
Parameterized Complexity of CTL:
A Generalization of Courcelle’s Theorem

Martin Lück, Arne Meier, and Irina Schindler∗

Institut für Theoretische Informatik
Leibniz Universität Hannover

{lueck, meier, schindler}@thi.uni-hannover.de

Abstract. We present an almost complete classification of the parame-
terized complexity of all operator fragments of the satisfiability problem
in computation tree logic CTL. The investigated parameterization is the
sum of temporal depth and structural pathwidth. The classification shows
a dichotomy between W[1]-hard and fixed-parameter tractable fragments.
The only real operator fragment which is confirmed to be in FPT is
the fragment containing solely AX. Also we prove a generalization of
Courcelle’s theorem to infinite signatures which will be used to proof the
FPT-membership case.

1 Introduction

Temporal logic is the most important concept in computer science in the area
of program verification and is a widely used concept to express specifications.
Introduced in the late 1950s by Prior [1] a large area of research has been evolved
up to today. Here the most seminal contributions have been made by Kripke [2],
Pnueli [3], Emerson, Clarke, and Halpern [4,5] to name only a few. The maybe
most important temporal logic so far is the computation tree logic CTL due to
its polynomial time solvable model checking problem which influenced the area
of program verification significantly. However the satisfiability problem, i.e., the
question whether a given specification is consistent, is beyond tractability, i.e.,
complete for deterministic exponential time. One way to attack this intrinsic
hardness is to consider restrictions of the problem by means of operator fragments
leading to a trichotomy of computational complexity shown bei Meier [6]. This
landscape of intractability depicted completeness results for nondeterministic
polynomial time, polynomial space, and (of course) deterministic exponential
time showing how combinations of operators imply jumps in computational
complexity of the corresponding satisfiability fragment.

For more than a decade now there exists a theory which allows us to better
understand the structure of intractability: 1999 Downey and Fellows developed
the area of parameterized complexity [7] and up to today this field has grown
vastly. Informally the main idea is to detect a specific part of the problem, the
parameter, such that the intractability of the problems complexity vanishes if the

∗ Supported in part by DFG ME 4279/1-1.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 134 (2014)

parameter is assumed to be constant. Through this approach the notion of fixed
parameter tractability has been founded. A problem is said to be fixed parameter
tractable (or short, FPT) if there exists a deterministic algorithm running in
time f(k) · poly(n) for all input lengths n, corresponding parameter values k, and
a recursive function f . As an example, the usual propositional logic satisfiability
problem SAT (well-known to be NP-complete) becomes fixed parameter tractable
under the parameter number of variables.

∅

AXAF AG
AU EU

AX,AF AF,AG AX,AG

AX,AF,AG
AX,AU AX, EU

AG,AU
AF, EU

AX,AF, EU

W[1]-hard open FPT

Fig. 1. Parameterized complexity of
CTL-SAT(T) parameterized by for-
mula pathwidth and temporal depth
(see Theorem 1).

In this work we almost completely clas-
sify the parameterized complexity of all op-
erator fragments of the satisfiability prob-
lem for the computation tree logic CTL
under the parameterization of formula path-
width and temporal depth. Only the case
for AF resisted a full classification. We will
explain the reasons in the conclusion. For
all other fragments we show a dichotomy
consisting of two fragments being fixed pa-
rameter tractable and the remainder being
hard for the complexity class W[1] under
fpt-reductions. W[1] can be seen as an ana-
logue of intractability in the decision case
in the parameterized world. To obtain this
classification we prove a generalization of
Courcelle’s theorem [8] for infinite signa-
tures which may be of independent interest.

Related work. Similar research for modal logic has been done by Praveen and
influenced the present work in some parts [9]. Other applications of Courcelle’s
theorem have been investigated by Meier et al. [10] and Gottlob et al. [11]. In
2010 Elberfeld et al. proved that Courcelle’s theorem can be extended to give
results in XL as well [12] wherefore the results of Corollary 4 can be extended to
this class, too.

2 Preliminaries

We assume familiarity with standard notions of complexity theory as Turing
machines, reductions, the classes P and NP. For an introduction into this field
we confer the reader to the very good textbook of Pippenger [13].

2.1 Complexity Theory

Let Σ be an alphabet. A pair Π = (Q, κ) is a parameterized problem if Q ⊆ Σ∗
and κ : Σ∗ → N is a function. For a given instance x ∈ Σ∗ we refer to x as
the input. A function κ : Σ∗ → N is said to be a parameterization of Π or the
parameter of Π. We say a parameterized problem Π is fixed-parameter tractable

2

(or in the class FPT) if there exists a deterministic algorithm deciding Π in time
f(κ(x)) · |x|O(1) for every x ∈ Σ∗ and a recursive function f . Note that the notion
of fixed-parameter tractability is easily extended beyond decision problems.

If Π = (Q, κ), Π ′ = (Q′, κ′) are parameterized problems over alphabets Σ,∆
then an fpt-reduction from Π to Π ′ (or in symbols Π ≤fpt Π ′) is a mapping
r : Σ∗ → ∆∗ with the following three properties:

1. For all x ∈ Σ∗ it holds x ∈ Q iff r(x) ∈ Q′.
2. r is fixed-parameter tractable, i.e., r is computable in time f(κ(x)) · |x|O(1)

for a recursive function f : N→ N.
3. There exists a recursive function g : N→ N such that for all x ∈ Σ∗ it holds
κ′(r(x)) ≤ g(κ(x)).

The class W[1] is a parameterized complexity class which plays a similar
role as NP in the sense of intractability in the parameterized world. The class
W[1] is a superset of FPT and a hierarchy of other W-classes are build above
of it: FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[P]. All these classes are closed under
fpt-reductions. It is not known whether any of these inclusions is strict. For
further information on this topic we refer the reader to the text book of Flum
and Grohe [14].

2.2 Tree- and Pathwidth

Given a structure A we define a tree decomposition of A (with universe A) to
be a pair (T,X) where X = {B1, . . . , Br} is a family of subsets of A (the set
of bags), and T is a tree whose nodes are the bags Bi satisfying the following
conditions:

1. Every element of the universe appears in at least one bag:
⋃
X = A.

2. Every Tuple is contained in a bag: for each (a1, . . . , ak) ∈ R where R is a
relation in A, there exists a B ∈ X such that {a1, . . . , ak} ∈ B.

3. For every element a the set of bags containing a is connected: for all a ∈ A
the set {B | a ∈ B} forms a connected subtree in T .

The width of a decomposition (T,X) is width(T,X) := max{|B| | B ∈ X}−1
which is the size of the largest bag minus 1. The treewidth of a structure A is the
minimum of the widths of all tree decompositions of A. Informally the treewidth
of a structure describes the tree-likeliness of it. The closer the value is to 1 the
more the structure is a tree.

A path decomposition of a structure A is similarly defined to tree decompo-
sitions however T has to be a path. Here pw(A) denotes the pathwidth of A.
Likewise the size of the pathwidth describes the similarity of a structure to a
path. Observe that pathwidth bounds treewidth from above.

2.3 Logic

Let Φ be a finite set of propositional letters. A propositional formula (PL
formula) is inductively defined as follows. The constants >,⊥, (true, false) and

3

any propositional letter (or proposition) p ∈ Φ are PL formulas. If φ, ψ are PL
formulas then so are φ∧ψ,¬φ, φ∨ψ with their usual semantics (we further use the
shortcuts →,↔). Temporal logic extends propositional logic by introducing four
temporal operators, i.e., next X, future F, globally G, and until U. Together with
the two path quantifiers, exists E and all A, they fix the set of computation tree
logic formulas (CTL formulas) as follows. If φ ∈ PL then PTφ,P[φUψ] ∈ CTL and
if φ, ψ ∈ CTL then PTφ,P[φUψ], φ ∨ ψ,¬ψ, φ ∧ ψ ∈ CTL hold, where P ∈ {A,E}
is a path quantifier and T ∈ {X,F,G} is a temporal operator. The pair of a single
path quantifier and a single temporal operator is referred to as a CTL-operator.
If T is a set of CTL-operators then CTL(T) is the restriction of CTL to formulas
that are allowed to use only CTL-operators from T .

Let us turn to the notion of Kripke semantics. Let Φ be a finite set of
propositions. A Kripke structure K = (W,R, V) is a finite set of worlds W , a
total successor relation R : W →W (i.e., for every w ∈W there exists a w′ ∈W
with wRw′), and an evaluation function V : W → 2Φ labeling sets of propositions
to worlds. A path π in a Kripke structure K = (W,R, V) is an infinite sequence
of worlds w0, w1, . . . such that for every i ∈ N wiRwi+1. With π(i) we refer to
the i-th world wi in π. Denote with P(w) the set of all paths starting at w. For
CTL formulas we define the semantics of CTL formulas φ, ψ for a given Kripke
structure K = (W,R, V), a world w ∈W , and a path π as

K,w |= ATφ ⇔ for all π ∈ P(w) it holds K,π |= Tφ,

K,w |= ETφ ⇔ there exists a π ∈ P(w) it holds K,π |= Tφ,

K, π |= Xφ ⇔ K,π(1) |= φ,

K, π |= Fφ ⇔ there exists an i ≥ 0 such that K,π(i) |= φ,

K, π |= Gφ ⇔ for all i ≥ 0 K,π(i) |= φ,

K, π |= φUψ ⇔ ∃i ≥ 0∀j < i K, π(j) |= φ and K,π(i) |= ψ.

For a formula φ ∈ CTL we define the satisfiability problem CTL-SAT asking
if there exists a Kripke structure K = (W,R, V) and w ∈W such that K,w |= φ.
Then we also say that M is a model (of φ. Similar to before CTL-SAT(T) is the
restriction of CTL-SAT to formulas in CTL(T) for a set of CTL-operators T . A
formula φ ∈ CTL is said to be in negation normal form (NNF) if its negation
symbols ¬ occur only in front of propositions; we will use the symbol CTLNNF to
denote the set of CTL-formulas which are in NNF only.

Given φ ∈ CTL we define SF(φ) as the set of all subformulas of φ (containing
φ itself). The temporal depth of φ, in symbols td(φ), is defined inductively as
follows. If Φ is a finite set of propositional symbols and φ, ψ ∈ CTL then

td(p) := 0, td(φ ◦ ψ) := max{td(φ), td(ψ)},
td(>) := 0, td(¬φ) := td(φ),
td(⊥) := 0, td(PTφ) := td(φ) + 1,

td(P[φUψ]) := max{td(φ), td(ψ)}+ 1,

where ◦ ∈ {∧,∨,→,↔}, P ∈ {A,E}, and T ∈ {X,F,G}. If ψ ∈ SF(φ) then the
temporal depth of ψ in φ is tdφ(ψ) := td(φ)− td(ψ).

4

Vocabularies are finite sets of relation symbols (or predicates) of finite arity
k ≥ 1 (if k = 1 then we say the predicate is unary) which are usually denoted
with the symbol τ . Later we will also refer to similar objects of infinite size
wherefore we prefer to denote them with the term signature which usually is
an countable infinite sized set of symbols. A structure A over a vocabulary (or
signature) τ consists of a universe A which is a non-empty set, and a relation
PA ⊆ Ak for each predicate P of arity k. Monadic second order logic (MSO) is
the restriction of second order logic (SO) in which only quantification over unary
relations is allowed (elements of the universe can still be quantified existentially
or universally). If P is a unary predicate then P (x) is true if and only if x ∈ P
holds (otherwise it is false).

3 Parameterized Complexity of CTL-SAT(T)

In this section we investigate all operator fragments of CTL-SAT parameterized
by temporal depth and formula pathwidth with respect to its parameterized
complexity. This means, we the given formulas from CTL as input are represented
by relational structures as follows.

Let ϕ ∈ CTL be a CTL formula. The vocabulary of our interest is τ being
defined as τ := {const1f | f ∈ {>,⊥}} ∪ {conn2

f,i | f ∈ {∧,∨,¬}, 1 ≤ i ≤
ar(f)} ∪ {var1, repr1, repr1PL} ∪ {repr1C,body2

C | C is a unary CTL-operator} ∪
{repr1C,body3

C | C is a binary CTL-operator}. We then associate the vocabulary
τ with the structure Aϕ where its universe consists of elements representing
subformulas of ϕ. The predicates are defined as follows

– var1(x) holds iff x represents a variable,
– repr1(x) holds iff x represents the formula ϕ,
– repr1PL(x) holds iff x represents a propositional formula,
– repr1C(x) holds iff x represents a formula Cψ where C is a CTL-operator,
– body2

C(y, x) holds iff x represents a formula Cψ and ψ is represented by y
where C is a unary CTL-operator,

– body3
C(y, z, x) holds iff x represents a formula C(ψ, χ) and ψ / χ is represented

by y / z where C is a binary CTL-operator,
– const1f (x) holds iff x represents the constant of f ,

– conn2
f,i(x, y) holds iff x represents the ith argument of the function f at the

root of the formula tree represented by y.

As an example, the corresponding structureAϕ for the formula ϕ := EX(AG(p∧
¬(EFz))) ∨ (¬(A[pU(EFz)])) is shown in Figure 2.

Now we consider the problem CTL-SAT parameterized by the pathwidth of
its instance structures Aϕ (for the instances ϕ) as well as the temporal depth
of the formula. Hence the parameterization function κ maps, given an instance
formula ϕ ∈ CTL to the pathwidth of the structures Aϕ plus the temporal depth
of ϕ, i.e., κ(ϕ) = pw(Aϕ) + td(ϕ).

The following theorem summarizes the collection of results we have proven
in the upcoming lemmas. The subsection on page 6 contains the FPT result
together with the generalization of Courcelle’s theorem to infinite signatures.

5

ϕrepr

EX(AG(p ∧ ¬(EFz))) reprEX ¬(A[pU(EFz)])

AG(p ∧ ¬(EFz))) reprAG A[pU(EFz)]reprAU

preprPL
var EFzreprEF

zreprPL
var

p ∧ ¬(EFz)

¬(EFz)

EFz reprEF

co
nn
∨,
1

conn∨
,2

b
o
d
y
E
X

co
n
n
¬
,1

bo
dy

A
U
,1

body
A
U
,2

b
o
d
y
E
F

bo
dy

A
G

conn∧,1

co
nn
∧,
2

co
n
n
¬
,1

bodyEF

Fig. 2. Example relational structure Aϕ.

Theorem 1. CTL-SAT(T) parameterized by formula pathwidth and temporal
depth is

1. in FPT if T = {AX} or T = ∅, and
2. W[1]-hard if AG ∈ T , or AU ∈ T , or {AX,AF} ⊆ T .

Proof. (1.) is witnessed by Corollary 4. The proof of (2.) is split into Lemmas 5
to 7. ut

One way to prove the containment of a problem parameterized in that way
in the class FPT is to use the prominent result of Courcelle [8, Thm. 6.3
(1)]. Informally, satisfiability of CTL-formulas therefore has to be formalized in
monadic second order logic. The other ingredient of this approach is expressing
formulas by relational structures as described before. Now the crux is that our
case requires a family of MSO formulas which depend on the instance. This
however seems to be a serious issue at first sight as this prohibits the application
of Courcelle’s theorem. Fortunately we are able to generalize Courcelle’s theorem
in a way to circumvent this problem. Moreover we extended it to work with
infinite sized signatures under specific restrictions which allows us to state the
desired FPT result described as follows.

A Generalized Version of Courcelle’s Theorem

Assume we are able to express a problem Q in MSO. If instances x ∈ Q can be
modeled via some relational structure Ax over some finite vocabulary τ and we

6

see Q as a parameterized problem (Q, κ) where κ is the treewidth of Ax then by
Courcelle’s theorem we immediately obtain that (Q, κ) is in FPT [8]. If we do
not have a fixed MSO formula (which is independent of the instance) then we are
not able to use the mentioned result. However the following theorem shows how
it is possible even with infinite signatures to apply the result of Courcelle. For
this, we assume that the problem can be expressed by an infinite family (φn)n∈N
of MSO-formulas along with the restriction that (φn)n∈N is uniform, i.e., there is
a recursive function f : n→ φn.

Let κ be a parameterization. Call a function f : Σ∗ → Σ∗ κ-bounded if there
is a computable function h such that for all x it holds that |f(x)| ≤ h(κ(x)).

Theorem 2. Let (Q, κ) be a parameterized problem such that instances x ∈ Σ∗
can be expressed via relational structures Ax over a (possibly infinite) signature τ
and tw(Ax) is κ-bounded. If there exists a uniform MSO-formula family (φn)n∈N
and a fpt-computable, κ-bounded function f such that for all x ∈ Σ∗ it holds
x ∈ Q⇔ Ax |= φ|f(x)| then (Q, κ) ∈ FPT.

Proof. Let (Q, κ), (φn)n∈N, κ and f be given as in the conditions of the theorem.
Let (φn)n∈N be computed by a w.l.o.g. non-decreasing and computable function
g. The following algorithm correctly decides Q in fpt-time w.r.t. κ. First compute
i := |f(x)| in FPT for the given instance x. Since (φn)n∈N is uniform and f
is κ-bounded we can construct φi in time g(n) = g(|f(x)|) ≤ g(h(κ(x))) for
recursive g, hence in FPT. Now we are able to solve the model checking problem
instance (Ax, φi) in time f ′

(
tw(Ax), |φi|

)
·|Ax| for a recursive f ′ due to Courcelle’s

theorem. As both tw and |φi| are κ-bounded, the given algorithm then runs in
FPT time. ut

Σ∗

...

φ1

φ2

φ3

(Q,κ)
(Q,κ)1

(Q,κ
)2

(Q,κ)3

Apply Courcelle’s
theorem

Fig. 3. Visualization of the infinite application of Courcelle’s theorem in Theorem 2.
(Q,κ)i for i ∈ N are the slices of the parameterized problem, i.e., (Q,κ)i := {x ∈ Σ∗ |
x ∈ Q and κ(x) = i}.

7

Note that the infinitely sized signature is required to describe the structures
from the set of all structures A which occur with respect to the corresponding
family of MSO-formulas (φn)n∈N. For every subset T ⊂ A of structures with
respect to each φi then have (as desired and required by Courcelle’s theorem) a
finite signature, i.e., a vocabulary.

Praveen [9] shows the fixed-parameter tractability of ML-SAT (parameterized
by pathwidth and modal depth) by applying Courcelle’s theorem, using for each
modal formula an MSO-formula whose length is linear in the modal depth. This
can be seen as a special case of Theorem 2 using a P-uniform MSO family that
partitions the instance set according to the modal depth.

Again we want to stress that formula pathwidth of ϕ refers to the pathwidth
of the corresponding structures Aϕ as defined above.

Lemma 3. Let ϕ ∈ CTLNNF({AX,EX}, B) given by the structure Aϕ over τ .
Then there exists an MSO formula θ(ϕ) such that ϕ ∈ CTL-SAT({AX}) iff
Aϕ |= θ(ϕ) and θ(ϕ) depends only on td(ϕ).

Proof. The first step is to show that a formula ϕ ∈ CTLNNF({AX,EX}) is satisfi-
able if and only if it is satisfied by a Kripke structure of depth td(ϕ), where the
depth of a structure (M,w0) is the maximal distance in M from w0 to another
state from M . This can be similar proven as the tree model property of modal
logic [15, p. 269, Lemma 35].

Let ϕ be the given formula in CTLNNF({AX,EX}). The following formula
θstruc describes the properties of the structure Aϕ. At first it takes care of the
uniqueness of the formula representative. If an element x does not represent a
formula then it has to be a subformula. Additionally if x it is not a variable it has
to be either a constant, or a Boolean function f ∈ B with the corresponding arity
ar(f), or an AX-, or an EX-formula respectively. Furthermore the distinctness of
the representatives has to be ensured which together with the previous constraints
implies acyclicity.

In the following f1(u, v, w, x) corresponds to the operator of the function
which is true if exactly one of its arguments is true.

θstruc :=∀x∀y(repr(x) ∧ repr(y)→ x = y)∧

∀x
(
¬repr(x)→ ∃y

(
¬var(y) ∧

∨
f∈{∧,∨,¬},
1≤i≤ar(f)

connf,i(x, y)
))
∧

∀x f1

(
var(x),

∨
f∈{>,⊥}

constf (x),

∨
f∈B,

ar(f)≥1

∧
1≤i≤ar(f)

∃y
(
connf,i(y, x) ∧ ∀z

(
connf,i(z, x)→ z = y

))
,

∃y
(
bodyAX(y, x) ∧ ∀z

(
bodyAX(z, x)→ z = y

))
,

∃y
(
bodyEX(y, x) ∧ ∀z

(
bodyEX(z, x)→ z = y

)))
∧

∀x∀y
(
(bodyAX(y, x)→ reprAX(x)) ∧ (bodyEX(y, x)→ reprEX(x))

)
.

8

The previous formula is a modification of the formula used in the proof of
Lemma 1 in [10].

The next formulas will quantify sets Mi which represent sets of satisfied
subformulas at worlds in the Kripke structure at depth i. Here the formulas with
propositional connectives, resp., all constants, have a valid assignment obeying
their function value in the model Mi. The AX- and EX-formulas are processed
as expected: the EX-formulas branch to different worlds and the AX-formulas
have to hold in all possible next worlds. Now we are ready to define θiassign in an
inductive way. At depth 0 we want to consider only propositional formulas. Here
it ensures that all Boolean functions obey the model:

θ
0
assign(M0) := ∀x, y1, . . . , yn ∈M0 : reprPL(x)∧∧

f∈B

(∧
ar(f)=0

constf (x)→ f ∧
∧

1≤i≤ar(f)

connf,i(yi, x)→ f(M0(y1), . . . ,M0(yar(f)))

)
.

In the general definition of θiassign we utilize for convenience two subformulas,

θibranchEX and θistepAX. The first is defined for an element x representing an
EX-formula, a set of elements Mi representing to be satisfied formulas, and a set
of elements MAX representing the AX-formulas which are satisfied in the current
world. The formula enforces that the formula EXψ represented by x has to hold
in the next world together with all bodies of the AX-formulas:

θ
i
branchEX(Mi,MAX, x) := ∃y

(
bodyEX(y, x)∧

∃Mi−1

(
Mi−1(y) ∧ ∀z ∈MAX(∃w bodyAX(w, z) ∧Mi−1(w))∧

θ
i−1
assign(Mi−1)

))
.

The second formula is crucial when there are no EX-formulas represented
in Mi. Then the AX-formulas still have to be satisfied eventually wherefore we
proceed with a single next world (without any branching required):

θ
i
stepAX(MAX) := ∃Mi−1∀z ∈MAX(∃w bodyAX(w, z) ∧Mi−1(w)) ∧ θi−1

assign(Mi−1).

Now we turn towards the complete inductive definition step where we need
to differentiate between the two possible cases for representatives: either a
propositional or a temporal formula is represented. The first part is similar to the
induction start and the latter follows the observation that for every EX-preceded
formula we want to branch. In each such branch all not yet satisfied AX-preceded
formulas have to hold. The set MAX contains all AX-formulas which are satisfied
in the current world. If we do not have any EX-formulas then we enforce a single
next world for the remaining AX-formulas.

θ
i
assign(Mi) :=∀x, y1, . . . , yn ∈Mi∧

f∈B

(∧
ar(f)=0

constf (x)→ (Mi(x)↔ f)∧

9

∧
1≤i≤ar(f)

connf,i(yi, x)→
(
Mi(x)↔ f(Mi(y1), . . . ,Mi(yar(f)))

))
∧

∃MAX ⊆Mi

(
∀x
(
MAX(x)↔

(
reprAX(x) ∧Mi(x)

))
∧

∀x ∈Mi

(
reprEX(x)→ θ

i
branchEX(Mi,MAX, x)

)
∧(

∀x ∈Mi(¬reprEX(x))
)
→ θ

i
stepAX(MAF

))

Through the construction we get that ϕ is satisfiable iff Aϕ |= θstruc ∧
∃M(θ

td(ϕ)
assign(M)) =: θ(ϕ). ut

Corollary 4. CTL-SAT({AX}) parameterized by formula pathwidth and tempo-
ral depth is fixed-parameter tractable.

Proof. Assume that the given formula ϕ is in NNF since such a transformation is
possible in linear time. As pathwidth is an upper bound for treewidth, we apply
Theorem 2 in the following way. For |f(ϕ)| = td(ϕ) the function f is κ-bounded
and computes the appropriate MSO formula from the uniform family given by
Lemma 3. ut

Intractable fragments of CTL-SAT

In the following section we consider fragments of CTL for which their models
cannot be bounded by the temporal depth of the formula. Therefore the framework
used for the AX case cannot be applied. Instead we prove W[1]-hardness.

Lemma 5. CTL-SAT(T) parameterized by formula pathwidth and temporal
depth is W[1]-hard if {AX,AF} ⊆ T .

Proof. We will modify the construction in the proof of Praveen [9, Lemma A.3]
and thereby state an fpt-reduction from the parameterized problem p-PW-SAT
whose input is (F , part : Φ → [k], tg : [k] → N), where F is a propositional
CNF formula, part is a function that partitions the set of propositional variables
of F into k parts, and tg is a function which maps to each part a natural
number. The task is to find a satisfying assignment of F such that in each part
p ∈ [k] exactly tg(p) variables are set to true. A generalization of this problem to
arbitrary formulas F (i.e., the CNF constraint is dropped) is W[1]-hard when
parameterized by k and the pathwidth of the structural representation AF of F
which is similar proven as in [9, Lemma 7.1].

The further idea is to construct a CTL-formula φF in which we are able to
verify the required targets. The formula enforces a Kripke structure K = (W,R, V)
where in each world w ∈ W the value of V (w) coincides with a satisfying
assignment f of F together with the required targets. Each such K contains as
a substructure a chain w0Rw1R · · ·Rwn of worlds and all variables qi in F are
labeled to each wj if f(qi) holds.

Let q1, . . . , qn be all the propositional variables in F . Then t↑1, . . . , t↑k, re-

spectively, f↑1, . . . , f↑k are propositions to distinguish the parts, tr0p, . . . , tr
n[p]
p ,

10

determined :=AG
n∧

i=1

(
(qi ⇒ AXqi) ∧ (¬qi ⇒ AX¬qi)

)

depth :=

n−2∧
i=0

(
(di ∧ ¬di+1)⇒ AX(di+1 ∧ ¬di+2)

)
setCounter :=(q1 ⇒ t↑part(1)) ∧ (¬q1 ⇒ f↑part(1))∧

AG
n∧

i=2

(
(di−1 ∧ ¬di)⇒

[
(qi ⇒ t↑part(i)) ∧ (¬qi ⇒ f↑part(i))

])
incCounter :=

(
(t↑part(1) ⇒ AXtr1part(1)) ∧ (f↑part(1) ⇒ AXfl1part(1))

)
∧

AG
k∧

p=1

n[p]−1∧
j=0

[(
t↑p ⇒

(
tr

j
p ⇒ tr

j+1
p ∧ AXtrj+1

p

))
∧
(
f↑p ⇒

(
fl

j
p ⇒ fl

j+1
p ∧ AXflj+1

p

))]

targetMet :=AG
k∧

p=1

(dn ⇒ tr
tg(p)
p ∧ ¬trtg(p)+1

p ∧ fln[p]−tg(p)
p ∧ ¬trn[p]−tg(p)+1

p)

determined’ :=AG
k∧

p=1

(
(tr

0
p ⇒ AGtr0p) ∧ (fl

0
p ⇒ AGfl0p)

)

countInit :=d0 ∧ ¬d1 ∧
k∧

p=1

(¬tr1p ∧ ¬fl
1
p ∧ tr

0
p ∧ fl

0
p)

depth’ :=AG
k∧

p=1

n[p]∧
j=0

[(
tr

j
p ⇒ AGtrjp)

)
∧
(
fl

j
p ⇒ AGfljp

)]

countMonotone :=AG

 n∧
i=1

(
(di ⇒ di−1)

)
∧

k∧
p=1

n[p]∧
l=2

[
(tr

j
p ⇒ tr

j−1
p) ∧ (fl

j
p ⇒ fl

j−1
p)

]

Fig. 4. Reduction from p-PW-SAT to CTL-SAT({AX,AG})

respectively, fl0p, . . . , f l
n[p]
p for p ∈ [k], are counter propositions for the number

of variables set to true and false, d0, . . . , dn+1 are depth propositions, and Φ(p)
denotes the set of variables in part p ∈ [k].

The formula φF that is the conjunction of subformulas (Figure 4) similar to
[9, Lemma A.3] states the reduction from p-PW-SAT to CTL-SAT({AX,AG})
parameterized by temporal depth and pathwidth. With respect to Praveens
approach we explain how to obtain a formula consisting of only one single AG
operator leading to a formula φF = ψ ∧ AGχ, where ψ is purely propositional
and χ ∈ CTL({AX}). Then AG can be replaced by EG and the proof stays valid
since there is only one instance of an existential temporal operator and it occurs
at temporal depth zero. As AG(α) ∧ AG(β) ≡ AG(α ∧ β) we can modify the
formula φF which is a conjunction of the formulas from above to the desired form
containing only a single AG. This is then replaced by EG and the argumentation
follows below.

In the following we assume the chain of worlds as explained before to be the
relevant part of the model. The world where the conjunction φF holds is assumed

11

to be w0. The formula determined forces the variables qi not to change their value
in successor levels by passing the value of each qi to all next levels. Hence we get
M, w0 |= F ∧ determined. depth ensures that in the world wi holds di ∧ ¬di+1,
M, w0 |= determined ∧ (d0 ∧ ¬d1) by countInit. In the next formula setCounter
the variable t↑part(i) holds if qi is set to true at the world wi−1, respectively, the
variable f↑part(i) if qi does not hold at wi−1.

Now we use the variables t↑part(i) to increment the counter propositions

tr0p, . . . , tr
n[p]
p for all variables set to true in the formula incCounter as follows.

If the j variables Φ(p) ∩ {q1, . . . qj} at part(p) are set to true so is t↑p set at the
world wi−1 to true and all successors of wi−1 force increment of the value ` in tr`p,

respectively, fl`p. This is ensured step wisely depending on the temporal depth n.

The counters for the target function trip and flip are initialized by countInit,
i.e., tr0p and fl0p are set to true in all wis and tr1p and fl1p are set to false in w0 by
determined’ and countInit. Additionally the formula depth’ defines the scope of
the counters trip and flip which depends on the temporal depth and the property
of being monotonically nondecreasing is defined by countMonotone. The given
target function tg : [k] → N is then checked with the formula targetMet such
that M, w0 |= targetMet, i.e., in the world at depth k the target proposition

tr
tg(p)
p must hold (and must stop, i.e., tr

tg(p)+1
p is false) for each part p ∈ [k]. The

correctness of the reduction is similarly proven as in [9, Lemma A.3]. ut

Lemma 6. CTL-SAT(T) parameterized by formula pathwidth and temporal
depth is W[1]-hard if AG ∈ T .

Proof. Now we consider the case were T = {AG}. As AGϕ is equivalent to ¬EF¬ϕ
we can simple substitute in the constructed formula φF from [9, Lemma A.3]
the occurrence of EX with EF. By this the possible “steps” invoked by the EX-
operator become “jumps” through EF. This however allows consecutive worlds
to be labeled with identical labels and therefore the same depth proposition
which can trigger the counting of a variable multiple times. To prevent this we
introduce additional counting variables s↑p and sjp which are triggered in every
world regardless of the corresponding variable being set to zero or one.

We add additional formulas as follows and include them in the construction
of a path decomposition of low width as previously done for their counterpart
formulas.

setCounter2 :=s↑part(1) ∧ AG
n∧

i=2

(
(di−1 ∧ ¬di)⇒ s↑part(i)

)
incCounter2 :=

(
s↑part(1) ⇒ AGs1part(1)

)
∧

AG
k∧

p=1

n[p]−1∧
j=0

[(
s↑p ⇒

(
s
j
p ⇒ s

j+1
p ∧ AGsj+1

p

))]

targetMet2 :=AG
k∧

p=1

[
dn ⇒

(
s
n[p]
p ∧ ¬sn[p]+1

p

)]

12

determined’2 :=AG
k∧

p=1

(
(s

0
p ⇒ AGs0p)

)

countInit2 :=
k∧

p=1

(¬s1p ∧ s
0
p)

depth’2 :=AG
k∧

p=1

n[p]∧
j=0

[(
s
j
p ⇒ AGsjp)

)]

countMonotone2 :=AG

 k∧
p=1

n[p]∧
l=2

[
(s

j
p ⇒ s

j−1
p)

]
ut

Lemma 7. CTL-SAT(T) parameterized by formula pathwidth and temporal
depth is W[1]-hard if AU ∈ T .

Proof. We further modify the reduction from Lemma 6 for the AG-case to simulate
the AG-subformulas with the help of AU-formulas as shown in Figure 5 on page 15.
The idea is to introduce another depth proposition after dn, namely dn+1. This is
used to express AGφ by A[φUdn+1] without increasing the pathwidth much. ut

4 Conclusion

In this work we present an almost complete classification with respect to param-
eterized complexity of all possible CTL-operator fragments of the satisfiability
problem in computation tree logic CTL parameterized by formula pathwidth and
temporal depth. Only the case for the fragment containing solely AF remains
open. Currently we are working on a classification of this fragment which aims
for an FPT result and uses the “full version” of Theorem 2; the main goal is
to bound the model depth of an AF-formula in the full parameter, i.e., not only
in the temporal depth of the formula. This requires finding lower bounds for
the treewidth of the considered structures when the formula enforces a deep
model. Then we can construct a family of MSO formulas similar to the AX case.
The classified results form a dichotomy with two fragments in FPT and the
remainder being W[1]-hard.

Comparing our results to the situation in usual computational complexity for
the decision case they do not behave as expected. Surprisingly the fragment {AX}
is FPT whereas on the decision side this fragment is PSPACE-complete. For the
other classified fragments the rule of thumb is the following: The NP-complete
fragments are FPT whereas the PSPACE- and EXPTIME-complete fragments
are W[1]-hard. For the shown W[1]-hardness results an exact classification
with matching upper bounds is open for further research. Similarly a complete
classification with respect to all possible Boolean fragments in the sense of Post’s
lattice is one of our next steps.

Furthermore we constructed a generalization of Courcelle’s theorem to infinite
signatures for parameterized problems (Q, κ) withQ ⊆ Σ∗ such that the treewidth
of the relational structures Ax corresponding to instances x ∈ Σ∗ is κ-bounded

13

under the existence of a computable family of MSO-formulas (cf. Theorem 2).
Previously such a general result for infinite signatures was not known to the best
of the authors knowledge and is of independent interest.

Another consequent step will be the classification of other temporal logics
fragments, e.g., of linear temporal logic LTL and the full branching time logic
CTL∗ with respect to their parameterized complexity. Also the investigation of
other parameterizations beyond the usual considered measures of pathwidth or
treewidth and temporal depth may lead to a better understanding of intractability
in the parameterized sense.

References

1. Prior, A.N.: Time and Modality. Clarendon Press, Oxford (1957)
2. Kripke, S.: Semantical considerations on modal logic. In: Acta Philosophica Fennica.

Volume 16. (1963) 84–94
3. Pnueli, A.: The temporal logic of programs. In: Proc. 18th Symposium on Founda-

tions of Computer Science, IEEE Computer Society Press (1977) 46–57
4. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the

temporal logic of branching time. Journal of Computer and System Sciences 30(1)
(1985) 1–24

5. Clarke, E.M., Emerson, E.A.: Desing and synthesis of synchronisation skeletons
using branching time temporal logic. In: Logic of Programs. Volume 131 of Lecture
Notes in Computer Science., Springer Verlag (1981) 52–71

6. Meier, A.: On the Complexity of Modal Logic Variants and their Fragments. PhD
thesis, Gottfried Wilhelm Leibniz Universität Hannover (2011)

7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer-Verlag (1999)
530 pp.

8. Courcelle, B., Engelfriet, J.: Graph structure and monadic second-order logic, a
language theoretic approach. Cambridge University Press (2012)

9. Praveen, M.: Does treewidth help in modal satisfiability? ACM Transactions on
Computational Logic 14(3) (2013) 18:1–18:32

10. Meier, A., Schmidt, J., Thomas, M., Vollmer, H.: On the Parameterized Complexity
of Default Logic and Autoepistemic Logic. In: 6th International Conference on
Language and Automata Theory and Applications. Volume 7183 of LNCS. (2012)
389–400

11. Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability
of knowledge representation and reasoning. Artificial Intelligence 174(1) (2010)
105–132

12. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of
Bodlaender and Courcelle. In: Proc. 51th Annual IEEE Symposium on Foundations
of Computer Science, IEEE Computer Society (2010)

13. Pippenger, N.: Theories of Computability. Cambridge University Press, Cambridge
(1997)

14. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer Verlag (2006)
15. Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. Cambridge University Press,

New York, NY, USA (2001)

14

determined :=

n∧
i=0

(
qi ⇒ A[qiUdn+1]

)
∧

n∧
i=1

(
¬qi ⇒ A[¬qiUdn+1]

)

depth :=
n∧

i=0

(
A [di ∧ ¬di+1Udi+1 ∧ ¬di+2]

)
setCounter :=(q1 ⇒ t↑part(1)) ∧ (¬q1 ⇒ f↑part(1))∧

n∧
i=2

A[(di−1 ∧ ¬di)⇒
(
(qi ⇒ t↑part(i)) ∧ (¬qi ⇒ f↑part(i))

)
]Udn+1]

incCounter :=(t↑part(1) ⇒ A[tr1part(1)Udn+1]
)
∧ (f↑part(1) ⇒ A[fl1part(1)Udn+1])∧

k∧
p=1

n[p]−1∧
j=0

[(
A[t↑pUdn+1]⇒

(
tr

j
p ⇒ A[trj+1

p Udn+1]
))
∧

(
A[f↑pUdn+1]⇒

(
fl

j
p ⇒ A[flj+1

p Udn+1]
))]

targetMet :=

k∧
p=1

A
[(
dn ⇒ (tr

tg(p)
p ∧ ¬trtg(p)+1

p ∧ fln[p]−tg(p)
p ∧ ¬fln[p]−tg(p)+1

p

)
Udn+1

]

determined’ :=

k∧
p=1

((
(tr

0
p ⇒ A[tr0pUdn+1])

)
∧ (fl

0
p ⇒ A[fl0pUdn+1])

)

countInit :=d0 ∧ ¬d1 ∧
k∧

p=1

(¬tr1p ∧ ¬fl
1
p ∧ tr

0
p ∧ fl

0
p)

depth’ :=

k∧
p=1

n[p]∧
j=0

(
A[(trjp ⇒ tr

j
p) ∧ (fl

j
p ⇒ fl

j
p)Udn+1]

)

countMonotone :=

n∧
i=1

A

(di ⇒ di−1) ∧
k∧

p=1

n[p]∧
l=2

(tr
j
p ⇒ tr

j−1
p) ∧ (fl

j
p ⇒ fl

j−1
p)Udn+1


setCounter2 :=s↑part(1) ∧ A

[
n∧

i=2

(
(di−1 ∧ ¬di)⇒ s↑part(i)

)
Udn+1

]

incCounter2 :=
(
s↑part(1) ⇒ A

[
s
1
part(1)Udn+1

])
∧

A

 k∧
p=1

n[p]−1∧
j=0

[(
s↑p ⇒

(
s
j
p ⇒ A[sj+1

p Udn+1]
))]

Udn+1


targetMet2 :=A

 k∧
p=1

[dn ⇒
(
s
n[p]
p ∧ ¬sn[p]+1

p

)
]Udn+1


determined’2 :=A

 k∧
p=1

(
(s

0
p ⇒ AGs0p)

)
Udn+1


countInit2 :=

k∧
p=1

(¬s1p ∧ s
0
p)

depth’2 :=A

 k∧
p=1

n[p]∧
j=0

[(
s
j
p ⇒ A[sjpUdn+1])

)]
Udn+1


countMonotone2 :=A

 k∧
p=1

n[p]∧
l=2

[
(s

j
p ⇒ s

j−1
p)

]Udn+1



Fig. 5. Reduction from p-PW-SAT to CTL-SAT({AU})

15

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

