
A trade-off between length and width in

resolution

Neil Thapen∗

Czech Academy of Sciences
thapen@math.cas.cz

October 15, 2014

Abstract

We describe a family of CNF formulas in n variables, with small initial
width, which have polynomial length resolution refutations. By a result
of Ben-Sasson and Wigderson it follows that they must also have narrow
resolution refutations, of width O(

√
n logn). We show that, for our for-

mulas, this decrease in width comes at the expense of an increase in size,
and any such narrow refutations must have exponential length.

1 Introduction and results

Resolution is a well-known proof system for refuting propositional CNF formu-
las. A literal is a propositional variable or its negation. A clause is a disjunction
of literals. We define a conjunctive normal form formula or CNF to be a set of
clauses, which we treat semantically as though it were a conjunction of clauses.
The resolution rule allows us to derive the clause C ∨ D from the two clauses
C ∨ q and D ∨ ¬q, where q is any propositional variable. The weakening rule
allows us to derive a clause C from any subclause D of C. A resolution refuta-
tion of a CNF F is a sequence of clauses, ending with the empty clause, where
each clause either comes from F or follows from earlier clauses by resolution or
weakening.

Every unsatisfiable CNF has a resolution refutation. However, interesting
questions remain about the complexity of refutations. We consider two measures
of complexity, length and width, and will also mention a third, space. The length
(or size) of a resolution refutation Π is the number of clauses it contains. The
width of Π is the maximum width of any clause in Π, where the width of a
clause is just the number of literals it contains. Similarly the width of a CNF F
is the maximum width of any clause in F . The space or clause space of Π is the
number of clauses that need to be kept in memory while verifying Π [8].

A result of [6] showed an interesting and useful connection between the
minimal length and minimal width of refutations:

Theorem 1 Let F be a CNF in n variables with width k. Suppose that F has a
resolution refutation Π of length S. Then F also has a resolution refutation Π′

of width at most k +
√
n logS. �

∗Partially supported by grant P202/12/G061 of GAČR and RVO:67985840.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 137 (2014)

In other words, every short refutation can be transformed into a narrow
refutation. However, the transformation of Π into Π′ used in the proof of The-
orem 1 may increase the length of the refutation exponentially. In this paper
we address the natural question, posed for example in [4, 15, 14], of whether
the theorem can be strengthened to guarantee that the narrow refutation Π′ is
not substantially longer than the initial short refutation Π.1 We show that the
expected answer (“no”) is correct. Our main result is:

Theorem 2 Fix a small constant ε > 0. Take any sufficiently large m such
that both m and mε are powers of two. There is a CNF Φm with Θ(m1+2ε)
variables and Θ(m1+3ε) clauses, of width O(logm), such that

1. Φm has a refutation of length O(m1+3ε) and width m+O(logm)

2. Φm has a refutation of width O(mε)

3. Φm has no subexponential length refutation of width strictly less than m.

By Theorem 1, it follows from item 1 of Theorem 2 (even without item 2)

that Φm has a refutation of width O(m
1
2+ε
√

logm). But, by item 3, as long
as ε < 1

2 every such refutation requires exponential length.
This kind of result is known as a trade-off between length and width. The

reason for the name is that if we need a refutation of small length, we can find
one; and if we need a refutation of small width, we can find one; but we must
choose between small length and small width, since there is no way to minimize
both in the same refutation. We briefly describe some known trade-offs between
complexity measures for resolution — see [14] for a detailed survey.

They were first studied by Ben-Sasson [4], who showed trade-offs between
space and width for resolution and between space and length for treelike reso-
lution (in which the underlying graph of every refutation must be a tree). In
particular he gave formulas of size n which have linear length treelike refutations
with constant space, and which also have constant width treelike refutations,
but for which for any refutation Π, the product of the width and the space of Π
must be at least Ω(n/ log n), and for any treelike refutation Π the product of
the width and the logarithm of the length of Π must be at least Ω(n/ log n).

A trade-off between space and length for unrestricted resolution was shown
by Nordström in [13], and a robust system for showing such trade-offs was de-
veloped in [5]. For example, there are formulas of size n and constant width
which have linear length refutations, and which also have refutations with
space O(n/ log n), but for which any refutation with this minimal space must
have exponential length.

A trade-off between length and width was also shown in [13], giving formulas
of size n and constant width which have linear length refutations, and which
also have refutations of width O(3

√
n), but for which any refutation with this

minimal width must have exponential length. However these parameters are
not enough to answer the question about Theorem 1 discussed above, and the
formula and method of proof in this paper are completely different.

1A question about the relation between length and width in the opposite direction also
arises from [6]. Any refutation with width w must have length at most nO(w), since there
only exist nO(w) many clauses of suitable width. Is there a family of formulas for which this
bound is tight, that is, the formulas are refutable in width w, but require length nΩ(w)? This
was answered recently in [2]: such families do exist, for w = nc for any constant c < 1/2.

2

The CNF Φm in Theorem 2 is a propositional version of the coloured poly-
nomial local search principle, or CPLS, which was introduced in [12] as a com-
binatorial principle as strong as reflection for resolution. It thus in some sense
captures the strength of resolution, and also of first-order theories built around
bounded Π2 induction (such as Buss’s theory T 2

2 [7]), as these are closely con-
nected with resolution. We say more about this in Section 2 below. In Section 3
we formally define the CNF Φm and prove the length upper bound, and in Sec-
tion 4 we prove the width upper bound, describing two different refutations of
small width. Finally in Section 5 we prove the length lower bound on refutations
of small width.

The idea of the lower bound proof is, roughly, that we consider four senses in
which a clause can be “narrow” – mostly these differ in which variables we are
counting (see Lemma 11). Given a refutation Π, if Π has small width it follows
immediately that every clause in Π is narrow in our first sense. If furthermore Π
has subexponential length, then we can hit Π with a random restriction such
that with high probability every clause in the resulting refutation is also narrow
in the remaining three senses. We then use what is essentially an adversary
argument to show that no such narrow refutation of the restricted CNF can
exist. The restriction and the adversary argument are simpler versions of those
used in the resolution length lower bound for the related formula GI3 in [17].

2 Coloured polynomial local search

Definition 3 The coloured polynomial local search principle is the universal
closure of the following first-order formula with parameters a, b, c. Suppose that
Gi(x, y) is a three-place relation on [a]× [b]× [c], that u(x) is a single-argument
function from [b] to [c], and that fi(x) is a two-argument function, with argu-
ments i and x, from [a] × [b] to [b]. Then the following three formulas cannot
all be true:

1. ∀y<c, ¬G0(0, y)

2. ∀i<a− 1 ∀x<b ∀y<c, Gi+1(fi(x), y)→ Gi(x, y)

3. ∀x<b, Ga−1(x, u(x)).

We think of the pairs (i, x) as nodes in a levelled directed graph. We call (i, x)
node x on level i. For i < a− 1, this node has a single neighbour, node fi(x) on
level i+ 1. We take Gi(x, y) as asserting that colour y is present on node x on
level i, where a node may potentially have any set of colours from [0, c). The
three formulas in Definition 3 become:

1. Node 0 on level 0 has no colours.

2. For every node x on every level i < a − 1, if the neighbour fi(x) of x on
level i+ 1 has any colour y, then x also has colour y.

3. Every node x on the bottom level has at least one colour, u(x).

Clearly these cannot be true simultaneously in any finite structure.
We also use CPLS as the name of the NP search problem in which we

are given the size parameters, together with either oracles or polynomial time
machines computing G, u and f , and have to find a witness that one of the

3

three formulas above is false. If we fix c = 1 this is equivalent to the well-known
polynomial local search problem PLS [10]. The CPLS principle asserts that the
CPLS search problem is total.

Without going into details about first-order proof systems, the CPLS prin-
ciple can be proved by bounded Π2 induction on i, starting at i = a− 1 and
working towards i = 0, using the inductive hypothesis ∀x<b ∃y<cGi(x, y),
that every node at level i has a colour. The short resolution refutation in the
next section will have essentially this form, deriving a set of clauses expressing
∀x<b ∃y<cGi(x, y) for each i in turn, and in particular using space and width
closely related to the bounds b and c on the universal and existential quantifiers.
In fact, any first-order proof using a suitable form of bounded Π2 induction can
be made into a resolution refutation in a similar way [11] (see [3] for a recent,
self-contained presentation of this translation).

On the other hand, CPLS is the hardest NP search problem that is provably
total using this amount of induction, in the sense that any other such search
problem is reducible to CPLS. This is the main result of [12], and follows from
the translation of bounded Π2 induction into resolution mentioned above, plus
the fact that 1-reflection for resolution is reducible to CPLS. Here 1-reflection
for resolution is the NP search problem in which we are given (as oracles or
polynomial time machines) a resolution refutation of a narrow CNF together
with an assignment to its variables, and have to find a clause of the CNF that
is falsified by the assignment. For more on connections of this form between
proof systems, search problems and induction, see [17].

3 The CNF and a short refutation

Let a be any natural number and let b and c be powers of two. We will define
a CNF formula CPLSa,b,c. The formula Φm in Theorem 2 is CPLSa,b,c with
parameters a = b = mε and c = m. The bounds on formula size and proof size
in Theorem 2 are shown in this section.

We first list the propositional variables that we will use.

1. For each i < a, x < b and y < c, there is a variable Gi(x, y).

2. For each i < a, x < b and j < log b, there is a variable (fi(x))j , standing
for the jth bit of the value of fi(x).

3. For each x < b and j < log a, there is a variable (u(x))j , standing for the
jth bit of the value of u(x).

The total number of variables is abc+ ab log b+ b log a.
If a number x′ < b has binary expansion (x′)0 . . . (x

′)log b−1 we write fi(x) = x′

to stand for the conjunction expressing that, for each j < log b, the vari-
able (fi(x))j has the same value as the corresponding bit (x′)j . That is,
fi(x) = x′ is the conjunction

q0 ∧ . . . ∧ qlog b−1 where qj =

{
(fi(x))j if (x′)j = 1

¬(fi(x))j if (x′)j = 0.

Similarly if y < c has binary expansion (y)0 . . . (y)log c−1 we write u(x) = y to
stand for the conjunction expressing that, for each j < log c, the variable (u(x))j
has the same value as the corresponding bit (y)j .

4

We will frequently write v1 ∧ · · · ∧ vk → w1 ∨ · · · ∨w` to stand for the clause
¬v1 ∨ · · · ∨ ¬vk ∨w1 ∨ · · · ∨w`. With this notation the resolution rule may take
the form: from A ∧ q → C and A ∧ ¬q → D derive A → C ∨D (where A is a
conjunction).

Definition 4 The formula CPLSa,b,c consists of the following three sets of
clauses, which we will call axioms 1, 2 and 3:

1. For each y < c, the clause

¬G0(0, y)

2. For each i < a− 1, each pair x, x′ < b and each y < c, the clause

fi(x) = x′ ∧Gi+1(x′, y)→ Gi(x, y)

3. For each x < b and each y < c, the clause

u(x) = y → Ga−1(x, y).

Axiom 2 has width log b + 2 and axiom 3 has width log c + 1. The total
number of clauses is c+ (a− 1)b2c+ bc.

Theorem 5 The formula CPLSa,b,c has a refutation simultaneously of length
O(ab2c), space 2b+ log b+ 3 (assuming log c ≤ b) and width c+ log b+ 1.

Proof For each i, define a set of clauses

Mi := {
∨
y<c

Gi(x, y) : x < b}

expressing that every node at level i has a colour. Notice that Mi has space b
and width c. We construct the refutation by deriving Mi for i = a − 1, . . . , 0
in turn, and then deriving the empty clause from M0. The details are in the
following three claims.

Claim 1 From axiom 3 we can derive Ma−1 in length O(bc), space b+ log c+ 1
and width c.

Claim 2 For each i < a − 1, from axiom 2 and Mi+1 we can derive Mi in
length O(b2c), space b+ log b+ 3 and width c+ log b+ 1.

Claim 3 From axiom 1 and M0 we can derive the empty clause in length O(c),
space 3 and width c.

We use Claim 1 to derive Ma−1. We then keep Ma−1 in memory, taking
up b memory locations, while using Claim 2 to derive Ma−2. We store Ma−2,
forget Ma−1, and continue. Once we have derived M0 we use Claim 3 to reach
a contradiction. The maximum space used is either b+ log c+ 1 while deriving
Ma−1, or 2b+ log b+ 3 while deriving each Mi from Mi+1.

Proof of claim 1 Fix x < b. For a binary string σ of length log c or less, and
a number y < c, say that y extends σ if the sequence of the first |σ| bits in the
binary expansion of y equals σ, that is, if (y)j = σj for all j < |σ|.

Let φσ(x) be the conjunction q0 ∧ · · · ∧ q|σ|−1 where qj is (u(x))j if σj = 1
or ¬(u(x))j if σj = 0, so that φσ(x) is true exactly in assignments where u(x)
extends σ. Let θσ(x) be the clause

φσ(x)→
∨

y extends σ

Ga−1(x, y).

5

Notice that if |σ| < log c, then θσ0(x) and θσ1(x) have the forms

θσ0(x) : φσ(x) ∧ ¬(u(x))|σ| →
∨

y extends σ0

Ga−1(x, y)

θσ1(x) : φσ(x) ∧ (u(x))|σ| →
∨

y extends σ1

Ga−1(x, y).

We can derive θσ(x) from these by resolving on the variable (u(x))|σ|.
Axiom 3 consists of θσ(x) for every σ of length exactly log c. So by the

observation above, we can derive θ∅(x) from axiom 3 using a derivation in the
form of a complete binary tree of height log c. This uses length O(c), space
log c + 2 and width c, the maximum width of the clauses θσ(x). Finally, the
clause θ∅(x) is exactly

∨
y<cGa−1(x, y), so to show the claim we derive θ∅(x)

for each x < b in turn.

Proof of claim 2 Fix x < b. For x′ < b, let φ(x′) be the clause

fi(x) = x′ →
∨
y<c

Gi(x, y).

The clause φ(x′) can be obtained from
∨
y<cGi+1(x′, y), which is in Mi+1,

by resolving with instances of axiom 2 for each y < c in turn. This takes
length O(c), space 3 and width c+ log b+ 1.

We now use a similar argument to the proof of claim 1 to derive the clause∨
y<cGi(x, y) from all the clauses φ(x′), using a derivation in the form of a

complete binary tree of height log b. To save space we do not derive all of
the clauses φ(x′) together at the beginning, but only as we need them. Hence
the derivation of

∨
y<cGi(x, y) takes length O(bc), space log b + 4 and width

c+ log b+ 1. As before, to show the claim derive this for each x < b in turn.

Proof of claim 3 Resolve
∨
y<cG0(0, y) with all instances of axiom 1. �

4 Two narrow refutations

The main purpose of this section is to motivate the definition of the random
restriction ρ in Section 5 below. We describe, in Theorems 6 and 7, two narrow
strategies for the Prover in a certain Prover-Adversary game based on CPLSa,b,c
(this is equivalent to, but intuitively simpler than, describing narrow resolution
refutations). In Section 5 we want to show that no narrow refutation can be
small, which in particular means that we should be able to show that no small
strategy similar to the two outlined here can work.

Part 1 of the definition of ρ (Definition 8) can be seen as blocking any small
strategy similar to the one outlined in Theorem 6, where the Prover tries to
learn long paths in f , because it generates lots of cases that the Prover must
be able to remember, forcing his strategy to have many nodes. Part 3 of the
definition does the same for strategies similar to the one in Theorem 7, where
the Prover tries to remember a colour on many different nodes. (See [16] for
more on this kind of approach to length lower bounds.)

The Prover-Adversary game works as follows. At each turn, the Prover can
ask the Adversary the value of a variable, and record the corresponding literal
in his memory; alternatively, the Prover can forget a literal from memory to
allow the space to be re-used. The Adversary can give any answer which does
not directly contradict the current contents of the Prover’s memory, and the

6

Prover wins when his memory falsifies some axiom of CPLSa,b,c. It is easy to
see that a winning strategy for the Prover that requires no more than w units
of memory (where a unit is enough space to record one literal) can be turned
into a resolution refutation of CPLSa,b,c of width w.

Theorem 6 CPLSa,b,c has a refutation of width a log b+ log c.

Proof By querying all bits of each fi(xi) in turn, the Prover first learns a
sequence x0, . . . , xa−1 such that x0 = 0 and fi(xi) = xi+1 for each i < a − 1.
This requires (a− 1) log b units of memory.

The Prover then uses log c more units of memory to learn that u(xa−1) = y
for some colour y. The Prover then queries Ga−1(xa−1, y) and must get the
answer 1, since otherwise the Adversary would violate axiom 3. At this point
the Prover can forget u(xa−1) = y.

For i = a − 2, . . . , 0 the Prover then queries Gi(xi, y) and must get the
answer 1 each time, or the Adversary would violate axiom 2. Each time the
Prover may then forget the previous value Gi+1(xi+1, y). For i = 0 this forces
the Adversary to violate axiom 1. �

Theorem 7 CPLSa,b,c has a refutation of width 2b+ log b+ log c.

Proof By a result of [1] bounding the minimal width of refuting a CNF
in terms of the minimal space, the existence of a refutation of roughly this
width follows already from the space upper bound on CPLSa,b,c shown by the
refutation in Theorem 5. In some sense the refutation we describe here is dual
to that one (see also [9]).

For each x < b in turn, the Prover learns u(x) = y for some colour y, queries
Ga−1(x, y) and must get the answer 1 (by axiom 3), and then forgets u(x) = y.
This can be done in b+ log c units of memory in total.

The Prover then repeats the following process for each i = a − 2, . . . , 0.
For each x < b the Prover learns fi(x) = x′ for some x′, then queries Gi(x, y),
where y is the colour for which he knows Gi+1(x′, y). This must get the answer 1
(by axiom 2). The Prover then forgets fi(x) = x′ and goes on to the next x.
Having done this for every x at level i, he forgets all the values Gi+1(x, y) from
the previous level. The maximum memory used during this process is 2b+log b.

When this has reached level 0, the Prover knows that G0(0, y) = 1 for some
colour y, contradicting axiom 1. �

The refutation in Theorem 6 has length at least ba, since it contains a distinct
clause for every possible sequence x0, . . . , xa−1. The refutation in Theorem 7
has length at least cb, since it contains a distinct clause corresponding to the
conjunction Ga−1(0, y0) ∧ · · · ∧ Ga−1(b − 1, yb−1) for every possible choice of
colours y0, . . . , yb−1.

5 A length lower bound for narrow refutations

We now prove the last part of Theorem 2, that there is no refutation of Φm
with simultaneously small width and subexponential length. Recall that Φm is
the formula CPLSa,b,c with parameters a = b = mε and c = m, where ε > 0 is
a small constant and m and mε are both powers of two.

7

By subexponential we mean smaller than 2m
δ

for every δ > 0. By exponen-

tially high probability we mean probability greater than 1−2−m
δ

for some δ > 0.
By polynomially high probability we mean probability greater than 1−m−δ for
some δ > 0. The main parameter appearing in the proof will be a rather than m,
but since a = mε this does not change these definitions.

Suppose for a contradiction that there is a refutation Π of Φm with subexpo-
nential length and with width strictly less than m. Let p = a−3/4 and w = a7/8.

Definition 8 A random restriction ρ is a partial assignment chosen in three
stages, as follows.

1. Independently for each pair (i, x), with probability p put (i, x) into a set Γ.
Then for each (i, x) ∈ Γ, for each y set the variable Gi(x, y) independently
to 0 or 1 with probability 1/2. For such (i, x) we say “Gi(x, ·) is set in ρ.”

2. For each node x on level a− 1 with (i, a− 1) ∈ Γ, choose a random y such
that Ga−1(x, y) = 1 and set all bits of u(x) to satisfy u(x) = y. For such x
we say “u(x) is set in ρ.” (With exponentially small probability there is
no such y – in this case do nothing.)

3. Independently for each pair (i, x) with i < a−1, with probability p put (i, x)
into a set ∆. For each i < a − 1 let Si be the set of nodes x on level i
with (i, x) ∈ ∆. Randomly choose an injection hi from Si onto a random
set of nodes of size |Si| on level i + 1, and for each x ∈ Si set all bits of
fi(x) according to hi. For such (i, x) we say “fi(x) is set in ρ.”

Definition 9 The CNF Φm � ρ is formed from Φm by removing every clause
containing a literal satisfied by ρ, and removing every literal falsified by ρ from
the remaining clauses. Π�ρ is formed from Π by the same operations.

After the restriction, Π�ρ is a resolution refutation of Φm �ρ (some instances
of the resolution rule in Π may have become instances of weakening in Π�ρ).

We now have two goals. The first is to use the assumption about the length
of Π to show that with exponentially high probability ρ simplifies Π, in that
every clause in Π � ρ is narrow in a certain sense. This is Lemma 11. The
second is to show that, with polynomially high probability, not only does ρ not
immediately falsify Φm, but Φm � ρ does not even have any refutation that is
narrow in the above sense.

For this we define safe configurations, which informally are certain partial
assignment α such that Φm �α looks difficult to refute. In Lemma 12 we show
that with polynomially high probability ρ does not contain certain local patterns
that would make refuting Φm �ρ easy. In Lemmas 14 and 15 we show that this
implies that ρ is a safe configuration, and that no safe configuration falsifies Φm.
Finally we use a sequence of safe configurations to show that Π�ρ cannot be a
narrow refutation of Φm �ρ, completing the proof.

Lemma 10 By the Chernoff bound, with exponentially high probability, for each
pair (i, x) such that Gi(x, ·) is set in ρ, Gi(x, y) = 1 in ρ for at least a third
of the colours y < c. Furthermore for each i < a, Gi(x, ·) is set in ρ for at
most 2pa values x < b, and for each i < a− 1, fi(x) is set in ρ for at most 2pa
values x < b. �

8

Lemma 11 With exponentially high probability, for every clause C in Π�ρ,

1. C contains a variable Gi(x, y) for at most c− 1 many triples (i, x, y)

2. C contains any variable Gi(x, y) for at most w many pairs (i, x)

3. C contains any variable from fi(x) for at most w many pairs (i, x)

4. C contains any variable from u(x) for at most w many values x.

Proof Item 1 follows directly from the assumption that the width of Π is
strictly less than m. This is the only place where we use this assumption.

For the remaining three items, since Π has subexponential length it is enough
to show that, independently for each clause C in Π, if C is not narrow in this
sense then with exponentially high probability C is satisfied by ρ, and hence
does not appear in Π�ρ.

For item 2, suppose that a clause C in Π contains a literal Gi(x, y) or
¬Gi(x, y) for more than w many pairs (i, x). For each such (i, x), the probability
that such a literal is satisfied in ρ is at least p/2. Hence the probability that

none of these literals in C is satisfied is at most (1− p/2)w < e−
1
2pw = e−

1
2a

1/8

.
For item 3, there is a complication that, if fi(x1), . . . , fi(xt) are all the values

of f set in ρ on level i, then the bits (fi(xk))j are not all independent, since
the values assigned to fi(x) on level i are constrained to be distinct for distinct
nodes x. However, we may assume that fi(x1), . . . , fi(xt) were chosen in the
order shown, and that when each fi(xk) was chosen the only constraint was that
the k − 1 values already chosen on that level were excluded. By Lemma 10 we
may assume k ≤ 2pa. Hence if a literal ` has the form (fi(x))j or ¬(fi(x))j , if
fi(x) is set in ρ then there are a/2 possible values it may take which satisfy `,
of which at most 2pa were excluded. Hence the probability that ` is satisfied
is at least p(a/2− 2pa)/a, regardless of how earlier values were set, which is at
least p/3 for large a. We then argue as for item 2.

For item 4, suppose that a literal ` has the form (u(x))j or ¬(u(x))j . Then
if Ga−1(x, ·) is set in ρ, by the Chernoff bound we may assume that, of the c/2
possible values y of u(x) that would satisfy `, for at least one third we have
Ga−1(x, y) = 1. Hence for any x the probability that u(x) is set in ρ in a way
that satisfies ` is at least p/6. We then argue as for item 2. �

We define a path of length k ≥ 0 in a partial assignment α as a sequence of
pairs (i, x0), . . . , (i+ k, xk) such that fi+j(xj) = xj+1 in α for each j < k.

Lemma 12 With polynomially high probability, the following are all true.

1. G0(0, ·) and f0(0) are not set in ρ.

2. There is no triple (i, x, x′) such that Gi(x, ·), Gi+1(x′, ·) and fi(x) are all
set in ρ, with fi(x) = x′. In other words, there is no path in ρ of length 1
with G set at both ends.

3. There is no 4-tuple (i, x, x′, x′′) such that Gi(x, ·), Gi+2(x′′, ·), fi(x) and
fi+1(x′) are all set in ρ, with fi(x) = x′ and fi+1(x′) = x′′. That is, there
is no path in ρ of length 2 with G set at both ends.

4. There is no 4-tuple (i, x, x′, x′′) such that fi(x), fi+1(x′) and fi+2(x′′) are
all set in ρ, with fi(x) = x′ and fi+1(x′) = x′′. That is, there is no path
in ρ of length 3 or more.

9

Proof Item 1 is true with probability (1− p)2.
For item 2, for any triple (i, x, x′) the probability that Gi(x, ·), Gi+1(x′, ·)

and fi(x) are all set is p3, and the probability that fi(x) = x′ is 1/a. There are
no more than a3 such triples, so by the union bound the probability that there
is any triple violating the condition is less than a2p3 = a−1/4. The calculation
for item 3 is similar.

For item 4, for any 4-tuple (i, x, x′, x′′) the probability that fi(x), fi+1(x′)
and fi+2(x′′) are set is p3, and the probability that fi(x) = x′ and fi+1(x′) = x′′

is 1/a2. There are no more than a4 such tuples, so by the union bound the proba-
bility that there is any tuple violating the condition is less than a2p3 = a−1/4. �

Fix a restriction ρ which satisfies the conditions of Lemmas 10, 11 and 12.

Definition 13 A safe configuration is a partial assignment α which extends ρ
and satisfies the conditions listed below. We say that a colour y is present or
forbidden at (i, x) if respectively Gi(x, y) = 0 or Gi(x, y) = 1 in α.

1. For each pair (i, x) either all variables belonging to fi(x) are set, or none
are. Similarly for each x either all variables belonging to u(x) are set, or
none are.

2. For each level i < a, the partial assignment to the variables fi defines a
partial injection.

3. If (0, 0) and (i, x) are on the same path in α, then no colour y is present
at (i, x).

4. If (i, x) and (i′, x′) are on the same path in α, then no colour y is simul-
taneously present at (i, x) and forbidden at (i′, x′).

5. If (i, x) and (a − 1, x′) are on the same path in α and u(x′) is set to a
colour y, then the colour y is not forbidden at (i, x).

Lemma 14 The restriction ρ is a safe configuration.

Proof It satisfies conditions 1 and 2 by construction. It satisfies condition 3
by item 1 of Lemma 12, which guarantees that (0, 0) is not on any non-trivial
path. It satisfies condition 4 by items 2, 3 and 4 of Lemma 12. Condition 5
follows from condition 4 and the fact that, if u(x) is set in ρ, then we must have
Ga−1(x, u(x)) = 1 in ρ. �

Lemma 15 No clause in Φm, and hence no clause in Φm �ρ, is falsified by any
safe configuration.

Proof Conditions 3, 4 and 5 of the definition of safe configuration respectively
guarantee that no clause from axiom 1, 2 or 3 of CPLSa,b,c is falsified. �

The next lemma will allow us to derive a contradiction from the existence
of the refutation Π�ρ. The empty clause at the end of the refutation is falsified
by a safe configuration, namely ρ. Now suppose that a clause E in Π � ρ is
falsified by some safe configuration. Either E is derived from an earlier clause
by weakening, or E is derived from two earlier clauses by resolution, or E is
an initial clause of Φn � ρ. In both of the first two cases we can find an earlier

10

clause in the proof which is falsified by some safe configuration – in the case of
weakening this is trivial, and in the case of resolution we use Lemma 16. Hence
we must eventually find an initial clause of Φn �ρ which is falsified by some safe
configuration, contradicting Lemma 15.

Lemma 16 Suppose that a clause E in Π�ρ is derived from clauses C and D by
a single use of the resolution rule, and that there is a safe configuration α which
falsifies E. Then there is a safe configuration β which falsifies either C or D.

Proof We write α\ρ for the assignment γ disjoint from ρ such that α = ρ ∪ γ.
By Lemma 11, by shrinking α as necessary we may assume without loss of
generality that α \ ρ is narrow in the following sense: it sets a variable Gi(x, y)
for at most c− 1 many triples (i, x, y); it sets any variable Gi(x, y) for at most w
many pairs (i, x); it sets fi(x) for at most w many pairs (i, x); and it sets u(x)
for at most w many values x.

Let q be the variable resolved on to derive E. If α already assigns a value
to q, then α already falsifies either C or D, by the structure of the resolution
rule. Otherwise, it is enough to show how to extend α to a safe configuration
which assigns a value to q. We consider three cases.

First suppose that q has the form Gi(x, y). If (i, x) is on the same path as
some node at which colour y is present, or some node (a− 1, x′) such that u(x′)
is set to y, we put Gi(x, y) = 1. Otherwise we put Gi(x, y) = 0. This does not
affect conditions 1 and 2 of the definition of a safe configuration and preserves
conditions 4 and 5 by construction. The only way it can falsify condition 3 is
if (i, x) is on a path which contains both (0, 0) and some node (a − 1, x′) such
that u(x′) is set to y. But any such path must have length a− 1, the full height
of the graph. By Lemma 12 all paths in ρ have length 2 or less, hence by our
assumption about the narrowness of α \ ρ, the longest possible path in α would
consist of w+1 many paths of length 2 from ρ linked together by w many paths
of length 1 from α \ ρ, with total length 3w + 2.

Now suppose that q has the form (fi(x))j . Say that a node (i + 1, x′) is
marked if any variable Gi+1(x′, y) is assigned a value, or fi+1(x′) is set, or
fi(x

′′) = x′ for some x′′, or i + 1 = a − 1 and u(x′) is set. In each of the four
cases there are at most 2pa+ w such nodes, by Lemma 10 and our assumption
about the narrowness of α\ρ. Hence for large a there are many unmarked nodes.
Choose any unmarked node (i+ 1, x′) and set fi(x) to be x′. By construction,
this preserves conditions 1 and 2. It preserves conditions 3 and 4 because it
does not add or forbid a colour on any existing path, or join any paths together.
It preserves condition 5 because we avoid nodes (a−1, x′) for which u(x′) is set.

Finally suppose that q has the form (u(x))j . Let π be the path containing
(a − 1, x). If π contains a node (i, x) for which Gi(x, ·) is set in ρ, then every
colour y is either forbidden or present on π, and by Lemma 10 at most 2/3 of
colours are forbidden. If π contains no such node, then by the assumption about
the narrowness of α \ρ, at most c−1 colours are forbidden on π. In either case,
at least one colour y is not forbidden on π. Set u(x) = y. This does not affect
conditions 1 to 4, and preserves condition 5 by construction. �

Acknowledgements I am grateful to Jakob Nordström for making me aware
of this problem, and to Jakob Nordström and Nicola Galesi for helpful comments
on an early version of this paper.

11

References

[1] A. Atserias and V. Dalmau. A combinatorial characterization of resolution
width. Journal of Computer and System Sciences, 74(3):323–334, 2008.

[2] A. Atserias, M. Lauria, and J. Nordström. Narrow proofs may be maximally
long. In Proceedings of the 29th Annual IEEE Conference on Computational
Complexity (CCC ’14), pages 286–297, 2014.

[3] A. Beckmann, P. Pudlák, and N. Thapen. Parity games and propositional
proofs. ACM Transactions on Computational Logic, 15(2):17:1–17:30, 2014.

[4] E. Ben-Sasson. Size-space tradeoffs for resolution. SIAM Journal on Com-
puting, 38(6):2511–2525, 2009.

[5] E. Ben-Sasson and J. Nordström. Understanding space in proof complex-
ity: Separations and trade-offs via substitutions (extended abstract). In
Proceedings of the 2nd Symposium on Innovations in Computer Science
(ICS ’11), pages 401–416, 2011. The full version is available as ECCC
Technical Report TR10-125.

[6] E. Ben-Sasson and A. Wigderson. Short proofs are narrow - resolution
made simple. Journal of the ACM, 48(2):149–169, 2001.

[7] S. Buss. Bounded Arithmetic. Bibliopolis, 1986.

[8] J. L. Esteban and J. Torán. Space bounds for resolution. Information and
Computation, 171(1):84–97, 2001.

[9] Y. Filmus, M. Lauria, M. Mikša, J. Nordström, and M. Vinyals. From small
space to small width in resolution. In Proceedings of the 31st Symposium
on Theoretical Aspects of Computer Science (STACS ’14), pages 300–311,
2014.

[10] D. Johnson, C. Papadimitriou, and M. Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, 1988.

[11] J. Kraj́ıček. On the weak pigeonhole principle. Fundamenta Mathematicae,
170(1-3):123–140, 2001.

[12] J. Kraj́ıček, A. Skelley, and N. Thapen. NP search problems in low frag-
ments of bounded arithmetic. Journal of Symbolic Logic, 72(2):649–672,
2007.

[13] J. Nordström. A simplified way of proving trade-off results for resolution.
Information Processing Letters, 109(18):1030–1035, 2009.

[14] J. Nordström. Pebble games, proof complexity and time-space trade-offs.
Logical Methods in Computer Science, 9:15:1–15:63, 2013.

[15] J. Nordström and J. H̊astad. Towards an optimal separation of space and
length in resolution. Theory of Computing, 9:471–557, 2013.

[16] P. Pudlák. Proofs as games. American Mathematical Monthly, pages 541–
550, 2000.

[17] A. Skelley and N. Thapen. The provably total search problems of bounded
arithmetic. Proceedings of the London Mathematical Society, 103(1):106–
138, 2011.

12

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

