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Abstract

Let P be a fixed graph (hereafter called a “pattern”), and let Subgraph(P ) denote the
problem of deciding whether a given graph G contains a subgraph isomorphic to P . We are
interested in AC0-complexity of this problem, determined by the smallest possible exponent
C(P ) for which Subgraph(P ) possesses bounded-depth circuits of size nC(P )+o(1). Motivated
by the previous research in the area, we also consider its “colorful” version Subgraphcol(P ) in
which the target graph G is V (P )-colored, and the average-case version Subgraphave(P ) under
the distribution G(n, n−θ(P )), where θ(P ) is the threshold exponent of P . Defining Ccol(P ) and
Cave(P ) analogously to C(P ), our main contributions can be summarized as follows.

• Ccol(P ) coincides with the tree-width of the pattern P within a logarithmic factor. This
shows that the previously known upper bound by Alon, Yuster, Zwick [3] is almost tight.

• We give a characterization of Cave(P ) in purely combinatorial terms within a multiplicative
factor of 2. This shows that the lower bound technique of Rossman [26] is essentially tight,
for any pattern P whatsoever.

• We prove that if Q is a minor of P then Subgraphcol(Q) is reducible to Subgraphcol(P )
via a linear-size monotone projection. At the same time, we show that there is no monotone
projection whatsoever that reduces Subgraph(M3) to Subgraph(P3 +M2) (P3 is a path
on 3 vertices, Mk is a matching with k edges, and “+” stands for the disjoint union). This
result strongly suggests that the colorful version of the subgraph isomorphism problem is
much better structured and well-behaved than the standard (worst-case, uncolored) one.

1 Introduction

The subgraph isomorphism problem takes as its input two graphs H and G and asks to determine
whether or not G contains a subgraph (not necessarily induced) isomorphic to H. This is one of
the most basic NP-complete problems that includes Clique and Hamiltonian Cycle as special
cases, and little more can be said about its complexity in full generality.

A significant body of research, motivated both by the framework of parameterized complexity
and practical applications, has been devoted to the case when the graph H is fixed and possesses
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some useful structure (see e.g. the sources [3, 9, 10, 20, 21, 23] related to the subject of our paper).
To stress its nature in this situation, the graph H is traditionally called a pattern and designated
by the letter P ; we also follow this convention and denote by Subgraph(P ) the corresponding
restriction of the general subgraph isomorphism problem.

The sources above (among many others!) provide quite non-trivial improvements on the obvious
size bound O(n|V (P )|) in many cases of interest. But for unconditional lower bounds we, given our
current state of knowledge, have to resort to restricted models, and, indeed, a substantial amount
of work has been done here in the context of both bounded-depth circuits and monotone circuits.
In this paper we focus on the former model.

As for upper bounds, it was observed by Amano [4] that the color-coding algorithm by Alon,
Yuster and Zwick [3] can be adapted to our context and gives AC0 circuits for Subgraph(P ) of
size Õ(ntw(P )+1), where tw(P ) is the treewidth of the pattern P . Our paper is motivated by the
following natural question:

How tight is this bound?

Or, in other words,

Question 1. Is it possible to give good general lower bounds on the AC0 complexity of Subgraph(P )
in terms of the treewidth of P only?

Prior to our work, Rossman [26] answered this question in affirmative for the case of a k-clique
by proving a lower bound of Ω(nk/4) on the AC0 complexity of Subgraph(Kk). Generalizing
Rossman’s method, Amano [4] gave a general lower bound that holds for arbitrary patterns P . It
in particular implied an nΩ(k) lower bound (and, thus, an affirmative answer to Question 1) for the
k × k grid Gk,k: this result is very interesting since Gk,k is the “canonical” example of a sparse
graph with large treewidth.

Before discussing our results, it will be convenient to introduce the following handy notation:
given a pattern P , we let C(P ) be the minimal real number c ≥ 0 for which Subgraph(P ) is
solvable on n-vertex graphs by AC0 circuits of size nc+o(1). In this notation, the previous results
mentioned above can be stated as C(P ) ≤ tw(P ) + 1 ([3, 4], P any pattern), C(Kk) ≥ k/4 [26] and
C(Gk,k) ≥ Ω(k) [4].

Our contributions.

We formulate explicitly and study two modifications that already played a great role in the previous
research. The first of them is the colorful P -subgraph isomorphism problem Subgraphcol(P ) in
which the target graph G comes with a coloring χ : V (G) → V (P ) (that w.l.o.g. can and will be
assumed to be a graph homomorphism), and we are looking only for properly colored P -subgraphs.
Let Ccol(P ) be defined analogously to C(P ). Then the very first thing done by the algorithm
of Alon, Yuster and Zwick is a simple reduction from Subgraph(P ) to Subgraphcol(P ) thus
establishing C(P ) ≤ Ccol(P ). After that they work exclusively with the colorful version that leads
to

C(P ) ≤ Ccol(P ) ≤ tw(P ) + 1.

We settle in the affirmative (up to a logarithmic factor) our motivating Question 1 for the
colorful version by proving the following

Theorem 1.1. Ccol(P ) ≥ Ω(tw(P )/ log tw(P )).
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By previous work of Marx [20], it was known that Subgraphcol(P ) has no no(tw(P )/ log tw(P )) algo-
rithm unless the Exponential Time Hypothesis fails. Theorem 1.1 establishes the same lower bound
unconditionally for AC0 circuits. (We say more about Marx’s result and related work of Alon and
Marx [1] in Section 6.)

We show that the colorful version is quite well-behaved by proving that it is minor-monotone:
if Q is a minor of P , then Ccol(Q) ≤ Ccol(P ) (Theorem 5.1).1 Whether a similar result holds for
C(P ) is open, but we give a strong evidence (Theorem 5.6) that even if this is true, the proof will
most likely require totally different techniques. One possible interpretation is that perhaps the
colorful version is in fact a cleaner and more natural model to study than the standard (uncolored)
version. We also observe that if the pattern P is a core (i.e., every homomorphism from P to P is
an automorphism), then C(P ) = Ccol(P ) and thus our lower bound from Theorem 1.1 transfers to
the uncolored case. What happens to C(P ) at the opposite side of the spectrum, say, for bipartite
patterns P , remains wide open.

All lower bounds surveyed above, including our proof of Theorem 1.1, were actually achieved in
the context of average-case complexity. Prior to our work, the only distribution that was considered
for this purpose is the Erdős-Rényi model G(n, n−θ(P )), where θ(P ) is the uniquely defined threshold
exponent for which the probability of containing a copy of P is bounded away from 0 and 1 (see
[18] or Section 2.4 below). Accordingly, we define Cave(P ) analogously to C(P ), but only require
that our circuit outputs the correct answer a.a.s. (asymptotically almost surely) when the input is
drawn from G(n, n−θ(P )). Clearly, Cave(P ) ≤ C(P ) so the whole picture now looks like

Cave(P ) ≤ C(P ) ≤ Ccol(P ) ≈ tw(P ),

where≈means approximation within a logarithmic factor. Also, Cave(Kk) ≥ k/4 [26] and Cave(Gk,k)
≥ Ω(k) [4] where Kk is the complete graph on k vertices and Gk,k is the k-by-k grid.

We explicitly define a combinatorial parameter κ(P ) and prove the following

Theorem 1.2. κ(P ) ≤ Cave(P ) ≤ 2κ(P ) +O(1).

In other words, we give lower and upper bounds on the average-case AC0 complexity for an
arbitrary pattern P , matching within a quadratic factor. The proof of Theorem 1.2 exploits a
duality in the definition of κ(P ), which has equivalent min-max and max-min formulations (the
former suited to upper bounds and the latter to lower bounds). The lower bound Cave(P ) ≥ κ(P )
generalizes the proof of Cave(Kk) ≥ k/4 in Rossman [26] and improves a previous lower bound of
Amano [4] for general patterns P . (A detailed comparison with previous work is given in Section
2.6 following the definition of κ(P ).)

Finally, let us say a few words about the proof of Theorem 1.1. Itself a worst-case lower bound,
it is obtained as the maximum of a family of average-case lower bounds with respect to P -colored
random graphs. These random graphs generalize Erdős-Rényi random graphs in the P -colored
setting by allowing different edge probabilities according to the color classes of vertices, and we
believe that this generalization may be of independent interest. Each P -colored random graph in
this family is parameterized by a point in a certain convex polytope, denoted θcol(P ). We rely
on results of [11, 20] that characterize the treewidth of P in terms of the existence of a certain
concurrent flow on P , which we convert to a suitable point in θcol(P ).

1It is worth observing that this fact, along with the recent result [8] by Chekura and Chuzhoy and Amano’s
bound Ccol(Gk,k) ≥ Ω(k) [4] already implies the weaker bound Ccol(P ) ≥ tw(P )Ω(1). But the exponent given by this
approach will be disappointingly small.
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The paper is organized as follows. In Section 2 we give the necessary definitions and prelimi-
naries; in particular, in Section 2.5 we present the parameters κ(P ) and κcol(P ) that are our main
technical tools in this paper. Section 3 is devoted to the proof of Theorem 1.2, and it also paves
way to the proof of Theorem 1.1 that, up to a certain point, goes in parallel to the former. The
proof of Theorem 1.1 is completed in Section 4. Section 5 contains our structural results about the
behavior of Subgraph(P ) and Subgraphcol(P ) with respect to minors and subgraphs. The paper
is concluded with a brief discussion and a list of open problems in Section 6.

2 Definitions and Preliminaries

Let [k] := {1, . . . , k}.

2.1 Graphs

We start off with terminology and notation for graphs. Throughout this paper, graphs are finite
simple graphs G = (V (G), E(G)) where E(G) is a subset of

(
V (G)

2

)
. We often write v(G) for |V (G)|

and e(G) for |E(G)|.
A graph H is a subgraph of G, denoted H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). For

arbitrary G and H, G+H and G×H respectively denote the disjoint union and Cartesian product
of graphs G and H (where E(G×H) := {{(v, v′), (w,w′)} : {v, w} ∈ E(G) and {v′, w′} ∈ E(H)}).

A homomorphism from G to H is a function ϕ : V (G)→ V (H) such that {ϕ(v), ϕ(w)} ∈ E(H)
for all {v, w} ∈ E(G). A graph G is a core if every homomorphism from G to G is an automorphism.

The treewidth of G is denoted by tw(G) (for the definition and background, see e.g. [6]). Other
relevant facts about treewidth will be stated where needed.

Kk is a clique on k vertices, and Gk,k is a k×k grid. These graphs have treewidth tw(Kk) = k−1
and tw(Gk,k) = k.

2.2 Monotone Projections

Definition 2.1. Let I, J be arbitrary sets.

(i) For a function p : J → I ∪ {0, 1} and x ∈ {0, 1}I , we write p∗(x) for the unique y ∈ {0, 1}J
such that yj = xp(j) if p(j) ∈ I, and yj = p(j) if p(j) ∈ {0, 1}.

(ii) For boolean functions f : {0, 1}I → {0, 1} and g : {0, 1}J → {0, 1}, we say that f is reducible
via a monotone projection to g, denoted f ≤mp g, if there exists p : J → I ∪ {0, 1} such that
f(x) = g(p∗(x)) for all x ∈ {0, 1}I . (Note that ≤mp is transitive.)

Any decision problem L can be represented as a sequence of Boolean functions {Ln} in n
variables. We say that L1 is reducible via a monotone projection to another decision problem L2

if for any n there exists2 m(n) such that Ln1 ≤mp L
m(n)
2 . If in addition m(n) ≤ O(n), we call this

projection linear.

2Uniformity issues do not play any role in this paper.

4



2.3 Subgraph Isomorphism Problems

Throughout this paper, the letters P,Q represent arbitrary fixed graphs that should be intuitively
thought of as “patterns”. G stands for a (large) “input” graph for the P -subgraph isomorphism
problem. Subgraphs of G (not necessarily induced) which are isomorphic to P will be called P -
subgraphs.

We also consider P -colored graphs, defined as pairs (G,χ) where G is a graph and χ : V (G)→
V (P ) is a homomorphism. We usually suppress χ and simply refer to G as P -colored graph. In this
setting, given a sub-pattern Q ⊆ P (not necessarily induced), a Q-subgraph of G is a subgraph of
G (again, not necessarily induced) that is isomorphic to Q under χ. In particular, its vertices are
mapped bijectively to V (Q) via χ.

We consider two versions (“uncolored” and “colored”) of the P -subgraph isomorphism problem:

• Subgraph(P ) is the problem, given a graph G, of determining whether or not G contains a
P -subgraph.

• Subgraphcol(P ) is the problem, given a P -colored graph (G,χ), of determining whether of
not G contains a (properly colored) P -subgraph.

This problem is also known in the literature as the “partitioned” or “colorful” variant, and in this
paper we mostly adopt the latter term.

It will be convenient to introduce a notation for the AC0 complexity of these problems. (Recall
that AC0 is the class of problems solvable by polynomial-size constant-depth boolean circuits with
unbounded fan-in.)

Definition 2.2. Let C(P ) (resp. Ccol(P )) denote the minimum real number c > 0 such that
Subgraph(P ) (resp. Subgraphcol(P )) is solvable (in the worst-case) on n-vertex graphs by AC0

circuits of size3 O(nc+ε) for every ε > 0.

Note that if Subgraph(P ) is reducible to Subgraph(Q) via a linear monotone projection then
C(P ) ≤ C(Q), and this remains true if we add the subscript col to both sides.

Lemma 2.3.

1. C(P ) ≤ Ccol(P ) ≤ tw(P ) + 1.

2. If P is a core, then C(P ) = Ccol(P ).

Proof. (1): The second inequality Ccol(P ) ≤ tw(P ) + 1 is by the color-coding algorithm of Alon,
Yuster and Zwick [3] (adapted to the P -colored setting), which can be implemented in AC0 as
observed by Amano [4]. The first inequality C(P ) ≤ Ccol(P ) is also implicitly proved there by
reducing Subgraph(P ) to Subgraphcol(P ): the reduction searches through logarithmically many
different colorings χ1, χ2, · · · : V (G) → V (P ) of the same target graph G, picked at random. An
easy counting argument shows that a.a.s. every P -subgraph of G will be properly colored with
respect to at least one of the colorings χi.

(2): This observation goes back at least to Grohe [12]. If P is a core, then (G,χ) 7→ G is
a reduction from Subgraphcol(P ) to Subgraph(P ). To see why, it suffices to show that every
P -subgraph of G is properly colored with respect to every homomorphism χ : G → P . Suppose

3In this paper, the size of all constant-depth circuits is measured by the number of gates.
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H is a P -subgraph of G. Then H = ϕ(P ) for some one-to-one homomorphism ϕ : P → G. Since
P is a core, the homomorphism χ ◦ ϕ : P → P is an automorphism of P . It follows that the
homomorphism χ|V (H) : H → P is one-to-one. Since |E(H)| = |E(P )|, it must be an isomorphism,
that is H is properly colored with respect to χ.

2.4 The Average Case

We now define the random graphs which appear in our average-case lower bounds for Subgraph(P )
and Subgraphcol(P ). In the uncolored setting, we consider the Erdős-Rényi random graphG(n, p(n))
for an appropriately chosen threshold function p(n). Also, in what follows we assume that P is
non-empty, that is contains at least one edge.

Definition 2.4.

(i) The threshold exponent of P is defined by θ(P ) := min
Q⊆P

v(Q)/e(Q).

(ii) P is balanced if v(P )/e(P ) = θ(P ).

(iii) P is strictly balanced if v(Q)/e(Q) > θ(P ) for every nonempty proper subgraph Q ⊂ P .

(iv) Let Bal(P ) :=
⋃
{Q ⊆ P : v(Q)/e(Q) = θ(P )}.

Lemma 2.5.

1. P is balanced if and only if P = Bal(P ).

2. For every P , Bal(P ) is balanced and θ(Bal(P )) = θ(P ).

Proof. It suffices to show that B := {Q ⊆ P : v(Q)/e(Q) = θ(P )} is closed under unions (in fact,
it is closed under intersections as well). For all Q1, Q2 ∈ B, we have

v(Q1 ∪Q2) + v(Q1 ∩Q2) = v(Q1) + v(Q2)

= θ(P )e(Q1) + θ(P )e(Q2)(1)

= θ(P )e(Q1 ∪Q2) + θ(P )e(Q1 ∩Q2).

By definition of θ(P ),

(2) v(Q1 ∪Q2) ≥ θ(P )e(Q1 ∪Q2) and v(Q1 ∩Q2) ≥ θ(P )e(Q1 ∩Q2).

Together (1) and (2) imply that equality holds in (2), that is, Q1 ∪ Q2 and Q1 ∩ Q2 are both in
B.

Recall that G(n, p) is the Erdős-Rényi random graph with vertex set [n], in which each e ∈
(

[n]
2

)
occurs as an edge independently with probability p. The next lemma states that p = n−θ(P ) is a
threshold function for Subgraph(P ) and that detecting P -subgraphs on G(n, n−θ(P )) is equivalent
to detecting Bal(P )-subgraphs. (Lemma 2.6(1) is a standard fact about random graphs (see [18]);
Lemma 2.6(2) was proved in [7].)

Lemma 2.6.

1. Pr[G(n, n−θ(P )) has a P -subgraph ] is bounded away from 0 and 1.
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2. Asymptotically almost surely, if G(n, n−θ(P )) contains a Bal(P )-subgraph, then it contains a
P -subgraph.

With slight abuse of notation, we denote by Subgraphave(P ) the algorithmic problem of solving
Subgraph(P ) on G(n, n−θ(P )) correctly a.a.s, that is with probability that tends to 1 as n tends
to ∞. (We remark that our results are unchanged if n−θ(P ) is replaced by any other threshold
function p(n) ∈ Θ(n−θ(P )).) Similarly to Definition 2.2, let Cave(P ) be the smallest c > 0 for which
this problem can be solved by AC0-circuits of size nc+o(1).

Remark 2.7. Obviously, Cave(P ) ≤ C(P ), but the gap between them can be arbitrarily large.
Assume e.g. that P = K4 +Gk,k where k →∞. Then Bal(P ) = K4 and thus Lemma 2.6(2) implies
that Cave(P ) = Cave(K4) ≤ 4. On the other hand, Subgraph(Gk,k) is reduced to Subgraph(P ) via
an obvious linear monotone projection that takes G to K4+G. This proves C(P ) ≥ C(Gk,k) ≥ Ω(k)
by the result from [4].

One might argue that this example is not “fair” since it heavily exploits the fact that the pattern
P is highly unbalanced. It is, however, possible to give nearly the same separation (albeit, more
complicated) with a strictly balanced pattern P . Say, let d > 0 be a sufficiently large constant,
and V (P ) = [k], where k � d. We start building E(P ) with the clique on the set [d], and then
for every i ∈ {d + 1, . . . , k} pick at random d different vertices j1, . . . , jd < i and add all d edges
{jν , i}. Then P will be strictly balanced, and randomness in selecting the edges will imply that
a.a.s. tw(P ) ≥ Ω(k) and that P is a core. Given these facts, the bounds Cave(P ) ≤ O(d) and
C(P ) ≥ Ω(k/ log k) readily follow from the main results of our paper.

We now move onto the notion of average case complexity for Subgraphcol(P ). In contrast to the
uncolored setting, there is no single most obvious distribution on P -colored random graphs. Instead,
we consider a family of P -colored random graphs, denoted Gα,β(n), which are parameterized by
certain pairs of functions α : V (P ) → [0, 1] and β : E(P ) → [0, 2] called “threshold pairs”. (Note:
Unlike G(n, p), the vertex set of Gα,β(n) is not [n], but rather consists of |V (P )| disjoint parts of
different sizes.)

Definition 2.8. (P -colored random graph Gα,β(n))

(i) A threshold pair for P is a pair (α, β) of functions α : V (P ) → [0, 1] and β : E(P ) → [0, 2]
such that

• α(P ) = β(P ),

• α(Q) ≥ β(Q) for all Q ⊆ P ,

where α(Q) :=
∑

v∈V (Q) α(v) and β(Q) :=
∑

e∈E(Q) β(e).

(ii) θcol(P ) denotes the set of threshold pairs for P . Note that θcol(P ) is a polytope in RV (P )∪E(P )

and its section {β : (1, β) ∈ θcol(P )} is a polytope in RE(P ). We view elements of θcol(P ) as
the “P -colored” analogue of θ(P ).

(iii) We say that (α, β) ∈ θcol(P ) is nontrivial if α and β are not identically zero.

(iv) We say that (α, β) ∈ θcol(P ) is strictly balanced if α(Q) > β(Q) for every nonempty proper
subgraph Q ⊂ P .
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(v) For all (α, β) ∈ θcol(P ), let Gα,β(n) denote the random graph with vertex set Vα(n) :=
{(v, i) : v ∈ V (P ), 1 ≤ i ≤ bnα(v)c} where each {(v, i), (w, j)} with {v, w} ∈ E(P ) is an edge,
independently, with probability n−β({v,w}). The P -coloring of Gα,β(n) is the obvious one:
(v, i) 7→ v.

Remark 2.9. Note that if P is a balanced pattern, then the pair of constant functions (α ≡
1, β ≡ θ(P )) is a threshold pair for P ; moreover, P is strictly balanced if and only if this (α, β) is
strictly balanced. Thus, Definition 2.8 is indeed a generalization of threshold exponent for balanced
patterns. The following lemma makes the analogy even more clear (and justifies the terminology
“threshold pair”).

Lemma 2.10. For every pattern P and nontrivial threshold pair (α, β) ∈ θcol(P ),

1. lim inf
n→∞

[Gα,β(n) contains no P -subgraph ] ≥ 1

e
,

2. lim inf
n→∞

[Gα,β(n) contains exactly one P -subgraph ] ≥ 1

e|E(P )| .

The proof is included in Appendix A. With a bit of work, it is possible to completely characterize
the asymptotic distribution of the number of P -subgraphs in Gα,β(n); this distribution is a function
of independent Poisson random variables (in the uncolored setting, see [7] for a characterization of
the asymptotic number of P -subgraphs in G(n, n−θ(P ))).

In the context of Subgraphcol(P ), we speak of the average-case complexity with respect to
Gα,β(P ), meaning the size of an AC0 circuit which solves Subgraphcol(P ) on Gα,β(P ) with prob-
ability that tends to 1 as n tends to ∞. We do not introduce any special notation like Cα,β(P ) as
this concept is intended to be auxiliary.

2.5 Parameters κ(P ) and κcol(P )

We now introduce the parameters κ(P ) and κcol(P ) which figure in our lower bounds. The defini-
tions, which might appear unmotivated at first glance, are derived from the lower bound technique
of [26], which we explain in the next section.

Definition 2.11. (Union sequences and hitting sets) A union sequence for P is a sequence
Q1, . . . , Qt of subgraphs of P such that Qt = P and for all 1 ≤ k ≤ t, either Qk is a single vertex
or a single edge or Qk = Qi ∪ Qj for some 1 ≤ i < j < k. A hitting set for union sequences (or
hitting set for short) is a set H of subgraphs of P such that H contains at least one element from
every union sequence.

Definition 2.12. (Parameters κ(P ), κα,β(P ) and κcol(P ))

(i) If P is balanced, then κ(P ) is defined by

κ(P ) := min
union seq. Q1,...,Qt

max
i∈[t]

v(Qi)− θ(P )e(Qi).

For P which is not balanced, we define κ(P ) := κ(Bal(P )).

(ii) For (α, β) ∈ θcol(P ), let

κα,β(P ) := min
union seq. Q1,...,Qt

max
i∈[t]

α(Qi)− β(Qi).
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(iii) Let κcol(P ) := max
(α,β)∈θcol(P )

κα,β(P ).

Remark 2.13. Later on we will see that in this definition we could restrict ourselves to threshold
pairs with α ≡ 1 (Corollary 4.2). But since arbitrary threshold pairs appear quite naturally in our
lower bound proofs in Section 4.2, we prefer to give this more general definition at once.

The next lemma is key to linking our upper and lower bounds on the average-case AC0 com-
plexity of Subgraph(P ).

Lemma 2.14. (Minimax principle for κ(P ) and κα,β(P ))

1. If P is balanced, then
κ(P ) = max

H
min
Q∈H

v(Q)− θ(P )e(Q),

where H ranges over hitting sets for P .

2. Similarly, κα,β(P ) = max
H

min
Q∈H

α(Q)− β(Q) for all (α, β) ∈ θcol(P ).

Proof. The argument is the same for (1) and (2). Let f(Q) := v(Q) − θ(P )e(Q) (the proof works
for any real-valued objective function). First, we will prove that maxHminQ∈H f(Q) ≤ κ(P ).
Since H is a hitting set, for any union sequence {Qi}, there exists some Qi ∈ H. It follows that
minQ∈H f(Q) ≤ maxi f(Qi), and thus minQ∈H f(Q) ≤ κ(P ) as {Qi} is taken arbitrarily.

On the other hand, let us prove κ(P ) ≤ maxHminQ∈H f(Q). Enumerate all union sequences

{Q(j)
i }, j = 1, 2, . . . (each {Q(j)

i } is a finite sequence). For each j, take the subgraph S(j) in {Q(j)
i }

with maximal f(Q
(j)
i ). Let S = {S(1), S(2), . . .}. It is easily seen that S is a hitting set, as every

union sequence has some element in it. By definition,

max
H

min
Q∈H

f(Q) ≥ min
S(j)∈S

f(S(j)) = min
j

max
i
f(P

(j)
i ) = κ(P ),

which completes the proof.

2.6 Comparison with previous work

The dual (max-min) expression for κ(P ) given by Lemma 2.14(1) is naturally suited to lower
bounds. It is this dual version of κ(P ) which we use to prove Cave(P ) ≥ κ(P ) in the next section.
This dual expression—which maximizes over hitting sets for a pattern P—generalizes Rossman’s
proof of Cave(Kk) ≥ k/4 in [26], which considers a specific hitting set for Kk.

4

Previous work of Amano [4] also generalizes the technique of [26] to obtain a lower bound
Cave(P ) ≥ `(P ) for general patterns P . The function `(P ) defined by Amano (which is denoted
Z?P in [4]) is similar to the dual expression for κ(P ), except it restricts attention to hitting sets of
a particular form:

`(P ) := max
s : 2≤s≤v(P )

min
Q⊆P : s/2<v(Q)≤s

v(Q)− θ(P )e(Q).

Clearly, `(P ) ≤ κ(P ) for all patterns P . In some cases of interest, such as grid Gk,k, Amano shows
that `(Gk,k) = Ω(k). However, `(P ) is slack in general (for example, `(Kk) = 2k/9 + O(1) while

4This hitting set consists of the “medium” subgraphs of Kk, defined as subgraphs Q such that (i) Q has > k/2
vertices and (ii) Q is a union of two subgraphs with ≤ k/2 vertices.
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κ(Kk) = k/4 +O(1)). A key insight of the present paper is that the stronger parameter κ(P ) – in
its primal form, which minimizes over union sequences—leads to upper bounds on Cave(P ) which
are tight within a multiplicative constant.

Another result of Amano [4] is a construction of nearly optimal AC0 circuits for the average-
case k-clique problem, which match the lower bound of [26] by showing Cave(Kk) ≤ k/4 + O(1).
Nakagawa and Watanabe [22] observed that Amano’s construction generalizes to an upper bound
Cave(P ) ≤ u(P ) +O(1) where u(P ) is defined by

u(P ) := min
linear orderings v1<···<vk of V (P )

max
j∈[k]

j − θ(P )e({v1, . . . , vj})

and e({v1, . . . , vi}) is the number of edges in P among vertices v1, . . . , vi. This parameter u(P )
is similar to the (primal) definition of κ(P ), except that u(P ) is restricted to union sequences
Q1, . . . , Qt where |V (Qi+1) \ V (Qi)| ≤ 1. Thus, u(P ) ≥ κ(P ). However, in contrast to κ(P ),
Nakagawa and Watanabe showed that u(P ) is not bounded by any function of Cave(P ): there is a
sequence of patterns P1, P2, . . . with Cave(Pi) = O(1) while limi u(Pi) =∞.

In summary, our bounds κ(P ) ≤ Cave(P ) ≤ 2κ(P ) + O(1) (Theorem 1.2) both achieve a
tighter generalization of [26] and close the (arbitrarily large) gap between the previous bounds
`(P ) ≤ Cave(P ) ≤ u(P ) + O(1) of [4, 22]. Our results on Ccol(P ), including the definitions of
θcol(P ) and κcol(P ), are completely new to this paper (the colored setting was not considered in
[4, 22, 26]).

3 Average-Case AC0 Complexity

In this section, we prove Theorem 1.2 (κ(P ) ≤ Cave(P ) ≤ 2κ(P ) + O(1)), which gives a combina-
torial characterization of the AC0-complexity of Subgraphave(P ) up to a quadratic factor. More
generally, we prove a family of average-case lower and upper bounds for the average-case colorful
P -subgraph isomorphism problem:

Theorem 3.1. For every pattern P and (α, β) ∈ θcol(P ), the average-case AC0-complexity of
Subgraphcol(P ) on the P -colored random graph Gα,β(n) is between nκα,β(P )−o(1) and n2κα,β(P )+O(1).

Rather than proving Theorem 1.2 and Theorem 3.1 separately, to avoid redundancy we present
a proof of the latter only. For balanced P the proof of Theorem 1.2 looks exactly like the proof of
Theorem 3.1 in the special case where α ≡ 1 and β ≡ θ(P ) (see Remark 2.9). The general case
is reduced to the balanced one since for an arbitrary pattern P we have κ(P ) = κ(Bal(P )) (by
definition of κ(P )) and Cave(P ) = Cave(Bal(P )) (by Lemma 2.6).

Theorem 3.1 also plays a key role in our other main result, Theorem 1.1 (the worst-case lower
bound Ccol(P ) ≥ Ω(tw(P )/ log tw(P ))). Since the worst-case AC0-complexity of Subgraphcol(P )
is lower-bounded by the average-case AC0-complexity of Subgraphcol(P ) on Gα,β(n) for every
(α, β) ∈ θcol(P ), Theorem 3.1 directly implies:

Corollary 3.2. Ccol(P ) ≥ κcol(P ).

In Section 4, we will show that κcol(P ) ≥ Ω(tw(P )/ log tw(P )); together with Corollary 3.2,
this proves Theorem 1.1. The remainder of this section contains the proof of Theorem 3.1. The
n2κα,β(P )+O(1) upper bound is proved in Section 3.1, followed by the nκα,β(P )−o(1) lower bound in
Section 3.2.
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3.1 Proof of Theorem 3.1 (Upper Bound)

Fix a pattern P and a threshold pair (α, β) ∈ θcol(P ). For a P -colored graph G and Q ⊆ P , let
sub(Q,G) denote the number of (colored) Q-subgraphs of G. We write G for the P -colored random
graph Gα,β(n). Note that E[ sub(Q,G) ] ≤ nα(Q)−β(Q).

Let Gα,β(n) denote the support of G, that is, the class of P -colored graphs with vertex set
Vα(n) := {(v, i) : v ∈ V (P ), 1 ≤ i ≤ bnα(v)c} and the vertex-coloring (v, i) 7→ v. Let also

G′α,β(n) := {G ∈ Gα,β(n) : sub(Q,G) ≤ nα(Q)−β(Q)+1 for all Q ⊆ P}.

The next lemma says that G is extremely unlikely to contain significantly more than nα(Q)−β(Q)

Q-subgraphs for any Q ⊆ P . It is proved by a straightforward application of Markov’s inequality.

Lemma 3.3. Pr[ G /∈ G′α,β(n) ] = o(1).

We wish to construct a deterministic AC0-circuit C which solves Subgraphcol(P ) correctly
on G with probability 1 − o(1). We will invert the role of randomness and instead construct a
random AC0-circuit C which solves Subgraphcol(P ) correctly with probability 1 − o(1) on every
G ∈ G′α,β(n). That is, we will show

Lemma 3.4. There exists a random AC0 circuit C of size n2κα,β(P )+O(1) and depth5 O(e(P )) such
that for every G ∈ G′α,β(n),

Pr[ C(G) = 1⇔ sub(P,G) ≥ 1 ] = 1− o(1).

The upper bound of Theorem 3.1 follows as a corollary of Lemmas 3.3 and 3.4.

Proposition 3.5. There exists a AC0 circuit C of size n2κα,β(P )+O(1) such that

Pr[C(G) = 1⇔ sub(P,G) ≥ 1 ] = 1− o(1).

Proof. Lemmas 3.3 and 3.4 imply that Pr[ C(G) = 1⇔ sub(P,G) ≥ 1 ] = 1−o(1). Now Proposition
3.5 follows by a straightforward application of Yao’s Principle [28].

The random circuit C.

It remains to define the randomized AC0-algorithm solving Subgraphcol(P ) with high probability
on every G ∈ G′α,β(n). We first describe the algorithm informally. We then check that this algorithm

can be implemented by circuits of size n2κα,β(P )+O(1) and depth O(e(P )).
By definition of κα,β(P ), there exists a union sequence Q1, . . . , Qt with Qt = P such that

κα,β(P ) = maxi∈[t] α(Qi) − β(Qi). The idea behind the algorithm is simple: given a graph G ∈
G′α,β(n) (the input), we will compute a sequence L1, . . . , Lt of lists, where Lk contains all of the Qk-

subgraphs of G (with high probability). The list Lk will contain nα(Qk)−β(Qk)+O(1) entries (enough
to accommodate all of the Qk-subgraphs in G). Many entries in Lk will be blank (signified by ∅);
by construction, every non-blank entry of Lk will contain the description of a Qk-subgraph of G

5In fact, the depth is linear in the height of the optimal union sequence, where the height is defined as the length
of the longest path from the root to a leaf in the directed acyclic graph induced by a union sequence.
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(as a string of length α(Qk) log n). Note that blank and non-blank entries in Lk will in general be
interleaved (as AC0 is not powerful enough to sort them).

Some notation: we write `k for the number of entries in the list Lk. For a ∈ [`k], we write
Lk(a) for the contents of the ath entry in Lk (either ∅ or a Qk-subgraph of G). We say that Lk is
good (with respect to G and the randomness of the algorithm) if Lk contains all Qk-subgraphs of
G exactly once.

Lists L1, . . . , Lt are computed, in order, as follows. For k ∈ [t], assume that L1, . . . , Lk−1 have
been computed and are good. In the case that Qk is a single edge of P , let Lk have `k := nα(Qk)

entries, indexed by the potential Qk-subgraphs of G. For a ∈ [`k], the ath entry Lk(a) will contain
the ath potential Qk-subgraph iff it is a Qk subgraph of G; otherwise Lk(a) is blank. Clearly Lk is
good.

If Qk is not a single edge, then by the definition of union sequence, Qk = Qi ∪ Qj for some
1 ≤ i < j < k. We compute Lk in three steps as follows.

Step 1: Let Mk be the `i × `j array where, for a ∈ [`i] and b ∈ [`j ],

Mk(a, b) :=

{
Li(a) ∪ Lj(b) if Li(a) and Lj(b) are consistent on V (Qi) ∩ V (Qj),

∅ otherwise.

(Note that, since Li and Lj are good, Mk contains each Qk-subgraph of G exactly once.
That is, Mk satisfies the “good” condition that we want for Lk.)

Step 2: We hash Mk down to a smaller number of entries to obtain the list Lk. Let Supp(Mk) ⊆
[`i] × [`j ] denote the set of nonempty entries of Mk. Let mk := nα(Qk)−β(Qk)+1 and note
that mk ≥ #{Qk-subgraphs of G} = |Supp(Mk)|. Let hk be a uniform random function

hk : [`i]× [`j ]→ [mk].

(Restricted to the ≤ mk nonempty entries of Mk, this gives a uniform random packing of
≤ mk balls into mk bins.)

Step 3: Let `k := mk lnmk. Indexing entries of Lk by pairs (p, q) ∈ [mk] × [lnmk] (rather than
elements of [`k]), let

Lk(p, q) :=

{
the qth element of h−1

k (p) ∩ Supp(Mk) if |h−1
k (p) ∩ Supp(Mk)| ≥ q,

∅ otherwise.

Note that Lk is good if, and only if,∧
p∈[mk]

|h−1
k (p) ∩ Supp(Mk)| ≤ lnmk.

After computing the final list Lt, the algorithm outputs 1 iff Lt has non-blank entries. Note that
the output of the algorithm will be correct provided Lt is good.

To analyze the success probability of the algorithm, note the following elementary fact about
balls-into-bins, established by a simple union bound.6

(3)

{
For any m̃ ≤ m, the maximum load of a random function of m̃ balls to m bins is

≤ lnm with probability ≥ 1− 1/m.

6A tighter analysis than we require shows that the maximum load is ≤ 3 lnm/ ln lnm with probability ≥ 1−1/m.
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From this fact, we have

Pr
hk

[Lk is not good | L1, . . . , Lk−1 are good] ≤ Pr
hk

[
∨

p∈[mk]

|h−1
k (p) ∩ Supp(Mk)| > lnmk ]

≤ 1

mk
≤ 1

n
.

It follows that

Pr
h1,...,ht

[ erroneous output ] =
∑
k∈[t]

Pr
h1,...,hk

[Lk is not good, L1, . . . , Lk−1 are good ]

≤
∑
k∈[t]

Pr
h1,...,hk

[Lk is not good | L1, . . . , Lk−1 are good]

≤ tn−1 ≤ o(1).

Therefore, the algorithm correctly solves Subgraphcol(P ) with high probability for every G ∈
G′α,β(P ).

It remains to show that this algorithm can be implemented by a random circuit C of size
n2κα,β(P )+O(1) and depth O(e(P )). We will make an additional assumption about the random
functions h1, . . . ,ht:

(4) |h−1
k (p)| ≤ 2`i`j

mk
for all k ∈ [t] and p ∈ [mk].

That is, |h−1
k (p)| is at most twice its expectation for all k and p. By Chernoff and union bounds,

(4) holds with probability 1− exp(−nΩ(1)). So even with this assumption, the error probability of
the circuits we describe remains o(1).

Let us now fix7 any particular hash functions h1, . . . , ht such that (3) and (4) hold for any k ∈ [t].
We will design constant-depth circuits of size n2κα,β(P )+O(1) computing the lists that correspond to
our particular choice of h1, . . . , ht.

We describe the sub-circuit which computes the list Lk given lists L1, . . . , Lk−1. In the case that
Qk is a single edge, the list Lk is clearly computable by a depth-2 circuit of size Õ(nα(Qk)) (the Õ()
coming from the fact that it takes α(Qk) log n gates to encode each entry of Lk). In the case that
Qk = Qi ∪Qj , first note that we can compute the array Mk by a circuit of size Õ(n`i`j) and depth
O(1) (sitting on top of the sub-circuits which compute lists Li and Lj); this is because checking that
Li(a) and Lj(b) agree on all vertices of V (Qi)∩V (Qj) requires only O(n) size and depth 2. Having
computed Mk, computing the entries Lk(p, q) requires sorting ≤ lnmk = O(log n) elements from

the list h−1
k (p) of size O(

`i`j
mk

). By [15], this can be done by a constant-depth circuit of size no(1) `i`j
mk

.

As there are altogether `k ≤ Õ(mk) pairs (p, q), we get a constant-depth circuit which computes
Lk (given Li and Lj) with total size no(1)`i`j ≤ nα(Qi)−β(Qi)+α(Qj)−β(Qj)+O(1) ≤ n2κα,β(P )+O(1).

After computing all lists L1, . . . , Lt, we have a circuit of size n2κα,β(P )+O(1). Finally, note that
the depth of this circuit will be O(d) where d is the height of the poset where i, j ≺ k iff Qk = Qi∪Qj
for i, j < k. Clearly, d ≤ e(P ) as long as all graphs in the sequence are pairwise distinct.

7It is important for our argument that the random functions h1, . . . ,ht are generated in advance and that we do
not attempt to make our construction uniform in h1, . . . ,ht. Putting it less dramatically, if we are not careful about
this point then the multiplicative factor 2 will get increased to 3.
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3.2 Proof of Theorem 3.1 (Lower Bound)

This subsection gives the proof of the lower bound in Theorem 3.1 (the average-case AC0-complexity
of Subgraphcol(P ) on Gα,β(n) is at least nκα,β(P )−o(1)). The argument closely follows the technique
of [26, 27].

It will be convenient to work with an alternative characterization of AC0 as boolean circuits
with fan-in 2. We distinguish between “type-I” and “type-II” AC0 circuits as follows.

type-I: polynomial-size constant-depth {AND∞,OR∞,NOT}-circuits with unbounded fan-in (this
is the standard definition of AC0),

type-II: polynomial-size {AND2,OR2,NOT}-circuits with fan-in 2 and arbitrary depth, but O(1)
alternations between AND and OR gates (where w.l.o.g. NOT gates are on the bottom
level).

The conversion from type-I to type-II replaces each AND∞ (resp. OR∞) gate with an almost
balanced binary tree of AND2 (resp. OR2) gates. Note that this converts a type-I circuit with g
gates (and hence w ≤ O(g2) wires) into a type-II circuit with O(w) gates. Since we measure size
by the number of gates, a lower bound of S on the size of type-II circuits implies a lower bound of
Ω(
√
S) on the size of type-I circuits.

We will prove an nκα,β(P )−o(1) lower bound on the size of type-II circuits solving Subgraphcol(P )
in the average-case on Gα,β(n). This implies a weaker nκα,β(P )/2−o(1) lower bound for type-I circuits.
The stronger nκα,β(P )−o(1) lower bound for type-I circuits can be shown by an additional argument,
which we omit (see Section 3.4 of [27]).

Now comes a key definition.

Definition 3.6. Let f be a boolean function on [labeled, n-vertex] graphs, and let H be any graph.
The f -sensitive subgraph of H, denoted Sens(f,H), is defined as the unique minimal subgraph
S ⊆ H such that f(H ′) = f(H ′ ∩ S) for every H ′ ⊆ H. We say that f is sensitive over H if
Sens(f,H) = H.

For all f and H, observe that

f is sensitive over Sens(f,H) (i.e. Sens(f, Sens(f,H)) = Sens(f,H)),(5)

if f is the AND or OR of functions f1 and f2, then Sens(f,H) ⊆ Sens(f1, H) ∪ Sens(f2, H).(6)

We say that a single-output boolean circuit whose variables encode potential edges in a graph
is sensitive over H if its output function is so.

Lemma 3.7. Let C be an arbitrary boolean circuit with fan-in 2 that is sensitive over some
nonempty graph H. Then there exists a union sequence H1, . . . ,Ht = H and a sequence C1, . . . ,Ct
of sub-circuits of C such that Ci is sensitive over Hi for all i ∈ {1, . . . , t}.

Proof. We argue by induction on boolean circuits with fan-in 2. In the base case, C is a variable
(corresponding to a possible edge). The assumption that C is sensitive over H implies that H is a
single edge. Therefore, H itself is a union sequence of length 1 which satisfies the condition of the
lemma.
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For the induction step, note that if C = NOT(C′), then C′ is sensitive over H; therefore, the
lemma holds by the induction hypothesis for C′. Finally, suppose C is the AND or OR of sub-
circuits C1 and C2. If C1 or C2 is sensitive over H, then appealing to the induction hypothesis, we
are done. So we will assume that neither C1 nor C2 are sensitive over H. Let Hi := Sens(Ci, H) for
i = 1, 2. Then Ci is sensitive over Hi by observation (5). By observation (6),

H = Sens(C, H) ⊆ Sens(C1, H) ∪ Sens(C2, H) = H1 ∪H2.

Hence H = H1 ∪ H2. By the induction hypothesis, there exist union sequence S1, . . . , Ss = H1

and T1, . . . , Tt = H2 which satisfy the condition in the lemma with respect to C1, H1 and C2, H2

respectively. Then S1, . . . , Ss, T1, . . . , Tt, H is a union sequence which satisfies the condition in the
lemma with respect to C and H.

Definition 3.8. If f is a boolean functions on (labelled, n-vertex) graphs and G is any graph, then
let f∪G denote the function f∪G(H) := f(G ∪H).

Note that if a boolean circuit C computes a function f on graphs, then the circuit C∪G that
substitutes 1 for variables corresponding to edges in G computes f∪G.

We now fix a pattern P and a threshold pair (α, β) ∈ θcol(P ). Without loss of generality, we
assume that β(e) > 0 for all e ∈ E(P ) (otherwise we replace P with the subgraph with edge set
{e ∈ E(P ) : β(e) > 0}). We continue to write G for the P -colored random graph Gα,β(n). Let P be
a uniform random “planted” P -subgraph (independent of G). (That is, P is the P -subgraph with
vertex set {(v, iv) : v ∈ V (P )} where iv is uniform random in {1, . . . , bnα(v)c}.) For a subgraph
Q ⊆ P , let Q denote the corresponding subgraph of P.

We next state two technical lemmas.

Lemma 3.9. Suppose f : Gα,β(n)→ {0, 1} solves Subgraphcol(P ) in the average-case on G, that
is,

(7) Pr
G

[ f(G) = 1⇔ G has a P -subgraph ] = 1− o(1).

Then
lim inf
n→∞

Pr
G,P

[ f∪G is sensitive over P ] > 0.

Specifically, the proof of Lemma 3.9 shows the following: the event “E(P) ∩ E(G) = ∅ and P
is the unique P -subgraph in G ∪ P” holds with constant probability. After that, the assumption
(7) rather straightforwardly implies that, conditioned on this event, f∪G is almost surely the AND
function over edges of P (i.e. for all Q ⊆ P, f(G ∪Q) = 1 iff Q = P).

The proof of Lemma 3.9 requires a delicate analysis of the random graph Gα,β(n) and may be
considered separately from the central technique in our lower bound. For this reason, we defer the
proof to Appendix B. (We remark that Lemma 3.9 may be avoided entirely, or at least greatly
simplified, if we only care about worst-case lower bounds, rather than average-case lower bounds
at the distribution Gα,β(n).)

The second technical lemma relies on H̊astad’s Switching Lemma [14] and its proof closely
follows Proposition 3.11 of [27]. (The reader who wishes to skip the technical details is encouraged
to jump ahead to Theorem 3.11.)
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Lemma 3.10. Suppose f : Gα,β(n)→ {0, 1} is AC0-computable. Then for every Q,

Pr
G,Q

[ f∪G is sensitive over Q ] ≤ n−α(Q)+β(Q)+o(1).

Proof. Let E be the set of potential edges of graphs in Gα,β(n). We view elements of E as the
variables of f (i.e. we view f as a boolean function on {0, 1}E). For e ∈ E , let ê ∈ E(P ) be the
corresponding edge of P (under the V (P )-coloring of the common vertex set of graphs in Gα,β(n)).

For sufficiently small constant δ > 0 (which depends on P , but not n), we generate a random
restriction ρ : E → {0, 1, ?} where, independently for all e ∈ E ,

(8) Pr
ρ

[ ρ(e) = ? ] = n−β(ê)−δ, Pr
ρ

[ ρ(e) = 1 | ρ(e) 6= ? ] = n−β(ê).

Let Hρ denote the P -colored graph with edge set E(Hρ) = ρ−1(?). Note that Hρ has distribution
Gα,β+δ. In particular, Eρ[ sub(Q,Hρ) ] = nα(Q)−β(Q)−δ|E(Q)|. We assume δ is sufficiently small so
that α(Q) − β(Q) − δ|E(Q)| > 0 (here we assume α(Q) − β(Q) > 0 since otherwise the lemma is
trivial). Using the lower-tail version of Janson’s Inequality [18], it can be shown that

(9) Pr
ρ

[ sub(Q,Hρ) <
1
2n

α(Q)−β(Q)−δ|E(Q)| ] = n−ω(1).

That is, with very high probability, Hρ contains at least half the expected number of Q-subgraphs.
(Since P and δ > 0 are fixed, n−ω(1) is O(n−c) for every constant c = c(P, δ) which may depend on
P and δ.)

Let Lρ denote the subgraph of Hρ with edge set

E(Lρ) = {e ∈ ρ−1(?) : restricted function f�ρ : {0, 1}ρ−1(?) → {0, 1} depends8 on coordinate e}.

Note that in the language of graphs predominantly used in this proof, we have E(Lρ) = Sens(f�ρ, ρ
−1({1, ?})).

We now use the fact that f is computed by an AC0-circuit (in particular, a type-I AC0-circuit).
A bottom-up depth-reduction argument using H̊astad’s Switching Lemma [14] shows that

(10) Pr
ρ

[ |Lρ| > nδ ] = n−ω(1).

Details of the argument (which is nearly identical to Lemma 3.7 of [27]) can be found in Appendix C.
Let A = A(ρ) denote the event that sub(Q,Hρ) ≥ 1

2n
α(Q)−β(Q)−δ|E(Q)| and |Lρ| ≤ nδ. Note

that Pr[¬A ] = n−ω(1) (by (9) and (10)) and

A =⇒ sub(Q,Lρ)

sub(Q,Hρ)
≤ 2n−α(Q)+β(Q)+δ|E(Q)|+δ|V (Q)|.

We now generate a pair (G′,Q′) of random variables by the following two-step process.

• independently, for all e ∈ E , let

(11) Pr[ e ∈ E(G′) | ρ ] =

{
ρ(e) if ρ(e) ∈ {0, 1},
n−β(ê) if ρ(e) = ?.

8A function g : {0, 1}I → {0, 1} depends on a coordinate i ∈ I if there exists x ∈ {0, 1}I such that g(x) 6= g(x(i))
where x(i) is x with its ith coordinate flipped.
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• If A(ρ) holds (in particular, sub(Q,Hρ) 6= ∅), we let Q′ be a uniform random Q-subgraph of
Hρ. Otherwise, we let Q′ := ⊥ (⊥ stands for ”undefined”).

We claim that (G′,Q′) under the condition Q′ 6= ⊥ is distributed identically with (G,Q).
Indeed, by inspecting the definitions (8) and (11), we see that PrG′ [ e ∈ G′ ] = n−β(ê). This

implies that, firstly, G′ ∼ Gα,β(n) and, secondly, G′ and Hρ are independent. As Q′ is a function
of Hρ, it is independent of G′ as well. Finally, Q′ conditioned by the event Q′ 6= ⊥ is distributed
identically with Q simply by symmetry.

This observation, along with the crucial fact Pr[¬A ] = n−ω(1) mentioned above, implies that
we can rephrase the inequality we are proving as

Pr
ρ,G′,Q′

[ f∪G
′

is sensitive over Q′ | A(ρ) ] ≤ n−α(Q)+β(Q)+o(1).

We now fix an arbitrary ρ such that A holds.
Since Q′ ⊆ Hρ = {e : ρ(e) = ?}, it follows from definitions that if f∪G

′
is sensitive over Q′,

then Q′ ⊆ Lρ. We now have

Pr
G′,Q′

[ f∪G
′

is sensitive over Q′ ] ≤ 2n−α(Q)+β(Q)+δ|E(Q)|+δ|V (Q)|.

The lemma follows, since we can choose δ > 0 arbitrarily small relative to |E(P )|.

Finally, the main result of this subsection (the lower bound of Theorem 3.1):

Theorem 3.11. Suppose C is a type-II circuit which solves Subgraphcol(P ) in the average-case
on Gα,β(P ). Then C has size nκα,β(P )−o(1).

Proof. For contradiction, assume C has size ≤ nκα,β(P )−ε and d alternations for constants ε, d > 0
(which may depend on P but not n). By Lemma 2.14, there exists a hitting set H for P such that
κα,β(P ) = minQ∈H α(Q)−β(Q). Note that every sub-circuit C′ of C is computable by a type-I AC0

circuit of depth d (by combining all adjacent AND and OR gates in C′). Therefore, by Lemma
3.10,

Pr
G

[
∨
Q∈H

C′∪G is sensitive over Q] ≤
∑
Q∈H

n−α(Q)+β(Q)+o(1)

≤ |H|max
Q∈H

n−α(Q)+β(Q)+o(1)

= n−κα,β(P )+o(1) (since |H| ≤ 2|E(P )| = no(1)).

Taking a union bound over the ≤ nκα,β(P )−ε sub-circuits of C, we have

Pr
G

[
∨

sub-circuits C′

∨
Q∈H

C′∪G is sensitive over Q] ≤ n−ε+o(1) = o(1).(12)

We now derive a contradiction to (12). By Lemma 3.7 (with respect to the circuit C∪G),
if C∪G is sensitive over P, then there exist Q ∈ H and a sub-circuit C′ of C such that C′∪G is
sensitive over Q. It follows that

Pr
G

[
∨

sub-circuits C′

∨
Q∈H

C′∪G is sensitive over Q] ≥ Pr
G,P

[C∪G is sensitive over P ]

= Ω(1) (by Lemma 3.9).(13)

Inequalities (12) and (13) give a contradiction, which completes the proof.
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4 Bounds on κcol(P )

In the previous section, we proved that Ccol(P ) ≥ κcol(P ), that is, nκcol(P )−o(1) is a lower bound
on the AC0 complexity of Subgraphcol(P ). In Section 4.2 below we will complete the proof of
Theorem 1.1 by showing that κcol(P ) ≥ Ω(tw(P )/ log tw(P )). But, as a warm-up, let us do a simple
combinatorial upper bound on κcol(P ) (and also present a useful construction in Lemma 4.1 that
we will need for lower bound proofs).

4.1 Upper Bound on κcol(P )

We have already established that κcol(P ) ≤ Ccol(P ) (Corollary 3.2) and Ccol(P ) ≤ tw(P ) + 1
(Lemma 2.3(1)). By these lower and upper bounds in circuit complexity, it follows that κcol(P ) ≤
tw(P ) + 1. In this subsection, we give a direct proof that κcol(P ) ≤ tw(P ) + 1.

We need the following fact, which shows that the max in the definition κcol(P ) := max(α,β)∈θcol(P )

κα,β(P ) is always achieved by some (α, β) ∈ θcol(P ) with α ≡ 1.

Lemma 4.1. Assume that (α, β) ∈ θcol(P ) and define β′ : E(P )→ [0, 2] by the formula

β′({v, w}) := β({v, w}) +
1− α(v)

dP (v)
+

1− α(w)

dP (w)
,

where dP (v) is the degree of the vertex v. Then (1, β′) ∈ θcol(P ) and |V (Q)|−β′(Q) ≥ α(Q)−β(Q)
for any Q ⊆ P .

Proof. For all Q ⊆ P , we have

|V (Q)| − β′(Q) = |V (Q)| −
∑

{v,w}∈E(Q)

(
β({v, w}) +

1− α(v)

dP (v)
+

1− α(w)

dP (w)

)
=

∑
v∈V (Q)

(
1−

dQ(v)

dP (v)
(1− α(v))︸ ︷︷ ︸

≥α(v)

)
−

∑
{v,w}∈E(Q)

β({v, w})

≥ α(Q)− β(Q)

with equality when Q = P .

Corollary 4.2. For all P , there exists β : E(P ) → [0, 2] such that (1, β) ∈ θcol(P ) and κcol(P ) =
κ1,β(P ).

Proof. Let (α, β) ∈ θcol(P ) be such that κcol(P ) = κα,β(P ). Then the element (1, β′) ∈ θcol(P )
constructed from (α, β) as in Lemma 4.1, has the desired property.

Proposition 4.3. κcol(P ) ≤ tw(P ) + 1.

Proof. In fact, we will prove κcol(P ) ≤ bw(P ) where bw(P ) is the branch-width of P (it is known
that bw(P ) ≤ tw(P ) + 1 by [25]). Recall that a branch decomposition of P is a pair (T, b) where T
is a ternary tree and b is bijection from Leaves(T ) to E. Each edge in T determines a partition of
Leaves(T ) (and hence of E) into two sets. The width of (T, b) is the maximum of |V (E1) ∩ V (E2)|
over partitions E = E1 ] E2 determined by the edges of T , and the branch-width bw(P ) is the
minimum possible width of a branch decomposition of P .
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Suppose bw(P ) = k. This means that there exists a branch decomposition (T, b) of width k. Fix
an arbitrary root of T and let x1, . . . , xt be a post-order traversal of nodes in T (in particular, xt is
the root). For every i ∈ [t], let Qi and Qi be the subgraphs of P with E(Qi) := {b(y) : y is a leaf of T
lying below xi} and E(Qi) := E(P )\E(Qi) and V (Qi) :=

⋃
e∈E(Qi)

e and V (Qi) :=
⋃
e∈E(Qi)

e. Note

that Q1, . . . , Qt is a union sequence of P . Since (T, b) has width ≤ k, we have |V (Qi)∩ V (Qi)| ≤ k
for all i ∈ [t].

By Corollary 4.2, there exists β : E(P )→ [0, 2] such that (1, β) ∈ θcol(P ) and κcol(P ) = κ1,β(P ).
For all i ∈ [t], we have

|V (Qi)| − β(Qi) ≤ |V (Qi)| − β(Qi) + |V (Qi)| − β(Qi) (since |V (Qi)| ≥ β(Qi))

= |V (Qi)|+ |V (Qi)| − |V (P )| (since β(Qi) + β(Qi) = β(P ) = |V (P )|)
= |V (Qi) ∩ V (Qi)| ≤ k.

Therefore, κcol(P ) = κ1,β(P ) ≤ max
i∈[t]
|V (Qi)| − β(Qi) ≤ k ≤ bw(P ) ≤ tw(P ) + 1.

4.2 Lower Bounds on κcol(P )

We give two lower bounds on κcol(P ). The first applies to all patterns P .

Theorem 4.4. κcol(P ) ≥ Ω(tw(P )/ log tw(P )).

Together with the fact that Ccol(P ) ≥ κcol(P ) (Corollary 3.2), this completes the proof of our
main theorem (Theorem 1.1).

Our proof of Theorem 4.4 uses a characterization of treewidth from Marx [20] (based on results
of Feige et al [11]): for every P with tw(P ) = k, there is a subset W ⊆ V (P ) of size |W | = Ω(k)
and a concurrent flow on P which routes Ω(1/k log k) flow between every pair of distinct vertices
in W (Lemma 4.8). Given such a concurrent flow on P , we construct a corresponding threshold
pair (α, β) ∈ θcol(P ) and show that κα,β(P ) gives the desired bound.

We also include a lower bound on κcol(P ) in terms of the expansion of P (Theorem 4.9), which
improves Theorem 4.4 in the case where P is a constant-degree expander.

Definition 4.5.

(i) Let Paths(P ) denote the set of paths in P (i.e. subgraphs of P isomorphic to an (undirected,
simple) path of length ≥ 1).

(ii) Let Flows(P ) denote the set of concurrent flows on P with node-capacity 1, that is, functions
f : Paths(P )→ [0, 1] such that for all v ∈ V (P ),

∑
π∈Paths(P ) : v∈V (π) f(π) ≤ 1.

(iii) For f ∈ Flows(P ) and disjoint S, T ⊆ V (P ), let f(S, T ) denote the total flow that f sends
between S and T , that is,

f(S, T ) :=
∑

π∈Paths(P ) :π has endpoints in S and T

f(π).

For two distinct vertices v, w, we let f(v, w) := f({v}, {w}).
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(iv) For π ∈ Paths(P ), define απ : V (P )→ [0, 1] and βπ : E(P )→ [0, 2] by

απ(v) :=


1/2 if v is an endpoint of π,

1 if v is an interior vertex of π,

0 if v /∈ V (π),

βπ(e) :=

{
1 if e ∈ E(π),

0 if e /∈ E(π).

(v) For f ∈ Flows(P ), define αf : V (P )→ [0, 1] and βf : E(P )→ [0, 2] by

αf (v) :=
∑

π∈Paths(P )

f(π) · απ(v), βf (e) :=
∑

π∈Paths(P )

f(π) · βπ(e).

Lemma 4.6. (αf , βf ) ∈ θcol(P ) for all f ∈ Flows(P ).

Proof. Clearly, απ(P ) = βπ(P ) (= |E(π)|) and απ(Q) ≥ βπ(Q) for all Q ⊆ P and π ∈ Paths(P ).
(αf , βf ) ∈ θcol(P ) follows by convexity.

Lemma 4.7. For all Q ⊆ P and f ∈ Flows(P ),

αf (Q)− βf (Q) ≥ 1

2
f(V (Q), V (Q)).

Proof. Note that f(S, T ) =
∑

π∈Paths(P )

f(π) · π(S, T ) where

π(S, T ) :=

{
1 if π has one endpoint in S and another in T ,

0 otherwise.

Therefore, it suffices to show, for all π ∈ Paths(P ), that

(14) απ(Q)− βπ(Q) ≥ 1

2
π(V (Q), V (Q)).

If both endpoints of π belong to the same set among V (Q), V (Q), then 1
2π(V (Q), V (Q)) = 0 while

απ(Q)− βπ(Q) ≥ 0 by Lemma 4.6 (since (απ, βπ) ∈ θcol(P )); so (14) holds. On the other hand, if
π has one endpoint in V (Q) and another in V (Q), then 1

2π(V (Q), V (Q)) = 1
2 , while

απ(Q)− βπ(Q) =
1

2
|{edges of π that cross between V (Q) and V (Q)}| ≥ 1

2
,

so again (14) holds.

Our lower bound on κcol(P ) relies on a characterization of treewidth in terms of concurrent
flows:

Lemma 4.8 ([11, 20]). If P has treewidth k, then there exist W ⊆ V (P ) with |W | ≥ 2k/3 and
f ∈ Flows(P ) such that f(v, w) ≥ 1/ck log k for all distinct v, w ∈ W where c > 0 is a universal
constant.
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Proof of Theorem 4.4. Suppose tw(P ) = k and fix W ⊆ V (P ) and f ∈ Flows(P ) as in the Lemma
4.8. Let H be the set of subgraphs Q ⊆ P such that 2k/9 ≤ |W ∩ V (Q)| ≤ 4k/9. Clearly H is a
hitting set for P (i.e. every union sequence for P contains a graph in this set). For every Q ∈ H,
we have

αf (Q)− βf (Q) ≥ f(W ∩ V (Q),W \ V (Q))

2

≥ |W ∩ V (Q)| · |W \ V (Q)|
2ck log k

≥ 4k

81c log k
= Ω

(
k

log k

)
.

Therefore, κcol(P ) ≥ καf ,βf (P ) = Ω(k/ log k).

Tight lower bound for expanders.

We conclude this section by giving a second lower bound on κcol(P ) in terms of edge expansion;
this gives the optimal Ω(tw(P )) lower bound in the case that P is an expander such as Kk or Gk,k.
Let ∆(P ) denote the maximum degree of P . For S ⊆ V (P ), let eP (S, S) := |{{v, w} ∈ E(P ) : v ∈
S and w ∈ V (P ) \ S}|. Recall that the edge expansion of P is defined by

h(P ) := min
S : ∅⊂S⊂V (P )

eP (S, S)

min{|S|, |S|}
.

Theorem 4.9. κcol(P ) ≥ h(P )|V (P )|
3∆(P )

.

Proof. Let us apply the construction from Lemma 4.1 to the pair (0, 0). This gives us the function
β : E(P )→ [0, 2] defined by

β({v, w}) :=
1

dP (v)
+

1

dP (w)

such that (1, β) ∈ θcol(P ).
Consider the hitting set H consisting of subgraphs Q ⊆ P such that 1

3 |V (P )| ≤ |V (Q)| ≤
2
3 |V (P )|. For every Q ∈ H the calculation in the proof of Lemma 4.1 gives us

|V (Q)| − β(Q) =
∑

v∈V (Q)

(
1−

dQ(v)

dP (v)

)
≥ 1

∆(P )

∑
v∈V (Q)

(dP (v)− dQ(v))

=
eP (V (Q), V (Q))

∆(P )

≥ h(P ) min{|V (Q)|, |V (P )| − |V (Q)|}
∆(P )

≥ h(P )|V (P )|
3∆(P )

.

Completing the proof,

κcol(P ) ≥ κ1,β(P ) ≥ min
Q∈H

(|V (Q)| − β(Q)) ≥ h(P )|V (P )|
3∆(P )

.
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5 Minor-Monotonicity and Monotone Projections

In this section, we prove that κcol(P ) and Ccol(P ) are minor-monotone graph parameters. First, a
few definitions.

Recall that a minor of G is any graph that can be obtained from G by a sequence of vertex dele-
tions, edge deletions, and edge contractions. A real-valued graph parameter f is minor-monotone
if f(G) ≤ f(G′) whenever G is a minor of G′.

Theorem 5.1. κcol(P ) and Ccol(P ) are minor-monotone.

The algorithmic problem Subgraphcol(P ) was defined in Section 2.3 in such a way that the
coloring χ : G → P is a part of its input. We first observe that the parameter Ccol(P ) does not
change if we consider instead its more structured version Subgraphcol,n(P ) in which (cf. Definition
2.8) we demand that the target graph G has the vertex set V (P ) × [n], and χ is the projection
onto the first coordinate. An easy AC0-reduction from Subgraphcol(P ) to Subgraphcol,n(P )
works as follows. Assume that we are given an input (G,χ) to the problem Subgraphcol(P ),
and assume w.l.o.g. that V (G) = [n]. We map it to the pair (G′, χ′), where V (G′) := V (P ) ×
[n], χ′ is the projection onto the first coordinate, and E(G′) is defined as follows: E(G′) :=
{{(v, χ(v)), (w,χ(w))} : {v, w} ∈ E(G)}. (Thus, all vertices (v, i) with i 6= χ(v) remain isolated.)
Hence Theorem 5.1 readily follows from the following lemma.

Lemma 5.2. Suppose P is a minor of P ′. Then

1. for every (α, β) ∈ θcol(P ), there exists (α′, β′) ∈ θcol(P ′) such that κα,β(P ) ≤ κα′,β′(P ′),

2. Subgraphcol,n(P ) ≤mp Subgraphcol,n(P ′).

Proof. It suffices to show that the lemma holds in the two cases where P is a subgraph of P ′,
and where P is obtained from P ′ by contracting a single edge {x, y} where x, y have no common
neighbor (Otherwise, we perform necessary edge deletions before contraction).

Subgraph Case. Suppose P is a subgraph of P ′.
For (1): Consider any (α, β) ∈ θcol(P ). Define α′ : V (P ′)→ [0, 1] and β′ : E(P ′)→ [0, 2] by

α′(v) :=

{
α(v) if v ∈ V (P ),

0 otherwise,
β′(e) :=

{
β(e) if e ∈ E(P ),

0 otherwise.

It is easily seen that (α′, β′) ∈ θcol(P ′) and κα,β(P ) = κα′,β′(P
′).

For (2): The monotone projection p is defined as follows:

p({(v, i), (w, j)}) :=

{
{(v, i), (w, j)} if {v, w} ∈ E(P ),

1 if {v, w} ∈ E(P ′) \ E(P ).

Thus, p∗ takes an input G to the problem Subgraphcol,n(P ) and converts it into an input G′ to
Subgraphcol,n(P ′) by filling in complete bipartite graphs between {v} × [n] and {w} × [n] for all
new edges {v, w} ∈ E(P ′) \ E(P ).

Contraction Case. Now suppose P is obtained from P ′ by contracting a single edge {x, y} where
x, y have no common neighbor. Let z label the contracted vertex in P , so that V (P ) \V (P ′) = {z}

22



and V (P ′) \ V (P ) = {x, y}. Let ρ : V (P ′) → V (P ) be the function x, y 7→ z and v 7→ v for all
v ∈ V (P ′) \ {x, y}. For e = {v, w} ∈ E(P ′) \ {x, y}, let ρ(e) := {ρ(v), ρ(w)} ∈ E(P ) (ρ({x, y}) is
undefined).

For (1): Consider any (α, β) ∈ θcol(P ). Define α′ : V (P ′)→ [0, 1] and β′ : E(P ′)→ [0, 2] by

α′(v) := α(ρ(v)), β′(e) :=

{
α(z) if e = {x, y},
β(ρ(e)) otherwise.

We now check that (α′, β′) ∈ θcol(P
′) and κα′,β′(P

′) ≥ κα,β(P ). For that consider the mapping
ρ̂ : Q′ → ρ(Q′ \ {{x, y}}) that takes subgraphs of P ′ to subgraphs of P . It is easy to see that
α′(Q′) − β′(Q′) ≥ α(ρ̂(Q′)) − β(ρ̂(Q′)), and that this is tight for Q′ = P ′: in the only non-trivial
case {x, y} ∈ E(Q′) we have α(ρ̂(Q′)) = α′(Q′)− α(z) and β(ρ̂(Q′)) = β′(Q′)− α(z). This proves
the first claim (α′, β′) ∈ θcol(P

′). To see that κα,β(P ) ≤ κα′,β′(P
′), it suffices to observe that ρ̂

takes union sequences for P ′ into union sequences for P and thus ρ̂−1 maps hitting sets for P into
hitting sets for P ′.

For (2): This time the monotone projection p is defined by

p({(v, i), (w, j)}) :=


1 if {v, w} = {x, y} and i = j,

0 if {v, w} = {x, y} and i 6= j,

{(ρ(v), i), (ρ(w), j)} otherwise.

(That is, p∗ duplicates {z} × [n] into two sets {x} × [n], {y} × [n] and then plants a perfect
matching between twins.) This p is clearly a monotone projection from Subgraphcol,n(P ) to
Subgraphcol,n(P ′).

5.1 Negative results in the uncolored setting

In the colored setting, we have seen that Subgraphcol(P ) is minor-monotone via linear-size mono-
tone projections. Highlighting a difference between the uncolored and colored settings, we now show
that there is no monotone projection whatsoever that reduces Subgraph(M3) to Subgraph(P3 +
M2) (where P3 is a path on 3 vertices and Mk is a matching with k edges). While it remains an
open problem whether C(P ) is (even approximately) minor-monotone under general AC0 reduc-
tions, this result strongly suggests that the colorful version of the subgraph isomorphism problem
is much better structured and well-behaved than the standard (uncolored) one.

We begin with some properties of P3 +M2-free graphs.

Lemma 5.3. Every P3 +M2-free graph G satisfies one of the following conditions:

(i) G has ≤ C edges for some absolute constant C,

(ii) G is a matching,

(iii) G contains a vertex of degree ≥ 6.

Note: Lemma 5.3 is true with any integer replacing 6 in (iii), for an appropriate constant C in (i).
The choice of 6 is simply convenient in the proof of Theorem 5.6 later on.
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Proof. Assume G is P3 + M2-free, not a matching, and has maximum degree ≤ 5. We will show
that G has O(1) edges. Since G is not a matching, it contains a vertex u of degree ≥ 2. Since
G has maximum degree ≤ 5, there is a constant C ′ such that if G has > C ′ non-isolated vertices,
then it contains vertices v, w such that any two of u, v, w have distance ≥ 3; in that case, we would
have P3 +M2-subgraph of G by taking any two edges containing u plus any two edges containing
v and w respectively. Therefore, G has ≤ C ′ non-isolated vertices. It follows that G has ≤ 5C ′/2
edges.

Lemma 5.4. If G is P3 +M2-free and contains an M4-subgraph, then G is a matching.

Proof. Suppose G contains an M4-subgraph H, but G is not a matching. We will show that G
contains a P3 + M2-subgraph. Since G is not a matching, it contains a P3-subgraph K. If K is
vertex-disjoint from H, then K plus any two edges from H is a P3 + M2-subgraph of G. Now
assume that K intersects a vertex in H. Then there is a P3-subgraph K ′ which contains an edge
in H. This K ′ is vertex-disjoint from at least two edges in H; then K ′ plus these two edges is a
P3 +M2-subgraph of G.

Lemma 5.5. Suppose G contains a P3 + M2-subgraph and a vertex u of degree ≥ 6. Then G
contains a P3 +M2-subgraph in which u is the degree-2 vertex.

Proof. Let H be any P3 + M2-subgraph of G. H contains an M2-subgraph H ′ which does not
include the vertex u. Since u has degree ≥ 6, it has two distinct neighbors v and w such that
{u, v, w} ∩ V (H ′) = ∅. Then H ′ plus edges {u, v} and {u,w} is a P3 +M2-subgraph of G in which
u is the degree-2 vertex.

Now the main result of this subsection:

Theorem 5.6. Subgraph(M3) is not a monotone projection of Subgraph(P3 +M2).

Proof. Toward a contradiction, assume there exists a monotone projection p :
(

[N ]
2

)
→
(

[n]
2

)
∪ {0, 1}

from Subgraph(M3) on n-vertex graphs to Subgraph(P3 + M2) on N -vertex graphs for some
n,N ∈ N where n ≥ C + 2 with C the constant from Lemma 5.3. That is, for every graph G with
vertex set [n], we have

G contains an M3-subgraph ⇔ p∗(G) contains a P3 +M2-subgraph

where p∗(G) is the graph with edge set p−1(E(G) ∪ {1}).
We proceed by showing a sequence of claims. The first claim establishes that the monotone

projection p∗ depends on all variables (i.e. on all edges in
(

[n]
2

)
).

Claim 5.7. p−1(e) is non-empty for all e ∈
(

[n]
2

)
.

I Let G be an n-vertex graph consisting of three disjoint edges, one of which is e. Then G contains
an M3-subgraph, so p∗(G) contains a P3 +M2-subgraph. However, G− e is M3-free, so p∗(G− e)
is P3 +M2-free. We conclude that p−1(e) is nonempty, since p∗(G) = p∗(G− e) ∪ p−1(e). claim

For a ∈ [n], let Sa denote the n-vertex star centered at a (with edge set {e ∈
(

[n]
2

)
: a ∈ e}). Let

Fa := p−1(Sa) (so that p∗(Sa) is the disjoint union of Fa and p−1(1)). Over the next few claims, we
will show that Fa are stars of degree ≥ 6 with distinct centers. Claim 5.7 implies that Fa contains
at least n− 1 (> C) edges.
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Since Sa is M3-free, p∗(Sa) is P3 +M2-free, hence Fa is P3 +M2-free. By Lemma 5.3, it follows
that either Fa is a matching or Fa contains a vertex of degree ≥ 6. The next claim eliminates the
first possibility.

Claim 5.8. For every a ∈ [n], Fa is not a matching.

I For contradiction, assume Fa is a matching for some a ∈ [n]. Consider any b ∈ [n]. Note that
Sa ∪ Sb is M3-free, hence p∗(Sa ∪ Sb) is P3 +M2-free. Since p∗(Sa ∪ Sb) ⊇ Fa ∪ Fb and Fa contains
a M4-subgraph, Lemma 5.4 implies that Fa ∪ Fb is a matching. This argument shows that Fa ∪ Fb
is a matching for all a, b ∈ [n]. Therefore, the entire pre-image p−1(Kn) is a matching, where Kn

is the complete graph on vertices [n].
Since Kn contains an M3-subgraph, p∗(Kn) (= p−1(Kn)∪p−1(1)) contains a P3 +M2-subgraph.

It follows that either p−1(1) contains a path of length 2, or p−1(1) contains an edge with an endpoint
in V (p−1(Kn)). In both cases we get a contradiction, as it follows that p∗(Sc) contains a P3 +M2-
subgraph for some c ∈ [n], even though Sc is M3-free. (If p−1(1) contains a P3-subgraph, then any
c ∈ [n] will do; if p−1(1) contains an edge with an endpoint v ∈ V (p−1(Kn)), then any c ∈ [n] with
v ∈ V (Fc) will do.) claim

For all a ∈ [n], we have established that Fa is P3+M2-free, has > C edges and is not a matching.
By Lemma 5.3, we conclude that Fa contains at least one vertex of degree ≥ 6. Let us now fix a
function z : [n]→ [N ] such that z(a) is a vertex of degree ≥ 6 in Fa for all a ∈ [n].

Claim 5.9. z is (≤ 2)-to-1.

I For contradiction, assume there exist distinct a, b, c ∈ [n] such that v := z(a) = z(b) = z(c).
By Lemma 5.5, p∗(Sa ∪ Sb ∪ Sc) contains a P3 + M2-subgraph in which v is the degree-2 vertex.
Let e, f ∈

(
[N ]
2

)
be the two edges in this subgraph which are not adjacent to v. Without loss of

generality, {e, f} ⊆ p∗(Sa ∪ Sb). Since v has degree ≥ 6 in p∗(Sa ∪ Sb), we can find a different path
of length 2 through v which is vertex-disjoint from edges e and f . Therefore, p∗(Sa ∪ Sb) contains
a P3 +M2-subgraph. Since Sa ∪ Sb is M3-free, this contradicts our assumption about p. claim

Claim 5.10. Fa is a star with center z(a) for all a ∈ [n].

I For contradiction, assume Fa is not a star with center z(a). Then Fa contains an edge e with
z(a) /∈ e. Since z is (≤ 2)-to-1, there exists b ∈ [n] such that z(b) /∈ e. We may find a P3 + M2-
subgraph within Fa ∪ Fb by taking e together with a disjoint path of length 2 through z(a) and a
disjoint edge containing z(b). This contradicts the fact that p∗(Sa ∪ Sb) is P3 +M2-free. claim

Claim 5.11. z is 1-to-1.

I For contradiction, assume v := z(a) = z(b) for some a 6= b. Let c ∈ [n] \ {a, b}. Then z(c) 6= v
and p∗(Sa ∪ Sb ∪ Sc) = Fa ∪ Fb ∪ Fc ∪ p−1(1) contains a P3 + M2-subgraph H. We may assume
that H contains edges {v, u} ∈ E(Fa) \E(Fb) and {v, w} ∈ E(Fb) \E(Fa) since otherwise H would
be a subgraph of either p∗(Sa ∪ Sc) or p∗(Sb ∪ Sc) contradicting P3 +M2-freeness of these graphs.
Note that u 6= w. Since v has degree ≥ 6 in Fa, we can find an edge {v, w′} ∈ E(Fa) such that
w /∈ V (H). Let H ′ be the graph obtained by substituting the edge {v, w′} for {v, w}. Then H ′ is
a P3 +M2-subgraph of p∗(Sa ∪ Sc), which is again a contradiction. claim

At this point, we have established that graphs Fa (a ∈ [n]) are stars of degree ≥ 6 with distinct
centers.

Claim 5.12. |p−1(e)| = 1 for all e ∈
(

[n]
2

)
.
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I Suppose e = {a, b}. Since Fa and Fb are stars with different centers and p−1(e) ⊆ Fa ∩ Fb,
there can be only one possibility for p−1(e). Since p−1(e) is nonempty by Claim 5.7, it follows that
|p−1(e)| = 1. claim

Claim 5.13. p−1(1) is nonempty.

I Let G be any copy of M3 (i.e. any three disjoint edges) among n-vertices. Then p−1(G) has only
three edges by Claim 5.12. Since p∗(G) = p−1(G) ∪ p−1(1) has P3 + M2-subgraph, it contains at
least 4 edges. Therefore, p−1(1) is nonempty. claim

Fix any edge e in p−1(1) and any a 6= b ∈ [n] such that z(a), z(b) /∈ e. Then p∗(Sa ∪ Sb)
contains a P3 + M2-subgraph, even though Sa ∪ Sb is M3-free. This, finally, is the contradiction
which completes the proof of Theorem 1.2.

6 Conclusion

With the results of this paper, the state of knowledge on the average/worst-case AC0 complexity
of the uncolored/colorful P -subgraph isomorphism problem now stands as

Ω( tw(P )
log tw(P )) ≤ κcol(P ) ≤ Ccol(P ) ≤ tw(P ) + 1

≤

C(P )

≤

κ(P ) ≤ Cave(P ) ≤ 2κ(P ) +O(1).

We have examples showing that the gap between Cave(P ) and C(P ) (i.e. the average-case vs.
worst-case AC0 complexity of Subgraph(P )) can be arbitrarily large (see Remark 2.7). We do not
know of any gap between C(P ) and Ccol(P ). Equivalently, we can ask whether C(P ) is bounded
from below by any function of tw(P ). Restating Question 1 from the introduction:

Question 1. Is it possible to give general lower bounds on the worst-case AC0 complexity of
Subgraph(P ) (uncolored P -subgraph isomorphism) in terms of the treewidth of P only?

When P is a core, we know that C(P ) = Ccol(P ) = Θ̃(tw(P )). At the opposite end of the
spectrum, Question 1 is wide open for bipartite patterns P .

The next two questions seek to improve the parameters in our main results.

Question 2. Can the upper bound Cave(P ) ≤ 2κ(P ) +O(1) of Theorem 1.2 be improved to κ(P ) +
O(1)?

Question 3. Can the log tw(P ) factor be eliminated from our lower bounds on κcol(P ) (Theorem
1.1) or at least Ccol(P )?

We are able to answer Question 3 affirmatively in the special case where P is a constant-degree
expander (Theorem 4.9).

Another question raised by this work is whether the AC0 complexity of Subgraph(P ) is mono-
tone with respect to minors or subgraphs. In contrast to the colorful setting, we showed that
monotone projections (the simplest form of reduction) fail to give any reduction whatsoever from
Subgraph(Q) to Subgraph(P ), even when Q is only a subgraph of P .
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Question 4. Is C(P ) minor-monotone or monotone under subgraphs?

More modestly, if Q is a minor (or subgraph) of P , is there a reduction from Subgraph(Q)
to Subgraph(P ) by AC0-circuits of size O(nc) for a constant c independent of P and Q? That
would imply C(Q) ≤ O(C(P )); currently we do not know if C(Q) can be bounded by any function
in C(P ).

Finally, it would be interesting to investigate the relationship between κcol(P ) and the com-
plexity of Subgraphcol(P ) beyond AC0. In particular, we recall the result of Marx [20] that
Subgraphcol(P ) has no no(tw(P )/ log tw(P ))-time algorithm unless the Exponential Time Hypoth-
esis (ETH) fails. Follow-up work of Alon and Marx [1] looked at the question of removing the
log tw(P ) factor loss in the exponent of this result (toward the goal of showing that nΘ(tw(P )) is
the true complexity of Subgraphcol(P ), at least assuming the ETH). Alon and Marx specifically
identified constant-degree expanders as a case where “substantially different methods” are needed
to eliminate the log tw(P ) factor loss incurred by the reduction of [20]. In light of our lower bounds
Ccol(P ) ≥ κcol(P ) = Ω(|V (P )|) when P is a constant-degree expander, it becomes interesting to
ask:

Question 5. Can it be shown that Subgraphcol(P ) has no no(κcol(P ))-time algorithm unless the
ETH fails?
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A Proof of Lemma 2.10

Fix a pattern P and a nontrivial threshold pair (α, β) ∈ θcol(P ). We can assume w.l.o.g. that
β(e) > 0 for all e ∈ E(G) (as the edges with β(e) = 0 can be removed). Following the approach of
Bollobás and Wierman [7], we fix a chain of (necessarily induced) subgraphs

∅ = Q0 ⊂ Q1 ⊂ · · · ⊂ Qt−1 ⊂ Qt = P

satisfying

• α(Qi) = β(Qi) for all 0 ≤ i ≤ t, and

• α(R) > β(R) for all 1 ≤ i ≤ t and Qi−1 ⊂ R ⊂ Qi.

Call such a sequence (Q0, . . . , Qt) an (α, β)-grading of G. Clearly, at least one (α, β)-grading
exists. Note that 1 ≤ t ≤ |E(P )|, since (α, β) is nontrivial. (It is known that t is the same for
(α, β)-gradings; however, we will not use this fact.)

Let G := Gα,β(P ). For 0 ≤ i ≤ t, define random variable Xi as the number of Qi-subgraphs
in G. Obviously, X0 = 1 (with probability 1). For 1 ≤ i ≤ t, let L(Xi | Xi−1 = 1) denote the
distribution of Xi conditioned on the event Xi−1 = 1. We prove Lemma 2.10 by showing the
following

Lemma A.1. For all 1 ≤ i ≤ t, L(Xi | Xi−1 = 1) is asymptotically the Poisson distribution Po(1).
In particular,

lim
n→∞

Pr[ Xi = 0 | Xi−1 = 1 ] = lim
n→∞

Pr[ Xi = 1 | Xi−1 = 1 ] =
1

e
.

The first inequality of Lemma 2.10 follows immediately, as we have

lim inf
n→∞

Pr[ G has no P -subgraph ] ≥ lim inf
n→∞

Pr[ G has no Q1-subgraph ]

= lim inf
n→∞

Pr[ X1 = 0 | X0 = 1 ]

=
1

e
.
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For the second inequality, we have

lim inf
n→∞

Pr[ G has a unique P -subgraph ] = lim inf
n→∞

Pr[ Xt = 1 ]

≥ lim inf
n→∞

Pr[ X0 = · · · = Xt = 1 ]

= lim inf
n→∞

∏
1≤i≤t

Pr[ Xi = 1 | Xi−1 = 1 ]

=
1

et
≥ 1

e|E(P )| .

In the remainder of this appendix we give the proof of Lemma A.1. We will use the following re-
sult on Poisson approximation. Before stating it, recall that the total variation distance dTV (X,Y)
between two random variables X and Y with values in the same set (in particular, real-valued
variables) is given by

dTV (X,Y) := sup
A
|Pr[ X ∈ A ]− Pr[ Y ∈ A ]|.

{0, 1}-valued random variables I1, . . . , Im are positively related if for any given i ∈ [m] one can find
{0, 1}-valued random variables Jji (j 6= i) such that Jji ≥ Ij and this tuple is distributed identically
with the tuple Ij (j 6= i) conditioned by the event Ii = 1.

Lemma A.2 (Theorem 6.24 in [18]). Suppose I1, . . . , Im are positively related {0, 1}-valued random
variables, and let k :=

∑
i Ii. Then

dTV (L(k),Po(E[k])) ≤ Var[k]

E[k]
− 1 + 2 max

i
E[Ii].

Proof of Lemma A.1. Fix i ∈ {1, . . . , t} and let Q := Qi and Q′ := Qi−1 and X := Xi and
X′ := Xi−1. To show that L(X | X′ = 1) is asymptotically Po(1), we would like to sample G
conditioned on X′ = 1 (i.e. the event that G contains a unique Q′-subgraph). However, it will
be convenient to condition on the entire V (Q′)-colored part of G (i.e. the induced subgraph of G
on the vertices which map to V (Q′) under the vertex-coloring of G). We shall therefore fix an
arbitrary V (Q′)-colored graph G′ such that

• G′ equals the Q′-colored part of G for some G in the support of G, and

• G′ contains a unique Q′-subgraph, which we will denote by H ′.

We denote by G|G′ the random graph G conditioned on the event that the Q′-colored part of G
equals G′. Note that G|G′ is a product distribution on the unrestricted edges.

Let Q (= Q(H ′)) be the set of potential Q-subgraphs which extend H ′. For each H ∈ Q, let IH
be the indicator variable for the event that G|G′ contains H. These random variables are positively
related: just let JH′H be the characteristic function of the event that G contains E(H ′) \ E(H).
Let k :=

∑
H∈Q IH . We will show that L(k) is asymptotically Po(1) using Lemma A.2. Since the

event {X′ = 1} is the disjoint union of events {G′ is the Q′-colored part of G} over all G′, it follows
that L(X | X′ = 1) is asymptotically Po(1) by the convexity of dTV .

We will now calculate the expectation of k. First, we have

|Q| =
∏

v∈V (Q)\V (Q′)

bnα(v)c = (1− o(1))nα(Q)−α(Q′).
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For each H ∈ Q, we have
E[IH ] = n−β(Q)+β(Q′).

(Note for the record that this is o(1) since β(Q′) < β(Q) by the fact that Q0, . . . , Qt is an (α, β)-
grading.) Therefore,

E[k] = (1− o(1))nα(Q)−α(Q′)n−β(Q)+β(Q′) = 1− o(1),

using the fact that α(Q) = β(Q) and α(Q′) = β(Q′).
We next calculate Var[k]. For H,K ∈ Q, let U := χ(V (H) ∩ V (K)) be the set of P -colors of

vertices in the intersection of V (H) and V (K). Note that

V (Q′) ⊆ U ⊆ V (Q).

Thus,
E[ IHIK ] = n−2β(Q)+β(Q′)+β(U)

where β(U) :=
∑

e∈E(P )∩(U2) β(e). For all V (Q′) ⊆ U ⊆ V (Q), we have

#{(H,K) ∈ Q×Q : χ(V (H) ∩ V (K)) = U} = (1− o(1))n2α(Q)−α(Q′)−α(U).

Therefore,

Var[k] =
∑

H,K∈Q :H 6=K
E[ IHIK ]

=
∑

U :V (Q′)⊆U ⊂V (Q)

(1− o(1))n2α(Q)−α(Q′)−α(U)n−2β(Q)+β(Q′)+β(U)

=
∑

U :V (Q′)⊆U ⊂V (Q)

(1− o(1))nβ(U)−α(U).

Note that β(U) < α(U) for all V (Q′) ⊂ U ⊂ V (Q) (otherwise, letting R denote the induced
subgraph of Q on U , we would have α(R) = β(R), contradicting the fact that Q0, . . . , Qt is an
(α, β)-grading). It follows that

Var[k] = 1± o(1).

Plugging the bounds E[k] = 1− o(1) and Var[k] = 1± o(1) and E[IH ] = o(1) into Lemma A.2,
we have

dTV

(
L(k),Po(µ)

)
≤ Var[k]

E[k]
− 1 + 2 max

H∈Q
E[IH ] = o(1).

Finally, since dTV

(
Po(1),Po(1− o(1))

)
= o(1), we conclude that k is asymptotically Po(1), which

completes the proof.

B Proof of Lemma 3.9

In this section we also assume that β(e) > 0 for all e ∈ P (see the paragraph before the statement
of Lemma 3.9). This assumption in particular implies that E(G) ∩ E(P) = ∅ almost surely. Thus
we only have to prove that with constant probability G ∪ P does not contain any P -subgraphs
other than P itself (a formal argument is included at the end of this section).
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Lemma B.1.

1. For every P -colored graph G in the support of G and every subgraph Q ⊆ P ,

Pr[ G ∪Q = G ]

Pr[ G = G ]
= (1 + o(1))

sub(Q,G)

nα(Q)−β(Q)
.

2. If A is a property of P -colored graphs which holds a.a.s. for G, then A holds a.a.s. for G∪Q
for every Q ⊆ P .

3. lim inf
n→∞

Pr[ sub(P,G∪P) = 1 ] > 0. That is, G∪P has a unique P -subgraph (namely P) with

probability bounded away from 0.

Proof. (1): Noting that the number of possible Q-subgraphs in G is
∏
v∈V (Q)bnα(v)c = (1 −

o(1))nα(Q), we have

Pr[ G ∪Q = G ] = (1 + o(1))n−α(Q)
∑

K∈Sub(Q,G)

∑
H :G\K⊆H⊆G

Pr[ G = H ].

For every K ∈ Sub(Q,G) and H such that G \K ⊆ H ⊆ G, we have

Pr[ G = H ] = Pr[ G = G ] ·
∏

e∈E(K\H)

1− n−β(ê)

n−β(ê)

= (1− o(1)) Pr[ G = G ] ·

{
nβ(Q) if H = G \K,
nβ(Q)−Ω(1) otherwise (since β positive).

(Above, ê is the edge in P corresponding to e under the vertex-coloring of G.) Since n−Ω(1)

dominates 2|E(Q)| − 1 (i.e. the number of summands where H 6= G \K), statement (1) follows.

(2): Suppose A holds a.a.s. with respect to G (i.e. lim infn→∞ Pr[ G /∈ A ] = 0) and let Q ⊆ P . Let
c > 0 be an arbitrary (large) constant. We split up the event {G ∪Q /∈ A} as follows:

Pr[ G ∪Q /∈ A ] ≤ Pr[ sub(Q,G ∪Q) ≥ cnα(Q)−β(Q) ]

+ Pr[ G ∪Q /∈ A and sub(Q,G ∪Q) ≤ cnα(Q)−β(Q) ].

We bound each of the righthand terms separately.
First, note that

E[ sub(Q,G ∪Q) ] =
∑
R⊆Q

E[ |{H ∈ Sub(Q,G ∪Q) : χ(H ∩Q) = R}| ]

≤
∑
R⊆Q

nα(Q)−α(R) · n−β(Q\R)

≤ 2|E(Q)| · nα(Q)−β(Q)

(the latter inequality holds since α(R) ≥ β(R) for all R). So by Markov’s inequality,

Pr[ sub(Q,G ∪Q) ≥ cnα(Q)−β(Q) ] ≤ 2|E(Q)|

c
.
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Second, we have

Pr[ G ∪Q /∈ A and sub(Q,G ∪Q) ≤ cnα(Q)−β(Q) ]

=
∑

G :G/∈A and sub(Q,G)≤cnα(Q)−β(Q)

Pr[ G ∪Q = G ]

=
∑

G :G/∈A and sub(Q,G)≤cnα(Q)−β(Q)

(1 + o(1)) Pr[ G = G ]
sub(Q,G)

nα(Q)−β(Q)
(by (1))

≤
∑

G :G/∈A and sub(Q,G)≤cnα(Q)−β(Q)

(1 + o(1))cPr[ G = G ]

≤ (1 + o(1))cPr[ G /∈ A ].

Since lim inf
n→∞

Pr[ G /∈ A ] = 0, it follows that

lim inf
n→∞

Pr[ G ∪Q /∈ A ] ≤ 2|E(Q)|

c
.

Since c may be chosen arbitrarily large, we conclude that A holds a.a.s. with respect to G ∪Q.

(3): Note that for Q = P and sub(P,G) = 1 Lemma B.1(1) simplifies to Pr[ G ∪ P = G ] =
(1 + o(1)) Pr[ G = G ]. Thus, we have

lim inf
n→∞

Pr[ sub(P,G ∪P) = 1 ] = lim inf
n→∞

Pr[ sub(P,G) = 1 ]

> 0 (by Lemma 2.10).

Remark B.2. In the uncolored setting (where P is balanced and G = G(n, n−θ(P ))), in Lemma
B.1(1) the denominator nα(Q)−β(Q) should be replaced by E[ sub(Q,G) ].

Proof of Lemma 3.9. Let h : Gα,β(n) → {0, 1} denote the Subgraphcol(P ) function, that is,
h(G) = 1 ⇔ G contains a P -subgraph. Assume f : Gα,β(n) → {0, 1} solves Subgraphcol(P )
in the average-case on G, that is,

Pr[ f(G) = h(G) ] = 1− o(1).

By Lemma B.1(2),

Pr[ f(G ∪Q) = h(G ∪Q) for all Q ⊆ P ] = 1− o(1).

Since the event “f∪G is sensitive over P” depends only on the values of f(G ∪Q) for Q ⊆ P , we
have

(15) Pr[ f∪G is sensitive over P ⇔ h∪G is sensitive over P ] = 1− o(1).

As we already indicated above,

(16) h∪G is sensitive over P ⇔ E(G) ∩ E(P) = ∅ and sub(P,G ∪P) = 1

(with probability 1). To see why, first assume E(G)∩E(P) = ∅ and sub(P,G∪P) = 1. It follows
that h∪G(P− {e}) = 0 for all e ∈ E(P). Since h∪G(P) = 1, this shows that h∪G is sensitive over
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P. For the opposite direction, consider the case that there exists e ∈ E(G) ∩ E(P). Note that e
does appear in Sens(h∪G,P). Therefore, h∪G is not sensitive over P. Finally, consider the case that
sub(P,G∪P) > 1. Then G∪P contains a P -subgraph other than P; this P -subgraph necessarily
does not include some edge e ∈ E(P ). Note that sub(P,G ∪ (P − {e})) ≥ 1, which means that e
does appear in Sens(h∪G,P). So again h∪G is not sensitive over P.

From (15) and (16), we have

Pr[ f∪G is sensitive over P ] ≥ Pr[E(G) ∩ E(P) = ∅ and sub(P,G ∪P) = 1 ]− o(1)

≥ Pr[ sub(P,G ∪P) = 1 ]− Pr[E(G) ∩ E(P) 6= ∅ ]− o(1).

Since β is positive,

Pr[E(G) ∩ E(P) 6= ∅ ] ≤
∑

e∈E(P )

n−β(e) = o(1).

Completing the proof, we have

lim inf
n→∞

Pr[ f∪G is sensitive over P ] ≥ lim inf
n→∞

Pr[ sub(P,G ∪P) = 1 ] > 0

by Lemma B.1(3).

C The switching lemma proof of (10)

Let C be a type-I (constant-depth, unbounded fan-in) AC0 circuit of size S = S(n) = nO(1) and
depth d = d(n) = O(1) over the set of variables E (corresponding to potential edges of graphs in
Gα,β(n)). Recall that ρ : E → {0, 1, ∗} is the (coordinate-wise independent) random restriction with

Pr[ ρ(e) = ? ] = n−β(ê)−δ (=: qe), Pr[ ρ(e) = 1 | ρ(e) 6= ? ] = n−β(ê) (=: pe),

where δ > 0 is a fixed constant. Restating (10), we must show that

Pr[C�ρ depends on > nδ variables ] = n−ω(1).

The proof uses nothing more than H̊astad’s Switching Lemma [14]. We generate ρ as a compo-
sition of d+ 1 random restrictions ρ0, . . . , ρd where

• ρ0 : E → {0, 1, ?} is the unbalanced random restriction with

Pr[ ρ0(e) = ? ] = pe, Pr[ ρ0(e) = 1 | ρ0(e) 6= ? ] =
1
2(pe + qe)− peqe

1− pe
(=: re)

(note that re = 1
2pe + o(pe) is a well-defined value in (0, 1) since qe � pe � 1),

• for i ∈ {1, . . . , d}, ρi : ρ−1
i−1(?)→ {0, 1, ?} is the balanced random restriction with

Pr[ ρi(e) = ? ] = n−δ/d, Pr[ ρi(e) = 1 | ρi(e) 6= ? ] = 1/2.
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It is easy to check that ρd ◦ · · · ◦ ρ0 is indeed the same distribution as ρ.
Let D(·) denote decision tree depth of a boolean function. Let g be the function computed by a

gate of height i ∈ {1, . . . , d} in C. Let g1, . . . , gm be the children g1, . . . , gm. (That is, g is the AND
or the OR of g1, . . . , gm and has distance d − i to the output of C.) H̊astad’s Switching Lemma
tells us

Pr

[
D(g�ρi◦···◦ρ0

) > δ log n

∣∣∣∣ ∧
j∈[m]

D(gj�ρi−1◦···◦ρ0
) ≤ δ log n

]
≤ (5n−δ/dδ log n)δ logn.

By a union bound, it follows that

Pr[C�ρ depends on > nδ variables ] ≤ Pr[D(C�ρ) > δ log n ] ≤ S · (5n−δ/dδ log n)δ logn.

Since S = nO(1) and d = O(1) and δ = Ω(1) (with these constants only depending on the fixed
pattern P ), we have

S · (5n−δ/dδ log n)δ logn = n−ω(1).

Note that this argument (as indeed all results in this paper) tolerates super-constant depth d(n)
up to o(log n/ log logn).
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