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Abstract

We propose a candidate Lasserre integrality gap construction for the Unique Games
problem. Our construction is based on a suggestion in [27] wherein the authors study the
complexity of approximately solving a system of linear equations over reals and suggest it as
an avenue towards a (positive) resolution of the Unique Games Conjecture. We use a new
encoding scheme that we call the real code. The real code has two useful properties: like
the long code, it has a unique local test, and like the Hadamard code, it has the so-called
sub-code covering property.

This write-up represents a part of a work in progress.

1 Introduction

The Unique Games Conjecture [22] is currently one of the important questions in theoretical
computer science. It is a perplexing question in the sense that researchers have no consensus
regarding its correctness and a tantalizing question in the sense that its resolution might possibly
be on the horizon. As shown in [24], the conjecture can be phrased equivalently in terms of
solving a nearly-satisfiable system of discrete linear equations, where each equation depends on
two variables:

Definition 1. 2Lin(F) Problem: Given N variables x1, . . . , xN taking values over a finite
field F and M equations C1, . . . , CM where each equation Ci is of the form xi1 − xi2 = bi and
bi ∈ F. The goal is to find an assignment that maximizes the fraction of equations satisfied.

Note that in each equation, for any value for either of the two variables, there is a unique
value for the other variable that satisfies the equation. The Unique Games problem is a bit
more general: each constraint is on two variables, the variables take values from an alphabet
Σ, and for any value for either of the two variables in a constraint, there is a unique value for
the other variable that satisfies the constraint (so a constraint corresponds to a permutation
on Σ and different constraints may correspond to different permutations). As shown in [24],
the essence of the Unique Games problem is captured even when the constraints are linear over
a finite field and one may restrict to the 2Lin(F) problem. In particular, the Unique Games
Conjecture can be stated as:
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Definition 2 (The Unique Games Conjecture). For any constant ε > 0, there is a finite field
F of a constant size, such that given a 2Lin(F) instance that has an assignment that satisfies
(1 − ε) fraction of all equations, it is NP-hard to find an assignment that satisfies even an ε
fraction of all equations.

If true, the Unique Games Conjecture implies optimal NP-hardness of approximation for a
large number of optimization problems and in some cases, for entire classes of problems (see
the surveys [23, 37] for more background on the Unique Games Conjecture). For example,
Raghavendra [30] shows that, assuming the Unique Games Conjecture (and P ̸= NP), basic
semidefinite programs (SDP) yield optimal approximation algorithms for constraint satisfaction
problems and in particular, for the Unique Games problem itself. Indeed, researchers had
already designed algorithms for the Unique Games problem based on semidefinite programs [16,
22, 12, 36], as well as constructed matching integrality gaps, showing that these algorithms do
not disprove the Unique Games Conjecture [26]. After Raghavendra’s work, the integrality gap
constructions have been extended to SDPs that are more general, amounting to a combination
of a basic SDP and a super-constant number of rounds of the so-called Sherali-Adams linear
programming relaxation [28, 31].

In more recent years, researchers have been looking at semidefinite programs that are even
more general. A promising approach is to consider the Lasserre hierarchy of semidefinite pro-
grams [6, 18]. In contrast to all the semidefinite programs considered before, current techniques
seem inadequate to construct integrality gaps against the Lasserre hierarchy. Some of the limita-
tions of current techniques towards constructing Lasserre integrality gaps have been formalized
in [3]. The latter work shows that integrality gaps against weaker SDPs can be solved using
only a constant number of rounds of the Lasserre hierarchy.

In the authors’ opinion, a most pressing question at present is whether the Lasserre SDP yields
a disproval of the Unique Games Conjecture, and if not, whether we can construct an integrality
gap demonstrating that. This note is an approach towards constructing such integrality gaps.
We consider the 2Lin(F) problem over boolean field:

Definition 3. Boolean 2Lin: Given N variables x1, . . . , xN taking {−1, 1}-values and M
equations C1, . . . , CM where each equation Ci is of the form xi1 · xi2 = bi and bi ∈ {−1, 1}. The
goal is to find an assignment that maximizes the fraction of equations satisfied.

Assuming the Unique Games Conjecture, given an instance of Boolean 2Lin where 1 − ε
fraction of the equations can be satisfied, it is NP-hard to satisfy 1 − Ω(

√
ε) fraction of the

equations [24, 14]. Such an inapproximability result for Boolean 2Lin could perhaps be equiv-
alent to the Unique Games Conjecture. Even though an equivalence is not known formally (in
fact, a promising direction for proving it was ruled out in [33, 5]), researchers tend to agree
that the boolean case captures the main difficulty of general Unique Games. If one were able to
prove NP-hardness of (1− ε, 1−Ω(

√
ε)) gap in the boolean case, the proof might likely extend

to NP-hardness of (1 − ε, 1 −K(F) ·
√
ε) gap for the general finite field case, where K(F) is a

constant with K(F) → ∞ as |F| → ∞. The latter result would then be enough, via parallel
repetition, to amplify the gap to (1− o(1), o(1)) and prove the Unique Games Conjecture [32]!

At present however, we do not even know a (1 − ε, 1 − C · ε) gap with C → ∞, even for
general Unique Games, and even as Lasserre integrality gap (as opposed to more ambitious
NP-hardness result). In light of these considerations, we set ourselves the following, seemingly
modest but still challenging in our opinion, goal: show a (1 − ε, 1 − C · ε) integrality gap for
C rounds of the Lasserre SDP for the Boolean 2Lin(F) problem where C → ∞ (and of course
ε → 0 necessarily).
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Towards this goal, we indeed construct an instance of the Boolean 2Lin problem that has a
Lasserre SDP solution with value 1 − ε after a super-constant number of rounds. We believe
that the instance has no integral solution with value 1−C · ε where C → ∞ as ε → 0. Though
we are unable so far to prove this soundness property formally, we consider several examples
and sketch an argument as to why it might be true. In the remainder of the introduction we
discuss some of the ideas that go into the construction.

1.1 The Real Code

To prove NP-hardness of approximation results, one typically composes a known “PCP” such as
Projection Games, e.g. [15, 2, 1, 33], with a gadget based on either the long code, e.g. [7, 19, 20],
or the Hadamard code, e.g. [21]. The Projection Games problem is more general than the Unique
Games problem. For projection games there is a partition of the set of variables into two, and
each constraint depends on a variable from each part. For every constraint, a value to the
variable from the first part determines at most one value to the variable from the second part,
but not (necessarily) vice versa. Unlike Unique Games, Projection Games are known to be
NP-hard to approximate, and serve as a typical PCP to compose with the long code or the
Hadamard code.

The long code encodes an index i ∈ [n], or equivalently a log n bit string, as the dicta-
tor function f(x1, . . . , xn) = xi defined over (x1, . . . , xn) ∈ {−1, 1}n. Hadamard code en-
codes a string (σ1, . . . , σn) ∈ {−1, 1}n as the function f(x1, . . . , xn) =

∏
j:σj=−1 xj defined over

(x1, . . . , xn) ∈ {−1, 1}n. Evidently, the long code has a much worse rate than the Hadamard
code; that is, one encodes much less information using the long code compared to the Hadamard
code.

A big advantage of the long code is that it has a “unique local test”, i.e. a 2-query test whose
predicate is unique, meaning an answer to either of the two queries determines the answer to
the other query, if the tester is to accept. In this test, also known as the noise test, one picks
x = (x1, . . . , xn) ∈ {−1, 1}n at random, then slightly perturbs x by re-sampling each coordinate
with probability δ to get a new vector x′ ∈ {−1, 1}n. The test checks that f(x) = f(x′).
The test passes with probability 1− δ for dictators, and passes with much less probability, i.e.
1 − Ω(

√
δ), for balanced functions that are far from dictators (for an appropriate definition of

“far from dictator”) [10, 24, 14]. Towards proving the Unique Games Conjecture (possibly in a
weaker form), one may now attempt to compose Projection Games with the noise test, however,
this fails. We won’t elaborate this point further, but in short, the reason is that the long code
is too long and does not have the sub-code covering property (described next) which, at least
in the authors’ opinion, seems essential to construct a 2-query PCP with unique local test, i.e.
to prove the Unique Games Conjecture or its weaker form.

On the other hand, the Hadamard code does not have a unique local test (it is nevertheless
very useful in other applications, thanks to tests with three or more queries [8]). The reason is
simple: for any two distinct locations x, x′ ∈ {−1, 1}n, half of the legitimate Hadamard codes
satisfy f(x) = f(x′) and the remaining half satisfy f(x) ̸= f(x′), and thus any unique local
test fails with probability 1

2 on some legitimate Hadamard code. However, the Hadamard code
has the following sub-code covering property: the Hadamard code of a string (σ1, . . . , σn) is
nearly uniformly covered by the Hadamard codes of its proper substrings.1 This property is

1Here is a more precise statement. Pick a random subset S ⊆ [n] of size (1 − δ)n and a random string
x′ ∈ {−1, 1}S ; define a string x ∈ {−1, 1}n by letting xj = x′

j if j ∈ S and xj = 1 otherwise; then the distribution
of x is statistically close to uniform over {−1, 1}n (provided δ ≪ 1√

n
, see [25]). Note that x denotes a typical
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potentially useful in a PCP composition as follows: while composing a Projection Game with an
encoding scheme with the sub-code covering property, an encoding on the “larger side” of the
game is nearly uniformly covered by the encodings of its “neighbors” on the “smaller side” of
the game. Since the encodings on the smaller side are already “contained” in the encodings on
the larger side, only the latter explicitly appear in the “PCP proof”, the former being “present
implicitly”. Now, one may simply run a test (a unique local test if one intends to show hardness
of the Unique Games problem) on the encoding on the larger side. In the soundness analysis,
one is able to “list-decode” this encoding. Since the encoding is nearly uniformly covered by
the encodings on the smaller side, essentially the same list-decoding also serves as the list-
decoding on the smaller side, leading to “consistent decodings” on both the sides, completing
the soundness analysis. In [25], this recipe is demonstrated using the Hadamard code. Therein
the application is different (and not to the Unique Games problem, since the Hadamard code
does not have a unique local test).

Having explained the limitation of using either the long code or the Hadamard code towards
proving hardness of the Unique Games problem, we now sketch a key idea in this note. Our
construction is based on a new encoding scheme over reals, which has a property analogous to
the sub-code covering property of the Hadamard code, while also having a unique local test
analogous to the long code (at least in a loose sense). We call the new code the real code.
Unlike Hadamard or the long code, the real code no longer uses functions over the boolean
hypercube {−1, 1}n, but over Rn with the underlying space equipped with the standard Gaussian
measure. The range of the functions is {−1, 1} still. Specifically, we use half-spaces (or rather
a “periodized” version of half-spaces). For z ∈ R, define:

interval(z) =


+1 if z ∈ [2k, 2k + 1) for some k ∈ Z

−1 if z ∈ [2k − 1, 2k) for some k ∈ Z.

The real encoding of a string σ = (σ1, . . . , σn) ∈ {−1, 1}n is now defined as the function fσ :
Rn → {−1, 1}:

fσ(x) = interval

(
n∑

i=1

σi · xi

)
.

Just like the noise test for functions on the boolean hypercube, one can define a natural noise
test for functions f : Rn → {−1, 1} on the Gaussian space. This is precisely the unique local
test we use to test the real code. By a result of Borell [9], half-spaces maximize the acceptance
probability of a Gaussian noise test and since the legitimate real encodings are indeed half-
spaces (leaving aside the issue of “periodizing”), they maximize the acceptance probability of
the unique local test. More details appear in Section 4. Moreover, the real code has a property
analogous to the sub-code covering property (see footnote on the previous page for a comparison
with the Hadamard code). Pick a random subset S ⊆ [n] of size (1 − δ)n and a random input
x′ ∈ RS from the standard Gaussian measure; define an input x ∈ Rn by letting xj = x′j if j ∈ S

location in the Hadamard code of a string σ ∈ {−1, 1}n. The bit of the code at this location is
∏

j:σj=−1 xj and

since the coordinates of x outside S are set to 1, this bit depends only on the coordinates in S, i.e. on x′. On
the other hand, x′ denotes a typical location in the Hadamard code of the substring σ|S , i.e. σ restricted to S.
In this sense, the Hamadard codes of substrings of σ of length (1 − δ)n nearly uniformly cover the Hadamard
code of σ. The specific manner in which x is chosen can be restated as follows. Pick a random subset S ⊆ [n] of
size (1− δ)n; pick the coordinates in S uniformly at random from {−1, 1}; pick the coordinates outside S to be
“small” in value. In the boolean field {−1, 1}, “small” amounts to the value 1, i.e. a value that has no effect on
the bit of the code at location x.
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and a uniformly random number in [−δ, δ] otherwise; then x “looks like” an input chosen from
Rn with the standard Gaussian measure. The reason is that a typical input chosen from Rn with
the standard Gaussian measure does have a fraction δ of the coordinates with magnitude O(δ)
and so “looks like” the input x. Akin to the Hadamard code, the coordinates of x outside S are
small in value and do not much influence the bit of the real encoding at location x. More details
appear in Section 6. Our Lasserre integrality gap candidate for the Boolean 2Lin problem uses
the real code and appeals to both these properties.

Remark 1.1. In recent years, researchers suggested the “short code” (aka the “low degree long
code”) as a more efficient alternative to the long code [4, 13]. The short code has a unique test,
but does not have the sub-code covering property.

1.2 Approximate Real Linear Equations Problem and Integrality Gaps

The starting point of our construction is a Lasserre integrality gap for the approximate real
linear equations problem. In this problem, one is given a system of linear equations over reals
and each equation is of the form:

k∑
j=1

bjyj = 0,

where bj ∈ {−1, 1} and yj are real variables. One wishes to satisfy the equations approximately,
and not necessarily exactly. Also, one wishes to assign at least a constant fraction of the
variables, values that are at least a constant in magnitude (and so, one cannot “cheat” by
assigning the zero value to all the variables). Given a real valued assignment to the variables,

the margin (or the error) on a typical equation as above is
∣∣∣∑k

j=1 bjyj

∣∣∣ and the goal is to find

an assignment that (approximately) minimizes the average margin over all the equations. Note
that, assigning the variables yj random {−1, 1} values, one can always achieve a margin of
O(

√
k) on average, so the question is whether one can do better (and the answer is negative as

explained next).
In analogy to the discrete case, we refer to the approximate real linear equations problem as

kLin(R). In the paper [27], the authors prove an optimal NP-hardness result for the problem
3Lin(R), i.e. even when each equation has only three variables. The authors show that when
an assignment with average margin ε exists, it is NP-hard to find an assignment with average
margin O(

√
ε), i.e. there is a quadratic gap. This is shown to be optimal in the sense that there

is a matching SDP algorithm (effectively a least square fit algorithm). In [27], the coefficients
bj in the equations are allowed to be in a bounded interval, as opposed to being {−1, 1}, but
this is a minor point.

In the current note, we start with a similar result for larger k, but where instead of NP-
hardness we have an integrality gap against a linear number of rounds of the Lasserre hierarchy.
The integrality gap instance amounts to saying that, on that instance, the Lasserre SDP pretends
that there is an assignment with average margin O(1) (in the sense that the SDP has a feasible
solution with objective O(1)) whereas, actually, every assignment has average margin Ω(

√
k).

Dividing by a normalizing factor of k, the gap is same as O( 1k ) versus Ω(
1√
k
), i.e. a quadratic gap

as in [27]. We derive this integrality gap by essentially re-interpreting Tulsiani’s [38] integrality
gap for constraint satisfaction problems2. Working with integrality gaps instead of NP-hardness
results has several advantages that we employ in our construction: (1) Tulsiani’s result is for

2The derivation was observed during discussions with Tulsiani and Worah.
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random instances, and hence the integrality gap we start with is for random instances. (2)
Tulsiani has a guarantee on all linear-sized sets of variables; one does not have this luxury
in the NP-hardness setting as it would amount to an exponential time, hence a meaningless,
reduction.

1.3 Organization

We discuss constraint satisfaction problems, their Lasserre semidefinite programs, and Tulsiani’s
result in Section 2. We obtain the integrality gap for approximate real linear equations problem
in Section 3. We discuss the real code in Section 4, and how to incorporate constraint test in
the real code in Section 5. We show how to check consistency between real codes in Section 6.
The overall candidate integrality gap instance for the Boolean 2Lin problem is in Section 7, and
in Section 8 we sketch why it might work through examples.

2 Constraint Satisfaction Problems and their Lasserre Semidef-
inite Programs

A predicate P : {−1, 1}k 7→ {0, 1} leads to a constraint satisfaction problem (CSP) as follows.
There are N variables taking values in {−1, 1} and M constraints, each defined on some (or-
dered) tuple of k variables. In a constraint, each variable first gets a {−1, 1} sign (“polarity”),
and then the predicate P is applied on the tuple of polarized variables:

Definition 4. For a predicate P : {−1, 1}k 7→ {0, 1}, an instance of CSP(P ) consists of N
variables x1, . . . , xN and M constraints C1, . . . , CM , where each constraint C is over a k-tuple
of variables {xi1 , . . . , xik} and is of the form P (b1xi1 , . . . , bkxik) where b1, . . . , bk ∈ {−1, 1}.

We overload notation by using C to denote a typical constraint, as well as the tuple of
variables appearing in it. For j ∈ [k], we let C[j] ∈ [N ] denote the index of the jth variable in
C and bC ∈ {−1, 1}k be a vector such that its jth coordinate bC [j] indicates the polarity of the
jth variable in C. For u, v ∈ {−1, 1}k, let u ◦ v ∈ {−1, 1}k denote the coordinate-wise product
of u, v. A random instance of CSP(P ) is one where the constraints are on randomly chosen
k-tuples of variables, and the polarities of variables are randomly chosen as well (independently
for occurrences in different constraints).

The optimization problem associated with CSP(P ) is to find an assignment to the variables
that satisfies the largest number of constraints. If Φ is an instance of CSP(P ), then we denote
the maximum number of satisfied constraints by OPT (Φ).

The t-round Lasserre semidefinite program for the CSP(P ) problem has a vector variable VS,α

for every set of variables S ⊆ [N ], |S| ≤ t, and an assignment α ∈ {−1, 1}|S| to the variables in
S. In the intended solution, VS,α is some (globally fixed) unit vector if S is assigned α, and is
the zero vector otherwise. If α1 ∈ {−1, 1}t1 is an assignment to a set S1 ⊆ [N ] of variables, and
α2 ∈ {−1, 1}t2 is an assignment to a set S2 ⊆ [N ] of variables, then we say that α1 and α2 agree
if they assign the same values to variables in S1 ∩S2; otherwise, we say that they disagree. The
Lasserre program attempts to maximize the number of satisfied constraints as reflected by the
vector variables, subject to consistency constraints on the variables:

Lasserre semidefinite program
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max
M∑
i=1

∑
α∈{−1,1}k

P (α ◦ bC)∥VCi,α∥2

s.t.

Orthogonality : ⟨VS,α, VS,β⟩ = 0 ∀S, α ̸= β (1)

Consistency : VS,α = VS∪{x},α∪{+1} + VS∪{x},α∪{−1} ∀S, α, x /∈ S (2)

Non− negativity : ⟨VS,α, VT,β⟩ ≥ 0 ∀S, T, α, β (3)

Normalization : ∥Vϕ,ϕ∥2 = 1. (4)

Local distributions: In any feasible solution to the semidefinite program, for every S, we
have ∑

β∈{−1,1}|S|

∥VS,β∥2 = 1.

Thinking of ∥VS,β∥2 as probabilities, a vector solution to the Lasserre semidefinite program
induces a distribution over assignments to S, referred to as the local distribution on S. In
particular, for each constraint C, one has a local distribution on assignments to that constraint.
Any set S ⊇ C induces a distribution over assignments to C by picking β ∈ {−1, 1}|S| with
probability ∥VS,β∥2 and restricting β to the variables in C. The feasibility of the solution ensures
that this induced distribution coincides with the local distribution on C.

Note that the objective function of the program, measuring the quality of the solution, de-
pends only on the local distributions. If one only has local distributions and consistency among
them, rather than vector solutions and consistency among them, one gets the so-called Sherali-
Adams linear programming relaxation. In the first reading, the reader might want to focus only
on the local distributions. We rely on a result of Tulsiani concerning CSPs with the following
linear predicate:

Definition 5. The Hypergraph Linearity Test Predicate: For k = 2s− 1, the hypergraph
linearity test predicate PHLin : {−1, 1}k 7→ {0, 1} is defined as follows. Index the k coordinates
by non-empty subsets A ⊆ [s] and assume w.l.o.g. that the first s coordinates correspond to
the singleton sets. Then x ∈ {−1, 1}k is a satisfying assignment of the predicate PHLin (i.e.,
PHLin(x) = 1) if and only if

xA =
∏
i∈A

x{i} ∀ 2 ≤ |A| ≤ s.

In other words, the satisfying assignments of the predicate are precisely the Hadamard codewords
and 2s = k + 1 in number.

Samorodnitsky and Trevisan [34] constructed a UGC-based PCP using the Hypergraph Lin-
earity Test Predicate, and Chan [11], in a recent remarkable result, constructed a similar PCP
without relying on the UGC. Regarding the Lasserre integrality gap, Tulsiani, building on the
works of Grigoriev and Schoenebeck [17, 35], shows the following (the statement is tailored to
our needs):

Theorem 6 (Tulsiani [38]). Let T be an arbitrarily large constant. Let Φ be a randomly chosen
instance of CSP(PHLin) with N variables and M = TN constraints for large enough (growing)
N . Let n0 = ⌊ηN⌋ where η = 1

T 25 . Then with high probability over the choice of Φ:
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1. Completeness: Φ has an n0-round Lasserre SDP solution with objective value M , where for
every constraint C, the local distribution on C is uniform over the satisfying assignments
to C (i.e. uniform over P−1

HLin(1) ◦ bC).

2. Soundness: OPT (Φ) ≤ (1 + o(1))k+1
2k

·M .

In the soundness case, note that since the hypergraph linearity test predicate has k+1 satis-
fying assignments, the expected number of constraints satisfied by a random {−1, 1} assignment
to the variables is ((k + 1)/2k) · M . A standard argument shows that, with high probability
over the choice of the instance, no assignment satisfies a slightly larger fraction of constraints
(here the o(1) term becomes arbitrarily small as T increases). What is remarkable is that in the
completeness case, there is a SDP solution, up to a linear number of rounds of Lasserre, which
“pretends” that there is an assignment satisfying all the constraints.

3 Lasserre Integrality Gap for Approximate Real Linear Equa-
tions Problem

In this section, we construct a Lasserre integrality gap for approximate real linear equations
problem. The construction is essentially a re-interpretation of Tulsiani’s Lasserre integrality
gap for the hypergraph linearity test predicate, where we re-interpret a predicate over boolean
domain as an equation over reals with carefully chosen coefficients. As Tulsiani’s instance is a
random instance of CSP(PHlin), our integrality gap can be thought of as a random, or average-
case, analog of our NP-hardness result in [27].

Recall that the predicate PHLin : {−1, 1}k 7→ {0, 1} has exactly k + 1 satisfying assignments
and k = 2s − 1. It is easily verified that for any two distinct satisfying assignments a, b ∈
P−1
HLin(1), we have

∑k
j=1 ajbj = −1. Indeed, since the k co-ordinates are indexed by non-empty

subsets A ⊆ [s], for some distinct x, y ∈ {−1, 1}s, we have

k∑
j=1

ajbj =
∑

A⊆[s], A ̸=ϕ

∏
i∈A

xi ·
∏
i∈A

yi = −1.

Let Φ be an instance of CSP(PHLin) with N variables andM constraints. A typical constraint is
denoted as C along with the vector bC of polarities. We construct a system of linear equations
over reals by replacing each constraint C by a set of k + 1 linear equations over reals, one
equation, as below, for each sign vector ϵ ∈ P−1

HLin(1):

k∑
j=1

ϵj · bC [j] · yC[j] = 0,

where y1, . . . , yN are real-valued variables. In the following, a constraint C will refer to the
constraint as in the CSP(PHLin) instance, and also to any of the k + 1 real linear equations
constructed from it. It should be clear from the context which is being referred to. We observe
that a uniformly random satisfying assignment to the constraint C (i.e. uniform in P−1

HLin(1)◦bC)
is, on average, a good assignment to each of the linear equations constructed from it, in terms
of the average ℓ1 error (i.e. margin).
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Fact 3.1. Let ϵ ∈ P−1
HLin(1) be any fixed sign vector. Then

E
α∈P−1

HLin(1)◦bC

∣∣∣∣∣∣
k∑

j=1

ϵj · bC [j] · αj

∣∣∣∣∣∣
 =

2k

k + 1
.

Proof. Substituting α = β ◦ bC above and canceling out the polarities, the expectation is

E
β ∈P−1

HLin(1)

∣∣∣∣∣∣
k∑

j=1

ϵj · βj

∣∣∣∣∣∣
.

Note that PHLin has k + 1 satisfying assignments. Out of these, there is one assignment that
equals ϵ and the inner sum equals k. For the remaining k assignments β ̸= ϵ and the inner sum
equals −1 as observed before.

Motivated by the observation that {−1, 1}-valued assignments to the variables suffice for
approximate satisfaction of the real linear equations we defined, we continue to refer to the
Lasserre semidefinite program we described before, which has a variable VS,α per set S of at
most t variables and per {−1, 1} assignment α to the variables in S. We keep the feasibility
conditions of this program, but drop the objective function (which talks about satisfying the
predicate PHLin).

Theorem 6 now directly implies our Lasserre integrality gap for approximate real linear equa-
tions problem, stated as Theorem 7 below. In the completeness part, we have a feasible vector
solution inducing local distributions that on average approximate each equation up to a margin
O(1). In the soundness part, we have that every boolean assignment to the variables has average
margin Ω(

√
k), averaged over all the equations.

Theorem 7. Let T be an arbitrarily large constant. Let Φ be a randomly chosen instance of
kLin(R) with N variables and M = TN constraints for large enough (growing) N , as described
above. Note that every equation is of the form

∑k
j=1 ϵj · bC [j] · yC[j] = 0. Let n0 = ⌊ηN⌋ where

η = 1
T 25 . Then w.h.p. over the choice of Φ we have:

1. Completeness: Φ has an n0-round Lasserre SDP feasible solution, where for every con-
straint C, the local distribution is uniform on its satisfying assignments, i.e. P−1

HLin(1)◦bC .
In particular, for every sign vector ϵ ∈ P−1

HLin(1), when taking expectation over the local
distribution on C,

E
σ∈P−1

HLin(1)◦bC

∣∣∣∣∣∣
k∑

j=1

ϵj · bC [j] · σ(C[j])

∣∣∣∣∣∣
 =

2k

k + 1
≤ 2. (5)

2. Soundness: For some absolute constant c > 0, the following holds: for any global assign-
ment σ : [N ] 7→ {−1, 1}, for a c fraction of the equations (where an equation is specified
by constraint C and a sign vector ϵ), the margin is at least c ·

√
k, i.e.∣∣∣∣∣∣

k∑
j=1

ϵj · bC [j] · σ(C[j])

∣∣∣∣∣∣ ≥ c ·
√
k. (6)
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Proof. The completeness part follows from Theorem 6 and Fact 3.1. The soundness part is
a standard probabilistic argument over the choice of the instance Φ: fix a global assignment
σ, fix the tuples of variables that appear in all the constraints, and consider the choice of the
polarities for all the constraints. Given a constraint C and a sign vector ϵ, over the choice of
random polarities bC [j], the sum

∑k
j=1 ϵj · bC [j] · σ(C[j]) is at least c ·

√
k in magnitude with

probability c for some absolute constant c > 0. Since the polarities are chosen independently
for different constraints and the number of constraints TN is large relative to the number of
variables N , one can apply Chernoff bound and a union bound.

Remark 3.1. (1) In the soundness case above, it is easy to extend the conclusion to all assign-
ments σ : [N ] 7→ R (as opposed to only boolean assignments σ : [N ] 7→ {−1, 1}) as long as σ
assigns, to a constant fraction of the variables, values that are at least a constant in magnitude.
(2) The gap (O(1), Ω(

√
k)) in the completeness versus the soundness case in Theorem 7 is our

starting gap. We re-emphasize some of the points mentioned before. Dividing by a normaliza-
tion factor of k, the gap here is (O( 1k ),Ω(

1√
k
)), i.e., a quadratic gap. In [27], the authors indeed

prove that it is NP-hard to distinguish such a quadratic gap even when equations involve three
variables. Thus Theorem 7 is the integrality gap analogue of NP-hardness result in [27]. The
authors therein propose that there may be a further reduction from the system of equations with
three variables (3Lin(R)) to a system of equations with two variables (2Lin(R)) and/or the
closely related Boolean 2Lin problem. This note may substantiate their proposal, albeit in the
context of Lasserre integrality gaps. We are at present unable to show soundness of our con-
struction. If the construction is sound and the techniques to analyze soundness are developed,
it may be possible to extend the integrality gap construction to a NP-hardness reduction.

4 The Real Code and Gaussian Noise Test

The encoding scheme in our construction is the real code as explained in the introduction.
Recall that for some assignment σ : [n] 7→ {−1, 1}, its real code encoding fσ : Rn 7→ {−1, 1} is
supposed to be the interval function of σ. Specifically, defining for z ∈ R,

interval(z) =


+1 if z ∈ [2k, 2k + 1) for some k ∈ Z

−1 if z ∈ [2k − 1, 2k) for some k ∈ Z,
(7)

we let, with underlying standard Gaussian measure on Rn (denoted N n),

fσ(x) = interval

(
n∑

i=1

σ(i) · xi

)
. (8)

Let Φ be an instance of kLin(R) as in Theorem 7 along with the Lasserre SDP solution. For
every set S ⊆ [N ], |S| = n, our final construction has a copy of the “gadget” fS : Rn 7→ {−1, 1}
which is supposed to be the real encoding of the assignment to S. We use a standard PCP trick
called folding to enforce certain basic properties of fS :

Folding: The encoding f = fσ in Equation (8) satisfies

f(x1, . . . , xi−1, xi, xi+1, . . . , xn) = −f(x1, . . . , xi−1, xi + 1, xi+1, . . . , xn),
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for any i ∈ [n] and x ∈ Rn. Moreover f is odd, i.e., f(−x) = −f(x) for any x ∈ Rn. By
using these identities for evaluating f , we can assume that the functions f in our Boolean 2Lin
instance always satisfy these identities.

Now we describe a test that checks that a given function f : Rn 7→ {−1, 1}, at least loosely
speaking, resembles an encoding of some assignment σ : [n] 7→ {−1, 1}, or more generally of
some reasonable assignment σ : [n] 7→ R. We call it the low boundary test. It fails with only a
small probability whenever f is indeed a correct encoding of a boolean assignment (there will
be more tests, namely a constraints test and a consistency test that will be added later). The
test below is applied on a given function f : Rn 7→ {−1, 1}. We think of the parameter α as
infinitesimally small.

Low Boundary Test with Parameter α

• Pick x,w ∈ N n independently and let y = (1−α)x+
√
2α− α2w (thus y is a α-perturbation

of x).

• Reject if and only if f(x) ̸= f(y).

Lemma 4.1. If f : Rn 7→ {−1, 1} is an encoding of a boolean assignment σ : [n] 7→ {−1, 1} as
in Equation (8), then f rejects the low boundary test with probability O(

√
αn).

Proof. This is because f , viewed as a partition of Rn, has a Gaussian boundary/surface-area
O(

√
n) and then one uses Corollary 14 in [29]. Alternately, it is easily seen that the two sums∑n

i=1 σ(i) · xi and
∑n

i=1 σ(i) · yi are typically spread over a band of width Θ(
√
n) around the

origin and typically differ by O(
√
αn). Thus the probability that the two sums lie in adjacent

odd/even intervals is O(
√
αn).

5 The Real Code Augmented with Constraint Test

We now augment the basic gadget with an additional test that allows for checking kLin(R)
constraints. Suppose that there is a constraint C ⊆ [n] of the kLin(R) instance of the form:

k∑
j=1

ϵj · bC [j] · yC[j] = 0.

For any such constraint C, let vC denote the unit vector in Rn that has
ϵj ·bC [j]√

k
in the position

C[j] and zero elsewhere. Let β be a parameter thought of as infinitesimally small.

The Constraint Test for a Given Constraint C and Parameter β

• Pick x, y ∈ Rn such that both x, y are distributed as N n and y = x + βℓvC and ℓ ∼ N .
Specifically, x, y are picked by first selecting their common component orthogonal to vC

and then selecting their components along vC in a (1− β2

2 )-correlated manner.3

3If y∗ and x∗ denote the components along vC , then this amounts to saying y∗ = (1− β2

2
)x∗ +

√
β2 − β4

4
w∗

for x∗, w∗ ∼ N . Thus y∗ − x∗ ∼ βN .
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• Reject if and only if
f(x) ̸= f(y). (9)

Note that x, y differ only on coordinates in C. Next we analyze the behavior of the test on
local distributions induced by the Lasserre SDP solution:

Lemma 5.1. Suppose an assignment σ : [n] 7→ {−1, 1} is sampled from the local distribution on
set S as given by the Lasserre SDP solution. Let C ⊆ [n] be a constraint with a corresponding
linear equation of the form

∑k
j=1 ϵj · bC [j] · yC[j] = 0. Then the average rejection probability of

the Constraint Test (w.r.t. constraint C) over the choice of σ is at most O( β√
k
).

Proof. Note that in the Lasserre solution, the restriction of σ to the constraint C is uniformly
distributed over the satisfying assignments to C. Hence, over the choice of σ,

k∑
j=1

ϵj · bC [j] · σ(C[j]) =


−1 with probability k

k+1

k with probability 1
k+1 .

(10)

In the first case, ⟨σ,vC⟩ = − 1√
k
, hence

⟨σ, y − x⟩ ∼ β√
k
N ,

and the Constraint Test (9) rejects with probability O( β√
k
). This is because the sums

∑n
i=1 σ(i)·

xi and
∑n

i=1 σ(i) · yi are spread over a band of width Θ(
√
n) around the origin, and their

difference is distributed as β√
k
N as shown. Thus the probability that the two sums lie in

adjacent odd/even intervals is O( β√
k
).

Similarly, in the second case, ⟨σ,vC⟩ =
√
k, hence

⟨σ, y − x⟩ ∼ β
√
k N ,

and the Constraint Test (9) rejects with probability O(β
√
k). Overall, the Constraint Test

rejects with probability O( β√
k
).

The constraint test examines the behavior of the function along a small number k of coordi-
nates among the n coordinates, whereas the low boundary test might be insensitive to changes
in such a small number of coordinates. This motivates a generalization of the low boundary test
which focuses on any given subset K of the coordinates (this generalization will also be a part
of our final construction). For x ∈ Rn, let xK denote the restriction of x to the coordinates in
K ⊆ [n], and let xK denote the restriction of x to coordinates in {1, . . . , n} \K. As before, we
think of the parameter α as infinitesimally small.

General Low Boundary Test with Parameter α on Subset K ⊆ {1, . . . , n}

• Pick x,w ∈ N n independently. Let yK = xK and yK = (1− α)xK +
√
2α− α2wK .

• Reject if and only if f(x) ̸= f(y).
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WhenK = {1, . . . , n}, this test is same as the low boundary test we defined before. Lemma 4.1,
analyzing the boundary test on the real code, continues to hold for any K ⊆ {1, . . . , n} with
the appropriate scaling:

Lemma 5.2. If f : Rn 7→ {−1, 1} is an encoding of a boolean assignment σ : [n] 7→ {−1, 1}
as in Equation (8), then f rejects the general low boundary test on subset K with probability
O(
√

α |K|).

6 The Consistency Test

Our proposed integrality gap instance for the Boolean 2Lin problem (in Section 7) has a block
of variables for every subset S ⊆ [N ], |S| = n, for an appropriate setting of parameter n. The
variables correspond to points in space Rn (discretized appropriately and weighed according to
the standard Gaussian measure). The variables are boolean and an assignment to the variables
in a block corresponds to a function fS : Rn 7→ {−1, 1}. For some global assignment τ : [N ] 7→
{−1, 1}, the function fS is intended to be the encoding of σ = τ |S as in Equation (8). On each
block, we are going to perform the two tests described so far. In addition, we need a test to
check consistency between different blocks (i.e., to check, in at least some loose sense, that the
functions fS for different blocks are encodings of block assignments σ(S) that are consistent
across blocks, giving rise to consistent global assignment). We describe the consistency test
next.

Roughly speaking if there are two blocks S and R such that |S ∩ R| ≈ (1 − δ)n, then the
(intended) linear interval functions fS and fR are nearly the same and thus we may test that
this is indeed the case. We describe the test formally below. An absolutely crucial aspect of
the test is that the coordinates in S \R and R \ S are very small compared to the coordinates
in S ∩R.

The test has a parameter δ satisfying 1
n1/2 ≪ δ ≪ 1

n1/3 . It is not clear what the correct setting

should be. For now think of δ = 1√
n
. Let I = [−s, s] be an interval whose measure w.r.t. the

standard Gaussian is δ (and thus s ≈
√
2π δ

2). Let DI and DĪ denote the distribution of x ∼ N
conditional on being x ∈ I and x ̸∈ I respectively.

Consistency Test with Parameter δ

Given functions {fS : Rn 7→ {−1, 1} | S ⊆ [N ], |S| = n}.

• Pick a set S ⊆ [N ], |S| = n at random.

• Pick U ⊆ S by including each element of S with probability 1− δ and let |U | = m. Pick
R ⊆ [N ], |R| = n such that S ∩R = U .

• Pick x ∼ Dm
Ī
. Pick yS , yR ∼ Dn−m

I independently. We think of the coordinates of x, yS , yR

as indexed by elements of U, S \ U and R \ U respectively.

• Reject if and only if
fS(x, y

S) ̸= fR(x, y
R).

Note that the distribution of both the queries (x, yS) and (x, yR) is precisely N n. We have
the following lemma regarding the rejection probability of the test when the functions fS and
fR are indeed encodings of consistent assignments.
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Lemma 6.1. Suppose the functions fS and fR are encodings of assignments σ(S) : S 7→ {−1, 1}
and σ(R) : R 7→ {−1, 1} respectively such that σ(S)|S∩R = σ(R)|S∩R =: π. Then the failure
probability of the Consistency Test above is at most O(δ

√
δn) (which is ≪ 1 by our choice of

δ ≪ 1
n1/3 ).

Proof. We have:

fS(x, y
S) = interval

∑
i∈U

π(i) · xi +
∑

ℓ∈S\U

σ(S)(ℓ) · ySℓ

 .

fR(x, y
R) = interval

∑
i∈U

π(i) · xi +
∑

ℓ∈R\U

σ(R)(ℓ) · yRℓ

 .

Note that the sums are spread over a band of width Θ(
√
n) around the origin whereas the

difference between the two sums is attributed to yS and yR and is typically O(δ
√
n−m) =

O(δ
√
δn) in magnitude. Therefore the two interval functions differ with probability O(δ

√
δn).

7 The Overall Construction

We are now ready to describe our proposed construction of the Boolean 2Lin integrality gap
instance. Let Φ be the instance of kLin(R) with N variables and M = TN constraints as in
Theorem 7. We think of k as a large constant, T as a constant large enough after choosing k
and N as a growing parameter. As we noted, every constraint C of Φ is a homogeneous linear
equation over reals:

k∑
j=1

ϵj · bC [j] · yC[j] = 0.

Let n = n0/t for n0 as in Theorem 7 and t is the number of Lasserre rounds for the instance
we construct. As mentioned before, in our Boolean 2Lin instance, there is a block of variables
for every subset S ⊆ [N ], |S| = n. The variables correspond to points in the space Rn and an
assignment to this block corresponds to a function fS : Rn 7→ {−1, 1}.

Choice of Parameters: Let α, β be infinitesimally small, 1
n1/2 ≪ δ ≪ 1

n1/3 .

Test: Run the following three tests with appropriate probabilities:

(1a) Low Boundary Test with parameter α is carried out with probability proportional to 1√
αn

.

Pick a set S ⊆ [N ], |S| = n at random. Run the Low Boundary Test with parameter α on
fS .

(1b) General Low Boundary Test with parameter α is carried out with probability proportional
to 1√

αk
.

Pick a set S ⊆ [N ], |S| = n at random. Pick a constraint C ⊆ S at random (note that
|C| = k). Run the General Low Boundary Test with parameter α on subset C and fS .
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(2) Constraint Test with Parameter β is carried out with probability proportional to 1
β/

√
k
.

Pick a set S ⊆ [N ], |S| = n at random. Pick a constraint C ⊆ S at random. Run the
Constraint Test for constraint C and parameter β on fS .

(3) Consistency Test with Parameter δ is carried out with probability proportional to 1
δ
√
δn
.

Remark 7.1. Note that the probability with which each test is performed is inversely propor-
tional to the rejection probability of the test in Lemmas [4.1, 5.2], 5.1 and 6.1 respectively. These
are the rejection probabilities in the “completeness case” (see below). Thus, in the complete-
ness case, the different tests contribute equally towards the overall rejection probability. In the
soundness case, it is enough to show that for any integral solution, for at least one of the tests,
the rejection probability is significantly larger than that in the completeness case.

Next we describe how the n0-round Lasserre integrality gap for approximate real linear equa-
tions instance in Section 3 can be transformed into a feasible solution for t-rounds of Lasserre
SDP for our Boolean 2Lin instance. We also analyze the objective value achieved by the Lasserre
solution. While we do not analyze the soundness of our construction, in Section 8 we argue
soundness against select global strategies.

Let {VS,α} be the vector solution for approximate real linear equations instance. Let us
denote the vector solution for our Boolean 2Lin instance by {UT,β}. Let T be a set of at most t
variables from the Boolean 2Lin instance. Let the ith variable in T correspond to a pair (Si, xi)
where Si ⊆ [N ], |S| = n and xi ∈ Rn, i.e. the variable appears in the block Si and corresponds

to the point xi ∈ Rn in that block. Let S =
∪|T |

i=1 Si, so that |S| ≤ t · n = n0. The set S will
be referred to as the super-block corresponding to set T . The main observation is that every
assignment α ∈ {−1, 1}|S| to the variables in S induces an assignment α(T ) ∈ {−1, 1}|T | for
the variables in T as follows: an assignment α ∈ {−1, 1}|S| induces, by restriction, assignments
σi : Si 7→ {−1, 1} to the blocks, which in turn induce assignments fσi(xi) to the points xi ∈ Rn

via the encodings fσi : Rn 7→ {−1, 1}. This yields the induced assignment α(T ) is claimed.
With this observation in mind, for every β ∈ {−1, 1}|T |, let

UT,β =
∑

α:α(T )=β

VS,α.

For every T , by orthogonality,∑
β∈{−1,1}|T |

∥UT,β∥22 =
∑

β∈{−1,1}|T |

∑
α:α(T )=β

∥VS,α∥22 =
∑
α

∥VS,α∥22 = 1.

The local distributions associated with {UT,β} assign β to T with probability ∥UT,β∥22. As
we show below, the consistency conditions of the solution {UT,β} follow from the consistency
conditions of the solution {VS,α}.

Orthogonality: Let T be a set of at most t variables from our Boolean 2Lin instance. Let
β1 ∈ {−1, 1}|T |, β2 ∈ {−1, 1}|T | be distinct assignments to the variables of T . Let S ⊆ [N ] be
the super-block associated with T . For every assignments α1, α2 to S such that α1(T1) = β1 and
α2(T2) = β2, it holds that α1, α2 disagree. Hence, from the feasibility of the original solution,
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⟨VS,α1 , VS,α2⟩ = 0. Therefore,

⟨UT,β1 , UT,β2⟩ = ⟨
∑

α1:α1(T )=β1

VS,α1 ,
∑

α2:α2(T )=β2

VS,α2⟩

=
∑

α1:α1(T )=β1

∑
α2:α2(T )=β2

⟨VS,α1 , VS,α2⟩

= 0.

Consistency: Let T be a set of at most t− 1 variables from the Boolean 2Lin instance. Let
p /∈ T be an additional variable. Let S, S+ ⊆ [N ] be the super-blocks associated with T and
T ∪ {p} respectively. Note that either S+ = S or S+ = S ∪ S′ for some S′ ⊆ [N ], |S′| = n. If
S+ = S, then

UT,β =
∑

α:α(T )=β

VS,α

=
∑

α:α(T∪{p})=β∪{+1}

VS,α +
∑

α:α(T∪{p})=β∪{−1}

VS,α

= UT∪{p},β∪{+1} + UT∪{p},β∪{−1}.

If S+ = S ∪ S′, then

UT,β =
∑

α:α(T )=β

VS,α

=
∑

α:α(T )=β

∑
α′

VS∪S′,α∪α′

=
∑

α:α(T )=β

∑
α′:α′(p)=+1

VS∪S′,α∪α′ +
∑

α:α(T )=β

∑
α′:α′(p)=−1

VS∪S′,α∪α′

= UT∪{p},β∪{+1} + UT∪{p},β∪{−1}.

Non-negativity: For any sets T1, T2 of up to t variables and assignments β1, β2 to them,
letting S1, S2 be the super-blocks associated with them, we have,

⟨UT1,β1 , UT2,β2⟩ = ⟨
∑

α1:α1(T1)=β1

VS1,α1 ,
∑

α2:α2(T2)=β2

VS2,α2⟩

=
∑

α1:α1(T1)=β1

∑
α2:α2(T2)=β2

⟨VS1,α1 , VS2,α2⟩ ≥ 0.

Completeness: The completeness of our construction follows from the completeness of the
approximate real linear equations instance in Theorem 7, and Lemmas [4.1, 5.2], 5.1 and 6.1
analyzing the boundary, constraint and consistency tests, respectively. We elaborate a bit more.

Consider a hypothetical scenario that the instance in Theorem 6 and Theorem 7 has a per-
fectly satisfying (global) assignment. Considering its restrictions to blocks, we have: (1) for
each block S, an assignment σ(S) such that (2) σ(S) satisfies all the constraints C that appear
inside S and (3) the assignments σ(S) and σ(R) for any two blocks are consistent, i.e. they
agree on S ∩R. In this scenario, letting each function fS to be the correct encoding fσ(S), the
failure probability of all the tests is bounded as in Lemmas [4.1, 5.2], 5.1 and 6.1.
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Of course, the instance in Theorem 6 and Theorem 7 is highly unsatisfiable and the scenario
is impossible. Still, the main point is that the Lasserre SDP solution to the instance effectively
pretends that the hypothetical scenario holds. Namely, we have (1) for each block S, a set of
assignments σ(S) (the “local” distribution is uniform on this set) such that (2) every assignment
σ(S) satisfies all the constraints C that appear inside S and (3) sampling a random assignment
τ for the block S ∪ T and letting σ(S) = τ |S and σ(R) = τ |R yields assignments to blocks S
and R that are consistent.

Moreover, there are vectors VS,σ(S) that satisfy all the Lasserre feasibility conditions. Now,
to each block S, instead of assigning an encoding fσ(S) : Rn 7→ {−1, 1}, we effectively assign a
“vector super-position” of such encodings, informally written as∑

σ(S)

fσ(S) · VS,σ(S).

To be precise, if a typical variable in the Boolean 2Lin instance is denoted by a pair (S, x), then

U(S,x),{+1} =
∑

σ(S):fσ(S)(x)=+1

VS,σ(S),

U(S,x),{−1} =
∑

σ(S):fσ(S)(x)=−1

VS,σ(S).

We need to show that the SDP solution achieves an objective value that is same as the failure
probability of the tests in Lemmas [4.1, 5.2], 5.1 and 6.1. We demonstrate this for the low
boundary test (i.e. Lemmas [4.1) and the others are treated similarly.

The low boundary test (for some fixed block S) picks two points x, y ∈ Rn and rejects
if fS(x) ̸= fS(y). The analogue of the rejection probability from the viewpoint of the SDP
objective is

∥U{(S,x),(S,y)},{+1,−1}∥2 + ∥U{(S,x),(S,y)},{−1,+1}∥2,

or more precisely, the expectation of this expression over the choice of x and y. Using the
feasibility conditions, this is same as

⟨U(S,x),{+1}, U(S,y),{−1}⟩+ ⟨U(S,x),{−1}, U(S,y),{+1}⟩.

Using the expression for the vector U(S,x),{+1} and others as observed, this is same as∑
σ(S):fσ(S)(x) ̸=fσ(S)(y)

∥VS,σ(S)∥2.

Taking the expectation over the choice of x and y, the SDP objective is∑
σ(S)

∥VS,σ(S)∥2 · Pr
x,y

[
fσ(S)(x) ̸= fσ(S)(y)

]
.

Now we observe that
∑

σ(S) ∥VS,σ(S)∥2 = 1 and Prx,y
[
fσ(S)(x) ̸= fσ(S)(y)

]
is the rejection prob-

ability of the test as in Lemma 4.1.
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8 Soundness Against Potential Counterexamples

We now look at a few potential counterexamples to the soundness analysis and observe that
these do not (as far as we see) pose danger to the soundness of the construction. The first
three examples demonstrate that each of the three tests is necessary, i.e., for any two of the
tests, there is an integral solution whose failure probability on these two tests is same as the
completeness case. The fourth example is open-ended and less concrete. In the following, we
focus only on the tests (1a), 2, and 3, and ignore the test (1b).4

Example 1

It is possible to have an integral solution whose failure probability of the Low Boundary Test
and the Consistency Test is O(

√
αn) and O(δ

√
δn), i.e., same as in the completeness case.

Simply fix an arbitrary global assignment τ : [N ] 7→ {−1, 1} and for every S ⊆ [N ], |S| =
n, let fS be the linear interval function of the assignment τ |S . This solution looks like the
intended solution in the completeness case to the Low Boundary Test and the Consistency Test,
implying that their failure probabilities are the same as in the completeness case. However the
Constraint Test fails with probability Ω(β). For a typical constraint C, according to Equation
(6),

∑k
j=1 ϵj · bC [j] · τ(C[j]) ≥ Ω(

√
k). Looking at the proof of Lemma 5.1 then, with σ = τ |S ,

we have ⟨σ,vC⟩ =
∑k

j=1
ϵj ·bC [j]√

k
· σ(C[j]) is Ω(1) in magnitude, hence ⟨σ, y − x⟩ is typically

Ω(β) in magnitude, and hence the Constraint Test rejects with probability Ω(β). This rejection
probability is significantly higher (by a large multiplicative factor) than the failure probability
O( β√

k
) achieved in the completeness case.

Example 2

It is possible to have an integral solution whose failure probability of the Low Boundary Test
is O(

√
αn) and that of the Constraints Test is O( β√

k
), i.e., the same as in the completeness

case. Fix an arbitrary assignment τ : [N ] 7→ {−1, 1}. For every set S ⊆ [N ], |S| = n, write
S = A ∪ (S \ A) where A = ∪C⊆S C is the set of all variables that occur in constraints that
are contained in S. Note that for a typical S, the number of constraints inside S is close
to the expected number of m ≈ ηkM = ηkTN and hence |A| ≈ kηkTN ≪ |S| = ηN since
η ≈ 1

T 25 . Moreover, (for the typical S) these constraints are disjoint. Let σ(S) : S 7→ {−1, 1}
be an assignment that equals the global assignment τ |S\A on S \ A and on A, the assignment
is chosen to be a satisfying assignment for every constraint. Now let fS be the linear interval
function of the assignment σ(S). Again, this solution looks like the intended solution in the
completeness case to the Low Boundary Test, its failure probability being O(

√
αn), and also to

the Constraints Test, its failure probability being O( β√
k
). However since the local assignments

σ(S) are not globally consistent, the Consistency Test fails with constant probability. Consider
typical sets S,R such that |S| = n, |R| = n, |S ∩R| ≈ (1− δ)n. Then σ(S) and σ(R) are (likely)
inconsistent on variables in C∩(S∩R) where C is any constraint such that C ⊆ S, |C∩(S\R)| = 1
(and the symmetric case with the roles of S,R switched). The number of all such variables is
t ≈ (k − 1) · 2δkm. Since

√
t = Ω(

√
δn · k2ηk−1T ) = Ω(1), the Consistency Test fails with

probability Ω(1) (note that we think of η, k, T as constants and δn ≫ 1). On the other hand,

4The question here is whether the test (1b) is needed towards the soundness of our construction. We believe
that it is indeed needed, but the counter-example demonstrating it is complicated and less clear, and is omitted
from this note.
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the failure probability of the Consistency Test is O(δ
√
δn) ≪ 1 in the completeness case. This

is where we need the fact that the coordinates in S∆R are chosen to be small (i.e., at most
s = Θ(δ) in magnitude) instead of choosing them from the standard Gaussian.

Example 3

It is possible to have an integral solution whose failure probability of the Consistency Test is
O(δ

√
δn) and that of the Constraints Test is O( β√

k
), i.e., the same as the completeness case. We

note that in the example below, strictly speaking the functions fS are not necessarily folded,
but it does not seem justified to rule out the example on this ground. The example however
can be ruled out on the grounds that the Low Boundary Test fails with much higher probability
than the completeness case.

In order to define the function fS : Rn 7→ {−1, 1}, for every set A ⊆ [n], let PA ⊆ Rn be the
region where the coordinates in [n] \A are at most s = Θ(δ) in magnitude and the coordinates
in A have magnitude larger than s. Clearly, {PA}A⊆[n] defines a partition of Rn. Note that
since a typical point z ∈ N n has about δn coordinates that are at most s in magnitude, almost
all the measure of N n is contained in regions PA with |A| ≥ (1− 5δ)n.

For any region PA, let ΓA = ∪C⊆AC, i.e., subset of the variables in all constraints contained
inside A. Fix an arbitrary global assignment τ : [N ] 7→ {−1, 1}. Let σ(A) : S 7→ {−1, 1} be
an assignment that equals τ |S\ΓA

on S \ ΓA and on ΓA chosen so that all constraints therein
are satisfied (with some globally fixed assignment to each constraint). Note that since |A| ≥
(1−5δ)n, essentially all the constraints contained in S are in fact contained in A (we will ignore
those which aren’t) and are disjoint. Finally, define the function fS(x) to be the function that
equals the interval function of the assignment σ(A) on region PA.

Observe first that the failure probability of the Constraints Test is O( β√
k
) since (almost) all

constraints are satisfied. Now consider a Consistency Test between input z in block S and input
w in block R. Note that z|S∩R = w|S∩R and that the coordinates of z in S \R and those of w in
R \ S are at most s in magnitude. Thus if PA denotes the region containing z, then A = S ∩R
and A is precisely the set of coordinates of z that have magnitude larger than s. Moreover ΓA

is then obtained by including all constraints contained in A. Similarly if PB denotes the region
containing w, then B = S∩R and B is precisely the set of coordinates of w that have magnitude
larger than s. Moreover ΓB is then obtained by including all constraints contained in B. Since
z|S∩R = w|S∩R = y say, it follows that A = B and ΓA = ΓB. The assignments σ(A) and σ(B)
then agree on S ∩R and since the coordinates of z, w outside S ∩R are at most s in magnitude,
the Consistency Test accepts with probability O(δ

√
δn) .

Thankfully, we observe that for the function fS defined as above, the Low Boundary Test
fails with probability Ω(ηk−1T

√
α n) which is much higher than O(

√
αn) in the completeness

case (noting that η, k, T are thought of as constants). Consider the Low Boundary Test on the
function fS : Rn 7→ {−1, 1} with (1− α)-correlated points x, y ∈ N n. Since for each coordinate
i, xi and yi differ typically by

√
α and α is infinitesimally small, with probability Ω(

√
α n),

there is precisely one coordinate j such that |xj | > s and |yj | ≤ s or vice versa (let’s say the
former holds). Hence x ∈ PA and y ∈ PB with B ⊆ A,A \B = {j}. With probability ≈ ηk−1T ,
the index j is contained in a constraint C ⊆ A. The constraint C is included in ΓA but not in
ΓB. Thus the assignments σ(A), σ(B) (likely) disagree on variables in C \{j} and the boundary
test fails with constant probability. The overall failure probability is Ω(ηk−1T

√
α n) as claimed.
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Example 4

In the examples above, the functions fS are (or composed of several) linear interval functions.
Towards a counter-example, one may use functions of the type interval(g) where g is a degree
d polynomial. We do not know if this really helps towards a counter-example. If g is a degree
d polynomial, then interval(g) may have Gaussian boundary/surface-area of Ω(d

√
n) and the

Low Boundary Test may fail with probability Ω(d
√
αn) (as opposed to the failure probability

O(
√
αn) in the completeness case), rendering the example void when d is large.

Acknowledgements

Many thanks to Madhur Tulsiani and Pratik Worah for discussion that led to the Lasserre
integrality gap for approximate real linear equations problem. Thanks to everyone with whom
we discussed related things over the years.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the
hardness of approximation problems. Journal of the ACM, 45(3):501–555, 1998.

[2] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP.
Journal of the ACM, 45(1):70–122, 1998.

[3] B. Barak, F. G. S. L. Brandão, A. W. Harrow, J. A. Kelner, D. Steurer, and Y. Zhou.
Hypercontractivity, sum-of-squares proofs, and their applications. In Proc. 44th ACM
Symp. on Theory of Computing, pages 307–326, 2012.

[4] B. Barak, P. Gopalan, J. H̊astad, R. Meka, P. Raghavendra, and D. Steurer. Making the
long code shorter. In Proc. 53rd IEEE Symp. on Foundations of Computer Science, pages
370–379, 2012.

[5] B. Barak, M. Hardt, I. Haviv, A. Rao, O. Regev, and D. Steurer. Rounding parallel
repetitions of unique games. In Proc. 49th IEEE Symp. on Foundations of Computer
Science, pages 374–383, 2008.

[6] B. Barak, P. Raghavendra, and D. Steurer. Rounding semidefinite programming hierarchies
via global correlation. In Proc. 52nd IEEE Symp. on Foundations of Computer Science,
pages 472–481, 2011.

[7] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs, and nonapproximability—
towards tight results. SIAM Journal on Computing, 27(3):804–915, 1998.

[8] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. Journal of Computer and System Sciences, 47(3):549–595, 1993.

[9] C. Borell. Geometric bounds on the ornstein-uhlenbeck velocity process. Z. Wahrsch.
Verw. Gebiete, 70(1):1–13, 1985.

[10] J. Bourgain. On the distributions of the Fourier spectrum of Boolean functions. Israel J.
Math., 131:269–276, 2002.

20



[11] S. O. Chan. Approximation resistance from pairwise independent subgroups. In Proc. 45th
ACM Symp. on Theory of Computing, pages 447–456, 2013.

[12] M. Charikar, K. Makarychev, and Y. Makarychev. Near-optimal algorithms for maximum
constraint satisfaction problems. ACM Transactions on Algorithms, 5(3), 2009.

[13] I. Dinur and V. Guruswami. PCPs via low-degree long code and hardness for constrained
hypergraph coloring. In Proc. 54th IEEE Symp. on Foundations of Computer Science,
pages 340–349, 2013.

[14] R. O’Donnell E. Mossel and K. Oleszkiewicz. Noise stability of functions with low influences
invariance and optimality. In Proc. 46th IEEE Symp. on Foundations of Computer Science,
pages 21–30, 2005.

[15] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Interactive proofs and the
hardness of approximating cliques. Journal of the ACM, 43(2):268–292, 1996.

[16] Uriel Feige and László Lovász. Two-prover one-round proof systems: Their power and their
problems (extended abstract). In STOC, pages 733–744, 1992.

[17] Dima Grigoriev. Linear lower bound on degrees of Positivstellensatz calculus proofs for the
parity. Theoret. Comput. Sci., 259(1-2):613–622, 2001.

[18] V. Guruswami and A.K. Sinop. Lasserre hierarchy, higher eigenvalues, and approximation
schemes for quadratic integer programming with PSD objectives. In Proc. 52nd IEEE
Symp. on Foundations of Computer Science, pages 482–491, 2011.

[19] J. H̊astad. Clique is hard to approximate within n1−ϵ. Acta Mathematica, 182:105–142,
1999.

[20] J. H̊astad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859,
2001.

[21] S. Khot. Improved inapproximability results for maxclique, chromatic number and approx-
imate graph coloring. In Proc. 42nd IEEE Symp. on Foundations of Computer Science,
pages 600–609, 2001.

[22] S. Khot. On the power of unique 2-prover 1-round games. In Proc. 34th ACM Symp. on
Theory of Computing, pages 767–775, 2002.

[23] S. Khot. On the unique games conjecture (invited survey). In IEEE Conference on Com-
putational Complexity, pages 99–121, 2010.

[24] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for
MAX-CUT and other two-variable CSPs? SIAM Journal on Computing, 37(1):319–357,
2007.

[25] S. Khot and S. Safra. A two prover one round game with strong soundness. In Proc. 52nd
IEEE Symp. on Foundations of Computer Science, pages 648–657, 2011.

[26] S. Khot and N. K. Vishnoi. The unique games conjecture, integrality gap for cut prob-
lems and embeddability of negative type metrics into l1. In Proc. 46th IEEE Symp. on
Foundations of Computer Science, pages 53–62, 2005.

21



[27] Subhash Khot and Dana Moshkovitz. Np-hardness of approximately solving linear equa-
tions over reals. In STOC, pages 413–420, 2011.

[28] Subhash Khot and Rishi Saket. Sdp integrality gaps with local ℓ1-embeddability. In FOCS,
pages 565–574, 2009.

[29] A. Klivans, R. O’Donnell, and R. Servedio. Learning geometric concepts via gaussian
surface area. In Proc. 49th IEEE Symp. on Foundations of Computer Science, pages 541–
550, 2008.

[30] P. Raghavendra. Optimal algorithms and inapproximability results for every csp? In Proc.
40th ACM Symp. on Theory of Computing, pages 245–254, 2008.

[31] Prasad Raghavendra and David Steurer. Integrality gaps for strong sdp relaxations of
unique games. In FOCS, pages 575–585, 2009.

[32] A. Rao. Parallel repetition in projection games and a concentration bound. SIAM Journal
on Computing, 40(6):1871–1891, 2011.

[33] R. Raz. A parallel repetition theorem. In SIAM Journal on Computing, volume 27, pages
763–803, 1998.

[34] A. Samorodnitsky and L. Trevisan. Gowers uniformity, influence of variables, and PCPs.
SIAM Journal on Computing, 39(1):323–360, 2009.

[35] Grant Schoenebeck. Linear level lasserre lower bounds for certain k-csps. In FOCS, pages
593–602, 2008.

[36] Luca Trevisan. Approximation algorithms for unique games. Theory of Computing,
4(1):111–128, 2008.

[37] Luca Trevisan. On Khot’s unique games conjecture. Bull. Amer. Math. Soc. (N.S.),
49(1):91–111, 2012.

[38] M. Tulsiani. CSP gaps and reductions in the lasserre hierarchy. In Proc. 41st ACM Symp.
on Theory of Computing, pages 303–312, 2009.

22

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


