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Abstract

We present a list of parameterized problems together with a complexity classification of whether
they allow a fixed-parameter tractable reduction to SAT or not. These parameterized problems are
based on problems whose complexity lies at the second level of the Polynomial Hierarchy or higher.
The list will be updated as necessary.
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1 Preliminaries

The remarkable performance of today’s SAT solvers (see, e.g., [49]) offers a practically successful strategy
for solving NP-complete combinatorial problems by reducing them in polynomial time to SAT. In
order to apply this strategy to problems that are harder than NP, one needs to employ reductions
that are more powerful than polynomial-time reductions. A compelling option for such reductions are
fixed-parameter tractable reductions (i.e., reductions that are computable in time f(k)nO(1) for some
computable function f) as they can exploit some structural aspects of the problem instances in terms of
a problem parameter k. In this compendium, we give a list of parameterized problems that are based
on problems at higher levels of the Polynomial Hierarchy, together with a complexity classification of
whether they allow a (many-to-one or Turing) fpt-reduction to SAT or not.

The compendium that we provide is similar in concept to the compendia by Schaefer and Umans [46]
and Cesati [13], that also list problems along with their computational complexity. We group the list by
the type of problems. A list of problems grouped by their complexity can be found at the end of this
paper. First, we give an overview of the parameterized complexity classes involved in the classification of
whether problems allow an fpt-reduction to SAT.

Computational Complexity We assume that the reader is familiar with basic notions from the theory
of computational complexity, such as the complexity classes P and NP. For more details, we refer to
textbooks on the topic (cf. [3, 43]).

There are many natural decision problems that are not contained in the classical complexity classes P
and NP (under some common complexity-theoretic assumptions). The Polynomial Hierarchy [40, 43, 47,
50] contains a hierarchy of increasing complexity classes ΣP

i , for all i ≥ 0. We give a characterization
of these classes based on the satisfiability problem of various classes of quantified Boolean formulas. A
quantified Boolean formula is a formula of the form Q1X1Q2X2 . . . QmXmψ, where each Qi is either ∀
or ∃, the Xi are disjoint sets of propositional variables, and ψ is a Boolean formula over the variables
in

⋃m
i=1Xi. The quantifier-free part of such formulas is called the matrix of the formula. Truth of such

formulas is defined in the usual way. Let γ = {x1 7→ d1, . . . , xn 7→ dn} be a function that maps some
variables of a formula ϕ to other variables or to truth values. We let ϕ[γ] denote the application of such
a substitution γ to the formula ϕ. We also write ϕ[x1 7→ d1, . . . , xn 7→ dn] to denote ϕ[γ]. For each i ≥ 1
we define the following decision problem.

QSati
Instance: A quantified Boolean formula ϕ = ∃X1∀X2∃X3 . . . QiXiψ, where Qi is a universal
quantifier if i is even and an existential quantifier if i is odd.
Question: Is ϕ true?

Input formulas to the problem QSati are called ΣP
i -formulas. For each nonnegative integer i ≤ 0, the

complexity class ΣP
i can be characterized as the closure of the problem QSati under polynomial-time

reductions [47, 50]. The ΣP
i -hardness of QSati holds already when the matrix of the input formula is

restricted to 3CNF for odd i, and restricted to 3DNF for even i. Note that the class ΣP
0 coincides with P,

and the class ΣP
1 coincides with NP. For each i ≥ 1, the class ΠP

i is defined as co-ΣP
i .

The classes ΣP
i and ΠP

i can also be defined by means of nondeterministic Turing machines with
an oracle. For any complexity class C, we let NPC be the set of decision problems that is decided in
polynomial time by a nondeterministic Turing machine with an oracle for a problem that is complete for
the class C. Then, the classes ΣP

i and ΠP
i , for i ≥ 0, can be equivalently defined by letting ΣP

0 = ΠP
0 = P,

and for each i ≥ 1 letting ΣP
i = NPΣP

i−1 and ΠP
i = co-NPΣP

i−1 .
The Polynomial Hierarchy also includes complexity classes between ΣP

i and ΠP
i , on the one hand, and

ΣP
i+1 and ΠP

i+1, on the other hand. The class ∆P
i+1 consists of all decision problems that are decided in

polynomial time by a deterministic Turing machine with an oracle for a problem that is complete for the
class ΣP

i . Similarly, the class ΘP
i+1 consists of all decision problems that are decided in polynomial time

by a deterministic Turing machine with an oracle for a problem that is complete for the class ΣP
i , with

the restriction that the Turing machine is only allowed to make O(log n) oracle queries, where n is the
input size.

Many natural decision problems are located between NP and co-NP on the one hand, and ΘP
2 on the

other hand. The Boolean Hierarchy (BH) [12, 14, 36] consists of a hierarchy of complexity classes BHi, for
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each i ≥ 1, that can be used to classify the complexity of decision problems between NP and ΘP
2 . Each

class BHi can be characterized as the class of problems that can be reduced to the problem BHi-Sat,
which is defined inductively as follows. The problem BH1-Sat consists of all sequences (ϕ) of length 1,
where ϕ is a satisfiable propositional formula. For even i ≥ 2, the problem BHi-Sat consists of all
sequences (ϕ1, . . . , ϕi) of propositional formulas such that both (ϕ1, . . . , ϕi−1) ∈ BH(i−1)-Sat and ϕi is
unsatisfiable. For odd i ≥ 2, the problem BHi-Sat consists of all sequences (ϕ1, . . . , ϕi) of propositional
formulas such that (ϕ1, . . . , ϕi−1) ∈ BH(i−1)-Sat or ϕi is satisfiable. The class BH2 is also denoted
by DP, and the problem BH2-Sat is also denoted by SAT-UNSAT. The class BH is defined as the union
of all BHi, for i ≥ 1. It holds that NP ∪ co-NP ⊆ BH2 ⊆ BH3 ⊆ · · · ⊆ BH ⊆ ΘP

2 .

Parameterized Complexity We introduce some core notions from parameterized complexity theory.
For an in-depth treatment we refer to other sources [17, 18, 27, 42]. A parameterized problem L is
a subset of Σ∗ × N for some finite alphabet Σ. For an instance (I, k) ∈ Σ∗ × N, we call I the main
part and k the parameter. The following generalization of polynomial time computability is commonly
regarded as the main tractability notion of parameterized complexity theory. A parameterized problem L
is fixed-parameter tractable if there exists a computable function f and a constant c such that there exists
an algorithm that decides whether (I, k) ∈ L in time O(f(k)||I||c), where ||I|| denotes the size of I. Such
an algorithm is called an fpt-algorithm, and this amount of time is called fpt-time. FPT is the class of all
fixed-parameter tractable decision problems. If the parameter is constant, then fpt-algorithms run in
polynomial time where the order of the polynomial is independent of the parameter. This provides a
good scalability in the parameter in contrast to running times of the form ||I||k, which are also polynomial
for fixed k, but are already impractical for, say, k > 3. By XP we denote the class of all problems L for
which it can be decided whether (I, k) ∈ L in time O(||I||f(k)), for some fixed computable function f .

Parameterized complexity also generalizes the notion of polynomial-time reductions. Let L ⊆ Σ∗ × N
and L′ ⊆ (Σ′)∗ × N be two parameterized problems. A (many-one) fpt-reduction from L to L′ is a
mapping R : Σ∗ × N → (Σ′)∗ × N from instances of L to instances of L′ such that there exist some
computable function g : N→ N such that for all (I, k) ∈ Σ∗ × N: (i) (I, k) is a yes-instance of L if and
only if (I ′, k′) = R(I, k) is a yes-instance of L′, (ii) k′ ≤ g(k), and (iii) R is computable in fpt-time.
Similarly, we call reductions that satisfy properties (i) and (ii) but that are computable in time O(||I||f(k)),
for some fixed computable function f , xp-reductions.

The parameterized complexity classes W[t], t ≥ 1, W[SAT] and W[P] can be used to give evidence
that a given parameterized problem is not fixed-parameter tractable. These classes are based on the
satisfiability problems of Boolean circuits and formulas. We consider Boolean circuits with a single output
gate. We call input nodes variables. We distinguish between small gates, with fan-in ≤ 2, and large gates,
with fan-in > 2. The depth of a circuit is the length of a longest path from any variable to the output
gate. The weft of a circuit is the largest number of large gates on any path from a variable to the output
gate. We let Nodes(C) denote the set of all nodes of a circuit C. We say that a circuit C is in negation
normal form if all negation nodes in C have variables as inputs. A Boolean formula can be considered as
a Boolean circuit where all gates have fan-out ≤ 1. We adopt the usual notions of truth assignments and
satisfiability of a Boolean circuit. We say that a truth assignment for a Boolean circuit has weight k if it
sets exactly k of the variables of the circuit to true. We denote the class of Boolean circuits with depth u
and weft t by circt,u. We denote the class of all Boolean circuits by circ, and the class of all Boolean
formulas by form. For any class C of Boolean circuits, we define the following parameterized problem.

p-WSat[C]
Instance: A Boolean circuit C ∈ C, and an integer k.
Parameter: k.
Question: Does there exist an assignment of weight k that satisfies C?

We denote closure under fpt-reductions by [ · ]fpt. The classes W[t] are defined by letting W[t] =
[ { p-WSat[circt,u] : u ≥ 1 } ]fpt for all t ≥ 1. The classes W[SAT] and W[P] are defined by letting
W[SAT] = [ p-WSat[form] ]fpt and W[P] = [ p-WSat[circ] ]fpt.

Let K be a classical complexity class, e.g., NP. The parameterized complexity class para-K is defined
as the class of all parameterized problems L ⊆ Σ∗ × N, for some finite alphabet Σ, for which there exist
an alphabet Π, a computable function f : N→ Π∗, and a problem P ⊆ Σ∗ ×Π∗ such that P ∈ K and
for all instances (x, k) ∈ Σ∗ × N of L we have that (x, k) ∈ L if and only if (x, f(k)) ∈ P . Intuitively,
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the class para-K consists of all problems that are in K after a precomputation that only involves the
parameter. The class para-NP can also be defined via nondeterministic fpt-algorithms [26]. The class
para-K can be seen as a direct analogue of the class K in parameterized complexity.

We define the following (trivial) parameterization of SAT, the satisfiability problem for propositional
logic. We let Sat = { (ϕ, 1) : ϕ ∈ SAT }. In other words, Sat is the parameterized variant of SAT where
the parameter is the constant value 1. Similarly, we let Unsat = { (ϕ, 1) : ϕ ∈ UNSAT }. The problem
Sat is para-NP-complete, and the problem Unsat is para-co-NP-complete. In other words, the class
para-NP consists of all parameterized problems that can be fpt-reduced to Sat, and para-co-NP consists
of all parameterized problems that can be fpt-reduced to Unsat.

Another analogue to the classical complexity class K is the parameterized complexity class XKnu,
that is defined as the class of those parameterized problems P whose slices Pk are in K, i.e., for each
positive integer k the classical problem Pk = {x : (x, k) ∈ P } is in K [17]. For instance, the class XPnu

consists of those parameterized problems whose slices are decidable in polynomial time. Note that
this definition is non-uniform, that is, for each positive integer k there might be a completely different
polynomial-time algorithm that witnesses that Pk is polynomial-time solvable. There are also uniform
variants XK of these classes XKnu. We define XP to be the class of parameterized problems Q for which
there exists a computable function f and an algorithm A that decides whether (x, k) ∈ Q in time |x|f(k)

[17, 26, 27]. Similarly, we define XNP to be the class of parameterized problems that are decidable in
nondeterministic time |x|f(k). Its dual class we denote by Xco-NP. Alternatively, we can view XNP as
the class of parameterized problems for which there exists an xp-reduction to SAT and Xco-NP as the
class of parameterized problems for which there exists an xp-reduction to UNSAT.

Fpt-Reductions to SAT Problems in NP and co-NP can be encoded into SAT in such a way that
the time required to produce the encoding and consequently also the size of the resulting SAT instance
are polynomial in the input (the encoding is a polynomial-time many-one reduction). Typically, the
SAT encodings of problems proposed for practical use are of this kind (cf. [45]). For problems that are
“beyond NP,” say for problems on the second level of the PH, such polynomial SAT encodings do not exist,
unless the PH collapses. However, for such problems, there still could exist SAT encodings which can be
produced in fpt-time in terms of some parameter associated with the problem. In fact, such fpt-time
SAT encodings have been obtained for various problems on the second level of the PH [22, 25, 33, 44].
The classes para-NP and para-co-NP contain exactly those parameterized problems that admit such a
many-one fpt-reduction to Sat and Unsat, respectively. Thus, with fpt-time encodings, one can go
significantly beyond what is possible by conventional polynomial-time SAT encodings.

Fpt-time encodings to SAT also have their limits. Clearly, para-ΣP
2 -hard and para-ΠP

2 -hard parame-
terized problems do not admit fpt-time encodings to SAT, even when the parameter is a constant, unless
the PH collapses. There are problems that apparently do not admit fpt-time encodings to SAT, but
seem not to be para-ΣP

2 -hard nor para-ΠP
2 -hard either. Recently, several complexity classes have been

introduced to classify such intermediate problems [33, 34]. These parameterized complexity classes are
dubbed the k-∗ class and the ∗-k hierarchy, inspired by their definition, which is based on the following
weighted variants of the quantified Boolean satisfiability problem that is canonical for the second level of
the PH. Let C be a class of Boolean circuits. The problem ∃k∀∗-WSat(C) provides the foundation for
the k-∗ class.

∃k∀∗-WSat
Instance: A quantified Boolean formula ∃X.∀Y.ψ, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X with weight k such that for all truth
assignments β to Y the assignment α ∪ β satisfies ψ?

Similarly, the problem ∃∗∀k-WSat(C) provides the foundation for the ∗-k hierarchy.

∃∗∀k-WSat(C)
Instance: A Boolean circuit C ∈ C over two disjoint sets X and Y of variables, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X such that for all truth assignments β
to Y with weight k the assignment α ∪ β satisfies C?
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The parameterized complexity class ∃k∀∗ (also called the k-∗ class) is then defined as follows:

∃k∀∗ = [ ∃k∀∗-WSat ]fpt.

Similarly, the classes of the ∗-k hierarchy are defined as follows:

∃∗∀k-W[t] = [ { ∃∗∀k-WSat(circt,u) : u ≥ 1 } ]fpt,

∃∗∀k-W[SAT] = [ ∃∗∀k-WSat(form) ]fpt, and

∃∗∀k-W[P] = [ ∃∗∀k-WSat(circ) ]fpt.

Note that these definitions are entirely analogous to those of the parameterized complexity classes of the
W-hierarchy [17]. The following inclusion relations hold between the classes of the ∗-k hierarchy:

∃∗∀k-W[1] ⊆ ∃∗∀k-W[2] ⊆ · · · ⊆ ∃∗∀k-W[SAT] ⊆ ∃∗∀k-W[P].

Dual to the classical complexity class ΣP
2 is its co-class ΠP

2 , whose canonical complete problem is
complementary to the problem QSat2. Similarly, we can define dual classes for the k-∗ class and for
each of the parameterized complexity classes in the ∗-k hierarchy. These co-classes are based on problems
complementary to the problems ∃k∀∗-WSat and ∃∗∀k-WSat, i.e., these problems have as yes-instances
exactly the no-instances of ∃k∀∗-WSat and ∃∗∀k-WSat, respectively. Equivalently, these complementary
problems can be considered as variants of ∃k∀∗-WSat and ∃∗∀k-WSat where the existential and universal
quantifiers are swapped, and are therefore denoted with ∀k∃∗-WSat and ∀∗∃k-WSat. We use a similar
notation for the dual complexity classes, e.g., we denote co-∃∗∀k-W[t] by ∀∗∃k-W[t].

The class ∃k∀∗ includes the class para-co-NP as a subset, and is contained in the class Xco-NP as
a subset. Similarly, each of the classes ∃∗∀k-W[t] include the the class para-NP as a subset, and is
contained in the class XNP. Under some common complexity-theoretic assumptions, the class ∃k∀∗ can
be separated from para-NP on the one hand, and para-ΣP

2 on the other hand. In particular, assuming
that NP 6= co-NP, it holds that ∃k∀∗ 6⊆ para-NP, that para-NP 6⊆ ∃k∀∗ and that ∃k∀∗ ( para-ΣP

2

[33, 34]. Similarly, the classes ∃∗∀k-W[t] can be separated from para-co-NP and para-ΣP
2 . Assuming

that NP 6= co-NP, it holds that ∃∗∀k-W[1] 6⊆ para-co-NP, that para-co-NP 6⊆ ∃∗∀k-W[P] and thus in
particular that para-co-NP 6⊆ ∃∗∀k-W[1], and that ∃∗∀k-W[P] ( para-ΣP

2 [33, 34].
One can also enhance the power of polynomial-time SAT encodings by considering polynomial-time

algorithms that can query a SAT solver multiple times. Such an approach has been shown to be quite
effective in practice (see, e.g., [6, 19, 39]) and extends the scope of SAT solvers to problems in the class ∆P

2 ,
but not to problems that are ΣP

2 -hard or ΠP
2 -hard. Also here, switching from polynomial-time to fpt-time

provides a significant increase in power. The class para-∆P
2 contains all parameterized problems that can

be decided by an fpt-algorithm that can query a SAT solver multiple times (i.e., by an fpt-time Turing
reduction to SAT). In addition, one could restrict the number of queries that the algorithm is allowed to
make. The class para-ΘP

2 consists of all parameterized problems that can de decided by an fpt-algorithm
that can query a SAT solver at most f(k) log n many times, where k is the parameter value, n is the
input size, and f is some computable function. Restricting the number of queries even further, we define
the parameterized complexity class FPTNP[f(k)] as the class of all parameterized problems that can be
decided by an fpt-algorithm that can query a SAT solver at most f(k) times, where k is the parameter
value and f is some computable function [32, 34].

2 Propositional Logic Problems

We start with the quantified circuit satisfiability problems on which the k-∗ and ∗-k hierarchies are based.
We present only a two canonical forms of the problems in the k-∗ hierarchy. For problems in the ∗-k
hierarchy, we let C range over classes of Boolean circuits.

∃k∀∗-WSat(C)
Instance: A Boolean circuit C ∈ C over two disjoint sets X and Y of variables, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X of weight k, such that for all truth
assignments β to Y the assignment α ∪ β satisfies C?

Complexity: ∃k∀∗-complete [33, 34].
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Figure 1: An overview of parameterized complexity classes up to the second level of the Polynomial
Hierarchy

∃k∀∗-WSat
Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X with weight k, such that ∀Y.ψ[α]
evaluates to true?

Complexity: ∃k∀∗-complete [33, 34].

∃k∀∗-WSat(3DNF)
Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ with ψ ∈ 3DNF, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X with weight k, such that ∀Y.ψ[α]
evaluates to true?

Complexity: ∃k∀∗-complete [33, 34].
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∃∗∀k-WSat(C)
Instance: A Boolean circuit C ∈ C over two disjoint sets X and Y of variables, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X, such that for all truth assignments β
to Y of weight k the assignment α ∪ β satisfies C?

Complexity:
∃∗∀k-W[t]-complete when restricted to circuits of weft t, for any t ≥ 1 (by definition);
∃∗∀k-W[SAT]-complete if C = form (by definition);
∃∗∀k-W[P]-complete if C = circ (by definition).

2.1 Weighted Quantified Boolean Satisfiability in the ∗-k Hierarchy

Consider the following variants of ∃k∀∗-WSat, most of which are ∃k∀∗-complete.

∃≤k∀∗-WSat
Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ, and an integer k.
Parameter: k.
Question: Does there exist an assignment α to X with weight at most k, such that ∀Y.ψ[α]
evaluates to true?

Complexity: ∃k∀∗-complete [34].

∃≥k∀∗-WSat
Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ, and an integer k.
Parameter: k.
Question: Does there exist an assignment α to X with weight at least k, such that ∀Y.ψ[α]
evaluates to true?

Complexity: para-ΣP
2 -complete [34].

∃n−k∀∗-WSat
Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ, and an integer k.
Parameter: k.
Question: Does there exist an assignment α to X with weight |X| − k, such that ∀Y.ψ[α]
evaluates to true?

Complexity: ∃k∀∗-complete [34].

2.2 Weighted Quantified Boolean Satisfiability for the k-∗ Classes

The following variant of ∃∗∀k-WSat is ∃∗∀k-W[1]-complete.

∃∗∀k-WSat(2DNF)
Instance: A quantified Boolean formula ϕ = ∃X.∀Y.ψ with ψ ∈ 2DNF, and an integer k
Parameter: k.
Question: Does there exist an assignment α to X, such that for all assignments β to Y of
weight k the assignment α ∪ β satisfies ψ?

Complexity: ∃∗∀k-W[1]-complete [33, 34].

Let d ≥ 2 be an arbitrary constant. Then the following problem is also ∃∗∀k-W[1]-complete.
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∃∗∀k-WSat(d-DNF)
Instance: A quantified Boolean formula ϕ = ∃X.∀Y.ψ with ψ ∈ d-DNF, and an integer k
Parameter: k.
Question: Does there exist an assignment α to X, such that for all assignments β to Y of
weight k the assignment α ∪ β satisfies ψ?

Complexity: ∃∗∀k-W[1]-complete [33, 34].

The problem ∃∗∀k-WSat(2-DNF) is ∃∗∀k-W[1]-hard, even when we restrict the input formula to
be anti-monotone in the universal variables, i.e., the universal variables occur only in negative literals
[33, 34].

Let C be a Boolean circuit with input nodes Z that is in negation normal form, and let Y ⊆ Z be
a subset of the input nodes. We say that C is monotone in Y if the only negation nodes that occur in
the circuit C act on input nodes in Z\Y , i.e., input nodes in Y can appear only positively in the circuit.
Similarly, we say that C is anti-monotone in Y if the only nodes that have input nodes in Y as input are
negatio nodes, i.e., all input nodes in Y appear only negatively in the circuit. The following problems are
∃∗∀k-W[P]-complete.

∃∗∀k-WSat(∀-monotone)
Instance: A Boolean circuit C ∈ circ over two disjoint sets X and Y of variables, that is in
negation normal form and that is monotone in Y , and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X, such that for all truth assignments β
to Y of weight k the assignment α ∪ β satisfies C?

Complexity: ∃∗∀k-W[P]-complete [34].

∃∗∀k-WSat(∀-anti-monotone)
Instance: A Boolean circuit C ∈ circ over two disjoint sets X and Y of variables, that is in
negation normal form and that is anti-monotone in Y , and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X, such that for all truth assignments β
to Y of weight k the assignment α ∪ β satisfies C?

Complexity: ∃∗∀k-W[P]-complete [34].

2.3 Quantified Boolean Satisfiability with Bounded Treewidth

Let ψ = δ1 ∨ · · · ∨ δu be a DNF formula. For any subset Z ⊆ Var(ψ) of variables, we define the incidence
graph IG(Z,ψ) of ψ with respect to Z to be the graph IG(Z,ψ) = (V,E), where V = Z ∪ {δ1, . . . , δu}
and E = { {δj , z} : 1 ≤ j ≤ u, z ∈ Z, z occurs in the clause δj }. If ψ is a DNF formula, Z ⊆ Var(ψ) is a
subset of variables, and (T , (Bt)t∈T ) is a tree decomposition of IG(Z,ψ), we let Var(t) denote Bt ∩Z, for
any t ∈ T .

A tree decomposition of a graph G = (V,E) is a pair (T , (Bt)t∈T ) where T = (T, F ) is a rooted tree
and (Bt)t∈T is a family of subsets of V such that:

• for every v ∈ V , the set B−1(v) = { t ∈ T : v ∈ Bt } is nonempty and connected in T ; and

• for every edge {v, w} ∈ E, there is a t ∈ T such that v, w ∈ Bt.

The width of the decomposition (T , (Bt)t∈T ) is the number max{ |Bt| : t ∈ T } − 1. The treewidth of G
is the minimum of the widths of all tree decompositions of G. Let G be a graph and k a nonnegative
integer. There is an fpt-algorithm that computes a tree decomposition of G of width k if it exists, and
fails otherwise [10]. We call a tree decomposition (T , (Bt)t∈T ) nice if every node t ∈ T is of one of the
following four types:

• leaf node: t has no children and |Bt| = 1;
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• introduce node: t has one child t′ and Bt = Bt′ ∪ {v} for some vertex v 6∈ Bt′ ;

• forget node: t has one child t′ and Bt = Bt′\{v} for some vertex v ∈ Bt′ ; or

• join node: t has two children t1, t2 and Bt = Bt1 = Bt2 .

Given any graph G and a tree decomposition of G of width k, a nice tree decomposition of G of width k
can be computed in polynomial time [37].

The following parameterized decision problems are variants of QSat2, where the treewidth of the
incidence graph graph for certain subsets of variables is bounded.

∃∀-Sat(incid.tw)
Instance: A quantified Boolean formula ϕ = ∃X.∀Y.ψ, with ψ in DNF.
Parameter: The treewidth of the incidence graph IG(X ∪ Y, ψ) of ψ with respect to X ∪ Y .
Question: Is ϕ satisfiable?

Complexity: fixed-parameter tractable [15, 24].

∃∀-Sat(∃-incid.tw)
Instance: A quantified Boolean formula ϕ = ∃X.∀Y.ψ, with ψ in DNF.
Parameter: The treewidth of the incidence graph IG(X,ψ) of ψ with respect to X.
Question: Is ϕ satisfiable?

Complexity: para-ΣP
2 -complete [32, 34].

∃∀-Sat(∀-incid.tw)
Instance: A quantified Boolean formula ϕ = ∃X.∀Y.ψ, with ψ in DNF.
Parameter: The treewidth of the incidence graph IG(Y, ψ) of ψ with respect to Y .
Question: Is ϕ satisfiable?

Complexity: para-NP-complete [32, 34].

The above problems are parameterized by the treewidth of the incidence graph of the formula ψ (with
respect to different subsets of variables). Since computing the treewidth of a given graph is NP-complete,
it is unlikely that the parameter value can be computed in polynomial time for these problems. However,
computing the treewidth (and a tree decomposition) of a graph is fixed-parameter tractable in the
treewidth [10, 27]. Alternatively, one could consider a variant of the problem where a tree decomposition
of width k is given as part of the input.

2.4 Other Quantified Boolean Satisfiability

The following parameterized quantified Boolean satisfiability problem is para-NP-complete.

QBF-Sat(#∀-vars)
Instance: A quantified Boolean formula ϕ.
Parameter: The number of universally quantified variables of ϕ.
Question: Is ϕ true?

Complexity: para-NP-complete [4, 7, 32].

2.5 Minimization for DNF Formulas

Let ϕ be a propositional formula in DNF. We say that a set C of literals is an implicant of ϕ if all
assignments that satisfy

∧
l∈C l also satisfy ϕ. Moreover, we say that a DNF formula ϕ′ is a term-wise

subformula of ϕ′ if for all terms t′ ∈ ϕ′ there exists a term t ∈ ϕ such that t′ ⊆ t. The following parame-
terized problems are natural parameterizations of problems shown to be ΣP

2 -complete by Umans [48].
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Shortest-Implicant-Core(core size)
Instance: A DNF formula ϕ, an implicant C of ϕ, and an integer k.
Parameter: k.
Question: Does there exists an implicant C ′ ⊆ C of ϕ of size k?

Complexity: ∃k∀∗-complete [32, 34].

Shortest-Implicant-Core(reduction size)
Instance: A DNF formula ϕ, an implicant C of ϕ of size n, and an integer k.
Parameter: k.
Question: Does there exists an implicant C ′ ⊆ C of ϕ of size n− k?

Complexity: ∃k∀∗-complete [32, 34].

DNF-Minimization(reduction size)
Instance: A DNF formula ϕ of size n, and an integer k.
Parameter: k.
Question: Does there exist a term-wise subformula ϕ′ of ϕ of size n− k such that ϕ ≡ ϕ′?
Complexity: ∃k∀∗-complete [32, 34].

DNF-Minimization(core size)
Instance: A DNF formula ϕ of size n, and an integer k.
Parameter: k.
Question: Does there exist an DNF formula ϕ′ of size k, such that ϕ ≡ ϕ′?

Complexity: para-co-NP-hard, in FPTNP[f(k)], and in ∃k∀∗ [32, 34].

2.6 Sequences of Propositional Formulas

The following problem is related to a Boolean combination of satisfiability checks on a sequence of
propositional formulas. This is a parameterized version of the problem BHi-Sat, which is canonical
for the different levels of the Boolean Hierarchy (see Section 1). The problem is complete for the class
FPTNP[f(k)].

BH-Sat(level)
Instance: a positive integer k and a sequence (ϕ1, . . . , ϕk) of propositional formulas.
Parameter: k.
Question: is it the case that (ϕ1, . . . , ϕk) ∈ BHk-Sat?

Complexity: FPTNP[f(k)]-complete [23].

The above problem is used to show the following lower bound result for FPTNP[f(k)]-complete problems.
No FPTNP[f(k)]-hard problem can be decided by an fpt-algorithm that uses only O(1) many queries to
an NP oracle, unless the Polynomial Hierarchy collapses [23].

3 Knowledge Representation and Reasoning Problems

3.1 Disjunctive Answer Set Programming

The following problems from the setting of disjunctive answer set programming (ASP) are based on the
notions of disjunctive logic programs and answer sets for such programs (cf. [11, 38]). A disjunctive
logic program P is a finite set of rules of the form r = (a1 ∨ · · · ∨ ak ← b1, . . . , bm, not c1, . . . ,not cn),
for k,m, n ≥ 0, where all ai, bj and cl are atoms. A rule is called disjunctive if k > 1, and it is called
normal if k ≤ 1 (note that we only call rules with strictly more than one disjunct in the head disjunctive).
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A rule is called dual-Horn if m ≤ 1. A program is called normal if all its rules are normal, it is called
negation-free if all its rules are negation-free, and it is called dual-Horn if all its rules are dual-Horn. We
let At(P ) denote the set of all atoms occurring in P . By literals we mean atoms a or their negations not a.
The (GL) reduct of a program P with respect to a set M of atoms, denoted PM , is the program obtained
from P by: (i) removing rules with not a in the body, for each a ∈M , and (ii) removing literals not a
from all other rules [28]. An answer set A of a program P is a subset-minimal model of the reduct PA.
One important decision problem is to decide, given a disjunctive logic program P , whether P has an
answer set. We consider the following parameterizations of this problem.

ASP-consistency(#cont.atoms)
Instance: A disjunctive logic program P .
Parameter: The number of contingent atoms of P .
Question: Does P have an answer set?

Complexity: para-co-NP-complete [33, 34].

ASP-consistency(#cont.rules)
Instance: A disjunctive logic program P .
Parameter: The number of contingent rules of P .
Question: Does P have an answer set?

Complexity: ∃k∀∗-complete [33, 34].

ASP-consistency(#disj.rules)
Instance: A disjunctive logic program P .
Parameter: The number of disjunctive rules of P .
Question: Does P have an answer set?

Complexity: ∃∗∀k-W[P]-complete [34].

ASP-consistency(#dual-Horn.rules)
Instance: A disjunctive logic program P .
Parameter: The number of rules of P that are dual-Horn.
Question: Does P have an answer set?

Complexity: ∃∗∀k-W[P]-complete [30].

ASP-consistency(str.norm.bd-size)
Instance: A disjunctive logic program P .
Parameter: The size of the smallest normality-backdoor for P .
Question: Does P have an answer set?

Complexity: para-NP-complete [25].

ASP-consistency(max.atom.occ.)
Instance: A disjunctive logic program P .
Parameter: The maximum number of times that any atom occurs in P .
Question: Does P have an answer set?

Complexity: para-ΣP
2 -complete [33, 34].

3.2 Robust Constraint Satisfaction

The following problem is based on the class of robust constraint satisfaction problems introduced by
Gottlob [29] and Abramsky, Gottlob and Kolaitis [1]. These problems are concerned with the question of
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whether every partial assignment of a particular size can be extended to a full solution, in the setting of
constraint satisfaction problems.

A CSP instance N is a triple (X,D,C), where X is a finite set of variables, the domain D is a finite
set of values, and C is a finite set of constraints. Each constraint c ∈ C is a pair (S,R), where S = Var(c),
the constraint scope, is a finite sequence of distinct variables from X, and R, the constraint relation, is a
relation over D whose arity matches the length of S, i.e., R ⊆ Dr where r is the length of S.

Let N = (X,D,C) be a CSP instance. A partial instantiation of N is a mapping α : X ′ → D defined
on some subset X ′ ⊆ X. We say that α satisfies a constraint c = ((x1, . . . , xr), R) ∈ C if Var(c) ⊆ X ′

and (α(x1), . . . , α(xr)) ∈ R. If α satisfies all constraints of N then it is a solution of N . We say that α
violates a constraint c = ((x1, . . . , xr), R) ∈ C if there is no extension β of α defined on X ′ ∪Var(c) such
that (β(x1), . . . , β(xr)) ∈ R.

Let k be a positive integer. We say that a CSP instance N = (X,D,C) is k-robustly satisfiable if
for each instantiation α : X ′ → D defined on some subset X ′ ⊆ X of k many variables (i.e., |X ′| = k)
that does not violate any constraint in C, it holds that α can be extended to a solution for the CSP
instance (X,D,C).

Robust-CSP-Sat
Instance: A CSP instance (X,D,C), and an integer k.
Parameter: k.
Question: Is (X,D,C) k-robustly satisfiable?

Complexity: ∀k∃∗-complete [33, 34].

3.3 Abductive Reasoning

The setting of (propositional) abductive reasoning can be formalized as follows. An abduction instance P
consists of a tuple (V,H,M, T ), where V is the set of variables, H ⊆ V is the set of hypotheses, M ⊆ V is
the set of manifestations, and T is the theory, a formula in CNF over V . It is required that M ∩H = ∅.
A set S ⊆ H is a solution (or explanation) of P if (i) T ∪S is consistent and (ii) T ∪S |= M . One central
problem is to decide, given an abduction instance P and an integer m, whether there exists a solution S
of P of size at most m. This problem is ΣP

2 -complete in general [20].

Abduction(Krom-bd-size):
Input: an abduction instance P = (V,H,M, T ), and a positive integer m.
Parameter: The size of the smallest strong 2CNF-backdoor for T .
Question: Does there exist a solution S of P of size at most m?

Complexity: para-NP-complete [44].

Abduction(#non-Krom-clauses):
Input: an abduction instance P = (V,H,M, T ), and a positive integer m.
Parameter: The number of clauses in T that contains more than 2 literals.
Question: Does there exist a solution S of P of size at most m?

Complexity: ∃∗∀k-W[1]-complete [31].

Abduction(Horn-bd-size):
Input: an abduction instance P = (V,H,M, T ), and a positive integer m.
Parameter: The size of the smallest strong Horn-backdoor for T .
Question: Does there exist a solution S of P of size at most m?

Complexity: para-NP-complete [44].
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Abduction(#non-Horn-clauses):
Input: an abduction instance P = (V,H,M, T ), and a positive integer m.
Parameter: The number of clauses in T that are not Horn.
Question: Does there exist a solution S of P of size at most m?

Complexity: ∃∗∀k-W[P]-complete [31].

4 Graph Problems

4.1 Clique Extensions

Let G = (V,E) be a graph. A clique C ⊆ V of G is a subset of vertices that induces a complete subgraph
of G, i.e. {v, v′} ∈ E for all v, v′ ∈ C such that v 6= v′. The W[1]-complete problem of determining
whether a graph has a clique of size k is an important problem in the W-hierarchy, and is used in many
W[1]-hardness proofs. We consider a related problem that is complete for ∀∗∃k-W[1].

Small-Clique-Extension
Instance: A graph G = (V,E), a subset V ′ ⊆ V , and an integer k.
Parameter: k.
Question: Is it the case that for each clique C ⊆ V ′, there is some k-clique D of G such
that C ∪D is a (|C|+ k)-clique?

Complexity: ∀∗∃k-W[1]-complete [34].

4.2 Graph Coloring Extensions

The following problem related to extending colorings to the leaves of a graph to a coloring on the entire
graph, is ΠP

2 -complete in the most general setting [2].
Let G = (V,E) be a graph. We will denote those vertices v that have degree 1 by leaves. We call a

(partial) function c : V → {1, 2, 3} a 3-coloring (of G). Moreover, we say that a 3-coloring c is proper
if c assigns a color to every vertex v ∈ V , and if for each edge e = {v1, v2} ∈ E holds that c(v1) 6= c(v2).
The problem of deciding, given a graph G = (V,E) with n many leaves and an integer m, whether any
3-coloring that assigns a color to exactly m leaves of G (and to no other vertices) can be extended to a
proper 3-coloring of G, is ΠP

2 -complete [2]. We consider several parameterizations.

3-Coloring-Extension(degree)
Instance: a graph G = (V,E) with n many leaves, and an integer m.
Parameter: the degree of G.
Question: can any 3-coloring that assigns a color to exactly m leaves of G (and to no other
vertices) be extended to a proper 3-coloring of G?

Complexity: para-ΠP
2 -complete [34, 35].

3-Coloring-Extension(#leaves)
Instance: a graph G = (V,E) with n many leaves, and an integer m.
Parameter: n.
Question: can any 3-coloring that assigns a color to exactly m leaves of G (and to no other
vertices) be extended to a proper 3-coloring of G?

Complexity: para-NP-complete [34, 35].
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3-Coloring-Extension(#col.leaves)
Instance: a graph G = (V,E) with n many leaves, and an integer m.
Parameter: m.
Question: can any 3-coloring that assigns a color to exactly m leaves of G (and to no other
vertices) be extended to a proper 3-coloring of G?

Complexity: ∀k∃∗-complete [34, 35].

3-Coloring-Extension(#uncol.leaves)
Instance: a graph G = (V,E) with n many leaves, and an integer m.
Parameter: n−m.
Question: can any 3-coloring that assigns a color to exactly m leaves of G (and to no other
vertices) be extended to a proper 3-coloring of G?

Complexity: para-ΠP
2 -complete [34, 35].

5 Other Problems

5.1 First-order Model Checking

First-order model checking is at the basis of a well-known hardness theory in parameterized complexity
theory [27]. The following problem, also based on first-order model checking, offers another characteriza-
tion of the parameterized complexity class ∃k∀∗. We introduce a few notions that we need for defining
the model checking perspective on ∃k∀∗. A (relational) vocabulary τ is a finite set of relation symbols.
Each relation symbol R has an arity arity(R) ≥ 1. A structure A of vocabulary τ , or τ -structure (or
simply structure), consists of a set A called the domain and an interpretation RA ⊆ Aarity(R) for each
relation symbol R ∈ τ . We use the usual definition of truth of a first-order logic sentence ϕ over the
vocubulary τ in a τ -structure A. We let A |= ϕ denote that the sentence ϕ is true in structure A. If ϕ
is a first-order formula with free variables Free(ϕ), and µ : Free(ϕ) → A is an assignment, we use the
notation A, µ |= ϕ to denote that ϕ is true in structure A under the assignment µ.

∃k∀∗-MC
Instance: A first-order logic sentence ϕ = ∃x1, . . . , xk.∀y1, . . . , yn.ψ over a vocabulary τ ,
where ψ is quantifier-free, and a finite τ -structure A.
Parameter: k.
Question: Is it the case that A |= ϕ?

Complexity: ∃k∀∗-complete [34, 35].

5.2 Bounded Model Checking

The following problem is concerned with the problem of verifying whether a linear temporal logic formula
is satisfied on all paths in a Kripke structure. This problem is of importance in the area of software and
hardware verification [8]. Linear temporal logic (LTL) is a modal temporal logic where one can encode
properties related to the future of paths. LTL formulas are defined recursively as follows: propositional
variables and their negations are in LTL; then, if ϕ1, ϕ2 ∈ LTL, then so are ϕ1 ∨ ϕ2, Fϕ1 (Future), Xϕ1

(neXt), ϕ1Uϕ2 (ϕ1 Until ϕ2). (Further temporal operators that are considered in the literature can be
defined in terms of the operators X and U.)

The semantics of LTL is defined along paths of Kripke structures. A Kripke structure is a tuple K =
(S, I, T, L) such that (i) S is a set of states, where states are defined by valuations to a set V of propositional
variables, (ii) I ⊆ S is a nonempty set of initial states, (iii) T ⊆ S × S is the transition relation and
(iv) L : S → 2V is the labeling function. The initial states I and the transition relation T are given as
functions in terms of S. A path π of K is an infinite sequence (s0, s1, s2, . . . ) of states, where si ∈ S
and T (si, si+1) for all i ∈ N. A path is initialized if s0 ∈ I. We let π(i) = si denote the i-th state of π. A
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suffix of a path is defined as πi = (si, si+1, . . . ). We give the standard semantics of LTL formulas, defined
recursively over the formula structure. We closely follow the definitions as given by Biere [8]. In what
cases an LTL formula ϕ holds along a path πi, written πi |= ϕ, is specified by the following conditions:

πi |= v ∈ V iff v ∈ L(π(i)), πi |= ¬v iff v 6∈ L(π(i)),
πi |= ϕ1 ∨ ϕ2 iff πi |= ϕ1 or πi |= ϕ2, πi |= Xϕ iff πi+1 |= ϕ,
πi |= Fϕ iff for some j ∈ N, πi+j |= ϕ, πi |= ϕ1Uϕ2 iff for some j ∈ N, πi+j |= ϕ2 and

π` |= ϕ1 for all i ≤ ` < i+ j.

Then, an LTL formula ϕ holds in a Kripke structure K if and only if π |= ϕ for all initialized paths π
of K. Related to the model checking problem is the question whether a witness exists: a formula ϕ has a
witness in K if there is an initialized path π of K with π |= ϕ.

The idea of bounded model checking is to consider only those paths that can be represented by a prefix
of length at most k, and prefixes of length k. Observe that some infinite paths can be represented by a
finite prefix with a “loop”: an infinite path is a (k, l)-lasso if π(k + 1 + j) = π(l + j), for all j ∈ N. In
fact, the search for witnesses can be restricted to lassos if K is finite. This leads to the following bounded
semantics. In what cases an LTL formula ϕ holds along a suffix πi of a (k, l)-lasso π in the bounded
semantics, written πi |=k ϕ, is specified by the following conditions:

πi |=k Xϕ iff

{
πi+1 |=k ϕ if i < k,

πl |=k ϕ if i = k,

πi |=k Fϕ iff for some j ∈ {min(i, l), . . . , k}, πj |=k ϕ,
πi |=k ϕ1Uϕ2 iff for some j ∈ {min(i, l), . . . , k}, πj |=k ϕ2,

and

{
π` |=k ϕ1 for all i ≤ ` < k and all l ≤ ` < j if j < i,

π` |=k ϕ1 for all l ≤ ` < j if j ≥ i.

In the case where π is not a (k, l)-lasso for any l, the bounded semantics only gives an approximation.
In what cases an LTL formula ϕ holds along a suffix πi of a path π that is not a (k, l)-lasso for any l,
written πi |=k ϕ, is specified by the following conditions:

πi |=k Xϕ iff πi+1 |=k ϕ and i < k,
πi |=k Fϕ iff for some j ∈ {i, . . . , k}, πj |=k ϕ,
πi |=k ϕ1Uϕ2 iff for some j ∈ {i, . . . , k}, πj |=k ϕ2,

and π` |=k ϕ1 for all i ≤ ` < j.

Note that π |=k ϕ implies π |= ϕ for all paths π. However, it might be the case that π |= ϕ but not π |=k ϕ.
For a detailed definition and discussion of Kripke structures and the syntax and semantics of LTL

we refer to other sources [5, 16]. For a detailed definition of the bounded semantics for LTL formulas,
we refer to the bounded model checking literature [8, 9]. The following problem, that we consider as a
parameterized problem, is central to bounded model checking.

BMC-Witness
Instance: An LTL formula ϕ, a Kripke structure K, and an integer k ≥ 1.
Parameter: k.
Question: Is there some path π of K such that π |=k ϕ?

Complexity: in para-NP [9].

The unparameterized variant of this problem is PSPACE-complete, when the integer k is given in
binary [5, Theorem 5.46 and Lemma 5.47]. However, if the integer k is given in unary, the unparameterized
variant of this problem is NP-complete [5, 9].

5.3 Quantified Fagin Definability

The W-hierarchy can also be defined by means of Fagin-definable parameterized problems [27], which are
based on Fagin’s characterization of NP. We provide an additional characterization of the class ∀k∃∗ by
means of some parameterized problems that are quantified analogues of Fagin-defined problems.
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Let τ be an arbitrary vocabulary, and let τ ′ ⊆ τ be a subvocabulary of τ . We say that a τ -structure A
extends a τ ′-structure B if (i) A and B have the same domain, and (ii) A and B coincide on the
interpretation of all relational symbols in τ ′, i.e. RA = RB for all R ∈ τ ′. We say that A extends B with
weight k if

∑
R∈τ\τ ′ |RA| = k. Let ϕ be a first-order formula over τ with a free relation variable X of

arity s.
We let Π2 denote the class of all first-order formulas of the form ∀y1, . . . , yn.∃x1, . . . , xm.ψ, where ψ

is quantifier-free. Let ϕ(X) be a first-order formula over τ , with a free relation variable X with arity s.
Consider the following parameterized problem.

∀k∃∗-FD(τ,τ ′)
ϕ

Instance: A τ ′-structure B, and an integer k.
Parameter: k.
Question: Is it the case that for each τ -structure A extending B with weight k, there exists
some relation S ⊆ As such that A |= ϕ(S)?

Complexity:
in ∀k∃∗ for each ϕ(X), τ ′ and τ ; ∀k∃∗-hard for some ϕ(X) ∈ Π2, τ ′ and τ [34].

Note that this means the following. We let T denote the set of all relational vocabularies, and for
any τ ∈ T we let FOX

τ denote the set of all first-order formulas over the vocabulary τ with a free relation
variable X. We then get the following characterization of ∀k∃∗ [34]:

∀k∃∗ = [ { ∀k∃∗-FD(τ ′,τ)
ϕ : τ ∈ T, τ ′ ⊆ τ, ϕ ∈ FOX

τ } ]fpt.

Additionally, the following parameterized problem is hard for ∀∗∃k-W[1].

∀∗∃k-FD(τ,τ ′)
ϕ

Instance: A τ ′-structure B, and an integer k.
Parameter: k.
Question: Is it the case that for each τ -structure A extending B, there exists some relation S ⊆
As with |S| = k such that A |= ϕ(S)?

Complexity: ∀∗∃k-W[1]-hard for some ϕ(X) ∈ Π2 [34].

5.4 Computational Social Choice

The following problems are related to judgment aggregation, in the domain of computational social
choice. Judgment aggregation studies procedures that combine individuals’ opinions into a collective
group opinion.

An agenda is a finite nonempty set Φ = {ϕ1, . . . , ϕn,¬ϕ1, . . . ,¬ϕn} of formulas that is closed under
complementation. A judgment set J for an agenda Φ is a subset J ⊆ Φ. We call a judgment set J complete
if ϕi ∈ J or ¬ϕi ∈ J for all formulas ϕi, and we call it consistent if there exists an assignment that makes
all formulas in J true. Let J (Φ) denote the set of all complete and consistent subsets of Φ. We call
a sequence J ∈ J (Φ)n of complete and consistent subsets a profile. A (resolute) judgment aggregation
procedure for the agenda Φ and n individuals is a function F : J (Φ)n → P(Φ\∅)\∅ that returns for each
profile J a non-empty set F (J) of non-empty judgment sets. An example is the majority rule Fmaj,
where Fmaj(J) = {J∗} and where ϕ ∈ J∗ if and only if ϕ occurs in the majority of judgment sets in J , for
each ϕ ∈ Φ. We call F complete and consistent, if each J∗ ∈ F (J) is complete and consistent, respectively,
for every J ∈ J (Φ)n. For instance, the majority rule Fmaj is complete, whenever the number n of
individuals is odd. An agenda Φ is safe with respect to an aggregation procedure F , if F is consistent
when applied to profiles of judgment sets over Φ. We say that an agenda Φ satisfies the median property
(MP) if every inconsistent subset of Φ has itself an inconsistent subset of size at most 2. Safety for the
majority rule can be characterized in terms of the median property as follows: an agenda Φ is safe for
the majority rule if and only if Φ satisfies the MP [21, 41]. The problem of deciding whether an agenda
satisfies the MP is ΠP

2 -complete [21].
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Maj-Agenda-Safety(formula size)
Instance: An agenda Φ.
Parameter: ` = max{ |ϕ| : ϕ ∈ Φ }.
Question: Is Φ safe for the majority rule?

Complexity: para-ΠP
2 -complete [22, 23].

Maj-Agenda-Safety(degree)
Instance: An agenda Φ containing only CNF formulas.
Parameter: The degree d of Φ.
Question: Is Φ safe for the majority rule?

Complexity: para-ΠP
2 -complete [22, 23].

Maj-Agenda-Safety(degree + formula size)
Instance: An agenda Φ containing only CNF formulas, where ` = max{ |ϕ| : ϕ ∈ B(Φ) }, and
where d is the degree of Φ.
Parameter: `+ d.
Question: Is Φ safe for the majority rule?

Complexity: para-ΠP
2 -complete [22, 23].

The above three parameterized problems remain para-ΠP
2 -hard even when restricted to agendas based on

formulas that are Horn formulas containing only clauses of size at most 2 [22, 23].

Maj-Agenda-Safety(agenda size)
Instance: An agenda Φ.
Parameter: |Φ|.
Question: Is Φ safe for the majority rule?

Complexity: FPTNP[f(k)]-complete [22, 23].

Moreover, the following upper and lower bounds on the number of oracle queries are known for the
above problem. Maj-Agenda-Safety(agenda size) can be decided in fixed-parameter tractable time
using 2O(k) queries to an NP oracle, where k = |Φ| [23]. In addition, there is no fpt-algorithm that
decides Maj-Agenda-Safety(agenda size) using o(log k) queries to an NP oracle, unless the Polynomial
Hierarchy collapses [22, 23].

Maj-Agenda-Safety(counterexample size)
Instance: An agenda Φ, and an integer k.
Parameter: k.
Question: Does every inconsistent subset Φ′ of Φ of size k have itself an inconsistent subset of
size at most 2?

Complexity: ∀k∃∗-hard [22, 23].

Let Φ = {ϕ1, . . . , ϕm,¬ϕ1, . . . ,¬ϕm} be an agenda, where each ϕi is a CNF formula. We define the
following graphs that are intended to capture the interaction between formulas in Φ. The formula primal
graph of Φ has as vertices the variables Var(Φ) occurring in the agenda, and two variables are connected
by an edge if there exists a formula ϕi in which they both occur. The formula incidence graph of Φ is a
bipartite graph whose vertices consist of (1) the variables Var(Φ) occurring in the agenda and (2) the
formulas ϕi ∈ Φ. A variable x ∈ Var(Φ) is connected by an edge with a formula ϕi ∈ Φ if x occurs in ϕi,
i.e., x ∈ Var(ϕi). The clausal primal graph of Φ has as vertices the variables Var(Φ) occurring in the
agenda, and two variables are connected by an edge if there exists a formula ϕi and a clause c ∈ ϕi
in which they both occur. The clausal incidence graph of Φ is a bipartite graph whose vertices consist
of (1) the variables Var(Φ) occurring in the agenda and (2) the clauses c occurring in formulas ϕi ∈ Φ.
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A variable x ∈ Var(Φ) is connected by an edge with a clause c of the formula ϕi ∈ Φ if x occurs in c,
i.e., x ∈ Var(c). Consider the following parameterizations of the problem Maj-Agenda-Safety.

Maj-Agenda-Safety(f-tw)
Instance: An agenda Φ containing only CNF formulas.
Parameter: The treewidth of the formula primal graph of Φ.
Question: Is Φ safe for the majority rule?

Complexity: fixed-parameter tractable [22].

Maj-Agenda-Safety(f-tw∗)
Instance: An agenda Φ containing only CNF formulas.
Parameter: The treewidth of the formula incidence graph of Φ.
Question: Is Φ safe for the majority rule?

Complexity: para-ΠP
2 -complete [22].

Maj-Agenda-Safety(c-tw)
Instance: An agenda Φ containing only CNF formulas.
Parameter: The treewidth of the clausal primal graph of Φ.
Question: Is Φ safe for the majority rule?

Complexity: para-co-NP-complete [22].

Maj-Agenda-Safety(c-tw∗)
Instance: An agenda Φ containing only CNF formulas.
Parameter: The treewidth of the clausal incidence graph of Φ.
Question: Is Φ safe for the majority rule?

Complexity: para-co-NP-complete [22].

5.5 Turing Machine Halting

The following problems are related to alternating Turing machines (ATMs), possibly with multiple tapes.
ATMs are nondeterministic Turing machines where the states are divided into existential and universal
states, and where each configuration of the machine is called existential or universal according to the
state that the machine is in. A run ρ of the ATM M on an input x is a tree whose nodes correspond to
configurations of M in such a way that (1) for each non-root node v of the tree with parent node v′, the
machine M can transition from the configuration corresponding to v′ to the configuration corresponding
to v, (2) the root node corresponds to the initial configuration of M, and (3) each child node corresponds
to a halting configuration. A computation path in a run of M is a root-to-leaf path in the run. Moreover,
the nodes of a run ρ are labelled accepting or rejecting, according to the following definition. A leaf of ρ
is labelled accepting if the configuration corresponding to it is an accepting configuration, and the leaf is
labelled rejecting if it is a rejecting configuration. A non-leaf node of ρ that corresponds to an existential
configuration is labelled accepting if at least one of its children is labelled accepting. A non-leaf node
of ρ that corresponds to a universal configuration is labelled accepting if all of its children is labelled
accepting. An ATM M is 2-alternating if for each input x, each computation path in the run of M on
input x switches at most once from an existential configuration to a universal configuration, or vice versa.
For more details on the terminology, we refer to the work of De Haan and Szeider [34, 35] and to the
work of Flum and Grohe [27, Appendix A.1].

We consider the following restrictions on ATMs. An ∃∀-Turing machine (or simply ∃∀-machine) is
a 2-alternating ATM, where the initial state is an existential state. Let `, t ≥ 1 be positive integers. We
say that an ∃∀-machine M halts (on the empty string) with existential cost ` and universal cost t if: (1)
there is an accepting run of M with the empty input ε, and (2) each computation path of M contains at
most ` existential configurations and at most t universal configurations. The following problem, where
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the number of Turing machine tapes is given as part of the input, is ∃k∀∗-complete.

∃k∀∗-TM-halt∗.
Instance: Positive integers m, k, t ≥ 1, and a ∃∀-machine M with m tapes.
Parameter: k.
Question: Does M halt on the empty string with existential cost k and universal cost t?

Complexity: ∃k∀∗-complete [34, 35].

Let m ≥ 1 be a constant integer. Then the following parameterized decision problem, where the number
of Turing machine tapes is fixed, is also ∃k∀∗-complete.

∃k∀∗-TM-haltm.
Instance: Positive integers k, t ≥ 1, and an ∃∀-machine M with m tapes.
Parameter: k.
Question: Does M halt on the empty string with existential cost k and universal cost t?

Complexity: ∃k∀∗-complete [34, 35].

In addition, the parameterized complexity class ∃k∀∗ can also be characterized by means of alternating
Turing machines in the following way. Let P be a parameterized problem. An ∃k∀∗-machine for P is
a ∃∀-machine M such that there exists a computable function f and a polynomial p such that: (1) M
decides P in time f(k) · p(|x|); and (2) for all instances (x, k) of P and each computation path R of M
with input (x, k), at most f(k) · log |x| of the existential configurations of R are nondeterministic. We
say that a parameterized problem P is decided by some ∃k∀∗-machine if there exists a ∃k∀∗-machine
for P . Then, ∃k∀∗ is exactly the class of parameterized decision problems that are decided by some
∃k∀∗-machine [34, 35].
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