X1;X2
Pi
| X2

Pi) + I(Π;X2
Pi
| X2

PiX
2)] by Proposition 2.2

=
1

k − 1

k∑
i=1

I(Π;X2
Pi
| X2

PiX
1).

Thus we get

ICkµ1(π1) + ICkµ2(π2) =
1

k − 1

k∑
i=1

[I(Π;X1
Pi
| X1

PiX
2) + I(Π;X2

Pi
| X2

PiX
1)]

=
1

k − 1

k∑
i=1

[I(Π;X1
Pi
| X1

PiX
2
PiX

2
Pi

) + I(Π;X2
Pi
| X2

PiX
1
PiX

1
Pi

)]

≤ 1

k − 1

k∑
i=1

[I(Π;X1
Pi
| X1

PiX
2
Pi) + I(Π;X2

Pi
| X2

PiX
1
PiX

1
Pi

)]

=
1

k − 1

k∑
i=1

I(Π;X1
Pi
X2
Pi
| X1

PiX
2
Pi) by Proposition 2.2

= ICkµ1×µ2(π) < ICk(T,D1 ×D2) + ε.

The first inequality is due to the application of Proposition 2.5 on the first term, by assuming
A = Π, B = X1

Pi
, C = X1

Pi
X2
Pi

and D = X2
Pi

.
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Now using the last theorem, we can show the following theorem on exact direct sum of information
cost and distributional information cost. The reader may refer to [Bra12] for the proof.

Theorem 5.2 ([Bra12]). Let f(x1, · · · , xk) be any function and ε > 0 an error parameter and fn

be the problem of computing f on n sets of inputs such that in each coordinate the error is bounded
by ε. Then the following holds:

1. ICkD(fn, ε) = n.ICkD(f, ε).

2. ICk(fn, ε) = n.ICk(f, ε).

6 Information Complexity vs. Communication Complexity

6.1 Extended Sampling Lemma

In this section, we prove an extended version of sampling lemma which is a strict generalization
of the sampling lemma proved in [Bra12] and then using that we establish a connection between
information complexity and communication complexity for multiparty setting. The proof idea is
same as that for two party case. We start with a claim proved in [Bra12].

Claim 6.1 ([Bra12]). For any two distributions µ and ν and an error parameter ε > 0, if D(µ‖ν) ≤
I, then the following holds

µ{x :
2I+1

ε
.ν(x) < µ(x)} < ε.

We are now ready to state and prove the extended version of the sampling lemma.

Lemma 6.1. Let µ be any distribution over a universe U and I ≥ 1 be a parameter known to all the
parties P1, · · · , Pk. Further let νP1 , · · · , νPk be the distributions over U such that D(µ‖νPi) ≤ I, for
all i, 1 ≤ i ≤ k. The i-th party is given real valued functions gPi , hPi,Pj : U → [0, 1], for all 1 ≤ j ≤ k
and j 6= i such that for all x ∈ U , µ(x) =

∏k
j=1 gPj (x) and νPi(x) = gPi(x)

∏
j 6=i hPi,Pj (x). Let ε > 0

be an error parameter. Then there is a sampling protocol π(gP1 , · · · , gPk , hP1,P2 , · · · , hPk,Pk−1
, I, ε)

that communicates total 2O(1+kI/ε) bits such that the following holds:

1. at the end of the protocol, the parties output xi ∈ U ;

2. there is an event ξ such that ξ =⇒ x1 = x2 = · · · = xk and Pr[ξ] < ε;

3. let µ′ is the distribution of x1 conditioned on ξ, then | µ− µ′ |< ε.

Proof. The parties interpret the shared tape as a source of points of the form (xi, αi,1, αi,2, · · · , αi,k)
uniformly distributed over U × [0, 1]k and they consider N = 2 | U | ln 1

ε such points. Their goal is
to find out an index τ such that for all i, ατ,i ≤ gPi(xτ ). The probability that each xi to be such

xτ is
∏k
i=1 gPi(xτ ) = µ(xτ ). Now we denote BPi := {x : 28k(I+1)/ε.νPi < µ(x)} for all 1 ≤ i ≤ k and

then by Claim 6.1, µ(BPi) <
ε
8k for all i. Next, note that an index t satisfies αt,i ≤ gPi(xt) for all i

is exactly 1
|U| . Hence,

Pr[τ > N ] ≤ (1− 1

|U|
)N < e−N/|U| = e−2 ln 1/ε = ε2 < ε/16.

11



Now consider the set of indices that are candidates to be τ for a party Pi’s viewpoint

SPi := {t ≤ N : αt,i ≤ gPi(xt) and
∏
j 6=i

αt,j ≤ 28k(I+1)/ε.
∏
j 6=i

hPi,Pj (xt)}.

Assuming xτ 6∈
⋃
iBPi , we claim that τ ∈

⋂
i SPi . This is true because xτ 6∈ BPi implies∏

j 6=i gPj (xτ )∏
j 6=i hPi,Pj (xτ )

=
µ(xτ )

νPi(xτ )
≤ 28k(I+1)/ε.

Now as ∀j , ατ,j ≤ gPj (xτ ), we have that,∏
j 6=i

ατ,j ≤
∏
j 6=i

gPj (xτ ) ≤ 28k(I+1)/ε.
∏
j 6=i

hPi,Pj (xτ )

and hence, for all i, τ ∈ SPi . In fact, τ is the first element in
⋂
i SPi . Note that for each t,

Pr[t ∈ SPi ] ≤ 28k(I+1)/ε

|U| . Thus E[|SPi |] ≤ 28k(I+1)/ε.2 ln 1
ε < 29Ik/ε. Thus by Markov inequality,

Pr[|SPi | > 210Ik/ε] < 2−Ik/ε � ε
16k .

Now consider the event ξ1 := [xτ ∈
⋃
iBPi ] and ξ2 := [τ > N or |SPi | > 210Ik/ε for some i] and let

ξ := ξ1
⋃
ξ2. then by union bound, Pr[ξ] < k. ε8k + ε

16 + k. ε
16k <

ε
2 . The distribution µ′ conditioned

on ξ satisfies |µ − µ′| < ε as it is the distribution on U \
⋃
iBPi . Next, we describe the sampling

protocol.
Sampling Protocol:

1. Each Pi computes the set SPi and if for some i, |SPi | > 210Ik/ε, the protocol fails.

2. For each s ∈ SP1 , P1 computes d = d10Ik2ε +log 1
ε+k+2e random hash values h′1(s), h

′
2(s), · · · , h′d(s),

where the hash functions are evaluated using the public randomness.

3. P1 writes down the values {hj(si)}si∈SP1 ,1≤j≤d.

4. P2 finds the set of indices I2 of set SP1 such that for each index i ∈ I2, there is a s ∈ SP2 for
which h′j(s) = h′j(si), ∀j=1,2,··· ,d.

5. P2 writes down the set I2 as a characteristic sequence of length |SP1 |.

6. P3, · · · , Pk−1 do the same as P2 such that we get Ik−1 ⊆ Ik−2 ⊆ · · · ⊆ I2.

7. Pk finds the first index i ∈ Ik−1 such that there is a s ∈ SP2 for which h′j(s) = h′j(si),
∀j=1,2,··· ,d and if such i exists, then writes down i and output xs.

8. P1, · · · , Pk−1 output the corresponding values of x.

In the above protocol, the total number of bits communicated is bounded by 210Ik/ε.d + 10Ik2

ε =

2O(1+Ik/ε).
In the above protocol, we use the hash functions that are selected from k-universal family of hash
functions constructed using the public randomness available to the protocol. For the definition and
the construction of k-universal family of hash functions, interested readers may refer to [WC81]. To
analyze the correctness of the above protocol, lets first observe that for s1 ∈ SP1 , s2 ∈ SP2 · · · , sk ∈
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SPk such that they are not all equal but still hj(s1) = hj(s2) = · · · = hj(sk), for all 1 ≤ j ≤ d is
bounded by (2k−1)2−d < ε

4
∏k
i=1 |SPi |

for the specified value of d. Thus by union bound, there exists

some non equal si ∈ SPi , but all the hash values match is bounded by ε
4 . Assuming that there is

no such si and there is a τ ∈
⋂
i SPi , the above protocol is guaranteed to find it and this completes

the proof.

6.2 Information vs. Communication

Lemma 6.1 implies the following connection between information and communication complexity.

Theorem 6.1. Let f : X → ZK be any function where X = X1 ×X2 × · · · ×Xk and let ρ, ε > 0
be error parameters. Then,

1. For any distribution µ over X, Dµ
ρ+ε(f) ≤ 2O(1+k3ICkµ(f,ρ)/ε

2).

2. Rρ+ε(f) ≤ 2O(1+k3ICk(f,ρ)/ε2).

Proof. Let µ be any distribution and π be the protocol that realizes the value Iµ := ICkµ(f, ρ). Now
by Proposition 2.4,

Iµ =
1

k − 1

k∑
i=1

I(XPi ;πX | XPi) =
1

k − 1

k∑
i=1

Ex∼µ[D(πx‖πxPi )].

Thus for any 1 ≤ i ≤ k, Ex∼µ[D(πx‖πxPi )] ≤ (k − 1)Iµ and so by Markov inequality,

Pr[D(πx‖πxPi ) >
2k(k − 1)Iµ

ε
] ≤ ε

2k
.

Now by union bound,

Pr[∃i : D(πx‖πxPi ) >
2k(k − 1)Iµ

ε
] ≤ ε

2
.

Next, we run the sampling protocol from Lemma 6.1 by considering the following in Lemma 6.1:

µ = πx, νPi = πxPi , I =
2k(k−1)Iµ

ε and error parameter be ε
4 .

In the protocol tree, at a node v owned by a party Pi, let gPi,0(v) and gPi,1(v) = 1− gPi,0(v) denote
the probabilities that the next bit sent is 0 or 1 respectively. For the node w owned by some other
party Pj , let hPi,Pj ,0(w) and gPi,Pj ,1(w) = 1 − gPi,Pj ,0(w) denote the probabilities that the next
bit sent is 0 or 1 respectively, estimated by the party Pi. Now for each leaf node l, gPi(l) be the
product of all the values gPi,b(v) where v is owned by the party Pi and hPi,Pj be the product of

all the values hPi,Pj ,b(v) where v is owned by the party Pj . Then, Pr[πx = l] =
∏k
i=1 gPi(l) and

Pr[πPi = l] = gPi(l)
∏
j 6=i hPi,Pj (l).

Thus we can apply Lemma 6.1 to obtain a sample transcript T using only 2O(1+
k2(k−1)Iµ

ε2
) =

2O(1+
k3Iµ

ε2
) bits of communication, such that |T − πx| < ε

2 . Hence, if Tout be the final output of
the transcript T and πout be the final output of the original protocol πx, then Pr[Tout 6= πout] <

ε
2 .
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Now let us bound the error probability of the new protocol.

Pr[Tout 6= f(x)] ≤ Pr[∃i : D(πx‖πxPi ) >
2k(k − 1)Iµ

ε
]

+ Pr[Tout 6= πout | ∀i,D(πx‖πxPi ) ≤
2k(k − 1)Iµ

ε
] + Pr[πout 6= f(x)]

<
ε

2
+
ε

2
+ ρ = ρ+ ε.

Note that in the expression Pr[Tout 6= f(x)], the probability is calculated over x ∼ µ and the
randomness used by the protocol. So by averaging argument, we can fix some “good” random bits
such that probability of failure will be bounded by ρ+ ε, while calculating the probability only over
x ∼ µ. This completes the first part of the proof.
The second part follows from the first part along with Yao’s Min-max Theorem and let µ′ be the

distribution such that Dµ′

ρ+ε(f) = Rρ+ε(f) and since by definition, ICkµ′(f, ρ) ≤ ICk(f, ρ), hence,

Rρ+ε(f) = Dµ′

ρ+ε(f) ≤ 2
O(1+k3ICk

µ′ (f,ρ)/ε
2) ≤ 2O(1+k3ICk(f,ρ)/ε2).

Note that for k = 2, the above two relations coincide with the similar relations shown for two
party communication setting [Bra12].

7 Information Complexity and Amortized Communication

7.1 The distributional case

Let f : X → ZK be any function, where X = X1 ×X2 × · · · ×Xk. We shall consider the problem
of computing n copies of f with error ρ in each coordinate of the computation.

Definition 7.1 ([BR11]). Let µ be any distribution on X1 × X2 × · · · × Xk and consider any
1 < ρ < 1. The distributional complexity of computing f on each of n independent set of inputs
drawn according to µ, with failure probability at most ρ on each of the inputs is denoted by Dµ,n

ρ (fn).

Note that just by running the n copies of protocol that solves f , we can get Dµ,n
ρ (fn) ≤

n.Dµ
ρ (f). The following theorem establish a relation between information complexity and amortized

communication complexity for multiparty communication setting. The similar theorem for two
party case was given in [BR11].

Theorem 7.1. For every µ, f, ρ, there exists a protocol π that computes the value of f with failure

probability ρ and communicates at most Dµ,n
ρ (fn) such that ICkµ(π) ≤ Dµ,nρ (fn)

n and thus ICkµ(f, ρ) ≤
Dµ,nρ (fn)

n .

Proof. Suppose τ be a protocol realizing Dµ,n
ρ (fn) and without loss of generality we can assume

that τ only uses private coin randomness. Now define the protocol π(x) as follows:

1. The parties publicly sample J ∈ {1, 2, · · · , n}.

2. The parties publicly sample X1, X2, · · · , XJ−1, XJ+1, · · · , Xn.
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3. The parties set XJ
Pi

= xPi and run the protocol τ on X1, X2, · · · , Xn. They output the result
computed for the J-th coordinate.

Note that CC(π) = CC(τ) and the failure probability of π is ρ. Now let us bound ICkµ(π).

ICkµ(π) =
1

k − 1

k∑
i=1

I(XPi ; Π | XPi)

=
1

k − 1

k∑
i=1

I(XPi ; JX
1X2 . . . XJ−1XJ+1 . . . Xnτ | XPi)

=
1

k − 1

k∑
i=1

[I(XPi ; JX
1X2 . . . XJ−1XJ+1 . . . Xn | XPi)+

I(XPi ; τ | XPiJX
1X2 . . . XJ−1XJ+1 . . . Xn)] by Proposition 2.2

=
1

k − 1

k∑
i=1

I(XPi
J
; τ | X1

PiX
2
Pi . . . X

n
PiJXPi

1
XPi

2
. . . XPi

J−1
XPi

J+1
. . . XPi

n
)

≤ 1

k − 1

k∑
i=1

I(XPi
J
; τ | X1

PiX
2
Pi . . . X

n
PiJXPi

1
XPi

2
. . . XPi

J−1
)

=
1

k − 1

k∑
i=1

1

n

n∑
j=1

I(XPi
j
; τ | X1

PiX
2
Pi . . . X

n
PiXPi

1
XPi

2
. . . XPi

j−1
)

=
1

n

1

k − 1

k∑
i=1

I(XPi
1
XPi

2
. . . XPi

n
; τ | X1

PiX
2
Pi . . . X

n
Pi) by Proposition 2.2

=
1

n
ICkµn(τ) ≤ CC(τ)

n
by Lemma 3.2

The first inequality is due to an application of Proposition 2.5, by assuming A = τ , B = XPi
J
,

C = X1
Pi
X2
Pi
. . . Xn

Pi
JXPi

1
XPi

2
. . . XPi

J−1
and D = XPi

J+1
. . . XPi

n
.

If τ uses public coin randomness R, then by Lemma 3.1,

ICkµ(π) = ER[ICkµ(πR)] ≤ 1

n
ER[ICkµn(τR)] =

1

n
ER[ICkµn(τ)] ≤ CC(τ)

n
.

This completes the proof.

Theorem 7.2. The parties P1, P2, · · · , Pk are given distributions Q1, Q2, · · · , Qk respectively, where
all the distributions are over the universe U . Then for any ε > 0, there is a protocol such that:

• at the end of the protocol, P1 will output an element x1 distributed according to the distribution
Q1.

• P2, P3, · · · , Pk will output the elements x2, x3, · · · , xk respectively so that for each x,

Pr[x1 = x2 = · · · = xk | x1 = x] > 1− ε.
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• the number of bits communicated in this protocol is bounded by

k∑
i=1

log(Q1(x)/Qi(x)) + log
1

ε
+ log log

1

ε
+ (k + 3)

√√√√ k∑
i=1

log(Q1(x)/Qi(x)) + 2k + log k + 7.

Proof. The protocol we designed use public coin randomness and runs as follows. All the parties in-
terpret the shared random tape as a sequence of uniformly selected elements {aj}∞j=1 = {(xj , qj)}∞j=1

from the set A := U × [0, 1]. For every 1 ≤ i ≤ k, define the subsets Qi := {(x, q) : Qi(x) > q}. For
a constant C ≥ 1 and for 2 ≤ i ≤ k, also define the subsets C.Qi := {(x, q) ∈ A : (x, qC ) ∈ Qi}.
We use the other part of the shared randomness to obtain a sequence of random hash functions
hm : U → {0, 1} so that for any x 6= y ∈ U , Pr[hm(x) = hm(y)] = 1

2 .
Now let us present the protocol:

1. P1 selects the first index j such that aj = (xj , qj) ∈ Q1 and outputs xj .

2. P1 uses 1 + log log 1
ε bits to communicate the binary encoding of l := d j|U|e (if l is too long,

then P1 communicate some arbitrary string).

3. For all t, set Ct := 2t
2

and st := 1 + dlog 1
ε e+ dlog ke+ (t+ 1)2.

4. Repeat until every player Pi produces an output, beginning with t = 0:

(a) P1 communicates the values of all the hash values hm(xj), for 1 ≤ m ≤ st, that have
not been communicated previously.

(b) if there is an ar = (xr, qr) such that r ∈ {(l − 1).|U| + 1, · · · , l.|U|} in Ct.Qi and
hm(xr) = hm(xj), for 1 ≤ m ≤ st, then Pi responds “success” and outputs xr; if there is more
than one such ar, Pi selects the first one.

(c) if there exists a party Pi which have not responded “success” so far, increment t and
repeat.

The output by P1 is distributed according to the distribution Q1. Now fix a choice of j and the
pair (xj , qj) by P1. Step 4 is guaranteed to terminate when t2 ≥

∑k
i=1 log(Q1(xj)/Qi(xj)) since for

all 2 ≤ i ≤ k, aj ∈ Q1(xj)
Qi(xj)

.Q. Denote T :=
√∑k

i=1 log(Q1(xj)/Qi(xj)). By iteration T , P1 will have

sent sT bits in step 4 and each party Pi, 2 ≤ i ≤ k will have sent T + 1 bits. Thus total number of
bits communicated in step 4 is bounded by

sT + (k − 1)(T + 1) = 1 + dlog(1/ε)e+ dlog ke+ (T + 1)2 + (k − 1)(T + 1)

≤ (

√√√√ k∑
i=1

log(Q1(xj)/Qi(xj)) + 2)2 + (k − 1)

√√√√ k∑
i=1

log(Q1(xj)/Qi(xj))

+ log
1

ε
+ log k + 2k + 1

=

k∑
i=1

log(Q1(xj)/Qi(xj)) + (k + 3)

√√√√ k∑
i=1

log(Q1(xj)/Qi(xj))

+ log
1

ε
+ 2k + log k + 5
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So, total communication is bounded by

k∑
i=1

log(Q1(xj)/Qi(xj)) + (k + 3)

√√√√ k∑
i=1

log(Q1(xj)/Qi(xj)) + log
1

ε
+ log log

1

ε
+ 2k + log k + 7.

Note that for any L,

Pr[l > L] = Pr[aj ∈ Q1, for i = 1, 2, · · · , L.|U|] = (1− 1/|U|)L.|U| < e−L.

Thus the probability that the binary encoding of l exceeds 1 + dlog log(1/ε)e bits is less than

e−2.2
dlog log(1/ε)e ≤ ε/2.

Now let us analyze the protocol. We say that an element a = (x, q) survives iteration t, with
respect to a party Pi if a ∈ 2t

2
.Qi and it satisfies hm(x) = hm(xj), for all 1 ≤ m ≤ st for this

t. Observe that “correct” element aj survives iteration t with respect to a party Pi if and only if

2t
2 ≥ Q1(xj)/Qi(xj).

Claim 7.1 ([BR11]). Let Eaj be the event that the element selected by P1 is aj, which is the j-th
element on the shared tape of random bits and let l := dj/|U|e. Conditioned on Eai, the probability
that a different element ar with r ∈ {(l− 1).|U|+ 1, · · · , l.|U|} survives iteration t with respect to a
party Pi is bounded by ε/k2t+1.

Thus for any Eaj , the probability that Pi, for any 2 ≤ i ≤ k, will output an element other than
xj conditioned on Eaj is bounded by

∑∞
t=0 ε/k2t+1 = ε/k. Hence, by union bound, some party Pi

will output an element other than xj conditioned on Eaj is bounded by ε and this completes the
proof.

7.1.1 Multiparty Correlated Pointer Jumping

In this subsection, we first define the k-party correlated pointer jumping problem, the solution of
which will be the main ingredient of establishing the connection between information and amortized
communication complexity. The input of this problem is a rooted tree, where

• each non-leaf node is owned by exactly one of the parties Pi, for 1 ≤ i ≤ k,

• each non-leaf node owned by a particular party has a set of children that are owned by other
parties,

• each node v is associated with k distributions on its children: childPiv known to the party Pi,

• the leaf nodes are labeled with the output values.

For every non-leaf vertex w in the tree, whose parent is v and v is owned by Pj , define the divergence

cost of w as D(w) =
∑k

i=1 log(child
Pj
v (w)/childPiv (w)). The divergence cost of the root is set to be

0. Now given a path T from the root to the leaf, the divergence cost of the path, denoted by D(T )
is the sum of the divergence costs of all all the nodes present in that path. The divergence cost of
an instance F , denoted by D(F ), is the expected sum of divergence costs of the nodes present in
the correct distribution on paths.
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Theorem 7.3. Given a k-party correlated pointer jumping instance F having depth l, there is a
protocol that can sample a path T such that there is an event E, with Pr[E] > 1−lε and conditioned
on E,

• the parties output the same sampled path T that has the correct distribution,

• the number of bits communicated is bounded by D(T ) + 2l log(1/ε) + (k + 3)
√
lD(T ) + (2k +

log k + 7)l.

Proof. We obtain the protocol to sample the correct path by repeatedly applying the protocol from
Theorem 7.2. For each step j, let Ej be the event that the corresponding party sample the correct
child. By Theorem 7.2, Pr[Ej ] > 1− ε. Let E := ∩jEj and thus by union bound, Pr[E] > 1− lε.
Conditioned on E, the sampled path has the correct distribution.
Now, suppose the sampled path is T = v0, v1, · · · , vl. Then by Theorem 7.2, the total number of
bits communicate dis bounded by

l∑
j=1

(D(vj) + log(1/ε) + log log(1/ε) + (k + 3)
√
D(vj) + 2k + log k + 7)

≤
l∑

j=1

D(vj) + l log(1/ε) + l log log(1/ε) + (k + 3)

√√√√l
l∑

j=1

D(vj) + (2k + log k + 7)l

≤ D(T ) + 2l log(1/ε) + (k + 3)
√
lD(T ) + (2k + log k + 7)l

where the first inequality is by the Cauchy-Schwartz inequality.

Given a public coin multiparty protocol with inputs X = X1, X2, · · · , Xk and public randomness
R, for every fixing of x and r, we obtain an instance of k-party correlated pointer jumping problem.
The tree is same as the protocol tree with the public randomness r. For a node v at depth d is

owned by Pi, for 1 ≤ i ≤ k, define child
Pi,xPi
v so that it has the same distribution as M |XPi =

xPi , π(X)≤d = rv. We denote the instance of k-party correlated pointer jumping by Fπ(x, r) and
let µ be the distribution on X.

Lemma 7.1. EX,R[D(Fπ(x, r))] = (k − 1)ICkµ(π).

Proof. We first fix a r and then denote the corresponding protocol as πr. We then use the induction
argument to prove that EX [D(Fπr(x, r))] = (k − 1)ICkµ(πr). Then we use Lemma 3.1 to complete
the proof.
When the depth is 0, then terms in both the sides are 0. Now without loss of generality, lets assume
that the root node is owned by the party P1 and let M denotes the child of the root sampled during
the protocol. Let F (x, r)m denotes the divergent cost of the subtree rooted at m. Then

EX [D(Fπr(x, r))] = EX,M [
k∑
j=1

log(child
P1,xP1
v (m)/child

Pj ,xPj
v (m)) + D(F (x, r)m)] (1)

Note that for every x, M |X = x has the same distribution as of M |XP1 = xP1 and thus by
Proposition 2.4, the expectation of the first term in Equation 1 is equal to

∑k
j=1 I(XPj ;M | XPj ).

By the induction hypothesis, for every fix M = m, the second term is equal to (k − 1)ICkµ(πr |
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m) =
∑k

j=1 I(XPj ;πr(X) | XPjm), where πr | m denotes the protocol πr given that the child of the
root node of the protocol tree for πr is m. Then, these two terms together give

EX [D(Fπr(x, r))] =

k∑
j=1

I(XPj ;M | XPj ) +

k∑
j=1

I(XPj ;πr(X) | XPjM)

=

k∑
j=1

I(XPj ;πr(X) | XPj ) by Proposition 2.2

= (k − 1)ICkµ(πr)

Now Theorem 7.3 and Lemma 7.1 together lead to the following corollary.

Corollary 7.1. Let X be the input to a l round multiparty communication protocol π, where the
number of parties involved is k and let I be the internal information cost of π. Then for every
ε > 0, there exists a protocol τ , such that at the end of this protocol each party outputs a transcript
for π. Moreover, there is a event E with Pr[E] > 1− lε such that conditioned on E, all the parties
output the same transcript distributed according to π(X) and the expected communication of τ is
(k − 1)I + (k + 3)

√
l(k − 1)I + 2l log(1/ε) + (2k + log k + 7)l.

7.1.2 Information and amortized communication

Here we establish a tight connection between the amount of information revealed by a protocol
computing a function f and the amortized communication complexity of computing many copies
of the function f . We first recall a simple observation from [BR11].

Claim 7.2 ([BR11]). For each f , ρ and µ, limα→ρ IC
k
µ(f, α) = ICkµ(f, ρ).

Another simple but important observation required for our purpose is given below. Before
stating the observation, we need the following definition.

Definition 7.2 (Layered Multiparty Protocol). A mulitparty protocol π involving k parties P1, · · · , Pk
is said to be layered if the communication is done by the parties in the following order: first P1’s
turn, then P2’s turn and so on up to Pk’s turn and then again P1’s turn and so on.

Lemma 7.2. For every I and input distribution µ, if there is a multiparty protocol τ involving k
parties, having ICkµ(τ) = I, then there exists a layered protocol π. Moreover, ICkµ(π) = ICkµ(τ) = I
and CC(π) ≤ 2k.CC(τ).

Proof. Without loss of generality we can assume that τ is a private coin protocol as otherwise we
can fix a random string r and prove the same result and after that apply Lemma 3.1. We modify
the protocol τ to get the desired protocol π, in the following way:

• If τ selects the party Pi to communicate, but according to the ordering mentioned in the
statement of the lemma, it is the turn of the party Pj , for j 6= i, then the party Pj communicate
an idle symbol φ.
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Clearly, CC(π) ≤ 2k.CC(τ). Note that as here the communication involves a symbol other than 0
or 1, thus we get the term 2k. It remains to bound the internal information cost of π.

ICkµ(π) =
1

k − 1

k∑
i=1

I(π(X);XPi | XPi)

=
1

k − 1

k∑
i=1

[I(τ(X);XPi | XPi) + I(Φ;XPi | XPiτ(X))] by Proposition 2.2

=
1

k − 1

k∑
i=1

I(τ(X);XPi | XPi) = ICkµ(τ).

where Φ denotes the string of all φ symbols.

Now define the amortized communication complexity of a function f .

Definition 7.3. For any function f , the amortized communication complexity with respect to a
distribution µ on the input, is defined as

AC(fµρ ) := lim
n→∞

Dµ,n
ρ (f)

n
.

We are now ready to state the main theorem of this section.

Theorem 7.4. For ρ > 0,

ICkµ(f, ρ) ≤ AC(fµρ ) ≤ (k − 1)ICkµ(f, ρ).

Note that for k = 2, the above theorem results in equality between the two terms and that
matches with the theorem stated in [BR11].

Proof. ICkµ(f, ρ) ≤ AC(fµρ ). This direction directly follows from Theorem 7.1.

AC(fµρ ) ≤ (k − 1)ICkµ(f, ρ). Let δ > 0. we will show that for sufficiently large n, Dµ,n
ρ (f)/n <

(k − 1)ICkµ(f, ρ) + δ.

By Claim 7.2, there is an α < ρ, such that ICkµ(f, α) < ICkµ(f, ρ) + δ/4. Thus there is a protocol τ
that computes f with error bounded by α with respect to the input distribution µ and the internal
information cost is bounded by I := ICkµ(f, ρ) + δ/4. By Lemma 7.2, there is a layered protocol
π computing f with error bounded by α and internal information cost if same as that of τ , where
CC(π) ≤ 2k.CC(τ).
For every n, πn denotes the protocol that executes the protocol π independently in parallel with
different sets of inputs from Xn. Thus πn has CC(π) rounds and communication complexity
nCC(π). Moreover, the error at each coordinate is bounded by α. Now we obtain our desired
protocol by compressing πn.
Let jπ denote the transcript for input Xj and observe that for every j, (Xj , jπ) are mutually
independent. This implies ICkµn(πn) = nICkµ(π). Let Tn denotes the random variable of the path
sampled in πn and T1, · · · , Tn denote the random variables of the n paths sampled in the individual
copies of π. As the protocols run independently, E[D(Tn)] =

∑n
j=1 E[D(Tj)]. Each vertex in the
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protocol tree of πn corresponds to an n-tuple of vertices of π. If w corresponds to the vertices
(w1, · · · , wn) having parents (v1, · · · , vn) owned by say Pi, then

D(w) =

k∑
j=1

log(childPiv (w)/child
Pj
v (w))

=

k∑
j=1

log(

n∏
m=1

childPivm(wm)/

n∏
m=1

child
Pj
vm(wm))

=

k∑
j=1

n∑
m=1

log(childPivm(wm)/child
Pj
vm(wm))

=
n∑

m=1

D(wm).

By Lemma 7.1, E[D(Tj)] = ICkµ(π). Thus, by the central limit theorem, for large enough n,

Pr[D(Tn) ≥ n((k − 1)ICkµ(π) + δ/4)] < (ρ− δ)/2.

Now we use Corollary 7.1 to simulate πn, with error parameter ε = (ρ − δ)/2CC(π) and get
the desired protocol having error bounded by α + (ρ − α) = ρ and truncate the protocol after

n.((k − 1)ICkµ(τ) + δ/4) + (k + 3)
√

2kCC(τ).n.((k − 1)ICkµ(τ) + δ/4) + 4kCC(τ) log(1/ε) + (2k +

log k+ 7)2kCC(τ) bits of communication. For large enough n, the per copy communication of this
protocol is at most (k − 1)ICkµ(τ) + δ/2, as required.

7.2 The non-distributional case

In this subsection, we establish a relation between prior-free information complexity and amortized
communication complexity for non-distributional case. This relation is similar to the relation we
have shown for distributional case in the last subsection.

Theorem 7.5. For ρ > 0,

ICk(f, ρ) ≤ lim
n→∞

Rnρ (fn)

n
≤ (k − 1)ICk(f, ρ).

Above relation will lead to equality for k = 2 and this matches the result sated in [Bra12]. We
adapt the proof technique from [BR11], to prove this relation. Before proving the above theorem,
we first state another theorem.

Theorem 7.6. Let f : X → {0, 1}, where X = X1×X2×· · ·×Xk, then for each ρ, δ1, δ2 > 0 there
is an N such that n ≥ N there is a protocol πn(x1, x2, · · · , xn) for computing n instances of f . The
protocol πn will have communication complexity at most n(k − 1).ICk(f, ρ).(1 + δ1) and the error
will be bounded by a quantity slightly greater that ρ on each copy. Furthermore, the error vector of
the protocol will behave as if n evaluations were independent, except with a probability at most δ2.

More precisely, let Q : {0, 1}n → {0, 1} be any monotone function and let p = (p1, · · · , pn) be
the random variable representing πn’s output on input x1, · · · , xn. Suppose e = (e1, · · · , en) be the
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error vector, where ei be a indicator random variable representing pi 6= f(xi) and b = (b1, · · · , bn)
be a vector of independent Barnoulli variable bi ∼ Bρ. Then,

Pr[Q(e) = 1] ≤ Pr[Q(b) = 1] + δ2.

Assuming the above theorem, we can now prove Theorem 7.5.

Proof of Theorem 7.5. Second part of the Theorem 5.2 implies the following

ICk(f, ρ) =
ICn(fn, ρ)

n
≤
Rnρ (fn)

n

where the last inequality is due to the fact that information cost of a protocol is always upper

bounded by the communication cost (by Lemma 3.2). This shows that ICk(f, ρ) ≤ limn→∞
Rnρ (f

n)

n .
The remaining part follows from Theorem 7.6. ConsiderQ as a one-coordinate indicator function

and this implies Rnρ (fn) ≤ n(k− 1).ICk(f, ρ− δ2).(1 + δ1). As δ1 → 0 and n→∞, for each δ2 > 0,
we have

lim
n→∞

Rnρ (fn)

n
≤ ICk(f, ρ− δ2).

Now as a consequence of Theorem 4.3, we get that ICk(f, ρ) is continuous in ρ ∈ [0, 1] and this
implies that ICk(f, ρ) = limδ2→0 IC

k(f, ρ− δ2). Hence,

lim
n→∞

Rnρ (fn)

n
≤ (k − 1)ICk(f, ρ)

and this completes the proof.

Now it remains to prove Theorem 7.6 and we provide it in the next subsection.

7.2.1 Proof of Theorem 7.6

The proof follows the idea used in [Bra12]. We first state two main lemmas that will be used in the
proof. Proofs of the following lemmas are same as that given in [Bra12], but for the sake of clarity,
we are providing the detailed proofs.

Lemma 7.3. Consider any δ1, δ4 > 0. Let a layered l′ ≤ 2kl, for some l, round protocol π for
computing a function f : X1 × · · · ×Xk → {0, 1} (denote X := X1 × · · · ×Xk) involving k parties,
that satisfies ICkµ(π) ≤ ICk(f, ρ)(1+δ1/3), is given. Then for sufficiently large n, there is a protocol
πn that takes n instance of f as an input and the following holds:

1. For every input x, |πn(x)− πn(x)| < δ4/(2n
2).

2. The expected communication cost is at most n(k − 1).ICk(f, ρ).(1 + 2δ1/3).

3. The worst case communication cost is bounded by 100nkM/δ1, where M = maxi log |Xi|.

Proof. Let α > 0 be a parameter. Now consider a zero-sum game G, where first player A selects a
distribution on n sets of inputs and the second player B produces a randomized protocol τ . The
payoff for A is

PA(µ, τ) := (1− α)
Ex∼µ|τ(x)|

n(k − 1)ICk(f, ρ)(1 + δ1/2)
+

Ex∼µ|τ(x)− πn(x)|
δ4/(2n2)
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where x := (x1, · · · , xn), i.e., n sets of inputs and each xj = xj1, · · · , x
j
k.

Let ν be any mixed strategy for A and we represent µ(x) = Eµ∼νµ(x). Now observe that, for
any protocol τ , Eµ∼νPA(µ, τ) = PA(µ, τ). Thus to prove that the value of the game is bounded by
1, it is sufficient show that for each distribution µ, there is a protocol τ such that PA(µ, τ) < 1.

Fix a distribution µ and consider its projection on n coordinates, denoted as µ1, · · · , µn. Observe
that the proof of the second part of Theorem 5.1 provides us the following

ICkµ(πn) ≤
n∑
j=1

ICkµj (π) ≤ n.ICk(f, ρ).(1 + δ1/3).

The protocol πn is also of l round. Let ε := α.δ4
4n2kl

. By Lemma 7.1, the protocol πn can be simulated
by a protocol τ such that the expected communication is bounded by (k−1).n.ICk(f, ρ)(1+δ1/3)+
(k+3)

√
2kl(k − 1).n.ICk(f, ρ)(1 + δ1/3)+4kl log(1/ε)+(2k+log k+7)2kl < (k−1).n.ICk(f, ρ)(1+

δ1/2) and |τ − πn| < 2klε. Hence, we get that PA(µ, τ) < 1.
By Yao’s Min-max Theorem, there exists a distribution κ on protocols, such that for each

distribution µ on inputs, Eτ∼κ[PA(µ, τ)] < 1. Now consider πn as a randomized protocol that
executes first selects a protocol according to the distribution κ and then executes it. Clearly,
PA(µ, πn) < 1, for all distributions µ.

A particular input x can be thought as a singleton distribution, denoted by µx. Let α <
1− (1 + δ1/2)/(1 + 3δ1/5). Then for every input x, PA(µx, πn) < 1 and this implies that

|τ(x)− πn(x)| < δ4
2n2

and the expected number of bits of communication of πn on input x is bounded by

n(k − 1)ICk(f, ρ)(1 + δ1/2)

1− α
< n(k − 1)ICk(f, ρ)(1 + 3δ1/5).

Now to get the worst case bound on the number of bits communicated, we use the most common
technique. We modify the protocol πn in such a way that it runs as usual for 80nkM/δ1 bits and
if does not terminate within this limit then just communicates all the inputs, which takes total
nkM bits. By Markov inequality, the probability that the modified protocol crosses 80nkM/δ1

bits of communication is bounded by 2nICk(f,ρ)
80nkM/δ1

= δ1ICk(f,ρ)
40kM . Thus, the expected number of bits of

communication for this modified protocol is at most

n(k − 1)ICk(f, ρ)(1 + 3δ1/5) +
δ1IC

k(f, ρ)

40kM
.(nkM) < n(k − 1)ICk(f, ρ)(1 + 2δ1/3).

The above lemma gives us an upper bound on the expected number of bits communicated and
now the following lemma helps us to get an upper bound on the worst case communication cost.

Lemma 7.4. Consider any δ1, δ4 > 0. Let a layered l′ ≤ 2kl, for some l, round protocol π for
computing a function f : X1 × · · · × Xk → {0, 1} involving k parties, that satisfies ICkµ(π) ≤
ICk(f, ρ)(1 + δ1/3), is given. Suppose τ be a protocol that runs on n3 sets of inputs by dividing
them into n2 blocks of n sets each and then executing πn (as in Lemma 7.3) on each block. If τ is
truncated after n3(k − 1)IC(f, ρ)(1 + δ1), then for each set of inputs x, |τ(x)− πn3

(x)| < δ4.
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Proof. First fix a set of n3 inputs. Now by union bound along with the second condition of Lemma
7.3, the probability that there exists a block among n2 blocks, that is different under πn than
under πn is bounded by δ4/2. Let Tj , for 1 ≤ j ≤ n2 denote the random variable representing the

communication cost by the j-th copy during the execution of τ . Denote T :=
∑n2

j=1 Tj .

Note that Tj are i.i.d. and E[Tj ] < n(k − 1).ICk(f, ρ).(1 + 2δ1/3) and thus

V ar(Tj) < E[Tj ].
100nkM

δ1
< 200n2kM.ICk(f, ρ)/δ1.

So, E[T ] < n3(k − 1).ICk(f, ρ).(1 + 2δ1/3) and V ar(T ) < 200n4kM.ICk(f, ρ)/δ1. Now by Cheby-
shev’s inequality, we get

Pr[T > n3(k − 1).ICk(f, ρ).(1 + δ1)] <
200n4kM.ICk(f, ρ)/δ1

(n3(k − 1).ICk(f, ρ).δ1/3)2
< δ4/2

where the last inequality holds for large enough n.

It only remains to combine Lemma 7.3 and Lemma 7.4 to get Theorem 7.6.

Proof of Theorem 7.6. Suppose for all 1 ≤ i ≤ k, |Xi| ≤ 2M . As a consequence of Theorem 4.3, we
get that ICk(f, ρ) is continuous in ρ ∈ [0, 1] and this implies that there exists a δ3 > 0 such that

ICk(f, ρ− δ3) < ICk(f, ρ).(1 + δ1/3).

By the definition of ICk(f, ρ− δ3), there is a protocol τ that on each set of inputs succeeds except
with probability at most ρ− δ3 and for each distribution µ,

ICkµ(τ) ≤ ICk(f, ρ).(1 + δ1/3)

where τ is a l round protocol. Now take the layered protocol π according to Lemma 7.2 and thus
number of rounds of π is bounded by 2kl. Then by setting δ4 := min(δ2, δ3)/2, we apply Lemma
7.4 and this completes the proof.
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