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Abstract

We study the space complexity of the cutting planes proof system, in
which the lines in a proof are integral linear inequalities. We measure the
space used by a refutation as the number of inequalities that need to be
kept on a blackboard while verifying it. We show that any unsatisfiable
set of inequalities has a cutting planes refutation in space five. This is in
contrast to the weaker resolution proof system, for which the analogous
space measure has been well-studied and many optimal lower bounds are
known.

Motivated by this result we consider a natural restriction of cutting
planes, in which all coefficients have size bounded by a constant. We show
that there is a CNF which requires super-constant space to refute in this
system. The system nevertheless already has an exponential speed-up
over resolution with respect to size, and we additionally show that it is
stronger than resolution with respect to space, by constructing constant-
space cutting planes proofs of the pigeonhole principle with coefficients
bounded by two.

We also consider variable space for cutting planes, where we count the
number of instances of variables on the blackboard, and total space, where
we count the total number of symbols.

1 Introduction

1.1 Background

The method of cutting planes for integer linear programming was introduced by
Gomory [15] and Chvátal [10]. An initial polytope P, defined by a system of
linear inequalities, can be transformed through a sequence of Gomory-Chvátal
cuts into the integral hull of P, that is, into the smallest polytope containing the
integral points of P. If the set of inequalities defining P has no integral solution,
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then the integral hull of P is empty and the sequence of cuts can be used as a
witness that there is no solution.

W. Cook et al. in [12] used this idea to define cutting-plane proofs. As
we present it in this paper, cutting planes, or CP, is a system for refuting
unsatisfiable systems of integral linear inequalities over Boolean (0/1-valued)
variables. Each line in a CP refutation is an inequality, and there are rules for
taking linear combinations and for a version of the Gomory-Chvátal cut (formal
definitions follow in Section 1.4). In particular, CP can be used as a system
for refuting unsatisfiable Boolean formulas in conjunctive normal form (CNFs),
since these can be translated into sets of inequalities.

Cutting planes has been studied from the point of view of the size com-
plexity of proofs, usually measured as the number of lines in a refutation. It
has an exponential speed-up over the well-known resolution proof system [12].
Exponential lower bounds on size were shown in [17, 24].

By analogy with complexity theory, where we study the space needed by
computations, as well as the time, we can also study the space requirements of
proofs [14, 1]. In a refutational system based on successively deriving formulas,
we imagine presenting a proof by writing formulas on a blackboard as we derive
them. We can erase formulas and write down axioms at any time, but if we want
to write a formula derived by a rule, all the premises of the rule must be present
on the blackboard. How large a blackboard do we need? The most common
measure of blackboard size is the number of formulas that will fit on it. This is
called in general formula space, or clause space in resolution or inequality space
in cutting planes. We also consider some other measures.

Space is by now fairly well-understood in resolution (see [23] for a survey) and
increasingly also in the algebraic polynomial calculus proof system (see e.g. [6]).
But little has been known about space in cutting planes. The basic space upper
bounds known for resolution [14] carry over to CP, for example, that every
unsatisfiable CNF has a refutation with linear space and quadratic total space.
W. Cook in [11] showed that every unsatisfiable set of inequalities F has a
refutation with total space polynomial in the space needed to write F (although
his definitions are not quite the same as ours). A nontrivial lower bound for
variable space in CP is mentioned as an open problem in [1]. Dantchev and
Martin in [13] show lower bounds for a certain width measure. In a recent
paper Göös and Pitassi [16], improving a result of Huynh and Nordström [20],
give a family of CNFs of size m which cannot simultaneously be refuted with
small space and small length — the space s and length ` of every CP refutation
must satisfy s log ` ≥ m1/4−o(1).

One motivation for studying cutting planes is that it has the potential to offer
a more efficient foundation for SAT solving than resolution. From this point of
view results about refutation size and refutation space are both interesting, as
they may give information about respectively the time and the memory required
for computations [22].

1.2 Results for cutting planes

Our main result, Theorem 5 in Section 2, is a general constant upper bound
on the minimal inequality space of CP refutations: any unsatisfiable set of
linear inequalities can be refuted in space five. This result, which holds in
particular for unsatisfiable CNFs, is in contrast with resolution, where there are
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several families of CNFs, including random k-CNFs, which require refutations
with linear clause space [14, 3] (the situation is similar with monomial space in
polynomial calculus [6]). To prove the theorem we first prove that the complete
tree contradiction CTn has CP refutations in space five (Lemma 3), and then
use these refutations to build small space refutations for any unsatisfiable set of
inequalities.

Section 3 contains three small results that follow from the work in Section 2.
First, we observe that the refutations in Lemma 3 use coefficients with absolute
value at most 2n. Hence the refutations have total space O(n2), where we
measure total space by counting the total number of symbols that must be
written simultaneously on the blackboard, not just the number of inequalities
(we assume that the coefficients are written in binary, and do not consider
variable names as taking space – see below). It follows that O(n2) total space
is sufficient to refute any unsatisfiable set of linear inequalities, as long as the
absolute values of the coefficients and the constant term are bounded by an
exponential function (Corollary 6). Notice however that, restricted to CNFs,
this upper bound already follows from the O(n2) upper bound for total space
in resolution (see e.g. [14, 7]).

Second, we use our derivation of CTn from any unsatisfiable set F of in-
equalities to observe, in Proposition 7, that F has a CP refutation in which the
absolute values of the coefficients are relatively small — they are bounded by
the maximum, over all inequalities I in F , of the sum of the absolute values of
the coefficients and constant term of I. This gives smaller bounds than results
in [12, 9]; however those are concerned with a different problem, of limiting the
size of the coefficients while keeping the refutation short.

Lastly in Section 3 we consider variable space in CP. This measures the total
number of instances of variables that appear simultaneously on the blackboard
during a refutation. This is like total space, but ignores the size of the coeffi-
cients and constant terms. On the one hand, the minimal width of refuting an
unsatisfiable CNF in resolution is a lower bound on the variable space in CP;
on the other hand, Theorem 5 gives us a general linear upper bound on variable
space. This allows us to use known width lower bounds in resolution to show
tight linear bounds on variable space in CP (Theorem 9).

1.3 Results for cutting planes with small coefficients

The constant space refutations in Theorem 5 use coefficients as big as 2n, and
these seem to be necessary for our proof technique to work. In Sections 4
and 5 we study what can be said about space in CP if we rule out this kind of
refutation, by putting an upper bound on the coefficients.

For k ∈ N, we define CPk as the restriction of cutting planes in which every
inequality in a derivation must have coefficients with absolute value at most k.
This is already quite a strong proof system for k = 2. It is exponentially
stronger than resolution, since an inspection of the proofs in [12] shows that
CP2 efficiently simulates resolution and has polynomial size refutations of the
pigeonhole principle PHPm. Cutting planes with bounded coefficients has been
considered before — the system generalized resolution studied in [19] is similar
to CP2, and size lower bounds for CP were initially shown for a restricted
system CP∗ with polynomially bounded coefficients [21, 8]. (Note that by a
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result of [18], if we bound the constant term1 by k, rather than the coefficients,
we get a system equivalent to resolution.)

In Section 4 we consider a natural candidate for proving inequality space
lower bounds on CPk refutations, the pigeonhole principle. We show in The-
orem 10 that there is no such lower bound for PHPm, and in fact that it has
CP2 refutations with inequality space five. Our refutation is broadly similar to
the refutation in [12] (which uses space linear in the number of variables). It
follows that CP2 is strictly stronger than resolution with respect to space.

Finally in Section 5 we prove that small coefficients do not always suffice for
constant space proofs, by showing in Theorem 17 that for any constant k ∈ N,
the contradiction CTn requires inequality space Ω(log(3) n) to refute in CPk.
(In fact we prove something slightly stronger, that the refutation requires many
different coefficients — our proof does not use the size of the coefficients di-
rectly.) Similarly, if we insist on constant inequality space then we get a barely
super-constant lower bound on the coefficients. Our lower bounds are very small
and surely not optimal. However, the proof is interesting because it is based on
a counting argument, which is rare in proof complexity.

The contradiction CTn is unusual in having exponential size in the number n
of variables. However, using a padding argument one can easily show that there
is contradiction F of linear size in n, and which even has linear size resolution
refutations, but which still requires superconstant inequality space to refute in
CPk (Corollary 18). Nevertheless, it would be interesting to find a more natural
example.

1.4 Technical preliminaries

The lines in a cutting planes (CP) proof are inequalities of the form
∑
λixi ≥ t

where the coefficients λi and the constant term t are integers, and the xi are
Boolean variables. A CP derivation of an inequality I from a set of inequali-
ties F is a sequence of lines, ending with I, where each line is either (1) a member
of F , or (2) a Boolean axiom x ≥ 0 or −x ≥ −1, or (3) follows from earlier lines
by the linear combination rule or the cut rule. These are respectively∑

λ1ixi ≥ t1 · · ·
∑
λki xi ≥ tk∑(∑

j sjλ
j
i

)
xi ≥

∑
j sjtj

and

∑
sλixi ≥ t∑

λixi ≥ dt/se

where s1, . . . , sk and s must be strictly positive integers, and the linear combi-
nation rule can take any number of premises.2

To define our space measures we assume that our derivations come with
some extra structure. We follow the model proposed by [14, 1] inspired by the
definition of space for Turing machines. A memory configuration M is a set of
linear inequalities. A CP derivation of I from F is then given by a sequence
M0, . . . ,M` of memory configurations, where Mi represents the contents of the

1More precisely, if we write all inequalities in the form
∑

i∈P λixi +
∑

i∈N λi(1− xi) ≥ t
and put a constant upper bound on the term t.

2One can also define cutting planes using a binary addition rule, a unary multiplication
rule and the cut rule. While the two systems polynomially simulate each other with respect
to size, when considering questions about space or width they may differ substantially. We
have chosen to use the linear combination rule since this captures better the geometric idea
behind cutting planes. However our results, except for the discussion of width in Section 3,
do not depend essentially on which definition one takes.
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blackboard at the ith step in the derivation. The sequence must satisfy that
M0 is empty, that I ∈ M`, and that for each i < `, Mi+1 is obtained from Mi

in one of three ways:

Axiom download: Mi+1 = Mi ∪ {J} for some J ∈ F
Inference: Mi+1 = Mi∪{J} where J follows from Mi by an inference
rule, or is a Boolean axiom

Erasure: Mi+1 ⊂Mi.

A CP refutation of F is a CP derivation of 0 ≥ 1 from F .
We consider three measures of the space taken by a memory configuration M.

The inequality space is the number of inequalities in M. The variable space is the
sum, over all inequalities J in M, of the number of distinct variables appearing
in J with a non-zero coefficient. We define the total space as the sum, over all
inequalities J in M, of the length in binary of all non-zero coefficients in J and
of the constant term of J (ignoring signs).3

For each measure, the corresponding space of a refutation Π is the maximum
space of any configuration Mi in Π. The corresponding space needed to refute
a set of inequalities F is the minimum space of any refutation of F .

If we refer just to the space of a refutation we mean the inequality space,
just as in resolution the analogous measure, clause space, is often simply called
space. The name variable space was introduced in [1] as a general measure of
space complexity. In resolution there is no useful distinction between variable
and total space, and the name total space has become standard (see e.g. [7]).

By an assignment to a set of inequalities or CNF F , we always mean a total
assignment of 0/1 values to the variables appearing in F . We say that F is
unsatisfiable if it is not satisfied by any such assignment.

The complete tree contradiction CTn, which is central to this work, is a CNF
in n variables x0, . . . , xn−1, with 2n clauses. For each assignment α, it contains
the clause

∨
i∈Z xi ∨

∨
i∈A ¬xi where A = {i : α(xi) = 1} and Z = {i : α(xi) =

0}. This clause is falsified by α and by no other assignment.
We translate propositional clauses into inequalities, and thus CNFs into sets

of inequalities, using the translation of [12]:∨
i∈P

xi ∨
∨
i∈N
¬xi 7−→

∑
i∈P

xi +
∑
i∈N

(1− xi) ≥ 1.

When describing a CP refutation, we may freely rearrange the terms in an
inequality and move the constant term around, for example treating

∑
λixi ≥ t

and
∑
λixi + s ≥ t+ s as the same inequality. Similarly, we will sometimes use

the Boolean axiom −x ≥ −1 in the form 1− x ≥ 0.
When working in a fixed amount of inequality space, it is helpful to think

of each unit of space as a “register” that can contain one inequality. We will
frequently make use of the following observation, which we record as a lemma:

Lemma 1. If we have one register free, we can treat addition, multiplication and
rounding operations as if they happen “in place”, with one of the assumptions
overwritten by the conclusion. If we have two registers free, we can add any
positive linear combination of axioms to any other register. �

3For simplicity, we do not count arithmetical symbols or variable names in total space.
Counting these at most trebles the space, if we treat each variable name as a single symbol. It
increases it by a factor of O(logn) if we include the symbols needed to write variable indices.
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2 Inequality space upper bound

We show that any unsatisfiable set of inequalities F can be refuted in CP in
constant inequality space. We do this by first showing that CTn can be refuted
in constant space, and then showing that each clause of CTn can be derived
from F in constant space. The overall form of the proof, and the idea of refuting
CTn by considering all assignments in lexicographic order, are inspired by the
proof of a variable space upper bound on the Frege proof system in [1].

We first prove a useful lemma, then the upper bound for CTn.

Lemma 2. Suppose we have two registers free, and a third register that contains
an inequality ∑

i∈S
λixi +

∑
i∈T

λi(1− xi) ≥ b.

with b ≥ 1. Then we can replace the inequality with∑
i∈S

xi +
∑
i∈T

(1− xi) ≥ 1.

Proof Choose an integer c greater than or equal to the maximum of b and all
the coefficients λi. Using Lemma 1, add (c − λi)xi ≥ 0 to the inequality for
each i ∈ S and add (c− λi)(1− xi) ≥ 0 for each i ∈ T . This gives∑

i∈S
cxi +

∑
i∈T

c(1− xi) ≥ b.

Then divide by c and round (by applying the cut rule). The constant term
becomes db/ce = 1. �

Lemma 3. CTn has a CP refutation with inequality space 5.

Proof Given a number a < 2n we will write (a)0, . . . , (a)n−1 for the bits of the
binary expansion of a, so that a =

∑
2i(a)i. Throughout the proof sums

∑
are

taken over i < n, or whichever subset of this is indicated.
For a ∈ N, define the inequality Ta as

Ta :
∑

2ixi ≥ a.

The assignments falsifying Ta are exactly those lexicographically strictly less
than a. In other words, Ta is equivalent to the conjunction of the inequalities Ib
over all b < a, where we write Ib for the clause of CTn which is falsified exactly
by the assignment xi 7→ (b)i.

For a < 2n, Ta and Ia together imply Ta+1. We will show that this impli-
cation can be proved in small space. In this way we can proceed by a kind of
induction, first deriving T0, then deriving in turn T1, T2, . . . , T2n−1 and finally
deriving a contradiction from T2n−1 and I2n−1.

For the inductive step, fix a < 2n. Let A = {i < n : (a)i = 1} and
Z = {i < n : (a)i = 0}. Define two inequalities

Ma :
∑
i∈Z

xi ≥ 1 Lka : xk +
∑
i>k
i∈Z

xi ≥ 1.
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Notice that if β is an assignment such that β ≥ a lexicographically, then β
satisfies Lka for each k ∈ A. If furthermore β > a, then β also satisfies Ma. We
claim these implications are provable in small space:

Claim 1 We can derive Ma from Ta and Ia in space 3.

Claim 2 We can derive Lka from Ta in space 3, for any k ∈ A.

Using these two claims, we can then show

Claim 3 We can derive Ta+1 from Ta and Ia in space 4.

This is enough to carry out the refutation sketched above, using five registers.
The inequality T0 is a linear combination of the axioms xi ≥ 0 so we may easily
derive it in the first register. Then we derive T1 using T0, I0 and the four free
registers, then copy it to the first register. We repeat this for T2, T3 and so on.
Once we have T2n−1 we can derive M2n−1, which is exactly 0 ≥ 1.

It remains to prove the three claims.

Proof of Claim 1 We are given Ta, Ia and three free registers and want to
derive Ma. We write Ia in the first register, that is,∑

i∈Z
xi +

∑
i∈A

(1− xi) ≥ 1.

We add to it the following two inequalities, both linear combinations of axioms:∑
i∈Z

(2i − 1)xi ≥ 0 and
∑
i∈A

(2i − 1)(1− xi) ≥ 0.

The result is ∑
i∈Z

2ixi −
∑
i∈A

2ixi ≥ 1−
∑
i∈A

2i

whose right hand side equals 1− a. We add Ta to this, giving

2
∑
i∈Z

2ixi ≥ 1.

By Lemma 2 we can replace this with Ma.

Proof of Claim 2 We are given Ta and three free registers and want to
derive Lka for a given k ∈ A. We copy Ta into the first register, rearranging it as∑

i<k

2ixi + 2kxk +
∑
i>k
i∈A

2ixi +
∑
i>k
i∈Z

2ixi ≥
∑
i<k
i∈A

2i + 2k +
∑
i>k
i∈A

2i.

We add the following linear combination of axioms:

−
∑
i<k

2ixi −
∑
i>k
i∈A

2ixi ≥ −
∑
i<k

2i −
∑
i>k
i∈A

2i.

The result is
2kxk +

∑
i>k
i∈Z

2ixi ≥ 2k −
∑
i<k

2i +
∑
i<k
i∈A

2i

whose right hand side is at least 1. Hence by Lemma 2 we can replace it with Lka.
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Proof of Claim 3 We are given Ta, Ia and four free registers and want to
derive Ta+1. By Claim 1, we can write Ma in the first register, that is,∑

i∈Z
xi ≥ 1.

For each k ∈ A, we use Claim 2 to write Lka in the second register, and then
multiply it by 2k, giving

2kxk + 2k
∑
i>k
i∈Z

xi ≥ 2k.

We do this for each k ∈ A in turn, each time adding the result to the first
register. At the end of this process, the first register contains the inequality∑

k∈A

2kxk +
∑
i∈Z

(∑
k<i
k∈A

2k
)
xi +

∑
i∈Z

xi ≥ 1 +
∑
k∈A

2k.

Here the right hand side equals a+1, and for i ∈ Z the coefficient λi of xi is less
than or equal to 2i. Hence for all i ∈ Z we may add the inequality (2i−λi)xi ≥ 0
to the first register, giving∑

k∈A

2kxk +
∑
i∈Z

2ixi ≥ a+ 1

which is Ta+1. �

Using the refutation constructed in Lemma 3 we first prove, in Theorem 4,
a space upper bound for any unsatisfiable CNF. We then extend the argument
to prove the more general result, an upper bound for any unsatisfiable set of
inequalities, as Theorem 5.

Theorem 4. Let F be any unsatisfiable CNF. Then F has a CP refutation with
inequality space 5.

Proof Suppose F has variables x0, . . . , xn−1. It is enough to show that, for
each assignment α, the inequality Iα of CTn is derivable in space 4 from the
translation of F . We can then imitate the refutation in the proof of Lemma 3.

Let α be any assignment and let A = {i : α(xi) = 1} and Z = {i : α(xi) = 0}.
Since F is unsatisfiable α falsifies some inequality from F , of the form

I :
∑
i∈P

xi +
∑
i∈N

(1− xi) ≥ 1.

Hence we must have α(xi) = 0 for each i ∈ P and α(xi) = 1 for each i ∈ N . In
other words, P ⊆ Z and N ⊆ A. Hence we can derive Iα from F using space 3,
by downloading I and adding∑

i∈Z\P

xi +
∑

i∈A\N

(1− xi) ≥ 0

which is a linear combination of axioms. �
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Theorem 5. Let F be any set of unsatisfiable inequalities. Then F has a CP
refutation with inequality space 5.

Proof Suppose F has variables x0, . . . , xn−1. As before, let α be any assignment
and let A = {i : α(xi) = 1} and Z = {i : α(xi) = 0}. The assignment α falsifies
some inequality from F , of the form

I :
∑
i∈P

λixi −
∑
i∈N

λixi ≥ t

where P and N are disjoint and all the coefficients λi are positive. We will
derive Iα from I in space 3.

We first decompose I as∑
i∈P∩A

λixi +
∑

i∈P∩Z
λixi −

∑
i∈N∩A

λixi −
∑

i∈N∩Z
λixi ≥ t. (1)

Since I is falsified by α, if we evaluate the left-hand side of (1) under α we get∑
i∈P∩A

λi −
∑

i∈N∩A
λi < t.

Hence for some integer δ ≥ 1 we can rewrite (1) as∑
i∈P∩A

λixi+
∑

i∈P∩Z
λixi −

∑
i∈N∩A

λixi −
∑

i∈N∩Z
λixi ≥

∑
i∈P∩A

λi −
∑

i∈N∩A
λi + δ. (2)

We add to (2) the two inequalities

−
∑

i∈P∩A
λixi ≥ −

∑
i∈P∩A

λi and
∑

i∈N∩Z
λixi ≥ 0.

The result is ∑
i∈P∩Z

λixi −
∑

i∈N∩A
λixi ≥ −

∑
i∈N∩A

λi + δ

which we rearrange as ∑
i∈P∩Z

λixi +
∑

i∈N∩A
λi(1− xi) ≥ δ.

Since δ ≥ 1, we may use Lemma 2 to replace this with∑
i∈P∩Z

xi +
∑

i∈N∩A
(1− xi) ≥ 1

from which we can easily obtain Iα as in the previous theorem. �

3 Corollaries

Firstly, from the refutation constructed in Theorem 5, we immediately get a
general upper bound on the total space needed for CP refutations. Note that
there are threshold functions that require coefficients of size nn/2 to write as a
linear inequality, so the assumption about the coefficients in F is necessary.
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Corollary 6. Let F be any unsatisfiable set of linear inequalities over n vari-
ables in which the coefficients and the constant term are bounded by an expo-
nential function 2O(n). Then F has a CP refutation with total space O(n) and
with coefficients bounded by 2O(n).

Secondly, we observe that the reduction to CTn at the end of Section 2 can
be used directly to show an upper bound on the size of coefficients needed in a
CP refutation.

Proposition 7. Let F be any set of unsatisfiable inequalities. Let σ be the
maximum, over all inequalities Σλixi ≥ t in F , of Σ|λi|+ |t|. Then there exists
a CP refutation of F in which the absolute value of all coefficients is at most σ.

Proof We use the constructions and notation from the proof of Theorem 5.
We can derive from F all inequalities Iα of CTn. Since these inequalities are
translations of clauses, we can then simulate in CP the resolution refutation of
CTn. A simulation of resolution uses coefficients with absolute value at most 2.
So it remains to check the size of the coefficients in the derivation of each Iα.

This is derived from a single inequality I in F , in two steps. First we obtain
an inequality of the form∑

i∈P∩Z
λixi +

∑
i∈N∩A

λi(1− xi) ≥ δ (3)

where all the λi are positive. The coefficients needed to derive this are just the
coefficients from I. Furthermore δ = t −

∑
i∈P∩A λi +

∑
i∈N∩A λi, so |δ| ≤ σ.

We then reduce (3) to ∑
i∈P∩Z

xi +
∑

i∈N∩A
(1− xi) ≥ 1 (4)

as in Lemma 2, by letting c = max{λ1, . . . , λn, δ}, adding (c− λi)xi ≥ 0 to (3)
for each i ∈ P ∩ Z, adding (c − λi)(1 − xi) ≥ 0 to (3) for each i ∈ N ∩ A, and
then dividing by c and rounding. Since c and all the λi are positive, the largest
coefficient that appears in this process is at most max{|λ1|, . . . , |λn|, c}, which
is bounded by σ.

From (4) we can get Iα using only coefficients ±1. In fact, we do not even
need this step, since (4) already is the translation of a clause, and the collection
of all such clauses has a resolution refutation. �

Lastly we discuss bounds on variable space in CP. The width of a resolution
refutation is the size of the largest clause in it. The next lemma is a simple
special case of Lemma 8 of [2].

Lemma 8. Let F be an unsatisfiable CNF. The minimal width of refuting F in
resolution is at most the variable space of refuting F in CP.

Proof In fact we will show that resolution width is at most the “variable space
without repetitions” of refuting F in CP, where the space of a configuration
is measured by counting the number of different variables that appear (this
measure is called simply “variable space” in [4]).

Let Π be a CP refutation of F in which every configuration contains at most s
many different variables with non-zero coefficients. We sketch how to simulate
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Π by a resolution refutation ρ with width at most s. For any inequality I in Π,
let X be the set of variables in I with non-zero coefficients, and let ΦI be a
CNF in variables X expressing the same Boolean function as I. Let I1, . . . , Im
be the inequalities from which I was derived by a rule in Π. Then there is a
resolution derivation of ΦI from ΦI1 , . . . ,ΦIm , since resolution is implicationally
complete. The total number of different variables appearing in this derivation
is at most s, since I1, . . . , Im and I must belong to the same configuration in Π,
hence can mention no more than s variables in total. In particular, the width
of the resolution derivation is at most s. �

The lemma allows us to use known lower bounds on width in resolution,
together with the linear upper bound on variable space that follows immediately
from Theorem 5, to derive tight bounds on variable space in CP. For example,
using a result of [5], we get:

Theorem 9. With high probability the variable space of refuting a random
k-CNF in CP is Θ(n). �

Note that if we had defined cutting planes using a binary addition rule
and unary multiplication rule (rather than arbitrary linear combinations), the
simulation in Lemma 8 would prove that resolution width is at most twice the
CP width (if we define the width of an inequality as the number of variables
appearing with non-zero coefficients). Clearly, in such a proof the particular
form of the rules used is irrelevant; only their arity matters.

In the version of CP we use, it is not so easy to prove non-trivial width lower
bounds. Dantchev and Martin in [13] show a width lower bound for an ordering
principle in essentially this system, using a geometrical argument.

4 PHPn with small coefficients

We consider the pigeonhole principle contradiction PHPn. It is formalized, as
usual, by the following set of inconsistent inequalities:

Pi :
∑
j<n

xij ≥ 1 for i < n+ 1

Hii′j : xij + xi′j ≤ 1 for i < i′ < n+ 1 and j < n.

To simplify our presentation we will be less strict about how we write in-
equalities in CP refutations, and allow the notation

∑
λixi ≤ t (we do not

change the formal rules of the system). With this notation the Boolean axioms
look like −x ≤ 0 and x ≤ 1 and the cut rule looks like∑

sλixi ≤ t∑
λixi ≤ bt/sc

where we round the constant term down rather than up.

Theorem 10. PHPn has polynomial size CP2 refutations with space 5.

The non-trivial part of the proof is taken care of by the following lemma.

Lemma 11. Given inequalities yi + yj ≤ 1 for all i < j < n, we can derive∑
yi ≤ 1 in polynomial size and in space 4, using coefficients bounded by 2.
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Proof Let Am be the inequality

Am :
∑
i<m

yi ≤ 1.

We claim that, for m < n, Am+1 can be derived from Am in space 3. The
lemma follows immediately.

So suppose we are given Am, all inequalities yi + yj ≤ 1, and three free
registers. Our strategy is to derive the inequality

Bk :
∑
i<k

yi + ym ≤ 1 (5)

in the first register, for k = 1, . . . ,m − 1 in turn. For k = 1 this is an axiom,
and for k = m − 1 it is Am+1, as required. Suppose we have derived Bk for
some 1 ≤ k < m− 1 and want to derive Bk+1. We add to Bk the inequalities

yk + ym ≤ 1 and
∑
i<k+1

yi ≤ 1. (6)

The first of these is an axiom. The second is a weakening of Am, which we could
derive in three registers by downloading Am and then adding the combination of
Boolean axioms −yk+1−· · ·−ym−1 ≤ 0. However, since we only have two regis-
ters free, we achieve the same effect by adding Am and −yk+1 − · · · − ym−1 ≤ 0
directly to the first register. The result is∑

i<k

2yi + 2yk + 2ym ≤ 3

since each index appears exactly twice in the three inequalities from (5) and (6).
We derive Bk+1 by dividing by two and rounding down the constant term. �

Proof of Theorem 10 We are given the PHPn axioms and five free registers.
We use Lemma 11 and the first four registers to derive∑

i<n+1

xij ≤ 1

for each j < n in turn, each time adding the result to the fifth register. The
fifth register then contains the total∑

j<n

∑
i<n+1

xij ≤ n, or equivalently −
∑
i<n+1

∑
j<n

xij ≥ −n.

We obtain 0 ≥ 1 by adding to this the axioms Pi for all i < n+ 1. �

5 Space lower bounds for small coefficients

We use a counting argument to show that any CP refutation of CTn, in which
there is a global constant bound on the number of different coefficients appearing
in every configuration, must have superconstant inequality space. In particular,
this implies superconstant lower bounds on inequality space for CTn in the
system CPk.
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Definition 12. Call a set A of assignments s-symmetric if there is a parti-
tion of the variables into s or fewer blocks, such that A is closed under every
permutation which preserves all blocks.

Lemma 13. Suppose I is a linear inequality in which no more than b different
coefficients appear. Then the set of assignments falsifying I is b-symmetric.

Suppose M is a CP configuration in space c, such that no more than b dif-
ferent coefficients appear in any inequality in M. Then the set of assignments
falsifying M is bc-symmetric.

Proof For the first part, the inequality I has the form

λ1
∑
i∈B1

xi + · · ·+ λb
∑
i∈Bb

xi ≥ t.

The b-symmetry is witnessed by the blocks B1, . . . , Bb. For the second part,
take the common refinement of the partitions for all of the inequalities in M. �

Lemma 14. Suppose that CTn has a CP refutation in space c, in which no more
than b different coefficients appear in any inequality. Then there is a sequence
A1, . . . , AN of sets of bc-symmetric assignments, beginning with the empty set
and ending with the set of all assignments, such that for each i < N either
Ai+1 ⊆ Ai or Ai+1 = Ai ∪ {α} for some assignment α.

Proof Let Ai be the set of assignments falsifying the ith configuration. �

We define a k-assignment to be an assignment with exactly k variables set
to 1 and all the rest set to 0.

Lemma 15. Define S(s, k) = {|A| : A is an s-symmetric set of k-assignments}.
Then |S(s, k)| < ns2k

s

.

This is proved after Theorem 16.

Theorem 16. For n ≥ 2, suppose that CTn has a CP refutation in space c,
in which no more than b different coefficients appear in any inequality. Then
bc ≥

√
log log n.

Proof Let s = bc and k = 2s. For trivial reasons b, c ≥ 2 so s ≥ 4.
Let A1, . . . , AN be the sequence of s-symmetric assignments from Lemma 14,

and let A′i = {α ∈ Ai : α is a k-assignment}. Then A′1 is empty, A′N consists of
all k-assignments, and for each i < N either A′i+1 ⊆ A′i or A′i+1 = A′i ∪ {α} for
some k-assignment α. It follows that the sequence |A′1|, . . . , |A′N | must contain
every number between 0 and

(
n
k

)
. Since each A′i is still s-symmetric, this in

particular means that for every number m between 0 and
(
n
k

)
, there is at least

one s-symmetric set A of k-assignments with |A| = m.
Hence, in the notation of Lemma 15, S(s, k) =

(
n
k

)
+ 1. It follows that(

n
k

)
< ns2k

s

. Using the bound (n/k)k ≤
(
n
k

)
and taking the logarithm of both

sides, we get
k(log n− log k) < s log n+ ks.

Substituting k = 2s gives

2s(log n− s) < s log n+ 2s
2

.
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Now assume for a contradiction that s <
√

log log n. Then log n − s ≥ 1
2 log n

(we may assume n ≥ 4) and 2s
2

< log n. The inequality becomes

2s−1 log n < (s+ 1) log n

which is impossible. �

Proof of Lemma 15 Let A be an s-symmetric set of k-assignments. Let
B1, . . . , Bs be a partition witnessing the s-symmetry (we allow some of the
blocks to be empty). Then A is the union of orbits, where each orbit is
parametrized by a distinct tuple r1, ..., rs summing to k, and the orbit con-
sists of every k-assignment which has exactly ri many ones in each block Bi.
Let ni = |Bi|. Then

|A| =
m∑
j=1

(
n1
rj1

)
· . . . ·

(
ns
rjs

)
where there are m orbits and the jth orbit has parameters r̄j = rj1, ..., r

j
s. In

particular, |A| depends only on the sizes n1, . . . , ns and on the set of tuples
{r̄1, . . . , r̄m} characterizing the set of orbits.

There are no more than ns ways to choose n1, . . . , ns. There are no more
than ks ways to choose the parameters r̄ for an orbit, and therefore there are
no more than 2k

s

possible sets of such parameters. Therefore there are at
most ns2k

s

possible values for |A|. �

From Theorem 16 we immediately get:

Theorem 17. For any constant k ∈ N, the complete tree contradiction CTn
requires inequality space Ω(log(3) n) to refute in CPk.

Corollary 18. There is a family of propositional CNFs F in n variables, with
linear size and with linear sized resolution refutations, which require supercon-
stant inequality space to refute in CPk for any fixed k ∈ N.

Proof Let m = log n, and let F be CTm together with 2m −m inequalities of
the form yi ≥ 1 in variables y1, . . . , y2m−m disjoint from the variables in CTm.
Then F has a resolution refutation of linear size, since CTm has a refutation
of size 2m, and any constant-space CP2 refutation of F can be made into a
constant-space CP2 refutation of CTm by substituting 1 for all variables yi. �

We note that, as in Section 3, our lower bound relies only on the class of
Boolean functions appearing as lines in the refutation, not on the particular
rules used.

6 Open problems

There are many problems about cutting planes that are worth mentioning, but
we confine ourselves to a small sample, directly connected with the results pre-
sented in this paper.

The first general problem is about the trade-off between inequality space
and the size of coefficients. Our upper bound uses coefficients of exponential
size, while we can only prove that if space is constant then coefficients can be
lower-bounded by a very slowly growing function. In particular the following is
open:

14



Problem 1. Can every unsatisfiable CNF be refuted in CP in con-
stant space, if the coefficients are polynomially bounded?

A related open problem is:

Problem 2. Can every unsatisfiable CNF be refuted in CP in linear
total space?

It seem plausible that some extension of the proof of Theorem 17 might work
also for such a lower bound.

Among the restricted systems of CP, the system CP2 stands out as already
being strong enough to simulate resolution and to capture some of the counting
available in CP, since it has efficient proofs of PHPn. It would be interesting to
improve our results at least for this system. In particular:

Problem 3. Prove a better space lower bound for CP2.
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