
Linear codes cannot approximate the network capacity
within any constant factor

Shachar Lovett ∗

Computer Science and Engineering
University of California, San Diego

slovett@ucsd.edu

October 24, 2014

Abstract

Network coding studies the capacity of networks to carry information, when internal
nodes are allowed to actively encode information. It is known that for multi-cast
networks, the network coding capacity can be achieved by linear codes. It is also
known not to be true for general networks. The best separation to date is by Dougherty
et al. [IEEE Trans. Information Theory, 2005] who constructed a network with capacity
1, where linear codes can achieve a rate of at most 10/11.

We show that linear codes cannot approximate the capacity of a network within
any constant factor. That is, for any 0 < α < 1 we construct a network with network
capacity 1, where linear codes can achieve a rate of at most α. This is achieved by
a new network composition operation, which allows to amplify bounds on the linear
capacity of networks.

1 Introduction

Network information theory studies the capacity of networks to carry information, where
internal nodes have the ability to actively encode information. In the network information
flow problem, first defined by Ahlswede et al. [1], a network is represented by a directed
graph containing source nodes which generate messages, sink nodes which demand a subset
of the messages and intermediate nodes, which can actively encode information. That is,
the information (packets) sent on their out-edges can be an arbitrary function of the packets
received on their in-edges. A network code is a set of encoding schemes for the intermediate
nodes, and decoding schemes for the sink nodes, which allow them to receive all the demanded
messages.

A-priori, it is not clear if network coding has any advantage over the classic routing
solution, where internal nodes can only route information without changing it. However,

∗Supported by NSF CAREER award 1350481.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 141 (2014)

in [1] an example of a network is given (the butterfly network), for which the network coding
capacity is twice of that achieved by routing. Specifically, their solution relied on sending
linear combinations of the messages over the edges. Subsequently, Li et al. [18] showed
that linear encodings can attain network capacity in any multi-cast network (a multi-cast
network is a network information flow problem, in which all sinks require all messages).
Linear solutions for multi-cast networks were further investigated in [3, 4, 12, 14, 15, 17, 21],
where in particular it was shown that random linear encodings (over large enough fields)
give optimal encoding schemes with high probability.

This suggested the possibility, that perhaps in all network information flow problem, and
not just in multi-cast networks, linear encodings always achieve the network capacity [13,
19,20]. This however turns out to be false. Doughery et al. [5] constructed an example of a
network information flow problem, for which linear encodings are sub-optimal. Concretely,
they constructed a network for which linear encodings are 10/11 worse than the optimal
coding solution.

This suggests the following relaxed version of the problem: is it true that linear codes
can always approximate the optimal coding solution? This is an interesting question from a
number of viewpoints.

• As far as we know, computing the rate of optimal network codes can be undecidable.
On the other hand, for linear codes (at least in some regimes) the problem is equivalent
to solving polynomial equations [7, 15, 17], which can be solved in exponential time.

• When linear encodings are sub-optimal, it is unknown what is the structure of optimal
encodings. In the example of [5], the optimal codes involved linear operations over
different finite fields in different intermediate nodes.

Thus, if linear encodings could approximate optimal network codes, we would get at
least an approximate answer to both questions. Our main result is that, unfortunately,
there are networks in which linear encodings cannot approximate optimal codes within any
constant factor. Before explicitly stating the theorem, we first define the computational
model formally.

1.1 Formal definitions

Network codes. A network is defined by a directed acyclic multigraph, where we assume
information is sent without any delays or errors. Each source node generates a message,
which is a sequence of k symbols in a finite alphabet Σ. An edge with capacity n can
transmit a packet containing n alphabet symbols. A network code specifies for each internal
node, how to compute the packets sent on its out-edges as a function of the packets received
in its in-edges, as well as for sink nodes how to decode the required messages from the packets
they receive. The coding capacity of a network is the supremum of k/n, over all possible
network codings solutions where each message has length k and the maximal edge capacity
is n. It is known that the network coding capacity is independent of the alphabet size [2].

Linear network codes. A linear network code is a specific type of a network code. The
alphabet is a finite field F. Messages are vectors in Fk, packets are vectors in Fn, and only

2

F-linear operations are allowed. That is, internal nodes are only allowed to apply linear
operations to compute the packets send on their out-edges as a function of the packets
received on their in-edges. The linear network coding capacity (over F) is the supremum
of k/n, over all possible F-linear network coding solutions. As mentioned before, Doughery
et al. [5] proved a separation between linear and non-linear codes.

Theorem 1.1 ([5]). There exists a network with network coding capacity 1, but linear
network coding capacity at most 10/11 over any finite field.

The construction of [5] is explicit, and relies on matroids which are non-representable.
The proof is also explicit, and involved the study of the system of linear equations arising
from these matroids. In this paper, we develop a new approach to prove bounds on the
linear capacity of networks, based on a new network composition operation geared towards
that goal. Our main result is the following theorem.

Theorem 1.2 (Main Theorem (Theorem 7.2, informal)). For any 0 < α < 1, there exists a
network with network coding capacity 1, but linear network coding capacity at most α over
any finite field. Moreover, the network has size exp(exp(log2 1/α)) and depth poly(1/α).

Sub-constant approximation? As we discussed before, most of the basic questions on
the computational model of network codes are unknown. Here, we suggest a couple of
new problems, which relate to the ability of linear network codes to at least somewhat
approximate the network capacity. The proof of Theorem 1.2 is via a new composition
operation for networks, which allows to amplify the gap between the network capacity and
linear network capacity. We suspect that the network size can be improved to exp(1/α) by
a more careful amplification process. Beyond that, these bounds seem to be tight in all the
examples we are aware of. We propose the following problem, which speculate that for small
or low-depth circuits, linear network coding can approximate the network capacity within a
small (but sub-constant) factor.

Problem 1.3. Consider a network of size n. Can linear network codes approximate the
network capacity up to a factor of O(log n)?

The only known (and trivial) result is than an approximation factor of n is possible. Any
improvement over that would be interesting.

Problem 1.4. Consider a network of depth d. Can linear network codes approximate the
network capacity up to a factor of dO(1)?

In fact, even in constant depth networks, it is unknown whether a constant approximation
factor is possible.

1.2 Related works

A number of works showed separation between network capacity and linear network capac-
ity [6, 17, 19, 20], where the best previous separation was by [5]. A somewhat related line of
research is on the computational complexity of computing or approximating the capacity or

3

linear capacity of a network. In [16,22] it is shown that approximating the coding capacity of
a network is as hard as approximating the chromatic number of a graph. In [17] it is shown
that computing the linear coding capacity of a network is as hard as solving of system of
polynomial equations, which is known to be NP-hard. A reduction in the opposite direction,
showing that the problems are in fact equivalent, was given in [7].

1.3 Proof overview

We define an operation of network composition between two networks G,H, resulting in a
composed network K, such that two properties hold:

• If G,H have network coding capacity 1 then so does K.

• For any finite field F, if G has linear network coding capacity rG < 1 and H has a
linear network coding capacity rH < 1, then K has a linear network coding capacity
rK ≤ rG(1− δ), for some δ = δ(rH) < 1.

An iterative application of such an operation implies the required separation. In order to
define the composition operation, we focus on unicast networks.

A network is called r-unicast if it has r sources and r sinks, where the i-th sink requires
only the message generated by the i-th source, for all i = 1, . . . , r. Any network can be
transformed to a unicast network [8], and in particular the example of [5]. Hence, we may
choose H to be a r-unicast network (r = 10) with network coding capacity 1 and linear
network coding capacity at most 10/11 over any finite field.

Let G be an arbitrary network. Consider first the following simple composition operation
(which is not the composition operation we actually use). Let G1, . . . ,Gr be r disjoint copies
of G. For each edge e of G, let e1, . . . , er be its corresponding copies in G1, . . . ,Gr. Now, we
”replace” {e1, . . . , er} with a copy of H. That is, if ei = (ui, vi) then we identify u1, . . . , ur
with the sources of H, v1, . . . , vr with the sinks of H, remove the edges e1, . . . , er and add a
fresh copy of H. We apply this operation to each edge of G, creating a composed network
K.

Now, it is relatively simply to show that if G,H have network coding capacity 1 then
so does K. This is because each copy of H, corresponding to edges e1, . . . , er, can perfectly
simulate the packets sent over the original edges e1, . . . , er, as it has network coding capacity
1. However, what is far less clear is why if H has linear coding capacity rH < 1, then K
will have a lower linear coding capacity than that of G. The reason is that information can
”leak” between different copies of H, as they are all embedded in a single composed graph.

In order to overcome this challenge, we define a more involved composition process, which
prevents information from being leaked. Let G1, . . . ,GM be distinct copies of G for some large
M to be determined later. For each edge e of G, we partition its copies e1, . . . , eM to M/r
subsets, and replace each subset with a new copy of H (we assume that r divides M). The
partition of each set of M edges to M/r subsets is defined via a r-uniform hypergraph F
defined over M vertices, with edges labeled by edges of G. We show that if the girth of
this hypergraph is large enough, then ”useful” information cannot leak between copies of H.
Finally, we need to show that such hypergraphs exists. It turns out that random hypergraphs
of the appropriate parameters do not have large enough girth. However, an adaptation of
the Erdös-Sachs theorem [10] allows to construct such hypergraphs when M is large enough.

4

Paper organization. We review basic definitions in network information theory in Sec-
tion 2. We define a network composition operation in Section 3. We prove connectivity
properties of composed networks in Section 4. We first prove a simple upper bound on the
capacity of composed networks in Section 5. We prove an improved upper on the linear
capacity of composed networks in Section 6. We combine these to prove our main theorem
in Section 7.

2 Network information theory

We recall some basic definitions in network information theory, and refer to [1,11] for details.
A network G is a directed acyclic multigraph, with vertex set V (G) and edge set E(G). For
an edge e ∈ E(G) we denote its in- and out-nodes by in(e), out(e) ∈ V (G), respectively.
Some nodes in V (G) are designated as sources or sinks. Each source node is associated with
a message, and each sink node demands a subset of the messages generated by the sources.
In this paper, we assume all edges have the same capacities, and we restrict our attention to
multiple unicast networks. In an r-unicast network, there are r sources s1, . . . , sr ∈ V (G),
r sinks t1, . . . , tr ∈ V (G), and each sink ti demands only the message generated by si for
i = 1 . . . r. We assume without loss of generality that sources are the only nodes with no
in-edges, and sinks are the only nodes with no out-edges. Hence, the depth of G is the longest
directed path from a source si to a sink tj for i, j ∈ [r].

Network codes. A network code is a recipe for sending information over the edges in the
network, in such a way that sinks can reconstruct the required messages from the information
they receive. The information carried by an edge e is called a packet, and is given by a
function (determined by the network code) of the packets carried by edges whose out-node
is the in-node of e. We denote by Σ a finite alphabet, the message generated by a source
s is m(s) ∈ Σk, and each edge e carries a packet p(e) ∈ Σn. We require that each sink ti
can reconstruct m(si) by a function of the packets of its in-edges. In such a case, we say
that the network is solvable with rate k/n. The capacity of the network, denoted cap(G), is
the supremum over all rates with which the network is solvable. It is easy to see that it is
invariant to the specific alphabet chosen (see [2] for details).

Linear network codes. A linear network code (also called vector-linear) is a special type
of a network code. The alphabet is identified with a finite field F, messages lie in the vector
space Fk, packets in the vector space Fn, and all functions are restricted to be F-linear maps.
When such a linear code exists, we say that the network is linearly solvable with rate k/n
over the field F. The linear capacity (over F) of a network, denoted capF(G), is the supremum
of these rates.

Separation between general and linear network codes. Doughery et al. [5] con-
structed a network for which linear network codes achieve a lower rate than the network
capacity. This network is not a multiple unicast network. However, in [8] a general method
is given to transform any network to a multiple unicast network, which is solvable or linear

5

solvable over any field if and only if the original network is solvable. A combination of the
two results is the base case of our construction.

Theorem 2.1 ([5, 8]). There exist a 10-unicast network G for which cap(G) = 1 and
capF(G) ≤ 10/11 for any finite field F.

3 Network composition

In this section we define an operation that would allow us to compose two networks which
show some separation between linear and general network rates, and obtain a new network
with a bigger separation. Let G be a q-unicast network and let H be an r-unicast network.
Let M be a parameter divisible by r. The starting point is M disjoint copies of G, denoted
G1, . . . ,GM . At each iteration, we identify r copies of an edge of G in different copies, and
replace the r parallel edges with a copy of H. Let v1, . . . , vp denote the vertices of G and
e1, . . . , em denote the edges of G. We denote the vertices of Gi by vi,1, . . . , vi,p and the edges
of Gi by ei,1, . . . , ei,m. The specification of which edges to use in each iteration is given by a
r-uniform labeled hypergraph.

Definition 3.1 (Matching hypergraph). A matching hypergraph for G,H is a r-uniform
simple hypergraph F on the vertex set [M]. That is, the edges of F , denoted E(F), is a
family of subsets of [M] of size r. Each edge f ∈ E(F) is labelled by an index of an edge in
G, L(f) ∈ [m]. We require that for every label ` ∈ [m], the set of edges

{f ∈ E(F) : L(f) = `}

forms a matching, that is a partition of the vertex set [M].

Definition 3.2 (Network composition). Let G be a q-unicast network, H be an r-unicast
network, M a parameter diving r, and F a matching hypergraph. The composed network
K = Compose(G,H, F) is defined as follows.

(1) Initialize K to be G1 ∪ . . .GM , M disjoint copies of G.

(2) For each edge f ∈ E(F) do the following:

(2.1) Let i1, . . . , ir be an arbitrary ordering of the elements of f . Let ` = L(f) and assume
that e` = (va, vb).

(2.2) Delete from K the edges eij ,` = (vij ,a, vij ,b) for j = 1, . . . , r.

(2,3) Let Hf be a new copy of H. Let sf,1, . . . , sf,r ∈ V (Hf) denote its source nodes and
tf,1, . . . , tf,r ∈ V (Hf) denote its sink nodes.

(2,4) For j = 1, . . . , r, add to K the new edges einij ,` = (vij ,a, sf,j) and eoutij ,`
= (tf,j, vij ,b).

6

We denote edges of the form eini,`, e
out
i,` as ”Gi-edges” or sometimes simply as ”G-edges”.

The other edges, belonging to some Hf , are denoted ”H-edges”. We make a few simple
observations: the operations in steps (2.1)-(2.4) operate on distinct edges for different f ∈
E(F), hence the order in which we enumerate f in step (2) does not matter. The network
K is a (qM)-unicast network.

Next, we note that a network code for K can be constructed by a composition of network
codes G and for H. This gives a lower bound on the capacity of K.

Lemma 3.3. Let G,H,K be as defined above. Then cap(K) ≥ cap(G) min(cap(H), 1) and
capF(K) ≥ capF(G) min(capF(H), 1) for any finite field F.

Proof. We prove the lemma only for general network codes, the case of linear network codes
being analogous. Fix an alphabet Σ, a network code for G with messages of length k and
packets of length n, and a network code for H with messages of length n and packets of
length s. By choosing the parameters large enough, we can get k/n and n/s to be arbitrarily
close to cap(G) and cap(H), respectively. To simplify the presentation we allow packets over
edges of K to have different lengths over different edges, and measure the rate with respect
to the largest packet length.

The network code for K will have the following properties: packets carried along G-edges
will have length n and packets carried along H-edges will have length s. Hence, the rate
of the network code is min(k/n, k/s), which by choosing the parameters large enough is
arbitrarily close to cap(G) min(cap(H), 1).

Our solution will have the property that p(eouti,`) = p(eini,`) for i ∈ [M], ` ∈ [m] carries a
packet which depends only on the messages originating in Gi, and moreover is equal to the
packet carried in the network code for G if the messages were these originating in Gi.

It will be convenient to consider a traversal the edges of E(G) in topological order,
although this is not necessary for the formal definition of the code. Consider an edge e` =
(va, vb) ∈ E(G). Assume that in the network code for G, we have that

p(e`) = Γ`(p(e`1), . . . , p(e`t),m(va))

where e`1 , . . . , e`t are the edges for which out(e`1) = . . . = out(e`t) = va, and m(va) is
potential message originating at va. We will define the solution over K for the edges eini,` for
i = 1, . . . ,M as

p(eini,`) = Γ`(p(e
out
i,`1

), . . . , p(eouti,`t),m(vi,a)).

Next, consider all edges f ∈ E(F) for which L(F) = `. For each such f , apply the
network code of H in the network Hf . That is, if f = {i1, . . . , ir}, assume the source
nodes sf,1, . . . , sf,r compute ”virtual messages” which are the packets sent over their in-
edges eini1,`, . . . , e

in
ir,`

, respectively. By the correctness of the network code in Hf , we get that
the sink nodes tf,1, . . . , tf,r reconstruct these messages, and hence can send these over their
respective out-edges eouti1,`

, . . . , eoutir,`
. That is, we get that p(eouti,`) = p(eini,`) for all i ∈ [M].

Finally, the sinks in G1, . . . ,GM reconstruct their respective required messages from their
in-edges in exactly the same way as is done in the network code for G.

The more challenging aspect is to prove upper bounds on the rates in K, which will show
that it is ”harder” than G. This will require an additional assumption, that the matching
hypergraph does not form short cycles.

7

4 Connectivity properties of large girth networks

We first formally define the girth of the matching hypergraph F .

Definition 4.1 (Girth of F). A cycle of length g ≥ 3 in F is a sequence of distinct edges
f1, . . . , fg ∈ E(F), such that fi ∩ fi+1 6= ∅ for all i = 1, . . . , g where we identify fg+1 = f1.
The girth of F is the length of the shortest cycle in F .

We will show that when girth(F) is large enough, information flow in the network K is
limited. For an edge e = (u, u′) ∈ E(K) define

I−e = {i ∈ [M] : there exists a directed path in K from some vi ∈ V (Gi) to u}

and

I+e = {i ∈ [M] : there exists a directed path in K from u′ to some vi ∈ V (Gi)}

We first show that for Gi-edges form a directed cut between {Gi′ : i′ 6= i}.

Lemma 4.2. Assume that girth(F) > depth(G). Let e ∈ E(Gi) for some i ∈ [M]. Then
I+e ∩ I−e = {i}.

Proof. We prove the lemma for edges of the form eini,`. The proof for edges of the form eouti,` is
analogous. Assume e` = (va, vb) in G so that e = eini,` = (vi,a, sf,j) for some f ∈ E(F), j ∈ [r].
Clearly i ∈ I−e since vi,a ∈ V (Gi). There is a path in Hf between sf,j to tf,j, which is
connected by the edge eouti,` to vi,b ∈ V (Gi). Hence i ∈ I+e ∩ I−e .

Assume that there exist i′ ∈ I+e ∩ I−e where i′ 6= i. That is, there exists a directed path
in K between vertices vi′,a′ and vi′,b′ in V (Gi′) which passes through e. The G-edges of the
path are

eini1,`1 , e
out
i2,`1

, eini2,`2 , e
out
i3,`2

, . . . , einid,`d , e
out
id+1,`d

,

where i1 = id+1 = i′, i ∈ {i2, . . . , id} and (it, it+1) ∈ ft ∈ E(F) for t = 1, . . . , d. Since
L(ft) = e`t and e`1 , . . . , e`d form a directed path in G, we get that f1, . . . , fd are all distinct.
Hence, we formed a nontrivial cycle in F of length d ≤ depth(G). A contradiction.

Lemma 4.3. Assume that girth(F) > 2depth(G). Let e ∈ E(Gi), i− ∈ I−e , i+ ∈ I+e , where
we exclude the case of i− = i+ = i. Then any path in K between a node in V (Gi−) and a
node in V (Gi+) must pass through e.

Proof. Let e = e∗i,` where ∗ ∈ {in, out}. Assume towards contradiction that there exists a
path from some vi−,a ∈ V (Gi−) to some vi+,b ∈ V (Gi+) which does not pass through e. As
we excluded the case i− = i+ = i, we must have by Lemma 4.2 that i− 6= i+. The G-edges
in the path are

eini1,`1 , e
out
i2,`1

, eini2,`2 , e
out
i3,`2

, . . . , einid,`d , e
out
id+1,`d

,

where i1 = i−, id+1 = i+ and (it, it+1) ∈ ft ∈ E(F) for t = 1, . . . , d. Note that e`1 , . . . , e`d
form a directed path in G, and hence d ≤ depth(G) and also f1, . . . , fd are distinct since
L(fi) = `i.

8

Next, since i− ∈ I−e , i+ ∈ I+e there exists a path in K from some vertex vi−,a′ ∈ V (Gi−)
to some vi+,b′ ∈ V (Gi+) which does pass through e. The G-edges in the path are

eini′1,`′1 , e
out
i′2,`
′
1
, eini′2,`′2 , e

out
i′3,`
′
2
, . . . , eini′d,`′d′

, eouti′
d′+1

,`′
d′
,

where i′1 = i−, i′d′+1 = i+ and (i′t, i
′
t+1) ∈ f ′t ∈ E(F) for t = 1, . . . , d′. Again we have that

d′ ≤ depth(G) and that f ′1, . . . , f
′
d′ are distinct.

Let f ∗ ∈ E(F) be the unique edge for which L(f ∗) = ` and i ∈ f ∗. Then f ∗ /∈ {f1, . . . , fd}
but f ∗ ∈ {f ′1, . . . , f ′d′}. Let e ∈ [d′] be such that f ′e = f ∗. Let F ′ be the hypergraph with
V (F ′) = V (F) = [M] and E(F ′) = E(F) \ {f ∗}. The sequence of edges

f ′e−1, . . . , f
′
1, f1, . . . , fd, f

′
d′ , . . . , f

′
e+1

forms a path in F ′, in the sense that any consecutive pair intersects. Also, i′e ∈ f ′e−1, i′e+1 ∈
f ′e+1. This path my contain repeated edges. To fix that, let

f ′′1 , . . . , f
′′
d′′

be the shortest sequence of edges in F ′ such that any consecutive pair intersects and i′e ∈
f ′′1 , i

′
e+1 ∈ f ′′d′′ . It is clear that the shortest such sequence would not contain repeated edges.

If we concatenate the edge f ∗ we get a cycle in F of length d′′ + 1 ≤ d + d′ ≤ 2depth(G), a
contradiction.

5 An upper bound on the capacity

We first argue that if F has large girth then the capacity of K cannot be larger than that of
G. That main idea is that we can use a network code for K also for G, by identifying G = G1
and fixing the messages to G2, . . . ,GM .

Lemma 5.1. Let G,H,K be as defined above. Assume that girth(F) > depth(G). Then
cap(K) ≤ cap(G) and capF(K) ≤ capF(G) for any finite field F.

Proof. We prove the lemma only for general network codes, the case of linear network codes
being analogous. Let m1, . . . ,mq denote messages for G. For a network code for K, set
m1, . . . ,mq to be the messages in G1 and fix the messages in G2, . . . ,GM arbitrarily (for
linear codes, fix them to 0). Then packets in K are functions of m1, . . . ,mq. We will show
that for all ` ∈ [m], the packet sent over eout1,` can be computed as a function of only the
packet sent over ein1,`. This implies that if in G we set p(e`) = p(eout1,`), then it satisfies the
requirements of a network code. That is, if e` = (va, vb) then p(e`) is a function of the packets
of in-edges of va as well as m(va) when it exists.

Let f ∈ E(F) be the unique edge such that L(F) = ` and 1 ∈ f . We have that p(eout1,`) is a
function of the inputs to Hf , which are p(ein1,`) and (potentially some) of p(eini,`) for i ∈ f \{1}.
Denote

f ′ = {i ∈ f \ {1} : there exists a path in K from eini,` to eout1,` }.

To conclude the proof, we need to show that for all i ∈ f ′, p(eini,`) is independent of the
messages m1, . . . ,mq, and hence is fixed since we fixed the messages to G2, . . . ,GM . Assume

9

not. Then there must exist a path in K from a source node in V (G1) to vi,a. However, this
implies that 1 ∈ I+(eini,`) ∩ I−(eini,`), which contradicts Lemma 4.2. Hence, p(eini,`) for i ∈ f ′
becomes fixed once we fix the messages to G2, . . . ,GM , and hence p(eout1,`) is a function of only
p(ein1,`).

We obtain so far the following corollary of Lemmas 3.3 and 5.1.

Corollary 5.2. Let G,H,K be as defined above. Assume that girth(F) > depth(G). If
cap(H) = 1 then cap(K) = cap(G).

6 An improved upper bound on the linear capacity

We restrict our attention now to linear network codes over a finite field F. We show that
if capF(H) < 1 then the ”trivial” upper bound capF(K) ≤ capF(G) cannot be achieved. We
prove the following theorem in this section.

Theorem 6.1. Let G,H,K be as defined above, where we assume that girth(F) > 2depth(G)
and capF(H) < 1. Then capF(K) ≤ (1− ε)capF(G) where ε = (1− cap(H))/r.

Fix a linear network code for K. We set a few notations. Sources and sinks of G1, . . . ,GM
are denoted by si,j and ti,j for i ∈ [M], j ∈ [q], with corresponding messages mi,j = m(si,j) ∈
Fk. For convenience we set m(v) = 0 for any non source node v ∈ V (K). Recall our
convention that the in- and out-nodes of an edge e are denoted by in(e), out(e), respectively.
The packet carried over an edge e ∈ E(K) is denoted p(e) ∈ Fn, computed as

p(e) = Sem(in(e)) +
∑

e′∈E(K):out(e′)=in(e)

Le,e′p(e
′),

such that Se is an n × k matrix and Le,e′ are n × n matrices. By linearity, we know that
there exist n× k matrices Pe,i,j for e ∈ E(K), i ∈ [M], j ∈ [q] such that

p(e) =
M∑
i=1

q∑
j=1

Pe,i,jmi,j.

Finally, the requirement that a sink ti,j can reconstruct the message mi,j implies the existence
of k × n matrices Ri,j,e such that

ri,j =
∑

e∈E(K):out(e)=ti,j

Ri,j,ep(e).

satsifies ri,j = mi,j for all i ∈ [M], j ∈ [q].
We first argue that any G-edges can be used to factor the reconstructed messages at the

sinks.

Lemma 6.2. Let e ∈ E(Gi∗) and let ti,j be a sink node with i∗, i ∈ [M], j ∈ [q] (note that we
allow i = i∗). Assume that there exists a path from e to ti,j in K. Define I ⊂ [M] as

I = ([M] \ I−e) ∪ {i}.

10

Then there exist k×n matrix Ai,j,e and k× k matrices Bi,j,i′,j′, with i′ ∈ I, j ∈ [q], such that

ri,j = Ai,j,ep(e) +
∑

i′∈I,j′∈[q]

Bi,j,i′,j′mi′,j′ .

Proof. Let Pe′,i′,j′ denote the set of paths from a source si′,j′ to an edge e′ ∈ E(G),

Pe′,i′,j′ = {(e1, . . . , e`) : e1, . . . , e` ∈ E(K), in(e1) = si′,j′ , e` = e′,

out(ej) = in(ej+1) ∀j = 1, . . . , `− 1}.

Then the packet sent over e′ is given by p(e′) =
∑

i′∈[M],j′∈[q] Pe′,i′,j′mi′,j′ where

Pe′,i′,j′ =
∑

(e1,...,e`)∈Pe′,i′,j′

Le`,e`−1
. . . Le2,e1Se1mi′,j′ .

Similary, let Pi,j,i′,j′ denote the set of paths from a source si′,j′ to a sink ti,j,

Pi,j,i′,j′ = {(e1, . . . , e`) : e1, . . . , e` ∈ E(K), in(e1) = si′,j′ , out(e`) = ti,j,

out(ej) = in(ej+1) ∀j = 1, . . . , `− 1}.

Then the reconstructed message at the sink ti,j is given by

ri,j =
∑

i′∈[M],j′∈[q]

∑
(e1,...,e`)∈Pi,j,i′,j′

Ri,j,e`Le`,e`−1
. . . Le2,e1Se1mi′,j′ .

By assumption, i ∈ I+e . Hence, by Lemma 4.3 any path from si′,j′ to ti,j with i′ ∈ I−e , i′ 6= i
must pass through e. Thus, for any (e1, . . . , e`) ∈ Pi,j,i′,j′ with i′ /∈ I, j′ ∈ [q] we have

(e1, . . . , e`) = (e1, . . . , eb−1, e, eb+1, . . . , e`)

for some b ∈ [`], and hence we can factor∑
i′ /∈I,j′∈[q]

∑
(e1,...,e`)∈Pi,j,i′,j′

Ri,j,e`Le`,e`−1
. . . Le2,e1Se1mi′,j′ = Ai,j,ep(e)

where
Ai,j,e =

∑
i′ /∈I,j′∈[q]

∑
(e1,...,eb−1,e,eb+1,e`)∈Pi,j,i′,j′

Ri,j,e`Le`,e`−1
. . . Leb+1,e.

We next will apply Lemma 6.2 to show that we can assume, without loss of generality,
that the packet carried over each edge eouti,` is a linear function of only the packet carried by
eini,`, and both are linear functions of only messages in Gi.

Lemma 6.3. There exists a linear network code for K, with messages of length k and packets
of size n, in which

p(eouti,`) = Oi,`p(e
in
i,`)

for any i ∈ [M], ` ∈ [m], where Oi,` are n × n matrices. Moreover, both p(eini,`), p(e
out
i,`) are

linear functions of only {mi,j : j ∈ [q]}.

11

The proof of Lemma 6.3 requires the following simple fact from linear algebra.

Claim 6.4. Let V,W ⊂ Fn be linear subspaces. There exists an n × n matrix Π = ΠV,W

such that

1. Πw = 0 for all w ∈ W .

2. Πv ∈ V for all v ∈ V .

3. For any n′×n matrix A which satisfies Aw = 0 for all w ∈ W , we have that AΠv = Av
for all v ∈ V .

Proof. Fix x1, . . . , xa, y1, . . . , yb, z1, . . . , zc ∈ Fn such that x1, . . . , xa is a basis of V ∩ W ,
x1, . . . , xa, y1, . . . , yb is a basis for V , and x1, . . . , xa, y1, . . . , yb, z1, . . . , zc is a basis for Fn,
where a + b + c = n. Define Π as the unique matrix which satisfies Πxi = 0,Πyj =
yj,Πzk = 0 for i ∈ [a], j ∈ [b], k ∈ [c]. As W is spanned by x1, . . . , xa, z1, . . . , zc we have
that Πw = 0 for all w ∈ W . It is also obvious that Πv ∈ V for all v ∈ V . Finally, let
A be a matrix which satisfies Aw = 0 for all w ∈ W . Any v ∈ V can be decomposed as
v = v′ + v′′ with v′ spanned by x1, . . . , xa and v′′ spanned by y1, . . . , yb. We have Πv = v′′

and Av = A(v′ + v′′) = Av′′ = AΠv.

Proof of Lemma 6.3. Consider a traversal of the edges e1, . . . , em of G in a topological order.
We will change the packets sent over edges eouti,` in this order, each time preserving the network
code properties while obtaining that p(eouti,`) is a linear function of p(eini,`), and both are linear
functions of {mi,j : j ∈ [q]}.

Let ` ∈ [m] and consider an edge e = eouti∗,` of K. Let f ∈ E(f) be the unique edge for
which L(f) = ` and i∗ ∈ f . By the construction of K, we have that p(e) is a linear function
of {p(eini,`) : i ∈ f}. In fact, if we let f1 ⊂ f be

f1 = {i ∈ there exists a path in Hf from eini,` to eouti∗,`}.

then p(e) depends only on p(eini,`) for i ∈ f1. Hence

p(e) =
∑
i∈f1

Zip(e
in
i,`). (1)

where Zi are some n× n matrices.
By the construction of K, we know that p(eini,`) is a linear function of p(eouti,`′) where

out(e`′) = in(e`) in G. In particular, `′ < ` and hence we already have that p(ei,`′) is a linear
function of {mi,j : j ∈ [q]}. So, we have that p(eini,`) is also a linear function of {mi,j : j ∈ [q]},

p(eini,`) =
∑
j∈[q]

ηi,`,jmi,j (2)

where ηi,`,j ∈ Fn.
Define subspaces V,W ⊂ Fn as

V = Span{Zi∗ηi∗,`,j : j ∈ [q]},
W = Span{Ziηi,`,j : i ∈ f1 \ {i∗}, j ∈ [q]}.

12

Note that p(e) can obtain any value in V + W . Let Π = ΠV,W as defined in Claim 6.4 and
define the new packet sent over e to be

pnew(e) = Πp(e).

The rest of the network code remains as is. We will show that

(i) pnew(e) is a legal packet sent by a linear network code.

(ii) pnew(e) is a linear function of only p(eini∗,`).

(iii) Each sink ti,j still reconstructs the correct message mi,j.

Claim (i) is obvious: if p(e) was a linear function of {p(e′) : out(e′) = in(e)} and m(in(e)),
then the same holds if we apply any linear map on p(e). Claim (ii) follows immediately from
the construction. The main challenge is establishing (iii), that is to show that the change
did not damage the abilities of the sinks to reconstruct their respective messages.

Let ti,j be any sink node. If there is no path between e and ti,j, then clearly any change
to p(e) would not affect the message ri,j reconstructed at ti,j. Thus, we assume there exists
a path in K from e to ti,j, which implies i ∈ I+e . We apply Lemma 6.2 and deduce that

ri,j = Ai,j,ep(e) +
∑

i′∈I,j′∈[q]

Bi,j,i′,j′mi′,j′ , (3)

where I = (I \ I−e)∪ {i}, Ai,j,e is a k× n matrix and Bi,j,i′,j′ are k× k matrices. We need to
show that also

ri,j = Ai,j,eΠp(e) +
∑

i′∈I,j′∈[q]

Bi,j,i′,j′mi′,j′ . (4)

Consider first the case where i 6= i∗. We have that p(e) is a linear function of {mi′,j′ :
i′ ∈ f, j′ ∈ [q]}. Note that f ⊂ I−e and that i /∈ I−e since i ∈ I+e and i 6= i∗. Hence f ∩ I = ∅
and we get that

p(e) =
∑

i′ /∈I,j′∈[q]

Pe,i′,j′mi′,j′ ,

where some Pe,i′,j′ can potentially be zero, and

ri,j =
∑

i′ /∈I,j′∈[q]

(Ai,j,ePe,i′,j′)mi′,j′ +
∑

i′∈I,j′∈[q]

Bi,j,i′,j′mi′,j′ .

Since we know that ri,j = mi,j and since i ∈ I, we must have that Ai,j,ePe,i′,j′ = 0 for all
i′ /∈ I, j′ ∈ [q], and hence Ai,j,ep(e) = 0 for any potential messages. Since p(e) can take any
value in V + W , this implies that Ai,j,ev = Ai,j,ew = 0 for any v ∈ V,w ∈ W . But since
Πp(e) ∈ V + W , this implies that also Ai,j,eΠp(e) = 0 for any potential messages. So, we
conclude that in the case i 6= i∗, we have

Ai,j,epnew(e) = Ai,j,ep(e) = 0. (5)

13

Next, consider the case where i = i∗. Combining (3) and (1), we obtain that

ri∗,j = Ai∗,j,e

∑
i1∈f1

Zi1p(e
in
i1,`

) +
∑

i′∈I,j′∈[q]

Bi,j,i′,j′mi′,j′ . (6)

We still have f ⊂ I−e with i∗ ∈ f , and hence f ∩ I = {i∗}. Similar to the previous argument,
since ri∗,j = mi∗,j, for any i1 ∈ f1 \ {i∗} we must have that Ai∗,j,eZi1 = 0. Thus, Ai∗,j,ew = 0
for all w ∈ W . Since Πw = 0 we also have Ai∗,j,eΠw = 0 for all w ∈ W . By Claim 6.4, we
know that for any v ∈ V , and in particular for v = Zi∗p(e

in
i∗,`), we have Ai∗,j,eΠv = Ai∗,j,ev.

Thus, we deduce that also for i = i∗ we have

Ai∗,j,epnew(e) = Ai∗,j,ep(e) = Ai∗,j,eZi∗p(e
in
i∗,`). (7)

The lemma follows from (5) when i 6= i∗ and (7) when i = i∗.

We assume from now on that the linear network code satisfies the conclusion of
Lemma 6.3. For an edge e ∈ E(G) define dim(e) to be the dimension of the linear sub-
space spanned by all possible packets that are sent over e. Clearly dim(e) ≤ n. We next
show that in each Hf , the input and output edges cannot all have dimension very close to
n.

Lemma 6.5. Fix f = {i1, . . . , ir} ∈ E(F) with L(f) = `. Let ε = (1− cap(H))/r. Then

r∑
j=1

dim(eoutij ,`
) ≤ (1− ε)rn.

Proof. Consider the restriction of K to Hf together with the edges eini,`, e
out
i,` for i ∈ f . Let

pj = p(einij ,`) and qj = p(eoutij ,`
) be the corresponding packets entering and leaving Hf . As each

pj is a function of distinct inputs (messages in Gij), there are no correlations between the
values that each pj can take. Formally, if we denote by Vj ⊂ Fn the subspace spanned by
all potential packets pj, then (p1, . . . , pr) ∈ V1 × . . . × Vr may take all possible values. We
further know that qj = Ojpj where Oj = Oij ,` is some n× n matrix.

Hence, we can consider the restriction of K to Hf as linear network code over H. Each
source sj = sf,ij is associated with the message pj ∈ Vj, and each sink tj = tf,ij reconstructs
qj = Ojpj. Let Wj ⊂ Vj be the maximal dimension subspace so that Wj ∩ ker(Oj) = {0}.
Then Oj acts injectively on Wj, dim(qj) = dim(Wj) and there exist a matrix O′j so that

O′jOjwj = wj ∀wj ∈ Wj.

This means that we extracted a network code for H, where packets have length n, and
where messages have sizes k1 = dim(W1), . . . , kr = dim(Wr). This is possible only if
min(k1, . . . , kr) ≤ cap(H) · n, which implies that

r∑
j=1

dim(eoutij ,`
) =

r∑
j=1

dim(Wj) ≤ ((r − 1) + cap(H))n = (1− ε)rn.

14

We next show that we can restrict the linear network code of K to Gi and obtain a
network code for G. For simplicity of exposition, we allow packets to have different lengths
over different edges.

Lemma 6.6. For each i ∈ [M], there exist a linear network code over G with messages of
length k, and where the packet sent over e` has length dim(ei,`).

Proof. We may assume, by applying basis changes, that in the linear network code over K
we have p(e) ∈ Fdim(e) for all e ∈ E(K). Consider the following network code over G:

• The message originating at source sj is mj = mi,j ∈ Fk.

• The packet sent over edge e` is p(e`) = p(eouti,`) ∈ Fdim(eouti,`).

• Each sink node tj reconstructs mj.

We need to show why this is possible using linear network codes. In the network code over
K we know that each p(eouti,`) is a linear function of p(eini,`), which in turn is a linear function
of {p(eouti,`′) : out(e`′) = in(e`)} and potentially m(in(eini,`)). Hence, p(e`) is a linear function
of only {p(e`′) : out(e`′) = in(e`)} and m(in(e`)), which can be realized by a linear code
over G. Reconstruction of the messages by sink nodes follows the same logic: the message
reconstructed at sink ti,j can be assumed to be a linear function of {p(eouti,`) : out(`) = j},
which again is realizable over G.

We combine Lemma 6.3, Lemma 6.5 and Lemma 6.6 to prove Theorem 6.1.

Proof of Theorem 6.1. Apply Lemma 6.6 to each i ∈ [M] independently and concatenate the
resulting network codes. This achieves a linear network code for G with messages of length
Mk and where the packet sent over an edge e` has length

∑M
i=1 dim(eouti,`). By Lemma 6.5,

we know that for each f ∈ E(F) for which L(f) = e we have
∑

i∈f dim(eouti,`) ≤ (1 − ε)rn.

Since {f ∈ E(f) : L(f) = `} partition [M], we obtain that
∑M

i=1 dim(eouti,`) ≤ (1 − ε)Mn.
Hence

Mk

(1− ε)Mn
≤ capF(G)

which implies that k/n ≤ (1−ε)capF(G). As capF(K) is the supremum over k/n for all linear
network codes for K over F, we obtain the desired bound

capF(K) ≤ (1− ε)capF(G).

7 Separation between capacity and linear capacity

We obtain a separation between capacity and linear capacity by applying network composi-
tion iteratively. We first prove that there exists a good choice for the matching hypergraph
F . In the following, we have m = |E(G)|, g = 2depth(G). The proof of the following lemma
was suggested to us by Noga Alon.

15

Lemma 7.1. Let r,m, g ≥ 1 be parameters. Let M = (mr)g+4. Then there exists a r-
uniform hypergraph F on vertex set [M], which is a union of m perfect matchings, such that
girth(F) > g.

Proof. The proof is a variant of the Erdös-Sachs theorem [10] adjusted to hypergraphs. The
argument for regular hypergraphs appeared already in [9]. Here, we note that it can be
adapted to yield regular hypergraphs which are a union of perfect matchings.

Initialize F1, . . . , Fm to be arbitrary perfect matchings and let F = ∪Fe be the resulting
multi-hypergraph, which may contain parallel edges. Assume that girth(F) = g0 ≤ g. Let
n0 denote the number of edges in F which participate in a cycle of length g0. We will define a
process that reduces n0 by at least one. Hence, applying it iteratively will eventually increase
the girth of F to more than g. We note that if there are parallel edges then girth(F) = 3,
so as soon as girth(F) ≥ 4 the matchings F1, . . . , Fm will be disjoint.

Let f1 ∈ E(F) be an edge which participates in a cycle of length g0. Assume without
loss of generality that f1 ∈ E(F1). We first argue that we can find f2, . . . , fr ∈ E(F1) such
that distF (fi, fj) > g, where distF (f ′, f ′′) is defined as the smallest d ≥ 0 for which there
exist edges f̃0, f̃1, . . . , f̃d+1 ∈ E(F) such that f̃0 = f ′, f̃d+1 = f ′′ and f̃i ∩ f̃i+1 6= ∅ for all
0 ≤ i ≤ d. To see that, note that the number of edges in F whose distance from f1 is at
most g is bounded by

|{f ′ ∈ E(f) : distF (f1, f
′) ≤ g}| ≤

g∑
i=1

rm · ((r − 1)(m− 1))i ≤ (rm)g+2.

Hence, since |E(F1)| = M/r > (rm)g+2 there must exist an edge f2 ∈ E(F1) with
dist(f1, f2) > g. Repeating this for i = 3, . . . , r, where at every time we exclude edges of
distance at most g from f1, . . . , fi−1, we get that as long as |E(F1)| = M/r > (i− 1)(rm)g+2

we can find fi of distance more than g from f1, . . . , fi−1.
Note that f1, . . . , fr are disjoint, hence |f1 ∪ . . . ∪ fr| = r2. Let f ′1, . . . , f

′
r be new edges

defined over f1∪. . .∪fr such that |f ′i∩fj| = 1 for all i, j ∈ [r]. Let F ′ be the hypergraph with
E(F ′) = E(F) \ {f1, . . . , fr} ∪ {f ′1, . . . , f ′r}. We claim that no edge in f ′1, . . . , f

′
r participates

in a cycle of length g0. This will show that the number of edges in F ′ which participate in
a cycle of length g0 must be at most n0 − 1, hence replacing F with F ′ would certify our
assertion.

So, assume without loss of generality, towards contradiction, that f ′1 participates in a
cycle of length at most g0 in F ′, and let f ′′1 , f

′′
2 , . . . , f

′′
g′′ ∈ E(F ′) be that cycle with f ′′1 = f ′1

and g′′ ≤ g0. Let i1 ∈ f ′′1 ∩ f ′′2 , . . . , ig′′ ∈ f ′′g′′ ∩ f ′′1 be some elements in intersections of
consecutive pairs. Consider first the case that f ′′2 , . . . , f

′′
g′′ ∈ E(F) ∩ E(F ′). Note that i1, ig′′

must belong to different edges in {f1, . . . , fr}, say i1 ∈ fj′ , ig′′ ∈ fj′′ . This implies that
distF (fj′ , fj′′) ≤ g′′−1 < g0, a contradiction. The other option is that f ′′j ∈ E(F ′)\E(F) for
some j 6= 1, and take the minimal such j. We cannot have j = 2 or j = g′′ since {f ′1, . . . , f ′r}
are disjoint. So, the sequence f ′′2 , . . . , f

′′
j−1 forms a path in F with i1 ∈ f ′′2 , ij−1 ∈ f ′′j−1. If

i1, ij−1 belong to different edges of {f1, . . . , fr} we reach a contradiction to the assumption
of the minimal distance. So, we must have that i1, ij−1 ∈ fk for some k ∈ [r]. But then
fk, f

′′
2 , . . . , f

′′
j′′−1 is a cycle in F of length j′′ < g′′ ≤ g0, a contradiction to the assumption

that g0 is the girth of F .

16

We now state our main theorem formally.

Theorem 7.2. For an infinite sequence of values of N , there exist a multiple unicast network
G on N vertices with cap(G) = 1 but capF(G) ≤ exp(−c

√
log logN) for any finite field F,

where c > 0 is an absolute constant.

Proof. Let H be the base 10-unicast network given in Theorem 2.1 with a constant number
of nodes and edges, and where cap(H) = 1 and capF(H) ≤ 10/11 for any finite field. In the
following set ε = 1/110. Define a sequence of networks G1,G2, . . . as follows. G1 = H. To
define Gi+1, let mi = |E(Gi)|, di = depth(Gi). Apply Lemma 7.1 with m = mi, g = 2di, r = 10
to obtain a matching hypergraph Fi for Gi,H with |V (Fi)| = Mi = (10mi)

2di+4. Define
Gi+1 = Compose(Gi,H, Fi). Theorem 2.1, Corollary 5.2 and Theorem 6.1 imply that

cap(Gi) = 1, capF(Gi) ≤ (1− ε)i for any field F.

Note that the obtained networks have constant maximum degree, hence |E(Gi)| = O(V (Gi)).
Furthermore, di+1 ≤ (depth(H) + 1)di and mi+1 ≤ Mimi(|E(H) + r). Solving this gives
di = exp(O(i)) and logmi = O(di−1 · logmi−1) = exp(O(i2)). So, if we set Ni = |V (Gi)| we
get that capF(Gi) = exp(−c

√
log logNi) for some absolute constant c > 0.

Acknowledgements. I thank Noga Alon for helpful discussions and suggestions on the
Erdös-Sachs theorem and it extensions. I thank Dong Ki Kim for discussions on this and
related projects.

References

[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung. Network information flow. Information
Theory, IEEE Transactions on, 46(4):1204–1216, 2000.

[2] J. Cannons, R. Dougherty, C. Freiling, and K. Zeger. Network routing capacity. Infor-
mation Theory, IEEE Transactions on, 52(3):777–788, 2006.

[3] P. A. Chou, Y. Wu, and K. Jain. Practical network coding. In Proceedings of the annual
Allerton conference on communication control and computing, volume 41, pages 40–49.
The University; 1998, 2003.

[4] R. Dougherty, C. Freiling, and K. Zeger. Linearity and solvability in multicast networks.
Information Theory, IEEE Transactions on, 50(10):2243–2256, 2004.

[5] R. Dougherty, C. Freiling, and K. Zeger. Insufficiency of linear coding in network
information flow. Information Theory, IEEE Transactions on, 51(8):2745–2759, 2005.

[6] R. Dougherty, C. Freiling, and K. Zeger. Unachievability of network coding capacity.
IEEE/ACM Transactions on Networking (TON), 14(SI):2365–2372, 2006.

[7] R. Dougherty, C. Freiling, and K. Zeger. Linear network codes and systems of polyno-
mial equations. Information Theory, IEEE Transactions on, 54(5):2303–2316, 2008.

17

[8] R. Dougherty and K. Zeger. Nonreversibility and equivalent constructions of multiple-
unicast networks. Information Theory, IEEE Transactions on, 52(11):5067–5077, 2006.

[9] D. Ellis and N. Linial. On regular hypergraphs of high girth. arXiv preprint
arXiv:1302.5090, 2013.

[10] P. Erdös and H. Sachs. Reguläre graphen gegebener taillenweite mit minimaler knoten-
zahl. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 12:251–257,
1963.

[11] C. Fragouli, J.-Y. Le Boudec, and J. Widmer. Network coding: an instant primer. ACM
SIGCOMM Computer Communication Review, 36(1):63–68, 2006.

[12] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong. Toward
a random operation of networks. submitted to IEEE Trans. Inform. Theory, 2004.

[13] S. Jaggi, M. Effros, T. Ho, and M. Médard. On linear network coding. In Proc. of the
42nd Allerton Conference, 2004.

[14] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L. M. Tolhuizen.
Polynomial time algorithms for multicast network code construction. Information The-
ory, IEEE Transactions on, 51(6):1973–1982, 2005.

[15] R. Koetter and M. Médard. An algebraic approach to network coding. Networking,
IEEE/ACM Transactions on, 11(5):782–795, 2003.

[16] M. Langberg and A. Sprintson. On the hardness of approximating the network coding
capacity. In Information Theory, 2008. ISIT 2008. IEEE International Symposium on,
pages 315–319. IEEE, 2008.

[17] A. R. Lehman and E. Lehman. Complexity classification of network information flow
problems. In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 142–150. Society for Industrial and Applied Mathematics, 2004.

[18] S.-Y. Li, R. W. Yeung, and N. Cai. Linear network coding. Information Theory, IEEE
Transactions on, 49(2):371–381, 2003.

[19] M. Médard, M. Effros, D. Karger, and T. Ho. On coding for non-multicast networks. In
Proceedings of the Annual Allerton Conference on Communication Control and Com-
puting, volume 41, pages 21–29. The University; 1998, 2003.

[20] S. Riis. Linear versus non-linear boolean functions in network flow. In 38th Annual
Conference on Information Science and Systems (CISS), Princeton, NJ, 2004.

[21] A. Tavory, M. Feder, and D. Ron. Bounds on linear codes for network multicast. In
Electronic Colloquium on Computational Complexity (ECCC), volume 10, page 033.
Citeseer, 2003.

18

[22] H. Yao and E. Verbin. Network coding is highly non-approximable. In Communication,
Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on,
pages 209–213. IEEE, 2009.

19

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

