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Abstract

We define the lower and upper mutual dimensions mdim(x : y) and Mdim(x : y) between
any two points x and y in Euclidean space. Intuitively these are the lower and upper densities of
the algorithmic information shared by x and y. We show that these quantities satisfy the main
desiderata for a satisfactory measure of mutual algorithmic information. Our main theorem, the
data processing inequality for mutual dimension, says that, if f : Rm → Rn is computable and
Lipschitz, then the inequalities mdim(f(x) : y) ≤ mdim(x : y) and Mdim(f(x) : y) ≤Mdim(x :
y) hold for all x ∈ Rm and y ∈ Rt. We use this inequality and related inequalities that we prove
in like fashion to establish conditions under which various classes of computable functions on
Euclidean space preserve or otherwise transform mutual dimensions between points.

1 Introduction

Recent interactions among computability theory, algorithmic information theory, and geometric
measure theory have assigned a dimension dim(x) and a strong dimension Dim(x) to each individual
point x in a Euclidean space Rn. These dimensions, which are real numbers satisfying 0 ≤ dim(x) ≤
Dim(x) ≤ n, have been shown to be geometrically meaningful. For example, the classical Hausdorff
dimension dimH(E) of any set E ⊆ Rn that is a union of Π0

1 (computably closed) sets is now known
[18, 12] to admit the pointwise characterization

dimH(E) = sup
x∈E

dim(x).

More recent investigations of the dimensions of individual points in Euclidean space have shed light
on connectivity [20, 24], self-similar fractals [19, 6], rectifiability of curves [10, 22, 9], and Brownian
motion [13].

In their original formulations [18, 1], dim(x) is cdim({x}) and Dim(x) is cDim({x}), where cdim
and cDim are constructive versions of classical Hausdorff and packing dimensions [7], respectively.
Accordingly, dim(x) and Dim(x) are also called constructive fractal dimensions. It is often most
convenient to think of these dimensions in terms of the Kolmogorov complexity characterization
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theorems

dim(x) = lim inf
r→∞

Kr(x)

r
, Dim(x) = lim sup

r→∞

Kr(x)

r
, (1.1)

where Kr(x), the Kolmogorov complexity of x at precision r, is defined later in this introduction
[21, 1, 19]. These characterizations support the intuition that dim(x) and Dim(x) are the lower
and upper densities of algorithmic information in the point x.

In this paper we move the pointwise theory of dimension forward in two ways. We formulate and
investigate the mutual dimensions — intuitively, the lower and upper densities of shared algorithmic
information — between two points in Euclidean space, and we investigate the conservation of
dimensions and mutual dimensions by computable functions on Euclidean space. We expect this to
contribute to both computable analysis — the theory of scientific computing [3] — and algorithmic
information theory.

The analyses of many computational scenarios call for quantitative measures of the degree to
which two objects are correlated. In classical (Shannon) information theory, the most useful such
measure is the mutual information I(X : Y ) between two probability spaces X and Y [5]. In the
algorithmic information theory of finite strings, the (algorithmic) mutual information I(x : y) be-
tween two individual strings x, y ∈ {0, 1}∗ plays an analogous role [17]. Under modest assumptions,
if x and y are drawn from probability spaces X and Y of strings respectively, then the expected
value of I(x : y) is very close to I(X : Y ) [17]. In this sense algorithmic mutual information is a
refinement of Shannon mutual information.

Our formulation of mutual dimensions in Euclidean space is based on the algorithmic mutual
information I(x : y), but we do not use the seemingly obvious approach of using the binary ex-
pansions of the real coordinates of points in Euclidean space. It has been known since Turing’s
famous correction [25] that binary notation is not a suitable representation for the arguments and
values of computable functions on the reals. (See also [14, 26].) This is why the characterization
theorems (1.1) use Kr(x), the Kolmogorov complexity of a point x ∈ Rn at precision r, which is
the minimum Kolmogorov complexity K(q) — defined in a standard way [17] using a standard
binary string representation of q — for all rational points q ∈ Qn ∩ B2−r(x), where B2−r(x) is the
open ball of radius 2−r about x. For the same reason we base our development here on the mutual
information Ir(x : y) between points x ∈ Rm and y ∈ Rn at precision r. This is the minimum
value of the algorithmic mutual information I(p : q) for all rational points p ∈ Qm ∩ B2−r(x) and
q ∈ Qn ∩ B2−r(y). Intuitively, while there are infinitely many pairs of rational points in these
balls and many of these pairs will contain a great deal of “spurious” mutual information (e.g., any
finite message can be encoded into both elements of such a pair), a pair of rational points p and
q achieving the minimum I(p : q) = Ir(x : y) will only share information that their proximities to
x and y force them to share. Sections 3 and 4 below develop the ideas that we have sketched in
this paragraph, along with some elements of the fine-scale geometry of algorithmic information in
Euclidean space that are needed for our results. A modest generalization of Levin’s coding theorem
(Theorem 3.1 below) is essential for this work.

In analogy with the characterizations (1.1) we define our mutual dimensions as the lower and
upper densities of algorithmic mutual information,

mdim(x : y) = lim inf
r→∞

Ir(x : y)

r
, Mdim(x : y) = lim sup

r→∞

Ir(x : y)

r
, (1.2)

in section 5. We also prove in that section that these quantities satisfy all but one of the desiderata
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(e.g., see [2]) for any satisfactory notion of mutual information.
We save the most important desideratum — our main theorem — for section 6. This is the data

processing inequality for mutual dimension (actually two inequalities, one for mdim and one for
Mdim). The data processing inequality of Shannon information theory [5] says that, for any two
probability spaces X and Y and any function f : X → Y ,

I(f(X) : Y ) ≤ I(X : Y ) (1.3)

i.e., the induced probability space f(X) obtained by “processing the information in X through
f” does not share any more information with Y than X shares with Y . The data processing
inequality of algorithmic information theory [17] says that, for any computable partial function
f : {0, 1}∗ → {0, 1}∗, there is a constant cf ∈ N (essentially the number of bits in a program that
computes f) such that, for all strings x ∈ domf and y ∈ {0, 1}∗,

I(f(x) : y) ≤ I(x : y) + cf . (1.4)

That is, modulo the constant cf , f(x) contains no more information about y than x contains about
y.

The data processing inequality for points in Euclidean space is a theorem about functions f :
Rm → Rn that are computable in the sense of computable analysis [3, 14, 26]. Briefly, an oracle
for a point x ∈ Rm is a function gx : N → Qm such that |gx(r) − x| ≤ 2−r holds for all r ∈ N. A
function f : Rm → Rn is computable if there is an oracle Turing machine M such that, for every
x ∈ Rm and every oracle gx for x, the function r 7→Mgx(r) is an oracle for f(x).

Given (1.2), (1.3), and (1.4), it is natural to conjecture that, for every computable function
f : Rm → Rn, the inequalities

mdim(f(x) : y) ≤ mdim(x : y), Mdim(f(x) : y) ≤Mdim(x : y) (1.5)

hold for all x ∈ Rm and y ∈ Rt. However, this is not the case. For a simple example, there exist
computable functions f : R → R2 that are space-filling, e.g., satisfy [0, 1]2 ⊆ range f [4]. For such
a function f we can choose x ∈ R such that dim(f(x)) = 2. Letting y = f(x), we then have

mdim(f(x) : y) = dim(f(x)) = 2 > 1 ≥ Dim(x) ≥Mdim(x : y),

whence both inequalities in (1.5) fail.
The difficulty here is that the above function f is extremely sensitive to its input, and this

enables it to compress a great deal of “sparse” high-precision information about its input x into
“dense” lower-precision information about its output f(x). Many theorems of mathematical analysis
exclude such excessively sensitive functions by assuming a given function f to be Lipschitz, meaning
that there is a real number c > 0 such that, for all x and x′, |f(x)− f(x′)| ≤ c|x− x′|. This turns
out to be exactly what is needed here. In section 6 we prove prove the data processing inequality
for mutual dimension (Theorem 6.1), which says that the conditions (1.5) hold for every function
f : Rm → Rn that is computable and Lipschitz. In fact, we derive the data processing inequality
from the more general modulus processing lemma (Lemma 6.4). This lemma yields quantitative
variants of the data processing inequality for other classes of functions. For example, we use the
modulus processing lemma to prove that, if f : Rm → Rn is Hölder with exponent α (meaning that
0 < α ≤ 1 and there is a real number c > 0 such that |f(x)− f(x′)| ≤ c|x− x′|α for all x, x′ ∈ Rm),
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then the inequalities

mdim(f(x) : y) ≤ 1

α
mdim(x : y), Mdim(f(x) : y) ≤ 1

α
Mdim(x : y) (1.6)

hold for all x ∈ Rm and y ∈ Rt.
In section 7 we derive reverse data processing inequalities, e.g., giving conditions under which

mdim(x : y) ≤ mdim(f(x) : y). In section 8 we use data processing inequalities and their reverses to
explore conditions under which computable functions on Euclidean space preserve, approximately
preserve, or otherwise transform mutual dimensions between points.

2 Preliminaries

We write Z for the set of integers, N for the set of non-negative integers, Q for the set of rationals,
R for the set of reals, and Rn for the set of all n-vectors (x1, x2, · · · , xn) such that each xi ∈ R. Our
logarithms are in base 2. We denote the cardinality of a set A, the length of a string s ∈ {0, 1}∗,
and the distance between two points x, y ∈ Rn (using the Euclidean metric) by |A|, |s|, and |x− y|
respectively. We also denote the ith string in {0, 1}∗ by si.

Our use of Turing machines is strictly limited to self-delimiting (or prefix) machines. Because of
this, we refer to a self-delimiting Turing machine simply as a Turing machine. We refer the reader
to Li and Vitanyi [17] for a detailed explanation of how self-delimiting Turing machines work.

The (conditional) Kolmogorov complexity of a string x ∈ {0, 1}∗ given a string y ∈ {0, 1}∗ with
respect to a Turing machine M is

KM (x | y) = min{|π|
∣∣∣π ∈ {0, 1}∗ and M(π, y) = x}.

The Kolmogorov complexity of x with respect to M is KM (x) = KM (x |λ), where λ is the empty
string. A Turing machine M ′ is optimal if, for every Turing machine M , there is a constant cM ∈ N
such that, for all x ∈ {0, 1}∗,

KM ′(x) ≤ KM (x) + cM .

We call cM an optimality constant for M . It is well-known that every universal Turing machine is
optimal [17]. Following standard practice, we fix a universal, hence optimal, Turing machine U ; we
omit it from the notation, writing K(x) = KU (x) and K(x | y) = KU (x | y); and we call these the
Kolmogorov complexity of x and the (conditional) Kolmogorov complexity of x given y, respectively.

The joint Kolmogorov complexity of two strings x, y ∈ {0, 1}∗ is

K(x, y) = K(〈x, y〉),

where 〈·, ·〉 is some standard pairing function for encoding two strings. Gács [8] proved the useful
identity

K(x, y) = K(x) +K(y | 〈x,K(x)〉) +O(1). (2.1)

The universal a priori probability of a set S ⊆ {0, 1}∗ is

m(S) =
∑

U(π)∈S

2−|π|.
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Since we are using self-delimiting machines, the Kraft inequality tells us that m({0, 1}∗) ≤ 1. The
universal a priori probability of a string x ∈ {0, 1}∗ is m(x) = m({x}). For r ∈ N, we write
K(r) for K(sr) and m(r) for m(sr). It is well known that there is a constant c0 ∈ N such that
K(x) ≤ |x|+ 2 log (1 + |x|) + c0, and hence K(r) ≤ log (1 + r) + 2 log(1 + log (1 + r)) + c0, hold for
all x ∈ {0, 1}∗ and r ∈ N.

Levin’s coding lemma plays an important role in section 3.

Lemma 2.1 (coding lemma [15, 16]). If A ⊆ {0, 1}∗ × N is computably enumerable and satisfies
Σ(x,l)∈A2−l ≤ 1, then there is a Turing machine M such that, for each (x, l) ∈ A, there is a string

π ∈ {0, 1}l satisfying M(π) = x.

3 Kolmogorov Complexity in Euclidean Space

We begin by developing some elements of the fine-scale geometry of algorithmic information in
Euclidean space. In this context it is convenient to regard the Kolmogorov complexity of a set of
strings to be the number of bits required to specify some element of the set.

Definition (Shen and Vereshchagin [23]). The Kolmogorov complexity of a set S ⊆ {0, 1}∗ is

K(S) = min{K(x) |x ∈ S}.

Note that S ⊆ T implies K(S) ≥ K(T ). Intuitively, small sets may require “higher resolution” than
large sets.

We need a generalization of Levin’s coding theorem [15, 16] that is applicable to certain systems
of disjoint sets.

Notation. Let B ⊆ N× N× {0, 1}∗ and r, s ∈ N.

1. The (r, t)-block of B is the set Br,t = {x ∈ {0, 1}∗ | (r, t, x) ∈ B}.

2. The rth layer of B is the sequence Br = (Br,t | t ∈ N).

Definition. A layered disjoint system (LDS) is a set B ⊆ N×N×{0, 1}∗ such that, for all r, s, t ∈ N,

s 6= t⇒ Br,s ∩Br,t = ∅.

Note that this definition only requires the sets within each layer of B to be disjoint.

Theorem 3.1 (LDS coding theorem). For every computably enumerable layered disjoint system B
there is a constant cB ∈ N such that, for all r, t ∈ N,

K(Br,t) ≤ log
1

m(Br,t)
+K(r) + cB.

Proof. Assume the hypothesis, and fix a computable enumeration of B. For each r, t ∈ N such that
Br,t 6= ∅, let xr,t be the first element of Br,t to appear in this enumeration. Let A be the set of all
ordered pairs (xr,t, j + k + 2) such that r, t, j, k ∈ N, Br,t 6= ∅, k ≥ K(r), and m(Br,t) ≥ 2−j . It is
clear that A is computably enumerable.
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For each r, t ∈ N, let
jr,t = min{j ∈ N

∣∣m(Br,t) > 2−j},

noting that jr,t =∞ if Br,t = ∅. For all r, t ∈ N such that Br,t 6= ∅, we have

∑
l∈N

(xr,t,l)∈A

2−l =
∞∑

j=jr,t

∞∑
k=K(r)

2−(j+k+2)

=

∞∑
k=K(r)

2−(k+1)
∞∑

j=jr,t

2−(j+1)

= 2−K(r)2−jr,t

< 2−K(r)m(Br,t).

Since the sets in each layer Br of B are disjoint, it follows that

∑
(x,l)∈A

2−l ≤
∞∑
r=0

∞∑
t=0

2−K(r)m(Br,t)

=
∑
r=0

2−K(r)
∞∑
t=0

m(Br,t)

=

∞∑
r=0

2−K(r)m

( ∞⋃
t=0

Br,t

)

≤
∞∑
r=0

2−K(r)m({0, 1}∗)

≤
∞∑
r=0

2−K(r)

≤
∞∑
r=0

m(r)

= m({0, 1}∗)
≤ 1.

We have now shown that the set A satisfies the hypothesis of Lemma 2.1. Let M be a Turing
machine for A as in that lemma, and let cB = cM + 3, where cM is an optimality constant for M .
To see that cB affirms the theorem, let r, t ∈ N be such that Br,t 6= ∅. (The theorem is trivial if
Br,t = ∅, since the right-hand side is infinite.) Then (xr,t, jr,t+K(r) + 2) ∈ A, so there is a program
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π ∈ {0, 1}jr,t+K(r)+2 such that M(π) = xr,t. We thus have

K(Br,t) ≤ K(xr,t)

≤ KM (xr,t) + cM

≤ |π|+ cM

= jr,t +K(r) + 2 + cM

= blog
1

m
(Br,t)c+ 1 +K(r) + 2 + cM

≤ log
1

m(Br,t)
+K(r) + cB.

Note that Levin’s coding theorem [15, 16], the nontrivial part of which says that K(x) ≤
log 1

m(x) +O(1), is the special case Br,t = {st} of the LDS coding theorem.
Our next objective is to use the LDS coding theorem to obtain useful bounds on the number of

times that the value K(S) is attained or approximated.

Definition. Let S ⊆ {0, 1}∗ and d ∈ N.

1. A d-approximate K-minimizer of S is a string x ∈ S for which K(x) ≤ K(S) + d.

2. A K-minimizer of S is a 0-approximate K-minimizer of S.

We use the LDS coding theorem to prove the following.

Theorem 3.2. For every computably enumerable layered disjoint system B there is a constant
cB ∈ N such that, for all r, t, d ∈ N, the block Br,t has at most 2d+K(r)+cB d-approximate K-
minimizers.

Proof. Let B be a computably enumerable LDS, and let cB be as in the LDS coding theorem. Let
r, t, d ∈ N, and let N be the number of d-approximate K-minimizers of the block Br,t. Then

m(Br,t) ≥ N · 2−(K(Br,t)+d),

so the LDS coding theorem tells us that

K(Br,t) ≤ log
1

N · 2−(K(Br,t)+d)
+K(r) + cB

= K(Br,t) + d− logN +K(r) + cB.

This implies that
logN ≤ d+K(r) + cB,

whence
N ≤ 2d+K(r)+cB .

We now lift our terminology and notation to Euclidean space Rn. In this context, a layered
disjoint system is a set B ⊆ N× N× Rn such that, for all r, s, t ∈ N,

s 6= t⇒ Br,s ∩Br,t = ∅.

We lift our Kolmogorov complexity notation and terminology to Rn in two steps:
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1. Lifting to Qn: Each rational point q ∈ Qn is encoded as a string x ∈ {0, 1}∗ in a natural way.
We then write K(q) for K(x). In this manner, K(S), m(S), K-minimizers, and d-approximate
K-minimizers are all defined for sets S ⊆ Qn.

2. Lifting to Rn. For S ⊆ Rn, we define K(S) = K(S ∩Qn) and m(S) = m(S ∩Qn). Similarly,
a K-minimizer for S is a K-minimizer for S ∩Qn, etc.

For each r ∈ N and each m = (m1, . . . ,mn) ∈ Zn, let

Q(r)
m = [m1 · 2−r, (m1 + 1) · 2−r)× · · · × [mn · 2−r, (mn + 1) · 2−r)

be the r-dyadic cube at m. Note that each Q
(r)
m is “half-open, half-closed” in such a way that, for

each r ∈ N, the family
Q(r) = {Q(r)

m |m ∈ Zn}

is a partition of Rn. It follows that (modulo trivial encoding) the collection

Q = {Q(r)
m | r ∈ N and m ∈ Zn}

of all dyadic cubes is a layered disjoint system whose rth layer is Q(r). Moreover, the set

{(r,m, q) ∈ N× Zn ×Qn | q ∈ Q(r)
m }

is decidable, so Theorem 3.2 has the following useful consequence.

Corollary 3.3. There is a constant c ∈ N such that, for all r, d ∈ N, no r-dyadic cube has more
than 2d+K(r)+c d-approximate K-minimizers. In particular, no r-dyadic cube has more than 2K(r)+c

K-minimizers.

The Kolmogorov complexity of an arbitrary point in Euclidean space depends on both the point
and a precision parameter.

Definition. Let x ∈ Rn and r ∈ N. The Kolmogorov complexity of x at precision r is

Kr(x) = K(B2−r(x)).

That is, Kr(x) is the number of bits required to specify some rational point in the open ball
B2−r(x). Note that, for each q ∈ Qn, Kr(q)↗ K(q) as r →∞.

Given an open ball B of radius ρ and a real number α > 0, we write αB for the ball with the
same center as B and radius αρ. We also write B for the topological closure of B.

The definition of Kr(x) directs our attention to the Kolmgorov complexities of arbitrary balls
of radius 2−r in Euclidean space. The following easy fact is repeatedly useful in this context.

Observation 3.4. For every open ball B ⊆ Rn of radius 2−r,

B ∩ 2−(r+d
1
2
log ne)Zn 6= ∅.

Proof. If B is such a ball, then the expanded ball

B′ = 2r+d
1
2
log neB
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has radius

2d
1
2
log ne > 2

1
2
log n−1 =

√
n

2
.

This implies that
B′ ∩ Zn 6= ∅,

whence

B ∩ 2−(r+d
1
2
log ne)Zn = 2−(r+d

1
2
log ne)(B′ ∩ Zn)

6= ∅.

We use Observation 3.4 to establish the following connection between the complexities of cubes
and the complexities of balls.

Lemma 3.5. There is a constant c ∈ N such that, for every r ∈ N, every r-dyadic cube Q, and
every open ball B ⊆ Rn of radius 2−r that intersects Q,

K(B) ≤ K(Q) +K(r) + c.

Proof. Fix a computable enumeration m0,m1,m2, · · · of Zn satisfying |mi| ≤ |mi+1| for all i ∈ N.
Note that, for all i ∈ N,

i < |B|mi|(0) ∩ Zn| ≤ (2|mi|+ 1)n. (3.1)

Let l = d12 log ne, and let M be a self-delimiting Turing machine such that, if U(π1) = q ∈ Qn and
U(π2) = r ∈ N, then, for all i ∈ N,

M(π1π20
|si|1si) = q + 2−(r+l)mi. (3.2)

Let c = 2d2n log (1 +
√
n)e+ 1 + cM , where cM is an optimality constant for M .

Now assume the hypothesis, and let q be a K-minimizer of Q. Observation 3.4 tells us that
there is a point m ∈ Zn such that 2−(r+l)m ∈ B − q. Then |2−(r+l)m| is the distance from a point
in B to the point q ∈ Q, so

|m| = 2r+l|2−(r+l)m| ≤ 2r+ldiam(B ∪Q).

Since B ∩Q 6= ∅, it follows that

|m| ≤ 2r+l[diam(B) + diam(Q)]

= 2l(2 +
√
n) (3.3)

≤
√
n

2
(2 +

√
n)

=
n

2
+
√
n.

It is crucial here that this bound does not depend on B, Q, or r.
Choose i ∈ N such that mi = m. By (3.1) and (3.3),

i < (2(
n

2
+
√
n) + 1)n = (1 +

√
n)2n. (3.4)
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Now let π = π1π20
|si|1si, where π1 and π2 are minimum-length programs for q and r, respectively.

By (3.2) we have
M(π) = q + 2−(r+l)mi ∈ B.

It follows by (3.4) that

K(B) ≤ K(q + 2−(r+l)mi)

≤ KM (q + 2−(r+l)mi) + cM

≤ |π|+ cM

= K(q) +K(r) + 2|si|+ 1 + cM

= K(Q) +K(r) + 2d2n log (1 +
√
n)e+ 1 + cM

= K(Q) +K(r) + c.

Theorem 3.6. There is a constant c ∈ N such that, for all r, d ∈ N, no open ball of radius 2−r has
more than 2d+2K(r)+c d-approximate K-minimizers. In particular, no open ball of radius 2−r has
more than 22K(r)+c K-minimizers.

Proof. Let B be an open ball of radius 2−r, let Q be a r-dyadic cube such that B ∩ Q = ∅, and
let u = K(B) −K(Q). There are at most 2d+u+K(r)+c′ (d + u)-approximate K-minimizers q ∈ Q
of Q such that K(q) ≤ K(Q) + d + u = K(B) + d where c′ ∈ N is a constant from Corollary 3.3.
Therefore, there are at most 2d+u+K(r)+c′ d-approximate K-minimizers of B in Q ∩B.

Observe that it takes at most 3n = 2n log 3 r-dyadic cubes to cover B. By Lemma 3.5, u ≤
K(r) + c′′, where c′′ ∈ N is a constant. Therefore, it follows that B has at most 2d+2K(r)+c d-
approximate K-minimizers where c = c′ + c′′ + n log 3. In particular, B has at most 22K(r)+c

K-minimizers.

Lemma 3.5 also gives a slightly simplified proof of the known upper bound on Kr(x).

Observation 3.7 ([19]). For all x ∈ Rn, Kr(x) ≤ nr + o(r).

Proof. Let c be a constant of Lemma 3.5, let x = (x1, . . . , xn) ∈ Rn, and let

γx = max{|xi|+ 1
∣∣1 ≤ i ≤ n}.

For each r ∈ N, let m(r) = (m1, . . . ,mn) be the unique m ∈ Zn such that x ∈ Q(r)
m . Then, for each

r ∈ N and 1 ≤ i ≤ n, we have |mi| ≤ 2rγx. It follows easily from this that there is a constant c′ ∈ N
such that, for every r ∈ N,

K(m(r)) ≤ n(log(2rγx) + 2 log log(2rγx)) + c1. (3.5)

There is clearly a constant c2 ∈ N such that, for every r ∈ N,

K(2−rm(r)) ≤ K(m(r)) +K(r) + c2. (3.6)
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By (3.5), (3.6), and Lemma 3.5 we now have

Kr(x) = K(B2−r(x))

≤ K(Q
(r)
m(r)) +K(r) + c

≤ K(m(r)) +K(r) + c

≤ nr + ε(r),

where

ε(r) = n(log γx + 2 log log(2rγx)) + 2K(r) + c+ c1 + c2.

= o(r)

as r →∞.

Lemma 3.8. There is a constant c ∈ N such that, for all r, s ∈ N, x ∈ Rn, and q ∈ B2−r(x),

Kr+s(x) ≤ K(q) + ns+K(r) + as,

where as = K(s) + 2 log(d12 log ne+ s+ 3) + n(d12 log ne+ 3) +K(n) + 2 log n+ c.

Proof. Fix a computable enumeration m0,m1,m2, · · · of Zn satisfying |mi| ≤ |mi+1| for all i ∈ N.
Note that, for all i ∈ N,

i < |B|mi|(0) ∩ Zn| ≤ (2|mi|+ 1)n. (3.7)

Let l = d12 log ne, and let M be a self-delimiting Turing machine such that, if U(π1) = q ∈ Qn,
U(π2) = r ∈ N, U(π3) = s ∈ N, U(π4) = n ∈ N, and U(π5) = i ∈ N, then

M(π1π2π3π4π5) = q + 2−(r+s+l+1)mi. (3.8)

Let as = 2n(d12 log ne+ s+ 3) + 1 + cM , where cM is an optimality constant for M .
Now assume the hypothesis. Observation 3.4 tells us that there is a point m ∈ Zn such that

2−(r+s+l)m ∈ B2−(r+s)(x)− q. Then |2−(r+s+l)m| is the distance from a point in B2−(r+s)(x) to the
point q, so

|m| = 2r+s+l|2−(r+s+l)m|
≤ 2r+s+l(2−r + 2−(r+s))

= 2s+l(1 + 2−s) (3.9)

= 2l(2s + 1)

≤ 2l2s+1

≤ 2l+s+1.

Choose i ∈ N such that mi = m. By (3.7) and (3.9),

i < (2|mi|+ 1)n ≤ (2(2l+s+1) + 1)n = (2l+s+2 + 1)n. (3.10)

Now let π = π1π2π3π4π5, where π1, π2, π3, π4, and π5 are minimum-length programs for q, r,
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s, n, and i, respectively. By (3.8) we have

M(π) = q + 2−(r+s+l+1)mi ∈ B2−(r+s)(x). (3.11)

Therefore, (3.11) and optimality tell us that

Kr+s(x) = K(B2−(r+s)(x))

≤ K(q + 2−(r+l)mi)

≤ KM (q + 2−(r+l)mi) + cM

= |π|+ cM

= K(q) +K(r) +K(s) +K(n) +K(i) + cM .

As noted in section 2, there is a constant c0 ∈ N such that

K(i) ≤ log(1 + i) + 2 log(1 + log(1 + i)) + c0.

It follows by (3.10) that

K(i) ≤ n log(1 + 2l+s+2) + 2 log(1 + n log(1 + 2l+s+2)) + c0

≤ n(l + s+ 3) + 2 log(1 + n(l + s+ 3)) + c0

≤ n(l + s+ 3) + 2(1 + log n+ log(l + s+ 3)) + c0

= ns+ n(l + 3) + 2 log n+ 2 log(l + s+ 3) + c0 + 2.

Letting c = cM + c0 + 2, it follows that

Kr+s(x) ≤ K(q) + ns+ as,

where as = K(s) + 2 log(l + s+ 3) + n(l + 3) +K(n) + 2 log n+ c.

The following corollary says roughly that, in Rn, precision can be improved by ns bits by adding
ns bits of specification.

Corollary 3.9. There is a constant c ∈ N such that, for all r, s ∈ N and x ∈ Rn,

Kr+s(x) ≤ Kr(x) + ns+ bs,

where bs = as +K(r) and as is as in Lemma 3.8.

4 Algorithmic Mutual Information in Euclidean Space

This section develops the algorithmic mutual information between points in Euclidean space at a
given precision. As in section 3, we assume that rational points q ∈ Qn are encoded as binary strings
in some natural way. Mutual information between rational points is then defined from conditional
Kolmogorov complexity in the standard way [17] as follows.

Definition. Let p ∈ Qm, r ∈ Qn, s ∈ Qt.
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1. The mutual information between p and q is

I(p : q) = K(q)−K(q | p).

2. The mutual information between p and q given s is

I(p : q | s) = K(q | s)−K(q | p, s).

The following properties of mutual information are well known [17].

Theorem 4.1. Let p ∈ Qm and q ∈ Qn.

1. I(p,K(p) : q) = K(p) +K(q)−K(p, q) +O(1).

2. I(p,K(p) : q) = I(q,K(q) : p) +O(1).

3. I(p : q) ≤ min {K(p),K(q)}+O(1).

(Each of the properties 1 and 2 above is sometimes called symmetry of mutual information.)
Mutual information between points in Euclidean space at a given precision is now defined as

follows.

Definition. The mutual information of x ∈ Rn and y ∈ Rt at precision r ∈ N is

Ir(x : y) = min{I(qx : qy) | qx ∈ B2−r(x) ∩Qn and qy ∈ B2−r(y) ∩Qt}.

As noted in the introduction, the role of the minimum in the above definition is to eliminate
“spurious” information that points qx ∈ B2−r ∩ Qn and qy ∈ B2−r(y) ∩ Qt might share for reasons
not forced by their proximities to x and y, respectively.

Notation. We also use the quantity

Jr(x : y) = min{I(qx : qy) | px is a K-minimizer of B2−r(x) and py is a K–minimizer ofB2−r(y)}.

Although Jr(x : y), having two “layers of minimization”, is somewhat more involved than
Ir(x : y), one can imagine using it as the definition of mutual information. In fact, for all x, y ∈ R,
Jr(x : y) does not differ greatly from Ir(x : y). We next develop machinery for proving this useful
fact, which is Theorem 4.8 below.

Lemma 4.2. There is a constant c ∈ N such that, for any r ∈ N, open ball B ⊆ Rn of radius 2−r,
and q ∈ B ∩Qn,

|{p′ ∈ B21−r(q) ∩Qn |K(p′) ≤ K(B)}| ≤ 2K(r)+2K(r−1)+c.

Proof. Let B be centered at x ∈ Rn. If pq ∈ Qn is a K-minimizer of B21−r(q), then pq ∈ B22−r(x).
By Lemma 3.8,

K(B) ≤ K(pq) +K(r) + c

= K(B21−r(q)) +K(r) + c,
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where c = K(2) + K(n) + 2n(d12 log ne + 5) + 1 + c′ for some constant c′. This inequality implies
that any K-minimizer of B is also a K(r) + c-approximate K-minimizer of B21−r(q). Therefore, by
Lemma 3.6,

|{p′ ∈ B21−r(q) ∩Qn |K(p′) ≤ K(B)}| ≤ |{p′ ∈ B21−r(q) ∩Qn |K(p′) ≤ K(B21−r(q)) +K(r) + c}|
≤ 2K(r)+2K(r−1)+c.

Lemma 4.3. For all x ∈ Rn, q ∈ Qt, and qx, px ∈ B2−r(x) ∩ Qn where px is a K-minimizer of
B2−r(x),

K(q | qx) ≤ K(q | px) +K(K(px)) + o(r).

Proof. LetM be a self-delimiting Turing machine that takes programs of the form π = 〈π1π2π30|si|1si, q〉,
where U(π1, p) = q′ ∈ Qt, U(π2) = K(p), U(π3) = r ∈ N, and i ∈ N. M runs π2 and
π3 on U to obtain K(p) and r, performs a systematic search for the ith discovered element of
{p′ ∈ B21−r(q) ∩Qn |K(p′) ≤ K(p)}, and outputs U(〈π1, pi〉). Therefore,

M(π) = U(〈π1, pi〉). (4.1)

Let cM be an optimality constant for M .
Assume the hypothesis, and let π = 〈π1π2π30|si|1si, qx〉, where π1 is a minimum-length program

for q when given px, π2 is a minimum-length program for K(px), π3 is a minimum-length program
for r, and i is an index for px in the set {p′ ∈ B21−r(qx) ∩ Qn |K(p′) ≤ K(px)}. By (4.1), we have
M(π) = U(〈π1, px〉) = q. Therefore, by Lemma 4.2 and optimality,

K(q | qx) ≤ KM (q | qx) + cM

≤ |π1π2π30|si|1si|+ cM

= K(q | px) +K(K(px)) +K(r) + 2|si|+ 1 + cM

≤ K(q | px) +K(K(px)) +K(r) + 2 log |{p′ ∈ B21−r(qx) ∩Qn |K(p′) ≤ K(px)}|+ 1 + cM

≤ K(q | px) +K(K(px)) +K(r) + 2(K(r) + 2K(r − 1) + c) + 1 + cM

= K(q | px) +K(K(px)) + o(r).

By Lemma 4.3 and Observation 3.7 we have the following.

Corollary 4.4. Let x ∈ Rn. If qx ∈ B2−r(x) ∩Qn and px ∈ Qn is a K-minimizer of B2−r(x), then
K(px | qx) = o(r).

Lemma 4.5. Let x ∈ Rn and y ∈ Rt. If px ∈ B2−r(x) and qy, py ∈ B2−r(y) where px is a
K-minimizer for B2−r(x) and py is a K-minimizer for B2−r(y), then

K(px | qy,K(qy)) ≤ K(px | py,K(py)) + o(r).

Proof. By the triangle inequality for strings and Corollary 4.4,

K(px | qy,K(qy)) ≤ K(px | py,K(py)) +K(py | qy,K(qy)) +O(1)

≤ K(px | py,K(py)) +K(py | qy) +O(1)

= K(px | py,K(py)) + o(r).
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The following lemma was inspired by Hammer et al. [11].

Lemma 4.6. For all x, y, z ∈ {0, 1}∗,

K(z)−K(K(z))−K(K(x)) ≤ I(x : y) +K(z |x,K(x)) +K(z | y,K(y))−K(z | 〈x, y〉,K(〈x, y〉))
− I(x : y|z) +O(1).

Proof. By the well-known identity (2.1), obvious inequalities, and basic definitions.

K(z)−K(K(z))−K(K(x))

= K(x)−K(x, y)−K(K(x)) +K(x, z)−K(x) +K(y, z)−K(x, y, z)

+K(x, y) +K(z)−K(z, y)−K(K(z)) +K(x, z, y)−K(x, z) +O(1)

= −K(y |x,K(x))−K(K(x)) +K(x, z)−K(x) +K(y, z)−K(x, y, z)

+K(x, y)−K(y | z,K(z))−K(K(z)) +K(y |x, z,K(x, z)) +O(1)

≤ K(y)−K(y |x) +K(x, z)−K(x) +K(y, z)−K(y)−K(x, y, z) +K(x, y)

−K(y | z) +K(y |x, z) +O(1)

= I(x : y) +K(z |x,K(x)) +K(z | y,K(y))−K(z |x, y,K(x, y))− I(x : y | z) +O(1).

Corollary 4.7. For all x, y, z ∈ {0, 1}∗,

I(x : y) ≥ K(z)−K(z |x,K(x))−K(z | y,K(y))−K(K(x))−K(K(z)) +O(1).

Theorem 4.8. For all x ∈ Rn and y ∈ Rt,

Ir(x : y) = Jr(x : y) + o(r).

Proof. Let qx, px ∈ Qn and qy, py ∈ Qt where px is a K-minimizer of B2−r(x), py is a K-minimizer
of B2−r(y), and I(qx : qy) = Ir(x : y). By Lemma 4.3,

K(qy)−K(qy | px) ≤ K(qy)−K(qy | qx) +K(K(px)) + o(r).

Applying the definition of mutual information for rationals, we have

I(px : qy) ≤ I(qx : qy) +K(K(px)) + o(r),

which, by Corollary 4.7 and Observation 3.7, implies that

I(qx : qy) ≥ K(px)−K(px | px,K(px))−K(px | qy,K(qy)) + o(r)

= K(px)−K(px | qy,K(qy)) + o(r).

By applying Lemma 4.5 and the definition of mutual information for rationals to the above inequal-
ity, we obtain

I(qx : qy) ≥ K(px)−K(px | py,K(py)) + o(r)

= I(py,K(py) : px) + o(r).
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Thus, by Theorem 4.1,

I(qx : qy) ≥ I(px,K(px) : py) + o(r)

≥ I(px : py) + o(r).

The above inequality tells us that Ir(x : y) = I(qx : qy) ≥ I(px : py) + o(r) = Jr(x : y) + o(r).
Also, by definition, Ir(x : y) ≤ Jr(x : y).

Before discussing the properties of Ir(x : y), we need one more lemma.

Lemma 4.9. Let x ∈ Rn, y ∈ Rt, and r ∈ N. If px ∈ Qn is a K-minimizer of B2−r(x) and py ∈ Qt

is a K-minimizer of B2−r(y), then

K(px, py) = Kr(x, y) + o(r).

Proof. By Corollary 4.4,

Kr(x, y) ≤ K(px, py) ≤ K(py) +K(px | py)
= Kr(y) +K(px | py)
≤ Kr(x, y) +K(px | py) +O(1)

= Kr(x, y) + o(r).

The following characterization of algorithmic (Martin-Löf) randomness is well known.

Definition. A point x ∈ Rn is random if there is a constant d ∈ N such that, for all r ∈ N,

Kr(x) ≥ nr − d.

Two points x ∈ Rn and y ∈ Rt are independently random if the point (x, y) ∈ Rn+t is random.

We now establish the following useful properties of Ir(x : y).

Theorem 4.10. For all x ∈ Rn and y ∈ Rt,

1. Ir(x : y) = Kr(x) +Kr(y)−Kr(x, y) + o(r).

2. Ir(x : y) ≤ min{Kr(x),Kr(y)}+ o(r).

3. If x and y are independently random, then Ir(x : y) = o(r).

4. Ir(x : y) = Ir(y : x) + o(r).

Proof. To prove the first statement, let px ∈ Qn be a K-minimizer of B2−r(x) and py ∈ Qt be a
K-minimizer of B2−r(y). First, by Theorem 4.8,

Ir(x : y) = Jr(x : y) + o(r)

= I(px : py) + o(r)

= K(py)−K(py | px) + o(r)

≤ K(py)−K(py | px,K(px)) + o(r).
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By (2.1) and Lemma 4.9, this implies that

Ir(x : y) ≤ K(py) +K(px)−K(px, py) + o(r)

= Kr(y) +Kr(x)−Kr(x, y) + o(r).

Next we show that Ir(x : y) ≥ Kr(x) +Kr(y)−Kr(x, y) + o(r). By the above inequality,

Ir(x : y) = K(py)−K(py | px) + o(r)

≥ K(py)−K(py | px,K(px))−K(K(px)) + o(r).

Finally, by (2.1), Observation 3.7, and Lemma 4.9,

Ir(x : y) ≥ K(py) +K(px)−K(px, py) + o(r)

≥ Kr(y) +Kr(x)−Kr(x, y) + o(r).

We continue to the second statement. By 1,

Ir(x : y) = Kr(x) +Kr(y)−Kr(x, y) + o(r)

≤ Kr(x) +Kr(y)−Kr(y) + o(r)

= Kr(x) + o(r).

Likewise, Ir(x : y) ≤ Kr(y) + o(r). Therefore, Ir(x : y) ≤ min{Kr(x),Kr(y)}+ o(r).
We now prove the third statement. By 1,

Ir(x : y) = Kr(x) +Kr(y)−Kr(x, y) + o(r)

≤ Kr(x) +Kr(y) +K(r)−Kr(r, x, y) + o(r)

≤ nr + tr +K(r)− (n+ t)r + o(r)

= o(r),

where the last inequality is due to the premise that x and y are independently random and Obser-
vation 3.7.

Lastly, we prove the fourth statement. By 1 and Lemma 4.9,

Ir(x : y) = Kr(x) +Kr(y)−Kr(x, y) + o(r)

= Kr(x) +Kr(y)−K(px, py) + o(r)

= Kr(x) +Kr(y)−K(py, px) + o(r)

= Kr(x) +Kr(y)−Kr(y, x) + o(r)

= Ir(y : x) + o(r).

5 Mutual Dimension in Euclidean Space

We now define mutual dimensions between points in Euclidean space(s).
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Definition. The lower and upper mutual dimensions between x ∈ Rn and y ∈ Rt are

mdim(x : y) = lim inf
r→∞

Ir(x : y)

r

and

Mdim(x : y) = lim sup
r→∞

Ir(x : y)

r
,

respectively.

With the exception of the data processing inequality, which we prove in section 5, the following
theorem says that the mutual dimensions mdim and Mdim have the basic properties that any
mutual information measure should have. (See, for example, [2].)

Theorem 5.1. For all x ∈ Rn and y ∈ Rt, the following hold.

1. dim(x) + dim(y)−Dim(x, y) ≤ mdim(x : y) ≤ Dim(x) +Dim(y)−Dim(x, y).

2. dim(x) + dim(y)− dim(x, y) ≤Mdim(x : y) ≤ Dim(x) +Dim(y)− dim(x, y).

3. mdim(x : y) ≤ min{dim(x), dim(y)}, Mdim(x : y) ≤ min{Dim(x), Dim(y)}.

4. 0 ≤ mdim(x : y) ≤Mdim(x : y) ≤ min{n, t}.

5. If x and y are independently random, then Mdim(x : y) = 0.

6. mdim(x : y) = mdim(y : x), Mdim(x : y) = Mdim(y : x).

Proof. To prove the first statement, we use Theorem 4.10 and basic properties of lim sup and lim inf.
First we show that mdim(x : y) ≥ dim(x) + dim(y)−Dim(x, y).

mdim(x : y) = lim inf
r→∞

Ir(x : y)

r

= lim inf
r→∞

Kr(x) +Kr(y)−Kr(x, y) + o(r)

r

≥ lim inf
r→∞

Kr(x)

r
+ lim inf

r→∞

Kr(y)

r
+ lim inf

r→∞

−Kr(x, y)

r
+ lim inf

r→∞

o(r)

r

= dim(x) + dim(y)− lim sup
r→∞

Kr(x, y)

r

= dim(x) + dim(y)−Dim(x, y).

Next we show that mdim(x : y) ≤ Dim(x) +Dim(y)−Dim(x, y).

mdim(x : y) = Dim(x) +Dim(y)−Dim(x)−Dim(y) +mdim(x : y)

= Dim(x) +Dim(y)−
(

lim sup
r→∞

Kr(x)

r
+ lim sup

r→∞

Kr(y)

r
+ lim sup

r→∞

−Ir(x : y)

r

)
≤ Dim(x) +Dim(y)− lim sup

r→∞

Kr(x) +Kr(y)−Kr(x)−Kr(y) +Kr(x, y) + o(r)

r

= Dim(x) +Dim(y)−Dim(x, y).
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The proof of the second statement is similar to the first. The third statement follows immediately
from Theorem 4.10 and the fact that lim inf

r→∞
min{Kr(x),Kr(y)} ≤ min{lim inf

r→∞
Kr(x), lim inf

r→∞
Kr(y)}.

The fourth statement follows from the third and the fact that, for all x ∈ Rn, Dim(x) ≤ n. Finally,
both the fifth and sixth statements follow immediately from Theorem 4.10.

6 Data Processing Inequalities

Our objectives in this section are to prove data processing inequalities for lower and upper mutual
dimensions in Euclidean space.

The following result is the main theorem of this paper. The meaning and necessity of the
Lipschitz hypothesis are explained in the introduction.

Theorem 6.1 (data processing inequality). If f : Rn → Rt is computable and Lipschitz, then, for
all x ∈ Rn and y ∈ Rt,

mdim(f(x) : y) ≤ mdim(x : y)

and
Mdim(f(x) : y) ≤Mdim(x : y).

We in fact prove a stronger result.

Definition. A modulus (of uniform continuity) for a function f : Rn → Rk is a nondecreasing
function m : N→ N such that, for all x, y ∈ Rn and r ∈ N,

|x− y| ≤ 2−m(r) ⇒ |f(x)− f(y)| ≤ 2−r.

Note that it is well known that a function is uniformly continuous if and only if it has a modulus
of uniform continuity.

Lemma 6.2. For all strings x, y, z ∈ {0, 1}∗ and all partial computable functions f : {0, 1}∗×{0, 1}∗,

K(y |x) ≤ K(y | f(x, z)) +K(z) +O(1).

Proof. Let M be a self-delimiting Turing machine such that if U(π1, f(x, z)) = y, U(π2) = z, and π3
is a program for f where x, y, z ∈ {0, 1}∗ and f : {0, 1}∗ × {0, 1}∗ is a partial computable function,
then

M(π1π2π3, x) = y. (6.1)

Assume the hypothesis, and let π = π1π2π3 where π1 is a minimum-length program for y given
f(x, z), π2 is a minimum-length program for z, and π3 is a minimum-length program for f . There-
fore, by (6.1), we have M(π, x) = y. By optimality,

K(y |x) ≤ KM (y |x) + cM

≤ |π|+ cM

= K(y | f(x, z)) +K(z) +K(f) + cM

= K(y | f(x, z)) +K(z) +O(1).
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Lemma 6.3. If f : Rn → Rk is computable and m : N → N is a computable modulus for f , then
for every x ∈ Rn, y ∈ Rt,

Ir(f(x) : y) ≤ Im(r+1)(x : y) + o(r).

Proof. Let qx ∈ Qn and qy ∈ Qt such that Im(r+1)(x : y) = I(qx : qy). Because |x− qx| ≤ 2−m(r+1),

where m is a modulus for f , we know that |f(x) − f(qx)| ≤ 2−(r+1). Also, since f is computable,
there exists an oracle Turing machine M that uses an oracle qx such that |M qx(r)− f(qx)| ≤ 2−r.
Let h : N×Qn → Qk be a function such that h(qx, r) = M qx(r + 1). Observe that

|h(qx, r + 1)− f(x)| ≤ |f(x)− f(qx)|+ |f(qx)− h(qx, r)|
≤ 2−(r+1) + 2−(r+1)

= 2−r.

From this and Lemma 6.2, it follows that

Ir(f(x) : y) ≤ I(M qx(r + 1) : qy)

= I(h(qx, r) : qy)

≤ I(qx : qy) +K(r) +O(1)

= Im(r+1)(x : y) + o(r).

Lemma 6.4 (modulus processing lemma). If f : Rn → Rk is computable and m is a computable
modulus for f , then for all x ∈ Rn and y ∈ Rt,

mdim(f(x) : y) ≤ mdim(x : y)

(
lim sup
r→∞

m(r + 1)

r

)
and

Mdim(f(x) : y) ≤Mdim(x : y)

(
lim sup
r→∞

m(r + 1)

r

)
.

Proof. By Lemma 6.3, we have

mdim(f(x) : y) ≤ lim inf
r→∞

Im(r+1)(x : y)

r

= lim inf
r→∞

(
Im(r+1)(x : y)

m(r + 1)
· m(r + 1)

r

)
≤ mdim(x : y)

(
lim sup
r→∞

m(r + 1)

r

)
.

A similar proof can be given for Mdim.

Theorem 6.1 follows immediately from Lemma 6.4 and the following well-known observation.

Observation 6.5. A function f : Rn → Rk is Lipschitz if and only if there exists s ∈ N such that
m(r) = r + s is a modulus for f .

We can derive a similar observation for Hölder functions. (Recall the definition of Hölder
functions given in the introduction.)
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Observation 6.6. If a function f : Rn → Rk is Hölder with exponent α, then there exists s ∈ N
such that m(r) = d 1α(r + s)e is a modulus for f .

We can derive the following fact from Observation 6.6 and the modulus processing lemma.

Corollary 6.7. If f : Rn → Rk is computable and Hölder with exponent α, then, for all x ∈ Rn
and y ∈ Rt,

mdim(f(x) : y) ≤ 1

α
mdim(x : y)

and

Mdim(f(x) : y) ≤ 1

α
Mdim(x : y).

7 Reverse Data Processing Inequalities

In this section we develop reverse versions of the data processing inequalities from section 6.

Notation. Let n ∈ Z+.

1. [n] = {1, · · · , n}.

2. For S ⊆ [n], x ∈ R|S|, y ∈ Rn−|S|, the string

x ∗S y ∈ Rn

is obtained by placing the components of x into the positions in S (in order) and the compo-
nents of y into the positions in [n] \ S (in order).

3. For each x = (x1, x2, . . . , xn) ∈ Rn, let x(i,j) = (xi, xi+1, . . . , xj) for every i, j ∈ N such that
i ≤ j ≤ n.

Definition. Let f : Rn → Rk.

1. f is co-Lipschitz if there is a real number c > 0 such that for all x, y ∈ Rn,

|f(x)− f(y)| ≥ c|x− y|.

2. f is bi-Lipschitz if f is both Lipschitz and co-Lipschitz.

3. For S ⊆ [n], f is S-co-Lipschitz if there is a real number c > 0 such that, for all u, v ∈ R|S|
and y ∈ Rn−|S|,

|f(u ∗S y)− f(v ∗S y)| ≥ c|u− v|.

4. For i ∈ [n], f is co-Lipschitz in its ith argument if f is {i}-co-Lipschitz.

Note that f is [n]-co-Lipschitz if and only if f is co-Lipschitz.

Example. The function f : Rn → R defined by

f(x1, · · · , xn) = x1 + · · ·+ xn
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is S-co-Lipschitz if and only if |S| ≤ 1. In particular, if n ≥ 2, then f is co-Lipschitz in every
argument, but f is not co-Lipschitz.

We next relate co-Lipschitz conditions to moduli.

Definition. Let f : Rn → Rk.

1. An inverse modulus for f is a nondecreasing function m′ : N→ N such that, for all x, y ∈ Rn
and r ∈ N,

|f(x)− f(y)| ≤ 2−m
′(r) ⇒ |x− y| ≤ 2−r.

2. Let S ⊆ [n]. An S-inverse modulus for f is a nondecreasing function m′ : N → N such that,
for all u, v ∈ R|S|, all y ∈ Rn−|S|, and all r ∈ N,

|f(u ∗S y)− f(v ∗S y)| ≤ 2−m
′(r) ⇒ |u− v| ≤ 2−r.

3. Let i ∈ [n]. An inverse modulus for f in its ith argument is an {i}-inverse modulus for f .

Observation 7.1. Let f : Rn → Rk and S ⊆ [n].

1. f is S-co-Lipschitz if and only if there is a positive constant t ∈ N such that m′(r) = r + t is
an S-inverse modulus of f .

2. f is co-Lipschitz if and only if there is a positive constant t ∈ N such that m′(r) = r+ t is an
inverse modulus of f .

Definition. Let f : Rn → Rt and S ⊆ [n]. We say that f is S-injective if, for all x, y ∈ Rn and
z ∈ Rn−|S|,

f(x ∗S z) = f(y ∗S z)⇒ x = y.

Note f is injective if and only if f is [n]-injective.

Definition. Let f : Rn → Rt be a function and S ⊆ [n] such that n ∈ N. An S-left inverse of f is
a partial function g : Rt × Rn−|S| → R|S| such that, for all x ∈ R|S| and y ∈ Rt × Rn−|S|,

g(f(x ∗S y), y) = x.

It is easy to prove that f has an S-left inverse if and only if f is S-injective.

Lemma 7.2. If f : Rn → Rt has an S-inverse modulus m′, then f is S-injective and m′ is a
modulus for any S-left inverse of f .

Proof. Let m′ : N → N be an S-inverse modulus for f , x, y ∈ R|S| and z ∈ Rn−|S|, then, if
f(x ∗S z) = f(y ∗S z),

|f(x ∗S z)− f(y ∗S z)| ≤ 2−m
′(r),

for all r ∈ N, which implies that

|x− y| ≤ 2−r.
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Therefore, x = y and f is S-injective.
Let g : Rt × Rn−|S| → R|S| be an S-left inverse of f . Let x, y ∈ domg and r ∈ N such that

x = (f(u ∗S w), w) and y = (f(v ∗S z), z), where u, v ∈ R|S| and w, z ∈ Rn−|S|. Assume that
|x− y| ≤ 2−m

′(r), then

|f(g(f(u ∗S w), w) ∗S w)− f(g(f(v ∗S z), z) ∗S z)|
= |f(u ∗S w)− f(v ∗S z)|
≤ |(f(u ∗S w), w)− (f(v ∗S z), z)|
= |x− y|

≤ 2−m
′(r).

So, |g(f(u ∗S w), w)− g(f(v ∗S z), z)| ≤ 2−r, and

|g(x)− g(y)| = |g(f(u ∗S w), w)− g(f(v ∗S z), z)|
≤ 2−r.

Therefore, m′ is a modulus for g.

Lemma 7.3. If f : Rn → Rt is a computable and uniformly continuous function that has a com-
putable S-inverse modulus m′, then f has a computable S-left inverse.

Proof. Assume the hypothesis. Since f is computable and uniformly continuous, there exist a
modulus m for f and an oracle Turing machine Mf such that, for every x ∈ Rn, r ∈ N, and every
oracle hx for x,

|Mhx
f (r)− f(x)| ≤ 2−r. (7.1)

Define g : Rt × Rn−|S| → R|S| by

g(z) =

{
x if z = (f(x ∗S y), y),
undefined otherwise

,

where x ∈ R|S|, y ∈ Rn−|S|, and z ∈ Rt × Rn−|S|.
We now show that g is computable. Let z = (f(x ∗S y), y) ∈ domg and hz be an oracle for z

such that, for all r ∈ N,

|hz(r)− z| ≤ 2−r. (7.2)

First we show that, for any r ∈ N, there exist a rational q ∈ Q|S| and an oracle hqy for q ∗S y such
that

|Mhqy
f (m′(r) + 3)− hz(m′(r) + 3)| ≤ 2−(m

′(r)+1).

Let q ∈ Q|S| such that |q ∗S y − x ∗S y| ≤ 2−(m(m′(r)+2)), and let hqy(r) = q ∗S hz(r)(t+1,t+n−|S|) be
an oracle for q ∗S y. Therefore,

|f(q ∗S y)− f(x ∗S y)| ≤ 2−(m
′(r)+2). (7.3)
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By (7.1), (7.2), (7.3),

|Mhqy
f (m′(r) + 3)− hz(m′(r) + 3)(1,t)|

= |Mhqy
f (m′(r) + 3)− f(q ∗S y) + f(q ∗S y)− f(x ∗S y) + f(x ∗S y)− hz(m′(r) + 3)(1,t)|

≤ |Mhqy
f (m′(r) + 3)− f(q ∗S y)|+ |f(q ∗S y)− f(x ∗S y)|+ |hz(m′(r) + 3)(1,t) − f(x ∗S y)|

≤ 2−(m
′(r)+3) + 2−(m

′(r)+2) + 2−(m
′(r)+3)

= 2−(m
′(r)+1).

Let Mg be a Turing machine equipped with oracle hz. Given an input r ∈ N, Mg searches for and
outputs a rational qx ∈ Q|S| such that

|Mhqxy

f (m′(r) + 3)− hz(m′(r) + 3)(1,t)| ≤ 2−(m
′(r)+1), (7.4)

where hqxy = qx∗Shz(r)(t+1,t+n−|S|) is an oracle for qx∗Sy. We now show that |Mhz
g (r)−g(z)| ≤ 2−r.

By (7.1), (7.2), (7.4),

|f(Mhz
g (r) ∗S y)− f(x ∗S y)|

= |f(qx ∗S y)− f(x ∗S y)|

= |f(qx ∗S y)−Mhqxy

f (m′(r) + 3) +M
hqxy

f (m′(r) + 3)− hz(m′(r) + 3)(1,t) + hz(m
′(r) + 3)(1,t) − f(x ∗S y)|

≤ |f(qx ∗S y)−Mhqxy

f (m′(r) + 3)|+ |Mhqxy

f (m′(r) + 3)− hz(m′(r) + 3)(1,t)|+ |hz(m′(r) + 3)(1,t) − f(x ∗S y)|

≤ 2−(m
′(r)+3) + 2−(m

′(r)+1) + 2−(m
′(r)+3)

= 2−(m
′(r)+2) + 2(m

′(r)+1)

< 2−m
′(r).

Since m′ is an S-inverse modulus for f , we have

|Mhz
g (r)− g(z)| = |Mhz

g (r)− x|
≤ 2−r.

Therefore, g is a computable S-left inverse of f .

Lemma 7.4 (reverse modulus processing lemma). If f : Rn → Rk is a computable and uniformly
continuous function, and m′ is a computable S-inverse modulus for f , then, for all S ⊆ [n], x ∈ R|S|,
y ∈ Rt, and z ∈ Rn−|S|,

mdim(x : y) ≤ mdim((f(x ∗S z), z) : y)

(
lim sup
r→∞

m′(r + 1)

r

)
and

Mdim(x : y) ≤Mdim((f(x ∗S z), z) : y)

(
lim sup
r→∞

m′(r + 1)

r

)
.

Proof. Assume the hypothesis. By Lemmas 7.2 and 7.3, there exists a computable and uniformly
continuous function g that is an S-left inverse of f and m′ is a modulus for g. Then, for all S ⊆ [n],
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x ∈ R|S|, y ∈ Rt, and z ∈ Rn−|S|,

mdim(x : y) = mdim(g(f(x ∗S z), z) : y).

Therefore, by Lemma 6.4, we have

mdim(x : y) ≤ mdim(f(x ∗S z), z : y)

(
lim sup
r→∞

m′(r + 1)

r

)
.

A similar proof can be given for Mdim.

By Observation 7.1 and Lemma 7.4, we have the following.

Theorem 7.5 (reverse data processing inequality). If S ⊆ [n] and f : Rn → Rk is computable and
S-co-Lipschitz, then, for all x ∈ R|S|, y ∈ Rt, and z ∈ Rn−|S|,

mdim(x : y) ≤ mdim((f(x ∗S z), z) : y)

and
Mdim(x : y) ≤Mdim((f(x ∗S z), z) : y).

Definition. Let f : Rn → Rk and 0 < α ≤ 1.

1. f is co-Hölder with exponent α if there is a real number c > 0 such that, for all x, y ∈ Rn,

|x− y| ≤ c|f(x)− f(y)|α.

2. For S ⊆ [n], f is S-co-Hölder with exponent α if there is a real number c > 0 such that, for
all u, v ∈ R|S| and y ∈ Rn−|S|,

|u− v| ≤ c|f(u ∗S y)− f(v ∗S y)|α.

Observation 7.6. Let f : Rn → Rk and S ⊆ [n].

1. If f is S-co-Hölder with exponent α, then there exists t ∈ N such that m′(r) = d 1α(r + t)e is
an S-inverse modulus of f .

2. If f is co-Hölder with exponent α, then there exists t ∈ N such that m′(r) = d 1α(r + t)e is an
inverse modulus of f .

The next corollary follows from the reverse modulus processing lemma and Observation 7.6.

Corollary 7.7. If S ⊆ [n] and f : Rn → Rk is computable and S-co-Hölder with exponent α, then,
for all x ∈ R|S|, y ∈ Rt, and z ∈ Rn−|S|,

mdim(x : y) ≤ 1

α
mdim((f(x ∗S z), z) : y)

and

Mdim(x : y) ≤ 1

α
Mdim((f(x ∗S z), z) : y).
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8 Data Processing Applications

In this section we use the data processing inequalities and their reverses to investigate how certain
functions on Euclidean space preserve or predictably transform mutual dimensions.

Theorem 8.1 (mutual dimension conservation inequality). If f : Rn → Rk and g : Rt → Rl are
computable and Lipschitz, then, for all x ∈ Rn and y ∈ Rt,

mdim(f(x) : g(y)) ≤ mdim(x : y)

and
Mdim(f(x) : g(y)) ≤Mdim(x : y).

Proof. The conclusion follows from Theorem 5.1 and the data processing inequality.

mdim(f(x) : g(y)) ≤ mdim(x : g(y))

= mdim(g(y) : x)

≤ mdim(y : x)

= mdim(x : y).

A similar argument can be given for Mdim(f(x) : g(y)) ≤Mdim(x : y).

Theorem 8.2 (reverse mutual dimension conservation inequality). Let S1 ⊆ [n] and S2 ⊆ [t]. If
f : Rn → Rk is computable and S1-co-Lipschitz, and g : Rt → Rl is computable and S2-co-Lipschitz,
then, for all x ∈ R|S1|, y ∈ R|S2|, w ∈ Rn−|S1|, and z ∈ Rt−|S2|,

mdim(x : y) ≤ mdim((f(x ∗S w), w) : (g(y ∗S z), z))

and
Mdim(x : y) ≤Mdim((f(x ∗S w), w) : (g(y ∗S z), z)).

Proof. The conclusion follows from Theorem 5.1 and the reverse data processing inequality.

mdim(x : y) ≤ mdim((f(x ∗S w), w) : y)

= mdim(y : (f(x ∗S w), w))

≤ mdim((g(y ∗S z), z) : (f(x ∗S w), w))

= mdim((f(x ∗S w), w) : (g(y ∗S z), z)).

A similar argument can be given for Mdim(x : y) ≤Mdim((f(x ∗S w), w) : (g(y ∗S z), z)).

Corollary 8.3 (preservation of mutual dimension). If f : Rn → Rk and g : Rt → Rl are computable
and bi-Lipschitz, then, for all x ∈ Rn and y ∈ Rt,

mdim(f(x) : g(y)) = mdim(x : y)

and
Mdim(f(x) : g(y)) = Mdim(x : y).
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Corollary 8.4. If f : Rn → Rk and g : Rt → Rl are computable and Hölder with exponents α and
β, respectively, then, for all x ∈ Rn and y ∈ Rt,

mdim(f(x) : g(y)) ≤ 1

αβ
mdim(x : y)

and

Mdim(f(x) : g(y)) ≤ 1

αβ
Mdim(x : y).

Corollary 8.5. Let S1 ⊆ [n] and S2 ⊆ [t]. If f : Rn → Rk is computable and S1-co-Hölder with
exponent α, and g : Rt → Rl is computable and S2-co-Hölder with exponent β, then, for all x ∈ R|S1|,
y ∈ R|S2|, w ∈ Rn−|S1|, and z ∈ Rt−|S2|,

mdim(x : y) ≤ 1

αβ
mdim((f(x ∗S w), w) : (g(y ∗S z), z))

and

Mdim(x : y) ≤ 1

αβ
Mdim((f(x ∗S w), w) : (g(y ∗S z), z)).

9 Conclusion

We expect mutual dimensions and the data processing inequalities to be useful for future research
in computable analysis. We also expect the development of mutual dimensions in Euclidean spaces
— highly structured spaces in which it is clear that mdim and Mdim are the right notions — to
guide future explorations of mutual information in more challenging contexts.
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