Rectangles Are Nonnegative Juntas

Mika Göös1 Shachar Lovett2 Raghu Meka
Thomas Watson1 David Zuckerman3

1 Department of Computer Science, University of Toronto
2 Computer Science and Engineering, University of California, San Diego
3 Department of Computer Science, University of Texas at Austin

November 5, 2014

Abstract

We develop a new method to prove communication lower bounds for composed functions of the form $f \circ g^n$ where f is any boolean function on n inputs and g is a sufficiently “hard” two-party gadget. Our main structure theorem states that each rectangle in the communication matrix of $f \circ g^n$ can be simulated by a nonnegative combination of juntas. This is the strongest yet formalization for the intuition that each low-communication randomized protocol can only “query” few inputs of f as encoded by the gadget g. Consequently, we characterize the communication complexity of $f \circ g^n$ in all known one-sided zero-communication models by a corresponding query complexity measure of f. These models in turn capture important lower bound techniques such as corruption, smooth rectangle bound, relaxed partition bound, and extended discrepancy.

As applications, we resolve several open problems from prior work: We show that SBP^{cc} (a class characterized by corruption) is not closed under intersection. An immediate corollary is that $\text{MA}^{cc} \neq \text{SBP}^{cc}$. These results answer questions of Klauck (CCC 2003) and Böhler et al. (JCSS 2006). We also show that approximate nonnegative rank of partial boolean matrices does not admit efficient error reduction. This answers a question of Kol et al. (ICALP 2014) for partial matrices.

Most of this work was done while the authors were visiting Microsoft Research, Silicon Valley Lab at various times. Shachar Lovett was supported in part by NSF CAREER award 1350481. David Zuckerman was supported in part by NSF Grant CCF-1218723.
1 Introduction

Most functions studied in communication complexity (e.g., equality, set-disjointness, inner-product, gap-hamming; see [KN97, Juk12]) are composed functions of the form \(f \circ g^n \) where \(f : \{0,1\}^n \rightarrow \{0,1\} \) is a partial function and \(g : \mathcal{X} \times \mathcal{Y} \rightarrow \{0,1\} \) is some small two-party function, often called a gadget. Here Alice and Bob are given inputs \(x \in \mathcal{X}^n \) and \(y \in \mathcal{Y}^n \), respectively; we think of the inputs as being partitioned into blocks \(x_i \in \mathcal{X} \) and \(y_i \in \mathcal{Y} \) for \(i \in [n] \). Their goal is to compute

\[
(f \circ g^n)(x, y) := f(g(x_1, y_1), \ldots, g(x_n, y_n)).
\]

Intuitively, the difficulty in computing \(f \circ g^n \) stems from the fact that for any \(i \), the \(i \)-th input \(z_i := g(x_i, y_i) \) to \(f \) remains unknown to either party until they decide to communicate enough information about \(x_i \) and \(y_i \). Indeed, an educated guess is that—assuming \(g \) is chosen carefully—the communication complexity of \(f \circ g^n \) should be explained by some query measure of \(f \).

This work is about formalizing the above intuition. Our main result is the following.

Simulation Theorem (Theorem 2, informally). *Many types of randomized protocols for \(f \circ g^n \) can be simulated by a corresponding type of randomized decision tree for \(f \).*

This result makes it easy to prove strong lower bounds for \(f \circ g^n \) in all known one-sided (and some two-sided) zero-communication models. Here a zero-communication protocol is understood in the sense of \([KLL^{+}12]\) as a probability distribution over (labeled) rectangles \(R = X \times Y \) (where \(X \subseteq \mathcal{X}^n \) and \(Y \subseteq \mathcal{Y}^n \)) together with some acceptance criterion. Such models can be used to capture all known rectangle-based lower bound techniques used in communication complexity. This includes widely studied measures such as corruption [Yao83, BFS86, Raz92, Kla03, BPSW06, She12a, GW14], smooth rectangle bound [JK10, Kla10, CKW12, JY12, HJ13, KMSY14], relaxed partition bound [KLL^{+}12], and extended discrepancy [Kla03, GL14]; see [JK10] for an extensive catalog. The Simulation Theorem applies to all these measures: it reduces the task of understanding a specific communication complexity measure of \(f \circ g^n \) to the task of understanding a corresponding query complexity measure of \(f \), which is typically a far easier task.

1.1 Main structural result: Junta Theorem

In order to motivate our approach (and to introduce notation), we start by reviewing some previous influential work in communication complexity.

Prior work: Approximation by polynomials. A long line of prior work has developed a framework of polynomial approximation to analyze the communication complexity of composed functions. Building on the work of Razborov [Raz03], a general framework was introduced by Sherstov [She09, She11a] (called the pattern matrix method) and independently by Shi and Zhu [SZ09] (called the block-composition method). See also the survey [She08]. Both methods have since been studied in the two-party setting [LZ10, RS10, She11b] and also the multiparty setting [LS09b, AC08, Cha08, She12b, She13, RY14].

One way to phrase the approach taken in these works (a “primal” point of view championed in [She12b]) is as follows. Let \(\Pi \) be a randomized protocol and let \(\text{acc}_\Pi(x, y) \) denote the probability that \(\Pi \) accepts an input \((x, y)\). For example, if \(\Pi \) computes a two-party function \(F \) with error at most \(1/4 \), then \(\text{acc}_\Pi(x, y) \in [3/4, 1] \) for every 1-input \((x, y)\) \(\in F^{-1}(1) \) and \(\text{acc}_\Pi(x, y) \in [0, 1/4] \) for
every 0-input \((x, y) \in F^{-1}(0)\). When \(F \coloneqq f \circ g^n\) is a composed function, we can define \(\text{acc}_\Pi(z)\) for \(z \in \text{dom } f\) (domain of \(f\)) meaningfully as the probability that \(\Pi\) accepts a random two-party encoding of \(z\). More specifically, letting \(E\) denote expectation and \(\mathcal{U}_z\) the uniform distribution over \((g^n)^{-1}(z)\) we define
\[
\text{acc}_\Pi(z) := \mathbb{E}_{(x, y) \sim \mathcal{U}_z} \text{acc}_\Pi(x, y).
\]

The centerpiece in the framework is the following type of structure theorem: assuming \(g\) is chosen carefully, for any cost-\(c\) protocol \(\Pi\) there is a degree-\(O(c)\) multivariate polynomial \(p(z)\) such that \(\text{acc}_\Pi(z) \approx p(z)\). Here the approximation error is typically measured point-wise. Consequently, if \(f\) cannot be approximated point-wise with a low-degree polynomial, one obtains lower bounds against any bounded-error protocol computing \(f \circ g^n\).

A technical convenience that will be useful for us is that since randomized protocols are essentially linear combinations of 0/1-labeled rectangles \(R\), it suffices to study the acceptance probability of each individual rectangle \(R\). More formally, it suffices to understand \(\text{acc}_R(z)\), defined as the probability that \((x, y) \in R\) for a random encoding \((x, y) \sim \mathcal{U}_z\) of \(z\). Put succinctly,
\[
\text{acc}_R(z) := \mathcal{U}_z(R).
\]

An important feature of the polynomial framework is that it often yields tight lower bounds for two-sided (i.e., closed under complement) randomized models. However, polynomials are not the most precise modeling choice when it comes to understanding one-sided (i.e., not closed under complement) randomized models, such as randomized generalizations of \(\text{NP}\) and measures like nonnegative rank.

This work: Approximation by conical juntas. In this work, we show that randomized protocols for composed functions can be simulated by conical juntas, a nonnegative analog of polynomials. Let \(h : \{0, 1\}^n \rightarrow \mathbb{R}_{\geq 0}\) be a function. We say that \(h\) is a \(d\)-junta if it only depends on at most \(d\) of its input bits—we stress that all juntas in this work are nonnegative by definition. More generally, we call \(h\) a conical \(d\)-junta if it lies in the nonnegative cone generated by \(d\)-juntas, i.e., if we can write \(h = \sum a_i h_i\) where \(a_i \geq 0\) are nonnegative coefficients and \(h_i\) are \(d\)-juntas. Equivalently, a conical \(d\)-junta can be viewed as a nonnegative combination of width-\(d\) conjunctions (i.e., functions of the form \((\ell_1 \land \cdots \land \ell_w)\) where \(w \leq d\) and each \(\ell_i\) is an input variable or its negation).

For concreteness, we state and prove our results for logarithmic-size inner-product gadgets. That is, throughout this work, we restrict our attention to the following setting of parameters:

- The gadget is given by \(g(x, y) := (\langle x, y \rangle \mod 2,\) where \(x, y \in \{0, 1\}^b\).
- The block length \(b = b(n)\) satisfies \(b(n) \geq 100 \log n\).

(However, our results hold more generally whenever \(g\) is a sufficiently strong two-source extractor; see Remark 1.)

We are now ready to state our key structural result. The result essentially characterizes the computational power of a single rectangle in the communication matrix of \(f \circ g^n\). Note that the theorem makes no reference to \(f\).
Theorem 1 (Junta Theorem). Assume (†). For any \(d \geq 0 \) and any rectangle \(R \) in the domain of \(g^n \) there exists a conical \(d \)-junta \(h \) such that, for all \(z \in \{0, 1\}^n \),
\[
\text{acc}_R(z) \in (1 \pm 2^{-\Theta(b)}) \cdot h(z) \pm 2^{-\Theta(db)}.
\]

Discussion. Theorem 1 is similar in spirit to the approach taken by Chan et al. [CLRS13]. They gave a black-box method for converting Sherali–Adams lower bounds into size lower bounds for extended formulations. A key step in their proof is to approximate a single nonnegative rank-1 matrix with a single junta. In our approach, we approximate a single rectangle with a whole nonnegative combination of juntas. This allows us to achieve better error bounds that yield tight characterizations for many communication models (as discussed in Section 1.2 below). In the language of communication complexity, the lower bounds of [CLRS13] went up to about \(\Omega(\log^2 n) \).

The additive error \(2^{-\Theta(db)} \) in Theorem 1 is essentially optimal, and the same additive error appears in the polynomial approximation framework. The multiplicative error \((1 \pm 2^{-\Theta(b)}) \) is new: this is the cost we end up incurring for using juntas instead of polynomials. Such multiplicative error does not appear in the polynomial approximation framework. Whether one can achieve better multiplicative accuracy in Theorem 1 is left as an open problem (see Section 1.4).

Maybe the biggest drawback with Theorem 1 is that our proof assumes block length \(b = \Omega(\log n) \) (cf. the pattern matrix method assumes \(b = \Theta(1) \)). Whether Theorem 1 can be improved to \(b = \Theta(1) \) is left as an open problem.

1.2 Communication versus query: Simulation Theorem

The most intuitive way to formalize our Simulation Theorem is in terms of different randomized models of computation rather than in terms of different lower bound measures. Indeed, we consider several models originally introduced in the context of Turing machine complexity theory: for any such model \(C \) one can often associate, in a canonical fashion, a communication model \(C^{cc} \) and a decision tree model \(C^{dt} \). We follow the convention of using names of models as complexity measures so that \(C^{cc}(F) \) denotes the communication complexity of \(F \) in model \(C^{cc} \), and \(C^{dt}(f) \) denotes the query complexity of \(f \) in model \(C^{dt} \). In this work, we further identify \(C^{cc} \) with the class of partial functions \(F \) with \(C^{cc}(F) \leq \text{poly}(\log n) \). We stress that our complexity classes consist of partial functions (i.e., promise problems)—for total functions many surprising collapses are possible (e.g., \(\text{NP}^{cc} \cap \text{coNP}^{cc} = \text{P}^{cc} \) for total functions [KN97, §2.3]).

Our methods allow us to accurately analyze the models listed below (see also Figure 1). Our discussion in this introduction is somewhat informal; see Section 3 for precise definitions.
• **NP**: *Nondeterminism*. We view an NP computation as a randomized computation where 1-inputs are accepted with non-zero probability and 0-inputs are accepted with zero probability. The communication analog NPcc was formalized in the work of Babai et al. [BFS86] that introduced communication complexity analogs of classical complexity classes.

• **WAPP**: *Weak Almost-Wide PP* [BGM06]. A WAPP computation is a randomized computation such that 1-inputs are accepted with probability in $[(1 - \epsilon)\alpha, \alpha]$, and 0-inputs are accepted with probability in $[0, \epsilon\alpha]$ where $\alpha = \alpha(n) > 0$ is arbitrary and $\epsilon < 1/2$ is a constant. The communication analog WAPPcc is equivalent to the (one-sided) smooth rectangle bound of Jain and Klauck [JK10] and also to approximate nonnegative rank by a result of Kol et al. [KMSY14]. We also study a two-sided model WAPP \cap coWAPP whose communication analog corresponds to the two-sided smooth rectangle bound, which was called the relaxed partition bound by [KLL+12].

• **SBP**: *Small Bounded-Error Probability* [BGM06]. An SBP computation is a randomized computation such that 1-inputs are accepted with probability in $[\alpha, 1]$ and 0-inputs are accepted with probability in $[0, \alpha/2]$ where $\alpha = \alpha(n) > 0$ is arbitrary. The communication analog SBPcc is equivalent to the (one-sided) corruption bound originally defined in [Yao83] (see [GW14]).

• **PostBPP**: *Postselected BPP* [Aar05]. (Equivalent to BPP$^\text{path}$ [HHT97].) A PostBPP computation is a randomized computation that may sometimes output ⊥ (representing “abort” or “don’t know”), but conditioned on not outputting ⊥ the output is correct with probability at least 3/4. The communication analog PostBPPcc was first studied in [Kla03] (under the name “approximate majority covers”) and subsequently in [GL14] (under the generic name “zero-communication protocols”) where the term extended discrepancy was coined for the dual characterization of PostBPPcc.

We apply the Junta Theorem to show that when C is one of the above models, any C^{cc} protocol for $f \circ g^n$ can be converted into a corresponding C^{dt} decision tree for f. Hence lower bounds on $C^{cc}(f \circ g^n)$ follow in a black-box way from lower bounds on $C^{dt}(f)$.

Theorem 2 (Simulation Theorem). Assume (†). For any partial $f : \{0,1\}^n \to \{0,1\}$ we have

$$C^{cc}(f \circ g^n) = \Theta(C^{dt}(f) \cdot b) \quad \text{for } C \in \{\text{NP}, \text{WAPP}, \text{SBP}\},$$

$$C^{cc}(f \circ g^n) \geq \Omega(C^{dt}(f) \cdot b) \quad \text{for } C = \text{PostBPP}.$$

(Here we crucially ignore constant factors in the error parameter ϵ for $C = \text{WAPP}$.)

Naturally, the upper bounds in Theorem 2 follow from the fact that a communication protocol for $f \circ g^n$ can simulate the corresponding decision tree for f: when the decision tree queries the i-th input of f, the protocol spends $b + 1$ bits of communication to figure out $z_i = g(x_i, y_i)$ in a brute-force manner. (There is one subtlety concerning the two-sided model PostBPP; see Remark 3.)

We also mention that the result for the simplest model $C = \text{NP}$ does not require the full power of the Junta Theorem: it is possible to prove it using only a proper subset of the ideas that we present for the other randomized models.

1.3 Applications

Using the Simulation Theorem we can resolve several questions from prior work.
SBP and corruption. Our first application is the following.

Theorem 3. SBP$^\text{cc}$ is not closed under intersection.

We prove this theorem by first giving an analogous lower bound for query complexity: there exists a partial f such that $\text{SBP}^{dt}(f) \leq O(1)$, but $\text{SBP}^{dt}(f_\wedge) \geq n^{\Omega(1)}$, where $f_\wedge : \{0,1\}^{2n} \to \{0,1\}$ is defined by $f_\wedge(z,z') := f(z) \wedge f(z')$. This query separation alone yields via standard diagonalization (e.g., [AW09, §5]) an oracle relative to which the classical complexity class SBP is not closed under intersection, solving an open problem posed by [BGM06]. Applying the Simulation Theorem to $f \circ g^n$ and $f \wedge \circ g^{2n} = (f \circ g^n)_\wedge$ we then obtain Theorem 3.

Theorem 3 has consequences for Arthur–Merlin communication (MA$^\text{cc}$, AM$^\text{cc}$) which has been studied in [Kla03, RS04, AW09, GS10, Kla11, GR13, GPW15]. Namely, Klauck [Kla03] asked (using the language of uniform threshold covers) whether the known inclusion MA$^\text{cc} \subseteq$ SBP$^\text{cc}$ is strict. (This was also re-asked in [GW14]..) Put differently, is corruption a complete lower bound method for MA$^\text{cc}$ up to polynomial factors? Since MA$^\text{cc}$ is closed under intersection, we conclude that the answer is “no”.

Corollary 4. SBP$^\text{cc} \not\subseteq$ MA$^\text{cc}$.

Proving explicit lower bounds for AM$^\text{cc}$ remains one of the central challenges in communication complexity. Motivated by this [GPW15] studied a certain unambiguous restriction of AM$^\text{cc}$, denoted UAM$^\text{cc}$, as a stepping stone towards AM$^\text{cc}$. They asked whether UAM$^\text{cc} \subseteq$ SBP$^\text{cc}$. In other words, does corruption give lower bounds against UAM$^\text{cc}$ in a black-box fashion? They showed that the answer is “no” for query complexity. Using the Simulation Theorem it is now straightforward to convert this result into an analogous communication separation.

Corollary 5. UAM$^\text{cc} \not\subseteq$ SBP$^\text{cc}$.

Intriguingly, we still lack UAM$^\text{cc}$ lower bounds for set-disjointness. Corollary 5 implies that such lower bounds cannot be blindly derived from Razborov’s corruption lemma [Raz92].

WAPP and nonnegative rank. Kol et al. [KMSY14] asked whether the error parameter ϵ in the definition of WAPP can be efficiently amplified, i.e., reduced. It is known that such amplification is possible for the closely related two-sided model AWPP, Almost-Wide PP (related to smooth discrepancy and approximate rank), using “amplification polynomials”; see [Fen03, §3] (or [LS09a, §3.2] and [Alo03] for approximate rank). In [KMSY14] it was shown that no one-sided analog of amplification polynomials exists, ruling out one particular approach to amplification.

We show unconditionally that WAPP$^\text{cc}$ (and hence rank$^+_{\epsilon}$, approximate nonnegative rank) does not admit efficient error amplification in the case of partial functions. For total functions, this at least shows that no “point-wise” method can be used to amplify ϵ, since such methods would also work for partial functions. We write WAPP$^\epsilon_\text{cc}$ for the measure corresponding to error ϵ.

Theorem 6. For all constants $0 < \epsilon < \delta < 1/2$ there exists a two-party partial function F such that WAPP$^\text{cc}_\delta(F) \leq O(\log n)$ but WAPP$^\text{cc}_\epsilon(F) \geq n^{\Omega(1)}$.

Corollary 7. For all constants $0 < \epsilon < \delta < 1/2$ there exists a partial boolean matrix F such that rank$^\epsilon_\delta(F) \leq n^{O(1)}$ but rank$^+_{\epsilon}(F) \geq 2^{\Omega(n^{1})}$.
In order to conclude Corollary 7 from Theorem 6 we actually need a stronger equivalence of WAPPcc and approximate nonnegative rank than the one proved by Kol et al. [KMSY14]: they showed the equivalence for total functions while we need the equivalence for partial functions. The extension to partial functions is nontrivial, and is related to the issue of “unrestricted” vs. “restricted” models of communication.

Unrestricted vs. restricted models. So far we have discussed “restricted” communication models. We can also define their “unrestricted” counterparts in analogy to the well-studied pair of classes PPcc (a.k.a. discrepancy [Kla07, §8]) and UPPcc (a.k.a. sign-rank [PS86]). Recall that a PP computation is a randomized computation such that 1-inputs are accepted with probability in $[1/2+\alpha, 1]$, and 0-inputs are accepted with probability in $[0, 1/2-\alpha]$ where $\alpha = \alpha(n) > 0$ is arbitrary. In the unrestricted model UPPcc the parameter $\alpha > 0$ can be arbitrarily small (consequently, the model is defined using private randomness), whereas in the restricted model PPcc the cost of a protocol with parameter α is defined as the usual communication cost plus $\log(1/\alpha)$. It is known that PP$^{cc} \subsetneq$ UPPcc where the separation is exponential [BVdW07].

One can analogously ask whether the unrestricted–restricted distinction is relevant for the models considered in this work. (The question was raised and left unresolved for SBP in [GW14].) In fact, the separation of [BVdW07] already witnesses PostBPP$^{cc} \subsetneq$ UPostBPPcc where the latter is the unrestricted version of the former. By contrast, we prove that the distinction is immaterial for WAPP and SBP, even for partial functions: the unrestricted models UWAPPcc and USBPcc (see Section 3 for definitions) are essentially no more powerful than their restricted counterparts. Consequently, the Simulation Theorem can be applied to analyze these unrestricted models, too—but the equivalences are also interesting in their own right.

Theorem 8. SBP$^{cc}(F) \leq O(USBP^{cc}(F) + \log n)$ for all F.

Theorem 9. WAPP$^{cc}_\delta(F) \leq O(UWAPP^{cc}_\epsilon(F) + \log(n/(\delta - \epsilon)))$ for all F and all $0 < \epsilon < \delta < 1/2$.

The seemingly more powerful models USBPcc and UWAPPcc admit characterizations in terms of the nonnegative rank of matrices: instead of rectangles, the protocols compute using nonnegative rank-1 matrices. In particular, UWAPPcc turns out to capture rank$^\tau$; it is Theorem 9 that will be used in the proof of Corollary 7 above.

1.4 Open problems

- Does Theorem 1 continue to hold for $b = O(1)$? If so, this would among other things also give a different proof of Razborov’s corruption lower bound [Raz92] for set-disjointness. The main hurdle here seems to be a question about two-source extractors: Is inner-product an extractor for block-wise dense sources (a notion introduced in Section 2.2) even when $b = O(1)$?

- Can the multiplicative accuracy in Theorem 1 be improved? This issue seems to be what is preventing us from quantitatively improving on the lower bounds obtained by [CLRS13] for the LP extension complexity of approximating Max-Cut.

- Raz and McKenzie [RM99] obtained a simulation theorem that converts deterministic communication protocols for $f \circ g^n$ into deterministic decision trees for f, where f is a certain type of structured search problem and g a certain polynomial-size gadget. Can our methods be used to simplify their proof, or to extend their result to a larger class of f’s and g’s?
• Our focus in this work has been on partial functions. It remains open whether $\text{SBP}^{\text{cc}} = \text{MA}^{\text{cc}}$ for total functions, or whether efficient error amplification exists for WAPP^{cc} for total functions.

1.5 Notational conventions

We always write random variables in bold (e.g., x, y, z). Capital letters X, Y are reserved for subsets of inputs to $G = g^n$ (so all rectangles R are of the form $X \times Y$). We identify such sets with flat distributions: we denote by X the random variable that is uniformly distributed on X. Given a distribution D and an event E we denote by $(D \mid E)$ the conditional distribution of D given E, specifically, $(D \mid E)(\cdot) := D(\cdot \cap E)/D(E)$. We also use the shorthand $D(\cdot \mid E) := (D \mid E)(\cdot)$.

2 Proof of the Junta Theorem

In this section we prove Theorem 1, restated here for convenience.

Theorem 1 (Junta Theorem). Assume (†). For any $d \geq 0$ and any rectangle R in the domain of g^n there exists a conical d-junta h such that, for all $z \in \{0,1\}^n$,

$$\text{acc}_R(z) \in (1 \pm 2^{-\Theta(b)}) \cdot h(z) \pm 2^{-\Theta(db)}.$$ \hspace{1cm} (1)

2.1 Proof overview

We write $G := g^n$ for short. Fix $d \geq 0$ and a rectangle $L \subseteq \text{dom} G$. Our goal is to approximate $\text{acc}_L(z)$ by some conical d-junta $h(z)$. (We are going to use the symbol L for the “main” rectangle so as to keep the symbol R free for later use as a more generic rectangle.) The high-level idea in our proof is extremely direct: to find a suitable h we partition—or at least almost partition—the rectangle L into subrectangles $R \subseteq L$ that behave like width-d conjunctions.

Definition 10 (Conjunction rectangles). A rectangle R is a (d, ϵ)-conjunction if there exists a width-d conjunction $h_R: \{0,1\}^n \rightarrow \{0,1\}$ (i.e., h_R can be written as $(\ell_1 \land \cdots \land \ell_w)$ where $w \leq d$ and each ℓ_i is an input variable or its negation) such that $\text{acc}_R(z) \in (1 \pm \epsilon) \cdot a_R h_R(z)$ for some $a_R \geq 0$ and all $z \in \{0,1\}^n$.

The proof is split into three subsections.

(§ 2.2) Block-wise density: We start by discussing a key property that is a sufficient condition for a subrectangle $R \subseteq L$ to be a conjunction rectangle.

(§ 2.3) Reduction to a packing problem: Instead of partitioning L into conjunctions, we show that it suffices to find a packing (disjoint collection) of conjunction subrectangles of L that cover most of L relative to a given distribution over inputs. This will formalize our main technical task: solving a type of packing-with-conjunctions problem.

(§ 2.4) Solving the packing problem: This is the technical heart of the proof: we describe an algorithm to find a good packing for L.

9
2.2 Block-wise density

In this subsection we introduce a central notion that will allow us to extract close to uniform output from sufficiently random inputs to $G = g^n : \{0,1\}^{bn} \times \{0,1\}^{bn} \rightarrow \{0,1\}^n$. Recall that in the setting of two-source extractors (e.g., [Vad12]), one considers a pair of independent random inputs x and y that have high min-entropy, defined by $H_\infty(x) := \min_x \log(1/\Pr[x = x])$. In our setting we think of $G = g^n$ as a local two-source extractor: each of the n output bits depends only on few of the input bits. Hence we need a stronger property than high min-entropy on x and y to guarantee that $z := G(x, y)$ will be close to uniform. This property we call block-wise density. Below, for $I \subseteq [n]$, we write x_I for the restriction of x to the blocks determined by I.

Definition 11 (Block-wise density). A random variable $x \in \{0,1\}^{bn}$ is δ-dense if for all $I \subseteq [n]$ the blocks x_I have min-entropy rate at least δ, that is, $H_\infty(x_I) \geq \delta |I|$.

Definition 12 (Multiplicative uniformity). A distribution \mathcal{D} on $\{0,1\}^m$ is ϵ-uniform if $\mathcal{D}(z) \in (1 \pm \epsilon) \cdot 2^{-m}$ for all outcomes z.

Lemma 13. Assume (†). If x and y are independent and 0.6-dense, then $G(x, y)$ is $2^{-b/20}$-uniform.

Proof. Let $z := G(x, y)$. First observe that for any $I \subseteq [n]$ the parity of the output bits z_I is simply $\langle x_I, y_I \rangle \bmod 2$. We use the fact that inner-product is a good two-source extractor to argue that this parity is close to an unbiased random bit. Indeed, by 0.6-density we have $H_\infty(x_I) + H_\infty(y_I) \geq 1.2b/|I|$ and this implies by a basic theorem of Chor and Goldreich [CG88, Theorem 9] that for $I \neq \emptyset$,

$$|\Pr[\langle x_I, y_I \rangle \bmod 2 = 0] - 1/2| \leq 2^{-0.1b/|I| + 1}. \tag{2}$$

This bound is enough to yield ϵ-uniformity for $\epsilon := 2^{-b/20}$, as we next verify using standard Fourier analysis (see, e.g., [O’D14]).

Let \mathcal{D} be the distribution of z. We think of \mathcal{D} as a function $\{0,1\}^n \rightarrow [0,1]$ and write it in the Fourier basis as

$$\mathcal{D}(z) = \sum_{I \subseteq [n]} \hat{\mathcal{D}}(I) \chi_I(z)$$

where $\chi_I(z) := (-1)^{\sum_{i \in I} z_i}$ and $\hat{\mathcal{D}}(I) := 2^{-n} \sum_z \mathcal{D}(z) \chi_I(z) = 2^{-n} \cdot E_{z \sim D}[\chi_I(z)]$. Note that $\hat{\mathcal{D}}(\emptyset) = 2^{-n}$ because \mathcal{D} is a distribution. In this language, property (2) says that, for all $I \neq \emptyset$, $2^n \cdot |\hat{\mathcal{D}}(I)| = |E[-1 \langle x_I, y_I \rangle]| \leq 2^{-0.1b/|I| + 2}$, which is at most $\epsilon 2^{-2b/|I| \log n}$ by our definition of b and ϵ. Hence,

$$2^n \sum_{I \neq \emptyset} |\hat{\mathcal{D}}(I)| \leq \epsilon \sum_{I \neq \emptyset} 2^{-2|I| \log n} = \epsilon \sum_{k=1}^n 2^{-k \log n} \leq \epsilon \sum_{k=1}^n 2^{-k \log n} \leq \epsilon.$$

We use this to show that $|\mathcal{D}(z) - 2^{-n}| \leq \epsilon 2^{-n}$ for all $z \in \{0,1\}^n$, which proves the lemma. To this end, let \mathcal{U} denote the uniform distribution (note that $\hat{\mathcal{U}}(I) = 0$ for all $I \neq \emptyset$) and let 1_z denote the indicator for z defined by $1_z(z) = 1$ and $1_z(z') = 0$ for $z' \neq z$ (note that $|\hat{1}_z(I)| = 2^{-n}$ for all I).

We can now calculate

$$|\mathcal{D}(z) - 2^{-n}| = |\langle 1_z, \mathcal{D} \rangle - \langle 1_z, \mathcal{U} \rangle| = |\langle 1_z, \mathcal{D} - \mathcal{U} \rangle| = 2^n \cdot |\hat{1}_z(\mathcal{D} - \mathcal{U})| \leq 2^n \cdot \sum_{I \neq \emptyset} |\hat{1}_z(I)| \cdot |\hat{\mathcal{D}}(I)| = \sum_{I \neq \emptyset} |\hat{\mathcal{D}}(I)| \leq \epsilon 2^{-n}. \quad \Box$$

1This fact resembles the classic “Vazirani XOR-Lemma” [Vaz86], except that the latter only guarantees the distribution is close to uniform in statistical distance, and it assumes a single bound on the bias of all parities (whereas we assume a bound that depends on the size of the parity).
Remark 1. The only properties of inner-product we needed in the above proof were that it is a strong two-source extractor and that it satisfies an XOR-lemma. However, all sufficiently strong two-source extractors have the latter property automatically [Sha03], so we could have fixed g to be any such extractor in Theorem 1. It is known [LSS08] that an XOR-lemma holds even under the weaker assumption of g having low discrepancy (not necessarily under the uniform distribution over dom g). Hence it is plausible that Theorem 1 could be extended to handle such g, as well.

We have the following corollary; here we write $\bar{I} := [n] \setminus I$ for short.

Corollary 14. Assume (i). Let $R = X \times Y$ and suppose there is an $I \subseteq [n]$ such that X_I and Y_I are fixed while $X_\bar{I}$ and $Y_\bar{I}$ are 0.6-dense. Then R is an $(|I|, O(2^{-b/20}))$-conjunction.

Proof. Let $z := G(X,Y)$ and note that z_I is fixed. Write $\epsilon := 2^{-b/20}$ for short. Applying Lemma 13 to $x = X_I$ and $y = Y_I$ (x and y are 0.6-dense) shows that $|G^{-1}(z) \cap R|/|R| \in (1 \pm \epsilon) \cdot 2^{-|I|}$ whenever $z_I = z_I$ (and 0 otherwise). It can be seen by direct calculation that $|G^{-1}(z)|/2^{bn} \in (1 \pm \epsilon) \cdot 2^{-n}$ for all $z \in \{0,1\}^n$ (though this can also be seen by another application of Lemma 13—to uniform $x, y \in \{0,1\}^{bn}$, which are 1-dense). Therefore $\text{acc}_R(z) = |G^{-1}(z) \cap R|/|G^{-1}(z)| \in (1 \pm O(\epsilon)) \cdot 2^{|I| - 2bn}|R|$ if $z_I = z_I$ and $\text{acc}_R(z) = 0$ if $z_I \neq z_I$. This is of the form $(1 \pm O(\epsilon)) \cdot a_R h_R(z)$ (where $h_R(z) = 1$ iff $z_I = z_I$), as required. \hfill \Box

2.3 Reduction to a packing problem

The purpose of this subsection is to massage the statement of the Junta Theorem into an alternative form in order to uncover its main technical content. We will end up with a certain type of packing problem, formalized in Theorem 16 at the end of this subsection.

Fix some “multiplicative” error bound $\epsilon := 2^{-\Theta(b)}$ for the purposes of the following discussion. Whenever \mathcal{C} is a packing (disjoint collection) of (d, ϵ)-conjunction subrectangles of L we let

$$h_\mathcal{C} := \sum_{R \in \mathcal{C}} a_R h_R.$$

Write $\cup \mathcal{C} := \cup_{R \in \mathcal{C}} R$ for short. Then $\text{acc}_{\cup \mathcal{C}} := \sum_{R \in \mathcal{C}} \text{acc}_R$ is multiplicatively approximated by the conical d-junta $h_\mathcal{C}$ in the sense that $\text{acc}_{\cup \mathcal{C}}(z) \in (1 \pm \epsilon) \cdot h_\mathcal{C}(z)$. Hence if we could find a \mathcal{C} that partitioned $L = \cup \mathcal{C}$, we would have proved the theorem—without incurring any additive error.

Unfortunately, there are a few obstacles standing in the way of finding a perfect partition \mathcal{C}. One unavoidable issue is that we cannot multiplicatively approximate a tiny rectangle L with a low-degree conical junta. This is why we allow a small additive error and only multiplicatively approximate the acceptance probabilities of those z that have large enough $\text{acc}_L(z)$. Indeed, we set

$$Z := \{ z \in \{0,1\}^n : \text{acc}_L(z) \geq 2^{-db/20} \},$$

and look for a \mathcal{C} that covers most of each of the sets $G^{-1}(z) \cap L$ for $z \in Z$. More precisely, suppose for a moment that we had a packing \mathcal{C} such that for each $z \in Z$,

$$U_z(\cup \mathcal{C} | L) \geq 1 - \epsilon,$$

where $U_z(\cup \mathcal{C} | L) = \text{acc}_{\cup \mathcal{C}}(z)/\text{acc}_L(z)$ by definition. Indeed, assuming (3) we claim that

$$(1 - \epsilon) \cdot h_\mathcal{C}(z) \leq \text{acc}_L(z) \leq (1 + O(\epsilon)) \cdot h_\mathcal{C}(z) + 2^{-\Theta(db)}.$$
In particular, $h_{\mathcal{C}}$ achieves the desired approximation (1). For the first inequality, since $\cup \mathcal{C} \subseteq L$ we never multiplicatively overestimate acc_L, that is, we have $\text{acc}_L \geq \text{acc}_{\cup \mathcal{C}} \geq (1 - \epsilon) \cdot h_{\mathcal{C}}$. For the second inequality, for $z \in Z$ we have $\text{acc}_L(z) \leq (1 - \epsilon)^{-1} \cdot \text{acc}_{\cup \mathcal{C}}(z) \leq (1 - \epsilon)^{-1} \cdot (1 + \epsilon) \cdot h_{\mathcal{C}}(z) \leq (1 + O(\epsilon)) \cdot h_{\mathcal{C}}(z)$, and for $z \notin Z$ we have simply $\text{acc}_L(z) < 2O(\epsilon)$ by the definition of Z.

Unfortunately, we do not know how to construct a packing \mathcal{C} satisfying (3) as well. Instead, we show how to find a randomized packing \mathcal{C} that guarantees (3) in expectation. More precisely, our construction goes through the following primal/dual pair of statements that are equivalent by the minimax theorem.

<table>
<thead>
<tr>
<th>Primal:</th>
<th>\exists distribution \mathcal{C} over \mathcal{C}’s $\forall z \in Z$ $E_{\mathcal{C}\sim \mathcal{C}} \cup {\mathcal{C} \mid \mathcal{C} \geq 1 - \epsilon$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual:</td>
<td>\forall distribution μ over Z $\exists \mathcal{C}$ $E_{z \sim \mu} \cup {\mathcal{C} \mid \mathcal{C} \geq 1 - \epsilon$</td>
</tr>
</tbody>
</table>

Suppose the primal statement holds for some \mathcal{C}. Then we claim that the convex combination $h := E_{\mathcal{C}\sim \mathcal{C}} h_{\mathcal{C}}$ achieves the desired approximation. The right side of (4) can be reformulated as

$$h_{\mathcal{C}}(z) \geq (1 - O(\epsilon + \epsilon_z)) \cdot (\text{acc}_L(z) - 2^{-\Theta(db)}) \tag{5}$$

where $\epsilon_z := 1 - \text{acc}_L(\cup \mathcal{C} \mid L)$ is a random variable depending on \mathcal{C} (so $E_{\mathcal{C}\sim \mathcal{C}}[\epsilon_z] \leq \epsilon$). Applying linearity of expectation to (5) shows (along with the left side of (4)) that h satisfies (1).

Therefore, to prove Theorem 1 it remains to prove the dual statement. This will preoccupy us for the whole of Section 2.4 where, for convenience, we will prove a slightly more general claim formalized below.

Definition 15 (Lifted distributions). A distribution \mathcal{D} on the domain of G is said to be a lift of a distribution μ on the codomain of G if $\mathcal{D}(x, y) = \mu(z) / |G^{-1}(z)|$ where $z := G(x, y)$. Note that a lifted distribution is a convex combination of distributions of the form \mathcal{U}_z.

Theorem 16 (Packing with conjunctions). Assume (†). Let $d \geq 0$ and let L be a rectangle. There is an $\epsilon := 2^{-\Theta(b)}$ such that for any lifted distribution \mathcal{D} with $\mathcal{D}(L) \geq 2^{-db/20}$ there exists a packing \mathcal{C} consisting of (d, ϵ)-conjunction subrectangles of L such that $\mathcal{D}(\cup \mathcal{C} \mid L) \geq 1 - \epsilon$.

The dual statement can be derived from Theorem 16 as follows. We need to check that for any distribution μ on Z there is some lifted distribution \mathcal{D} such that $\mathcal{D}(L) \geq 2^{-db/20}$ and $\mathcal{D}(\cdot \mid L) = \mathcal{E}(\cdot)$ where $\mathcal{E}(\cdot) := E_{z \sim \mu} \mathcal{U}_z(\cdot \mid L)$ is the probability measure relevant to the dual statement. Consider a distribution μ' given by $\mu'(z) := \mu(z) / \mathcal{U}_z(L)$ where $\gamma := (E_{z \sim \mu} 1 / \mathcal{U}_z(L))^{-1}$ is a normalizing constant. Let $\mathcal{D}(\cdot) := E_{z \sim \mu'} \mathcal{U}_z(\cdot \mid L)$ be the lift of μ'. Then $\mathcal{D}(L) = E_{z \sim \mu'} \mathcal{U}_z(L) \geq E_{z \sim \mu} 2^{-db/20} = 2^{-db/20}$ since μ' is supported on Z. On the other hand, noting that $\mathcal{D}(\cdot \mid L) = \gamma^{-1} \sum_z \mu'(z) \mathcal{U}_z(\cdot \mid L) = \sum_z \mu(z) \mathcal{U}_z(\cdot \mid L) = E_{z \sim \mu} \mathcal{U}_z(\cdot \mid L)$, as desired.

2.4 Solving the packing problem

In this section we prove Theorem 16. Fix an error parameter $\epsilon := 2^{-b/100}$.

Notation. In the course of the argument, for any rectangle $R = X \times Y$, we are going to associate a bipartition of $[n]$ into free blocks, denoted free R, and fixed blocks, denoted fix $R := [n] \setminus$ free R. We will always ensure that X and Y are fixed on the blocks in fix R. (However, if X and Y are fixed on some block i, we do not require that $i \in$ fix R.) We stress that fix R and free R are not functions of R, but just some data that we choose depending on the context. We say that the free marginals of R are (δ, \mathcal{D})-dense if for $xy \sim (\mathcal{D} \mid R)$ we have that $x_{\text{free } R}$ and $y_{\text{free } R}$ are δ-dense. Note that if $\mathcal{D} = \mathcal{U}$ is the uniform distribution, then the definition states that $X_{\text{free } R}$ and $Y_{\text{free } R}$ are δ-dense. The following is a rephrasing of Corollary 14.

Proposition 17. If the free marginals of R are $(0.6, \mathcal{U})$-dense then R is a $(\left| \text{fix } R \right|, \epsilon)$-conjunction. \hfill \qed

We also use the following notation: if C is a condition (e.g., of the form $(x_I = \alpha)$ or $(x_I \neq \alpha)$) we write X_C for the set of $x \in X$ that satisfy C. For example, $X_{(x_I = \alpha)} := \{ x \in X : x_I = \alpha \}$.

Roadmap. The proof is in two steps. In the first step we find a packing with subrectangles whose free marginals are $(0.8, \mathcal{D})$-dense. In the second step we “prune” these subrectangles so that their free marginals become $(0.6, \mathcal{U})$-dense. These two steps are encapsulated in the following two lemmas.

Lemma 18 (Core packing step). There is a packing \mathcal{C}' of subrectangles of L such that $\mathcal{D}(\cup \mathcal{C}' \mid L) \geq 1 - \epsilon$ and for each $R \in \mathcal{C}'$ we have $|\text{fix } R| \leq d$ and the free marginals of R are $(0.8, \mathcal{D})$-dense.

Lemma 19 (Pruning step). For each $R \in \mathcal{C}'$ there is a subrectangle $R' \subseteq R$ with fix R' = fix R such that $\mathcal{D}(R' \mid R) \geq 1 - \epsilon$ and the free marginals of R' are $(0.6, \mathcal{U})$-dense.

Theorem 16 follows immediately by stringing together Lemma 18, Lemma 19, and Proposition 17. In particular, the final packing \mathcal{C}' will consist of the pruned rectangles R' (which are (d, ϵ)-conjunctions by Proposition 17) and we have $\mathcal{D}(\cup \mathcal{C}' \mid L) \geq (1 - \epsilon)^2 \geq 1 - 2\epsilon$. (We proved the theorem with error parameter 2ϵ instead of ϵ.)

2.4.1 Core packing step

We will now prove Lemma 18. The desired packing \mathcal{C}' of subrectangles of L will be found via a packing algorithm given in Figure 2.

Informal overview. The principal goal in the algorithm is to find subrectangles $R \subseteq L$ whose free marginals are $(0.8, \mathcal{D})$-dense while keeping $|\text{fix } R|$ small. To do this, we proceed in rounds. The main loop of the algorithm maintains a pool \mathcal{P} of disjoint subrectangles of L and in each round we inspect each $R \in \mathcal{P}$ in the subroutine Partition. If we find that R does not have dense free marginals, we partition R further. The output of Partition(R) is a partition of R into subrectangles each labeled as either dense, live, or error. We are simply going to ignore the error rectangles, i.e., they do not re-enter the pool \mathcal{P}. For the live subrectangles $R' \subseteq R$ we will have made progress: the subroutine will ensure that the free marginals of R' will become more dense as compared to the free marginals of R.

The subroutine Partition works as follows. If the input rectangle R_{in} satisfies the density condition on its free marginals, we simply output R_{in} labeled as dense. Otherwise we find some subset I of free blocks that violates the density condition on one of the marginals. Then we consider the subrectangle $R_{\text{out}} \subseteq R_{\text{in}}$ that is obtained from R_{in} by fixing the non-dense marginal to its overly-likely value on I and the other marginal to each of its typical values on I. Intuitively, these
Packing Algorithm for L:

1. Initialize $\mathcal{P} := \{L\}$ where fix $L := \emptyset$ and L is labeled live
2. Repeat for $n + 1$ rounds
3. Replace each $R \in \mathcal{P}$ by all the non-error subrectangles output by PARTITION(R)
4. Output $C' := \mathcal{P}$

Subroutine PARTITION (with error parameter $\delta := \epsilon/2n$)

Input: A rectangle R_{in}
Output: A partition of R_{in} into dense/live/error subrectangles

5. Initialize $R := R_{in}$ with fix $R := \text{fix} R_{in}$
6. While the following two conditions hold
 (C1): $D(R \mid R_{in}) > \delta$
 (C2): The free marginals of R are not both $(0.8, D)$-dense
7. Let $xy \sim (D \mid R)$ and let X and Y be such that $R = X \times Y$
8. We may assume that $x_{\text{free} R}$ is not 0.8-dense (otherwise consider $y_{\text{free} R}$)
9. Let $I \subseteq \text{free} R$ and α be such that $\text{Pr}[x_I = \alpha] > 2^{-0.8 \cdot b|I|}$
10. Let $B := \{\beta : \text{Pr}[y_I = \beta \mid x_I = \alpha] > \delta \cdot 2^{-b|I|}\}$
11. For each $\beta \in B$
12. Let $R_{\text{out}} := X_{(x_I=\alpha)} \times Y_{(y_I=\beta)}$ with fix $R_{\text{out}} := \text{fix} R \cup I$
13. Output R_{out} labeled as live
14. End for
15. Output $X_{(x_I=\alpha)} \times Y_{(y_I \notin B)}$ labeled as error
16. Update $R := X_{(x_I \neq \alpha)} \times Y$ (with the same fix R)
17. End while
18. Output R labeled as dense if (C2) failed, or as error if (C1) failed

Figure 2: Packing algorithm.

fixings have the effect of increasing the “relative density” in the remaining free blocks, and so we have found a single subrectangle where we have made progress. We then continue iteratively on the rest of R_{in} until only a $\delta := \epsilon/2n$ fraction of R_{in} remains, which we deem as error.

Note that, at the end of $n + 1$ rounds, each $R \in \mathcal{C}'$ must be labeled dense because once a rectangle R reaches fix $R = [n]$, the density condition on the free marginals is satisfied vacuously. It remains to argue that the other two properties in Lemma 18 hold for \mathcal{C}'.

Error analysis. We claim that in each run of PARTITION at most a fraction 2δ of the distribution $(D \mid R_{in})$ gets classified as error. This claim implies that $\cup \mathcal{C}'$ covers all but an ϵ fraction of $(D \mid L)$ since the total error relative to $(D \mid L)$ can be easily bounded by the number of rounds (excluding the last round, which only labels the remaining live rectangles as dense) times the error in PARTITION,
which is \(n \cdot 2\delta = \epsilon \) under our claim.

To prove our claim, we first note that the error rectangle output on line 18 contributes a fraction \(\leq \delta \) of error relative to \((\mathcal{D} \mid R_{in}) \) by \((\text{C1})\). Consider then error rectangles output on line 15. Here we have (using notation from the algorithm) \(\Pr[y_i \notin B \mid x_I = \alpha] \leq \delta \) by the definition of \(B \) so we only incur \(\leq \delta \) fraction of error relative to \((\mathcal{D} \mid R') \) where \(R' := X_{(x_I=\alpha)} \times Y \). In the subsequent line we redefine \(R := R \setminus R' \), which ensures that the errors on line 15 do not add up over the different iterations. Hence, altogether, line 15 contributes a fraction \(\leq \delta \) of error relative to \((\mathcal{D} \mid R_{in}) \). The total error in \textsc{Partition} is then at most \(\delta + \delta = 2\delta \), which was our claim.

Number of fixed blocks. Let \(R \in \mathcal{C}' \). We need to show that \(|\text{fix} R| \leq d \). Let \(R_i, i \in [n+1] \), be the unique rectangle in the pool at the start of the \(i \)-th round such that \(R \subseteq R_i \). Let \(\ell \) be the largest number such that \(R_\ell \) is labeled \textit{live}. Hence \(|\text{fix} R| = |\text{fix} R_\ell | \). Let \(Q \supseteq R_\ell \) consist of all the inputs that agree with \(R_\ell \) on the fixed coordinates fix \(R \). We claim that

\[
\mathcal{D}(Q) \leq 2^{-(2b-2)|\text{fix} R|}, \quad \tag{6}
\]

\[
\mathcal{D}(R_\ell) \geq 2^{-1.9 \cdot b |\text{fix} R| - db/20}. \quad \tag{7}
\]

Let us first see how to conclude the proof of \textit{Lemma 18} assuming the above inequalities. Since \(\mathcal{D}(Q) \geq \mathcal{D}(R_\ell) \) we can require that \(6 \geq 7 \) and (taking logarithms) obtain the inequality \(-(2b-2) |\text{fix} R| \geq 1.9 \cdot b |\text{fix} R| - db/20 \). But this implies \(|\text{fix} R| \leq d \), as desired.

To prove \(6\), write \(\mathcal{D}(Q) = \mathbb{E}_{z \sim \mu} \mathcal{U}_z(Q) \) for some \(\mu \) since \(\mathcal{D} \) is a lifted distribution. Here for each fixed \(z \) we either have \(\mathcal{U}_z(Q) = 0 \) in case the fixings of \(Q \) are inconsistent with \(z \), or otherwise \(\mathcal{U}_z(Q) = \prod_{j \in \text{fix} R} 1/|g^{-1}(z_j)| \leq 2^{-(2b-2)|\text{fix} R|} \) (where we used the fact that the gadget \(g \) is approximately balanced: \(|g^{-1}(1)|, |g^{-1}(0)| \geq 2b/4 \)). Hence \(\mathcal{D}(Q) \) is a convex combination of values that satisfy \(6\).

To prove \(7\), note that \(\mathcal{D}(R_\ell) = \mathcal{D}(R_\ell \mid L) \cdot \mathcal{D}(L) \geq \mathcal{D}(R_\ell \mid L) \cdot 2^{-db/20} \). Hence it suffices to show that \(\mathcal{D}(R_\ell \mid L) \geq 2^{-1.9 |\text{fix} R| \ell} \). To this end, write \(|\text{fix} R| = \sum_{i=1}^{\ell-1} |I_i| \) where \(I_i \) is the set of blocks that were fixed to obtain \(R_{i+1} = R_{out} \) from \(R_i = R_{in} \) and use the following claim inductively.

Claim 20. Each \(R_{out} \) output labeled as live (on line 13) satisfies \(\mathcal{D}(R_{out} \mid R_{in}) \geq 2^{-1.9 |I|} \).

Proof. Using notation from the algorithm,

\[
\mathcal{D}(R_{out} \mid R_{in}) \geq \mathcal{D}(R_{out} \mid R) \cdot \mathcal{D}(R \mid R_{in}) \geq \mathcal{D}(R_{out} \mid R) \cdot \delta \quad \text{(by \text{C1})}
\]

\[
= \Pr[x_I = \alpha \text{ and } y_I = \beta] \cdot \delta \geq 2^{-0.8 |I|} \cdot \delta \cdot 2^{-b |I|} \cdot \delta = 2^{-1.8 |I| - b/50 - 2 \log n - 2} \quad \text{(definition of } \epsilon, \delta \text{)}
\]

\[
\geq 2^{-1.9 |I|}.
\]

\[\square\]

2.4.2 Pruning step

We will now prove \textit{Lemma 19}. Let \(R = X \times Y \in \mathcal{C}' \) and \(xy \sim (\mathcal{D} \mid R) \). For notational convenience, we assume that fix \(R = \emptyset \), i.e., we forget about the fixed blocks and think of \(x \) and \(y \) as 0.8-dense. As will be clear from the proof, if fix \(R \) was non-empty, it would only help us in the ensuing calculations.

We want to find a “pruned” subrectangle \(R' := X' \times Y' \subseteq R \) such that
\((i)\) \(\Pr[xy \in X' \times Y'] \geq 1 - \epsilon,\)
\((ii)\) \(X'\) and \(Y'\) are 0.6-dense.

In fact, it is enough to show how to find an \(X' \subseteq X\) such that
\[(i')\] \(\Pr[x \in X'] \geq 1 - \epsilon/2,\)
\[(ii')\] \(X'\) is 0.6-dense.

Indeed, we can run the argument for \((i',ii')\) twice, once for \(X\) and once for \(Y\) in place of \(X\). The property \((i)\) then follows by a union bound.

We will obtain \(X'\) by forbidding some outcomes of \(X_I\) that are too likely. We build up a set \(\mathcal{C}\) of conditions via the following algorithm. We use the notation \(X_C = \cap_{C \in \mathcal{C}} X_C\) below.

1: Initialize \(\mathcal{C} := \emptyset\)
2: Repeat
3: If \(X_C = \emptyset\), then halt with a failure
4: If \(X_C\) is 0.6-dense, then halt with a success
5: Otherwise let \(I\) and \(\alpha\) be such that \(\Pr[(X_C)_I = \alpha] > 2^{-0.6 \cdot |I|} \cdot \left| \mathcal{F}_s \right|\)
6: Add the condition \((x_I \neq \alpha)\) to \(\mathcal{C}\)
7: End repeat

This process eventually halts since \(|X_C|\) decreases every time we add a new condition to \(\mathcal{C}\). Let \(\mathcal{F}\) denote the set of final conditions when the process halts. We show that \(X' := X_{\mathcal{F}}\) satisfies \((i',ii')\).

Write \(\mathcal{F} = \cup_{s \in [n]} \mathcal{F}_s\) where \(\mathcal{F}_s\) denotes conditions of the form \((x_I \neq \alpha)\), \(|I| = s\), in \(\mathcal{F}\).

Claim 21. \(|\mathcal{F}_s| \leq 2^{0.7 \cdot bs}\).

Proof of claim. The effect of adding a new condition \((x_I \neq \alpha)\), \(|I| = s\), to \(\mathcal{C}\) is to shrink the size of \(X_C\) by a factor of \(\Pr[(X_C)_I = \alpha] < 1 - \delta\) where \(\delta := 2^{-0.6 \cdot bs}\). Our initial set has size \(|X| \leq 2^{bn}\) and hence we cannot shrink it by such a condition more than \(k \geq |\mathcal{F}_s|\) times where \(k\) is the smallest number satisfying \(|X|(1 - \delta)^k < 1\). Solving for \(k\) gives \(k \leq O(bn/\delta) = O(bn \cdot 2^{0.6 \cdot bs})\), which is at most \(2^{0.7 \cdot bs}\) given our definition of \(b\).

We can now verify \((i')\) by a direct calculation:

\[
\Pr[x \notin X'] = \Pr[x \notin X_{\mathcal{F}}] \\
\leq \sum_s \Pr[x \notin X_{\mathcal{F}_s}] \\
\leq \sum_s \sum_{(x_I \neq \alpha) \in \mathcal{F}_s} \Pr[x_I = \alpha] \\
\leq \sum_s |\mathcal{F}_s| \cdot 2^{-0.8 \cdot bs} \\
\leq \sum_s 2^{-0.1 \cdot bs} \\
\leq \epsilon/2. \\
\]

This also proves \((ii')\) because the calculation implies that \(X' \neq \emptyset\) which means that our process halted with a success. This concludes the proof of Lemma 19.
3 Definitions of models

In Section 3.1 we introduce our restricted-by-default communication models, justify why they can be viewed as “zero-communication” models, and explain their relationships to known lower bound techniques. In Section 3.2 we define their corresponding unrestricted versions. In Section 3.3 we describe the query complexity counterparts of our communication models.

3.1 Restricted communication models

We define NP protocols in a slightly nonstandard way as randomized protocols, just for stylistic consistency with the other models. The acronyms WAPP and SBP were introduced in [BGM06] (their communication versions turn out to be equivalent to the smooth rectangle bound and the corruption bound, as argued below). We introduce the acronym 2WAPP (for lack of existing notation) to correspond to a two-sided version of WAPP (which is equivalent to the zero-communication with abort model of [KLL+12]). We use the notation PostBPP [Aar05] instead of the more traditional BPPpath [HIT97] as it is more natural for communication protocols.

A protocol outputs 0 or 1, and in some of these models it may also output ⊥ representing “abort” or “don’t know”. In the following definition, α can be arbitrarily small and should be thought of as a function of the input size n for a family of protocols.

Definition 22. For \(C \in \{ \text{NP}, 2\text{WAPP}_c, \text{WAPP}_c, \text{SBP}, \text{PostBPP} \} \) and \(F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\} \) a partial function, define \(C^{cc}(F) \) as the minimum over all \(\alpha > 0 \) and all “α-correct” public-randomness protocols for \(F \) of the communication cost plus \(\log(1/\alpha) \) (this sum is considered to be the cost), where α-correctness is defined as follows.

\[
\text{NP} : \text{If } F(x, y) = 1 \text{ then } \Pr[\Pi(x, y) = 1] \geq \alpha, \text{ and if } F(x, y) = 0 \text{ then } \Pr[\Pi(x, y) = 1] = 0.
\]

\[
\text{2WAPP}_c : \text{The protocol may output } \bot, \text{ and for all } (x, y) \in \text{dom } F, \Pr[\Pi(x, y) = F(x, y)] \geq (1 - \epsilon)\alpha \text{ and } \Pr[\Pi(x, y) \neq \bot] \leq \alpha.
\]

\[
\text{WAPP}_c : \text{If } F(x, y) = 1 \text{ then } \Pr[\Pi(x, y) = 1] \in [(1 - \epsilon)\alpha, \alpha], \text{ and if } F(x, y) = 0 \text{ then } \Pr[\Pi(x, y) = 1] \in [0, \alpha] \text{.}^2
\]

\[
\text{SBP} : \text{If } F(x, y) = 1 \text{ then } \Pr[\Pi(x, y) = 1] \geq \alpha, \text{ and if } F(x, y) = 0 \text{ then } \Pr[\Pi(x, y) = 1] \leq \alpha/2.
\]

\[
\text{PostBPP} : \text{The protocol may output } \bot, \text{ and for all } (x, y) \in \text{dom } F, \Pr[\Pi(x, y) \neq \bot] \geq \alpha \text{ and } \Pr[\Pi(x, y) = F(x, y) | \Pi(x, y) \neq \bot] \geq 3/4.
\]

The “syntactic relationships” among the four models 2WAPP, WAPP, SBP, PostBPP is summarized in the below table. The meaning of the column and row labels is as follows. For the columns, “two-sided” means that the protocol outputs values in \(\{0,1,\bot\} \) and conditioned on not outputting \(\bot \), the output is correct with high probability. For a “one-sided” protocol we only measure its probability of outputting 1 and compare it against the correctness parameter \(\alpha > 0 \). For the rows, “bounded” means that the non-abort probability—that is, the probability of not outputting \(\bot \) for two-sided models, or the probability of outputting 1 for one-sided models—is uniformly upper bounded by \(\alpha \), whereas “unbounded” means that the non-abort probability need not be upper bounded by \(\alpha \).

\footnote{The definition of WAPP in [BGM06] uses \(\epsilon \) in a different way: \(\frac{1}{2} + \epsilon \) and \(\frac{1}{2} - \epsilon \) instead of \(1 - \epsilon \) and \(\epsilon \).}
It is straightforward to see that the relative computational power ("semantic relationships") of the models is as follows (recall Figure 1): for all F and all constants $0 < \epsilon < 1/2$, we have $2\text{WAPP}_\epsilon^c(F) \geq \text{WAPP}_\epsilon^c(F) \geq \Omega(\text{SBP}_\epsilon^c(F)) \geq \Omega(\text{PostBPP}_\epsilon^c(F))$ and $\text{NP}_\epsilon^c(F) \geq \text{SBP}_\epsilon^c(F)$. Furthermore, exponential separations are known for all these relationships: unique-set-intersection is easy for WAPP_0^c but hard for 2WAPP_ϵ^c (indeed, for coSBP_ϵ^c [Raz92, GW14]); set-intersection is easy for SBP_ϵ^c (indeed, for NP_ϵ^c) but hard for WAPP_ϵ^c [Kla10]; set-disjointness is easy for $\text{PostBPP}_\epsilon^c$ (indeed, for coNP_ϵ^c) but hard for SBP_ϵ^c [Raz92, GW14]; equality is easy for SBP_ϵ^c (indeed, for coRP_ϵ^c) but hard for NP_ϵ^c. Moreover, WAPP_ϵ^c is a one-sided version of 2WAPP_ϵ^c in the sense that $2\text{WAPP}_\epsilon^c(F) \leq O(\text{WAPP}_{\epsilon/2}^c(F) + \text{coWAPP}_{\epsilon/2}^c(F))$ (so the classes would satisfy $2\text{WAPP}_\epsilon^c = \text{WAPP}_\epsilon^c \cap \text{coWAPP}_\epsilon^c$ if we ignore the precise value of the constant ϵ).

The reason we do not include an ϵ parameter in the SBP_ϵ^c and $\text{PostBPP}_\epsilon^c$ models is because standard amplification techniques could be used to efficiently decrease ϵ in these models (rendering the exact value immaterial up to constant factors). Another subtlety concerns the behavior of correct protocols on the undefined inputs $\{0,1\}^n \times \{0,1\}^n \setminus \text{dom } F$. For example, for 2WAPP_ϵ^c, the corresponding definitions in [KLL+12] also require that for every undefined input (x,y), $\Pr[\Pi(x,y) \neq \bot] \in [(1-\epsilon)\alpha, \alpha]$. We allow arbitrary behavior on the undefined inputs for stylistic consistency, but our results also hold for the other version. As a final remark, we mention that our definition of NP_ϵ^c is only equivalent to the usual definition within an additive logarithmic term; see Remark 2 below.

Relation to zero-communication models. The following fact shows that protocols in our models can be expressed simply as distributions over (labeled) rectangles; thus these models can be considered "zero-communication" since Alice and Bob can each produce an output with no communication, and then have the output of the protocol be a simple function of their individual outputs.

Fact 23. Without loss of generality, in each of the five models from Definition 22, for each outcome of the public randomness the associated deterministic protocol is of the following form.

$\text{NP}_\epsilon^c, \text{WAPP}_\epsilon^c, \text{SBP}$: There exists a rectangle R such that the output is 1 iff the input is in R.

$2\text{WAPP}_\epsilon^c, \text{PostBPP}$: There exists a rectangle R and a bit b such that the output is b if the input is in R and is \bot otherwise.

Proof. Consider a protocol Π in one of the models from Definition 22, and suppose it has communication cost c and associated $\alpha > 0$, so the cost is $c + \log(1/\alpha)$. We may assume that each deterministic protocol has exactly 2^c possible transcripts. Transform Π into a new protocol Π' that operates as follows on input (x,y): Sample an outcome of the public randomness of Π, then sample a uniformly random transcript with associated rectangle R and output-value b, then execute the following.

If $(x,y) \in R$ then output b, otherwise output \[
\begin{cases}
0 & \text{if } \text{NP}_\epsilon^c, \text{WAPP}_\epsilon^c, \text{SBP} \\
\bot & \text{if } 2\text{WAPP}_\epsilon^c, \text{PostBPP}.
\end{cases}
\]
We have $\Pr[\Pi'(x, y) = 1] = 2^{-c} \Pr[\Pi(x, y) = 1]$, and for 2WAPP_ϵ, PostBPP we also have $\Pr[\Pi'(x, y) = 0] = 2^{-c} \Pr[\Pi(x, y) = 0]$. Thus in all cases Π' is $(2^{-c}\alpha)$-correct. Formally, it takes two bits of communication to check whether $(x, y) \in R$, so the cost of Π' is $2 + \log(1/2^{-c}\alpha)$, which is the cost of Π plus 2.

Relation to lower bound measures. Using Fact 23 it is straightforward to see that, ignoring the $+2$ cost of checking whether the input is in a rectangle, 2WAPP_ϵ^c is exactly equivalent to the relaxed partition bound of $[KLL+12]$ (with the aforementioned caveat about undefined inputs) and WAPP_ϵ^c is exactly equivalent to the (one-sided) smooth rectangle bound3, denoted src^1 [$JK10$]. For completeness, the definition of src_1 and the proof of the following fact appear in Appendix A.1.

Fact 24. $\text{src}^1_1(F) \leq \text{WAPP}^c_\epsilon(F) \leq \text{src}^1_1(F) + 2$ for all F and all $0 < \epsilon < 1/2$.

It was shown in [GW14] that SBP^c is equivalent (within constant factors) to the (one-sided) corruption bound. We remark that by a simple application of the minimax theorem, PostBPP^c also has a dual characterization analogous to the corruption bound.4

3.2 Unrestricted communication models

For all the models described above, we can define their unrestricted versions, denoted by prepending U to the acronym (not to be confused with complexity classes where U stands for “unambiguous”). The distinction is that the restricted versions charge $+\log(1/\alpha)$ in the cost, whereas the unrestricted versions do not charge anything for α in the cost (and hence they are defined using private randomness; otherwise every function would be computable with constant cost.)

Definition 25. For $C \in \{\text{NP}, \text{2WAPP}_\epsilon, \text{WAPP}_\epsilon, \text{SBP}, \text{PostBPP}\}$ and $F : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}$ a partial function, define $\text{UC}^c(F)$ as the minimum over all $\alpha > 0$ and all “α-correct” private-randomness protocols for F of the communication cost, where the α-correctness criteria are as in Definition 22.

Standard sparsification of randomness (à la Newman’s Theorem [New91], [KN97, Theorem 3.14]) can be used to show that the unrestricted models are essentially at least as powerful as their restricted versions for all F: for $C \in \{\text{NP}, \text{SBP}, \text{PostBPP}\}$ we have $\text{UC}^c(F) \leq O(C^c(F) + \log n)$, and for $C \in \{\text{2WAPP}, \text{WAPP}\}$ we have $\text{UC}^c(F) \leq O(C^c(F) + \log(n/(\delta - \epsilon)))$ where $0 < \epsilon < \delta$.

Remark 2. We note that UNP^c is actually equivalent to the standard definition of nondeterministic communication complexity, while our NP^c from Definition 22 is only equivalent within an additive logarithmic term. It is fair to call this an abuse of notation, but it does not affect our communication–query equivalence for NP since we consider block length $b = \Omega(\log n)$ anyway.

UWAPPc and nonnegative rank. Of particular interest to us will be UWAPP^c which turns out to be equivalent to **approximate nonnegative rank.** Recall that for M a nonnegative matrix, the **nonnegative rank rank$^+(M)$** is defined as the minimum r such that M can be written as the sum of r nonnegative rank-1 matrices, or equivalently, $M = UV$ for nonnegative matrices U, V with inner

3The paper that introduced this bound [JK10] defined it as the optimum value of a certain linear program, but following [KMSY14] we define it as the log of the optimum value.

4The maximum over all distributions μ over $\{0, 1\}^n \times \{0, 1\}^n$ of the minimum $\log(1/\mu(R))$ over all rectangles R that are unbalanced in the sense that $\mu(R \cap F^{-1}(1))$ and $\mu(R \cap F^{-1}(0))$ are not within a factor of 2 of each other.
of the randomness the associated deterministic decision tree is of the following form.

We have

\[\Pr[T] \leq 2^{-n} \] for all \(0 < \epsilon < 1/2 \).

3.3 Query models

A randomized decision tree \(T \) is a probability distribution over deterministic decision trees, and the query cost is the maximum height of a decision tree in the support.

Definition 28. For \(C \in \{ \text{NP}, \text{2WAPP}_\epsilon, \text{WAPP}_\epsilon, \text{SBP}, \text{PostBPP} \} \) and \(f : \{0,1\}^n \rightarrow \{0,1\} \) a partial function, define \(C^{\text{dt}}(f) \) as the minimum over all \(\alpha > 0 \) and all “\(\alpha \)-correct” randomized decision trees for \(f \) of the query cost, where the \(\alpha \)-correctness criteria are as in Definition 22 (but where protocols \(\Pi(x,y) \) are replaced with randomized decision trees \(T(z) \)).

Completely analogously to how the zero-communication models can be viewed w.l.o.g. as distributions over (labeled) rectangles (Fact 23), their query counterparts can be viewed w.l.o.g. as distributions over (labeled) conjunctions.

Fact 29. Without loss of generality, in each of the five models from Definition 28, for each outcome of the randomness the associated deterministic decision tree is of the following form.

- **NP, WAPP_\epsilon, SBP**: There exists a conjunction \(h \) such that the output is 1 iff the input is in \(h^{-1}(1) \).
- **2WAPP_\epsilon, PostBPP**: There exists a conjunction \(h \) and a bit \(b \) such that the output is \(b \) if the input is in \(h^{-1}(1) \) and is \(\perp \) otherwise.

Proof. Consider a randomized decision tree \(T \) in one of the models from Definition 28, and suppose it has query cost \(d \) and associated \(\alpha > 0 \). We may assume that each deterministic decision tree has a full set of \(2^d \) leaves and the queries along each root-to-leaf path are distinct. Hence each leaf is associated with a width-\(d \) conjunction that checks whether the input is consistent with the queries made in its root-to-leaf path. Transform \(T \) into a new randomized decision tree \(T' \) that operates as follows on input \(z \): Sample an outcome of the randomness of \(T \), then sample a uniformly random leaf with associated conjunction \(h \) and output-value \(b \), then execute the following.

If \(h(z) = 1 \) then output \(b \), otherwise output

\[
\begin{cases}
0 & \text{if NP, WAPP}_\epsilon, \text{SBP} \\
\perp & \text{if 2WAPP}_\epsilon, \text{PostBPP}.
\end{cases}
\]

We have \(\Pr[T'(z) = 1] = 2^{-d} \Pr[T(z) = 1] \), and for 2WAPP_\epsilon, PostBPP we also have \(\Pr[T'(z) = 0] = 2^{-d} \Pr[T(z) = 0] \). Thus in all cases \(T' \) is \((2^{-d}\alpha)\)-correct, and \(T' \) also has query cost \(d \).

We defined our query models without charging anything for \(\alpha \), i.e., \(\alpha \) is unrestricted. This means that deriving communication upper bounds for \(f \circ g^n \) in restricted models from corresponding query upper bounds for \(f \) is nontrivial; this is discussed in Section 4.2. Nevertheless, we contend
that Definition 22 and Definition 28 are the “right” definitions that correspond to one another. The main reason is because in the “normal forms” (Fact 23 and Fact 29), all the cost in the communication version comes from α, and all the cost in the query version comes from the width of the conjunctions—and when we apply the Junta Theorem in Section 4.1, the communication α directly determines the conjunction width.

4 Proof of the Simulation Theorem

In this section we derive the Simulation Theorem (Theorem 2) from the Junta Theorem (Theorem 1). The proof is in two parts: Section 4.1 for lower bounds and Section 4.2 for upper bounds.

4.1 Communication lower bounds

The Junta Theorem implies that for functions lifted with our hard gadget g, every distribution \mathcal{R} over rectangles can be transformed into a distribution \mathcal{H} over conjunctions such that for every $z \in \{0, 1\}^n$, the acceptance probability under \mathcal{H} is related in a simple way to the acceptance probability under \mathcal{R} averaged over all two-party encodings of z. This allows us to convert zero-communication protocols (which are distributions over (labeled) rectangles by Fact 23) into corresponding decision trees (which are distributions over (labeled) conjunctions by Fact 29).

More precisely, let \mathcal{R} be a distribution over rectangles in the domain of $G = g^n$. First, apply the Junta Theorem to each \mathcal{R} in the support of \mathcal{R} to get an approximating conical d-junta h_R. Now we can approximate the convex combination

$$\text{acc}_{\mathcal{R}}(z) = \mathbb{E}_{R \sim \mathcal{R}} \text{acc}_R(z) \in \mathbb{E}_{R \sim \mathcal{R}} \left((1 \pm o(1)) \cdot h_R(z) \pm 2^{-\Theta(db)}\right) \subseteq (1 \pm o(1)) \cdot \left(\mathbb{E}_{R \sim \mathcal{R}} h_R(z)\right) \pm 2^{-\Theta(db)}$$

by the conical d-junta $\mathbb{E}_{R \sim \mathcal{R}} h_R$ with the same parameters as in the Junta Theorem (we settle for multiplicative error $(1 \pm o(1))$ since it suffices for the applications). But conical d-juntas are—up to scaling—convex combinations of width-d conjunctions. Specifically, we may write any conical d-junta as $\text{acc}_H(z)/a$ where $a > 0$ is some constant of proportionality and $\text{acc}_H(z) := \mathbb{E}_{h \sim \mathcal{H}} h(z)$ where \mathcal{H} is a distribution over width-d conjunctions. Finally, we rearrange the approximation so the roles of $\text{acc}_H(z)$ and $\text{acc}_R(z)$ are swapped, since it is more convenient for the applications. Hence we arrive at the following reformulation of the Junta Theorem.

Corollary 30 (Junta Theorem—reformulation). Assume (†). For any $d \geq 0$ and any distribution \mathcal{R} over rectangles in the domain of g^n there exists a distribution \mathcal{H} over width-d conjunctions and a constant of proportionality $a > 0$ such that, for all $z \in \{0, 1\}^n$,

$$\text{acc}_H(z) \in a \cdot \left((1 \pm o(1)) \cdot \text{acc}_R(z) \pm 2^{-\Theta(db)}\right).$$

We will now prove the lower bounds in Theorem 2. Here the error parameters for WAPP are made more explicit.

Theorem 31. Assume (†). For any partial $f : \{0, 1\}^n \to \{0, 1\}$ and constants $0 < \epsilon < \delta < 1/2$,

$$C_{\text{cc}}^c(f \circ g^n) \geq \Omega(C_{\text{dt}}^c(f) \cdot b) \quad \text{for} \quad C \in \{\text{NP}, \text{SBP}, \text{PostBPP}\},$$

$$C_{\text{cc}}^c(f \circ g^n) \geq \Omega(C_{\text{st}}^c(f) \cdot b) \quad \text{for} \quad C \in \{2\text{WAPP}, \text{WAPP}\}.$$
We may assume each deterministic decision tree in the support is a conjunction with exactly \(d\) inputs.

By Theorem 32, we can convert a cost-\(O(c/b)\) \(\mathcal{C}^{\text{dt}}\) decision tree \(T\) for \(f\).

For \(\mathcal{C} \in \{\text{NP, WAPP, SBP}\}\), \(\Pi\) is a distribution over rectangles, so applying Corollary 30 with \(d := O(c/b)\) so that \(2^{-\Theta(\log b)} \leq o^*(2^{-c}) = o(\alpha)\), there exists a distribution \(\mathcal{T}\) over width-\(d\) conjunctions and an \(a > 0\) such that for all \(z \in \{0, 1\}^n\), \(\text{acc}_\mathcal{T}(z) \in a \cdot ((1 \pm o(1)) \cdot \text{acc}_\Pi(z) \pm o(\alpha))\). Note that \(\text{acc}_\mathcal{T}(z)\) obeys the \(\alpha\)-correctness criteria of \(f\) since it obeys the \(\alpha\)-correctness criteria of \(f \circ g^a\) for each encoding of \(z\). Hence \(\text{acc}_\mathcal{T}(z)\) obeys the \((\alpha \alpha')\)-correctness criteria for some \(\alpha' < \alpha \cdot (1 \pm o(1))\). (For \(\mathcal{C} = \text{SBP}\) slight amplification may be needed. Also, for \(\mathcal{C} = \text{NP}\) we need to ensure that \(\text{acc}_\mathcal{T}(z) = 0\) whenever \(\text{acc}_\Pi(z) = 0\), but this is implicit in the proof of the Junta Theorem; see the left side of (4).) In conclusion, \(\mathcal{T}\) is a cost-\(d\) \(\mathcal{C}^{\text{dt}}\) decision tree for \(f\).

For \(\mathcal{C} \in \{\text{2WAPP, PostBPP}\}\), \(\Pi\) can be viewed as a convex combination \(\pi_0 \Pi_0 + \pi_1 \Pi_1\) where \(\Pi_0\) is a distribution over 0-labeled rectangles and \(\Pi_1\) is a distribution over 1-labeled rectangles. Applying the above argument to \(\Pi_0\) and \(\Pi_1\) separately, we may assume the scaling factor \(\alpha\) is the same for both, by assigning some probability to a special “contradictory” conjunction that accepts nothing. We get a distribution over labeled width-\(d\) conjunctions \(\mathcal{T} := \pi_0 \mathcal{T}_0 + \pi_1 \mathcal{T}_1\) such that \(\text{Pr}[\mathcal{T}(z) = 0] = \pi_0 \text{acc}_\mathcal{T}_0(z) \in \pi_0 a \cdot ((1 \pm o(1)) \cdot \text{acc}_\Pi(z) \pm o(\alpha)) \subseteq a \cdot ((1 \pm o(1)) \cdot \text{Pr}[\Pi(z) = 0] \pm o(\alpha))\) where we use the shorthand \(\text{Pr}[\Pi(z) = 0] := \mathbf{E}_{x,y \sim \Pi_0} \text{Pr}[\Pi(x, y) = 0]\). An analogous property holds for outputting 1 instead of 0. Note that \(\text{Pr}[\Pi(z) = 0]\) and \(\text{Pr}[\Pi(z) = 1]\) obey the \(\alpha\)-correctness criteria since they do for each encoding of \(z\). Hence \(\text{Pr}[\mathcal{T}(z) = 0]\) and \(\text{Pr}[\mathcal{T}(z) = 1]\) obey the \((\alpha \alpha')\)-correctness criteria for some \(\alpha' < \alpha \cdot (1 \pm o(1))\). (For \(\mathcal{C} = \text{PostBPP}\) slight amplification may be needed.) In conclusion, \(\mathcal{T}\) is a cost-\(d\) \(\mathcal{C}^{\text{dt}}\) decision tree for \(f\).

4.2 Communication upper bounds

Theorem 32. Let \(\mathcal{C} \in \{\text{NP, 2WAPP, WAPP, SBP}\}\). For any partial \(f : \{0, 1\}^n \rightarrow \{0, 1\}\) and any gadget \(g : \{0, 1\}^b \times \{0, 1\}^b \rightarrow \{0, 1\}\), we have \(\mathcal{C}^{\text{cc}}(f \circ g^a) \leq O(\mathcal{C}^{\text{dt}}(f) \cdot (b + \log n))\).

Proof. On input \((x, y)\) the communication protocol just simulates the randomized decision tree on input \(z := g^a(x, y)\), and when the decision tree queries the \(i\)-th bit of \(z\), the communication protocol evaluates \(z_i := g(x, y)\) by brute force. This has communication cost \(\mathcal{C}^{\text{dt}}(f) \cdot (b + 1)\), and it inherits the \(\alpha\) parameter from the randomized decision tree. The nontrivial part is that the query models allow arbitrarily small \(\alpha\), which could give arbitrarily large \(+ \log (1/\alpha)\) cost to the communication protocol. For these particular query models, it turns out that we can assume without loss of generality that \(\log (1/\alpha) \leq O(\mathcal{C}^{\text{dt}}(f) \cdot \log n)\). We state and prove this for \(\mathcal{C}^{\text{dt}}\) below. (The other three models are no more difficult to handle.)

Proposition 33. Every partial function \(f\) admits an \(\alpha\)-correct \(\mathcal{C}^{\text{dt}}\) decision tree of query cost \(d := \mathcal{C}^{\text{dt}}(f)\) where \(\alpha \geq 2^{-d(\log n)} \geq 2^{-O(d \cdot \log n)}\).

Proof. Consider an \(\alpha'\)-correct cost-\(d\) \(\mathcal{C}^{\text{dt}}\) decision tree for \(f\) in the “normal form” given by Fact 29. We may assume each deterministic decision tree in the support is a conjunction with exactly \(d\) literals (and there are \(2^d(n)\) many such conjunctions). The crucial observation is that it never helps to assign a probability larger than \(\alpha'\) to any conjunction: if some conjunction appears with probability \(p > \alpha'\), we may replace its probability with \(\alpha'\) and assign the leftover probability \(p - \alpha'\) to a special “contradictory” conjunction that accepts nothing. This modified randomized decision tree is still \(\alpha'\)-correct for \(f\). Finally, remove all probability from the contradictory conjunction and
scale the remaining probabilities (along with α') to sum up to 1. Let α be the scaled version of α'. Now we have that α is greater than or equal to each of $2^d \binom{n}{d}$ many probabilities, and hence α must be at least the reciprocal of this number.

Remark 3. In the case of PostBPP^{dt} we cannot assume w.l.o.g. that $\log(1/\alpha) \leq \text{poly}(d, \log n)$. The canonical counterexample is a decision list function $f : \{0, 1\}^n \to \{0, 1\}$ defined relative to a binary vector $(a_1, \ldots, a_n) \in \{0, 1\}^n$ so that $f(x) := a_i$ where $i \in [n]$ is the smallest number such that $x_i = 1$, or $f(x) := 0$ if no such i exists. Each decision list admits a cost-1 PostBPP^{dt} decision tree, but for some decision lists the associated α must be exponentially small in n; see, e.g., [BVdW07] for more details. Indeed, two-party lifts of decision lists have been used in separating unrestricted communication models from restricted ones as we will discuss in Section 6.

5 Applications of the Simulation Theorem

In this section we use the Simulation Theorem to derive our applications. We prove Theorem 3 and Theorem 6 in Section 5.1 and Section 5.2, respectively. Both proofs use the following basic calculation (given in Appendix A.3 for completeness).

Fact 34. Let $h : \{0, 1\}^n \to \{0, 1\}$ be a width-d conjunction with i positive literals. Then h accepts a uniformly random string of Hamming weight w with probability $\in \left(\frac{w}{n}\right)^i \cdot (1 + o(1))$ provided $w \leq o(\sqrt{n})$ and $d \leq o(\sqrt{w})$.

Above and throughout this section we use $o(1)$ to denote a quantity that is upper bounded by some sufficiently small constant, which may be different for the different instances of $o(1)$.

5.1 Nonclosure under intersection

Recall that $f_\wedge (z, z') := f(z) \wedge f(z')$. Here f_\wedge is not to be thought of as a two-party function; we study the query complexity of f_\wedge, whose input we happen to divide into two halves called z and z'. We start with the following lemma.

Lemma 35. There exists a partial f such that $\text{SBP}^{dt}(f) \leq O(1)$, but $\text{SBP}^{dt}(f_\wedge) \geq \Omega(n^{1/4})$.

Let $k := o(\sqrt{n})$ and define a partial function $f : \{0, 1\}^n \to \{0, 1\}$ by

\[
 f(z) := \begin{cases}
 1 & \text{if } |z| \geq k \\
 0 & \text{if } |z| \leq k/2 \\
 * & \text{otherwise}
\end{cases}
\]

where $|z|$ denotes the Hamming weight of z.

In proving the lower bound in Lemma 35 we make use of the following duality principle for SBP^{dt}, which we phrase abstractly in terms of a collection \mathcal{H} of “basic functions” over some finite set of inputs Z. In our concrete case \mathcal{H} consists of decision trees of height d, or equivalently width-d conjunctions by Fact 29, and $Z \subseteq \{0, 1\}^n$ is the domain of the partial function f. We state the duality principle for acceptance gap $[0, \alpha/2]$-vs-$[\alpha, 1]$ rather than $[0, \alpha/2]$-vs-$[\alpha, 1]$ as this implicitly ensures $\alpha > 0$. The slight difference in the multiplicative gap, (> 2)-vs-(≤ 2), is immaterial as the gap can be efficiently amplified for SBP affecting only constant factors.
Fact 36. For all $\mathcal{H} \subseteq \{0, 1\}^Z$ and non-constant $f: Z \to \{0, 1\}$, the following are equivalent.

(i) There exists a distribution \mathcal{H} over \mathcal{H} such that for all $(z_1, z_0) \in f^{-1}(1) \times f^{-1}(0)$,
\[
\Pr_{h \sim \mathcal{H}}[h(z_1) = 1] > 2 \cdot \Pr_{h \sim \mathcal{H}}[h(z_0) = 1],
\]
(ii) For each pair of distributions (μ_1, μ_0) over $f^{-1}(1)$ and $f^{-1}(0)$ there is an $h \in \mathcal{H}$ with
\[
\Pr_{z_1 \sim \mu_1}[h(z_1) = 1] > 2 \cdot \Pr_{z_0 \sim \mu_0}[h(z_0) = 1].
\]

The direction $(i) \Rightarrow (ii)$ is trivial and is all we need for our proof, but it is interesting that the converse direction $(ii) \Rightarrow (i)$ also holds, by a slightly non-standard argument. We include a full proof in Appendix A.4.

Proof of Lemma 35. Let f and f_\wedge be as above. We have $\text{SBP}^{\text{dt}}(f) = 1$ via the decision tree that picks a random coordinate and accepts iff the coordinate is 1. For the lower bound on $\text{SBP}^{\text{dt}}(f_\wedge)$, we use the contrapositive of $(i) \Rightarrow (ii)$. Let \mathcal{H} consist of all conjunctions of width $o(n^{1/4})$. Let Z_w denote the uniform distribution over n-bit strings of weight w, intended to be used as either the first input z or the second input z' to f_\wedge. We construct a hard pair of distributions (μ_1, μ_0) over $f_\wedge^{-1}(1)$ and $f_\wedge^{-1}(0)$, respectively, by

$$
\mu_1 := Z_k \times Z_k,
\mu_0 := \frac{1}{2}(Z_{k/2} \times Z_{2k}) + \frac{1}{2}(Z_{2k} \times Z_{k/2}).$
$$

Here \times denotes concatenation of strings, e.g., $(z, z') \sim \mu_1$ is such that $z, z' \sim Z_k$ and z and z' are independent. Let $h: \{0, 1\}^{2n} \to \{0, 1\}$ be an arbitrary conjunction in \mathcal{H}, and suppose h has i positive literals in z and j positive literals in z'. Then by Fact 34 we have

\[
\frac{\Pr_{z, z'} \sim \mu_1[h(z, z') = 1]}{\Pr_{z, z'} \sim \mu_0[h(z, z') = 1]} \leq \frac{1}{2} \cdot \frac{(k/n)^i \cdot (k/n)^j}{(k/2n)^i \cdot (2k/n)^j} \cdot (1 + o(1))
\]
\[
= \frac{1}{2} \cdot \frac{1}{2} \cdot 2^{-i} \cdot 2^{-j} \cdot (1 + o(1))
\]
\[
\leq 1 \cdot (1 + o(1))
\]
\[
\leq 2.
\]

This means $-(ii)$ and hence $-(i)$. Therefore f_\wedge has no cost-$o(n^{1/4})$ SBP^{dt} decision tree.

We can now prove Theorem 3, restated here from the introduction.

Theorem 3. SBP^{cc} is not closed under intersection.

Proof. Let f and f_\wedge be as above. Define $F := f \circ g^n$ and $F_\wedge := f_\wedge \circ g^{2n} = (f \circ g^n)_\wedge$ where $g: \{0, 1\}^b \times \{0, 1\}^b \to \{0, 1\}$, $b = \Theta(\log n)$, is our hard gadget from (\dagger)). Then by the Simulation Theorem (Theorem 2), we have $\text{SBP}^{\text{cc}}(F_\wedge) \geq \Omega(\text{SBP}^{\text{dt}}(f_\wedge) \cdot b) \geq \Omega(n^{1/4} \cdot b)$ which is not polylogarithmic in the input length so that $F_\wedge \notin \text{SBP}^{\text{cc}}$. Furthermore, we have $\text{SBP}^{\text{cc}}(F) \leq O(\text{SBP}^{\text{dt}}(f) \cdot b) \leq O(b)$ which is logarithmic in the input length so that $F \notin \text{SBP}^{\text{cc}}$; this implies that F_\wedge is the intersection of two functions in SBP^{cc} (one that evaluates F on the first half of the input, and one that evaluates F on the second half).
5.2 Unamplifiability of error

Our next application of the Simulation Theorem shows that the error parameter ϵ for WAPPcc cannot be efficiently amplified. Combining this with the results illustrated in Figure 4 (in particular, the fact that the equivalence holds for partial functions) shows that also for approximate nonnegative rank, ϵ cannot be efficiently amplified.

Theorem 6. For all constants $0 < \epsilon < \delta < 1/2$ there exists a two-party partial function F such that $\text{WAPP}^{cc}_\delta(F) \leq O(\log n)$ but $\text{WAPP}^{cc}_\epsilon(F) \geq n^{\Omega(1)}$.

Proof. Let $k := o(\sqrt{n})$, $\rho := (1 - 2\delta)/(1 - \delta)$, and define a partial function $f : \{0, 1\}^n \to \{0, 1\}$ by

$$f(z) := \begin{cases} 1 & \text{if } |z| \in [\rho k, k] \\ 0 & \text{if } |z| = 0 \\ * & \text{otherwise} \end{cases}$$

where $|z|$ denotes the Hamming weight of z. By the Simulation Theorem (Theorem 31 and Theorem 32), it suffices to prove that $\text{WAPP}^{dt}_\delta(f) \leq O(1)$ and $\text{WAPP}^{dt}_\epsilon(f) \geq n^{\Omega(1)}$.

Upper bound. Consider a cost-1 decision tree T' that picks a random coordinate and accepts iff the coordinate is 1. Then $\text{acc}_{T'}(z) = |z|/n$. Let $\alpha := k/n$ and define T as follows: on input z accept with probability $\delta \alpha$, reject with probability $\delta(1 - \alpha)$, and run $T'(z)$ with the remaining probability $(1 - \delta)$. It is now a routine calculation to check that $\text{acc}_T(z)$ behaves as plotted on the left side of Figure 3. In particular, T is an α-correct WAPP$^{dt}_\epsilon$ decision tree for f.

Lower bound. The WAPP$^{dt}_\delta$ decision tree designed above is “tight” for f in the following sense: If we decrease the error parameter from δ to any $\epsilon < \delta$, there is no longer any convex function of $|z|$ that would correspond to the acceptance probability of an α-correct WAPP$^{dt}_\epsilon$ decision tree for f. This is suggested on the right side of Figure 3: only a non-convex function of $|z|$ can satisfy the α-correctness requirements for f. We show that the acceptance probability of any low-cost WAPP$^{dt}_\epsilon$ decision tree can indeed be accurately approximated by a convex function, which then yields a contradiction.

Suppose for contradiction that T is a distribution over width-$o(n^{1/4})$ conjunctions (by Fact 29) forming an α-correct WAPP$^{dt}_\epsilon$ decision tree for f, for some arbitrary $\alpha > 0$. Consider the function
Let $Q: \{0, 1, \ldots, k\} \to \mathbb{R}$ be defined by $Q(w) := E_{z: |z| = w} \text{acc}_T(z)$ where the expectation is over a uniformly random string of Hamming weight w. Note that $Q(0) \in [0, \epsilon \alpha]$ and $Q(w) \in [(1-\epsilon)\alpha, \alpha]$ for $w \in [pk, k]$ by the correctness of T. Letting i_h denote the number of positive literals in conjunction h, by Fact 34 we have

$$Q(w) = \mathbf{E}_{h \sim T} \Pr_{z: |z| = w} [h(z) = 1] = \mathbf{E}_{h \sim T} (w/n)^{i_h} \cdot (1 \pm o(1)) = P(w) \cdot (1 \pm o(1)) \quad (11)$$

where $P(w) := \mathbf{E}_{h \sim T} (w/n)^{i_h}$ is a polynomial with nonnegative coefficients and hence convex. We can now calculate

$$Q(pk) \leq (1 + o(1)) \cdot P(pk) \leq (1 + o(1)) \cdot ((1 - \rho)P(0) + \rho P(k)) \leq (1 + o(1)) \cdot ((1 - \rho)Q(0) + \rho Q(k)) \leq (1 + o(1)) \cdot (((1 - \epsilon)\alpha + \rho \alpha) \cdot (1 - \epsilon)\alpha.$$

Hence $Q(pk) < (1 - \epsilon)\alpha$ which contradicts the correctness of T. □

Corollary 7. For all constants $0 < \epsilon < \delta < 1/2$ there exists a partial boolean matrix F such that $\text{rank}_\delta^c(F) \leq n^{O(1)}$ but $\text{rank}_\epsilon^c(F) \geq 2^{n^{\Omega(1)}}$.

Proof sketch. Theorem 6 together with Theorem 9 (proved in the next section) imply that for all $0 < \epsilon < \delta < 1/2$ there is a partial F such that $\text{UWAPP}_\epsilon^c(F) \leq O(\log n)$ and $\text{UWAPP}_\delta^c(F) \geq n^{\Omega(1)}$. Unfortunately, there is a slight problem with applying Fact 27 to conclude a similar separation for rank_δ^c as this direct simulation loses a factor of 2 in the error parameter ϵ. This loss results from the following asymmetry between the measures UWAPP_ϵ^c and rank_ϵ^c: the acceptance probabilities of 1-inputs are in $[(1-\epsilon)\alpha, \alpha]$ in the former, whereas 1-entries can be approximated with values in $[1-\epsilon, 1+\epsilon]$ in the latter. However, this annoyance is easily overcome by considering modified versions of WAPP_ϵ^c and UWAPP_ϵ^c where the acceptance probability on 1-inputs is allowed to lie in $[(1-\epsilon)\alpha, (1+\epsilon)\alpha]$. It can be verified that under such a definition Theorem 6, Theorem 9, and Fact 27 continue to hold, and the “new” Fact 27 does not lose the factor 2 in the error. □

6 Unrestricted–restricted equivalences

In this section we prove our unrestricted–restricted equivalence results, Theorem 8 and Theorem 9, restated below. In Section 6.1 we prove a key “Truncation Lemma”, and in Section 6.2 we use the lemma to prove the equivalences.

As already alluded to in the introduction, Buhrman et al. [BVdW07] exhibited a function F with $\text{UPostBPP}_\epsilon^c(F) \leq O(\log n)$ and $\text{PP}_\epsilon^c(F) \geq \Omega(n^{1/3})$. This simultaneously gives an exponential separation between $\text{PostBPP}_\epsilon^c$ and $\text{UPostBPP}_\epsilon^c$ and between PP_ϵ^c and UPP_ϵ^c. For our other models, we will show that the unrestricted and restricted versions are essentially equivalent. We state and prove this result only for SBP_ϵ^c and WAPP_ϵ^c as the result for 2WAPP_ϵ^c is very similar.

Theorem 8. $\text{SBP}_\epsilon^c(F) \leq O(\text{USBP}_\epsilon^c(F) + \log n)$ for all F.

26
Fact 24

\[\text{WAPP}^{cc} \equiv srec^1 \]

Theorem 9, all \(F \)

\[\text{UWAPP}^{cc} \equiv \log \text{rank}^+_{\epsilon} \]

Fact 27

\[\text{SBP}^{cc} \text{ and } \text{USBP}^{cc} \text{ are equivalent and } \text{WAPP}^{cc} \text{ and } \text{UWAPP}^{cc} \text{ are equivalent. Here “equivalence” is ignoring constant factors and additive logarithmic terms in the cost, but much more significantly it is ignoring constant factors in } \epsilon \text{ (for } \text{WAPP}^{cc}), \text{ which is important as we know that } \epsilon \text{ cannot be efficiently amplified (Theorem 6).} \]

Theorem 9. \(\text{WAPP}^{cc}_\delta(F) \leq O(\text{UWAPP}^{cc}_\epsilon(F) + \log(n/((\delta - \epsilon)))) \) for all \(F \) and all \(0 < \epsilon < \delta < 1/2 \).

Hence, roughly speaking, \(\text{SBP}^{cc} \) and \(\text{USBP}^{cc} \) are equivalent and \(\text{WAPP}^{cc} \) and \(\text{UWAPP}^{cc} \) are equivalent. Here “equivalence” is ignoring constant factors and additive logarithmic terms in the cost, but much more significantly it is ignoring constant factors in \(\epsilon \) (for \(\text{WAPP}^{cc} \)), which is important as we know that \(\epsilon \) cannot be efficiently amplified (Theorem 6).

Discussion of Theorem 8. The equivalence of \(\text{SBP}^{cc} \) and \(\text{USBP}^{cc} \) implies an alternative proof of the lower bound \(\text{USBP}^{cc}(\text{Disj}) \geq \Omega(n) \) for set-disjointness from [GW14] without using information complexity. Indeed, that paper showed that \(\text{SBP}^{cc}(\text{Disj}) \geq \Omega(n) \) follows from Razborov’s corruption lemma [Raz92]. It was also noted in [GW14] that the greater-than function \(G_t \) (defined by \(G_t(x, y) := 1 \) iff \(x > y \) as \(n \)-bit numbers) satisfies \(\text{USBP}^{cc}(G_t) = \Theta(1) \) and \(\text{SBP}^{cc}(G_t) = \Theta(\log n) \), and thus the \(+ \log n \) gap in Theorem 8 is tight. Our proof of Theorem 8 shows, in some concrete sense, that \(G_t \) is the “only” advantage \(\text{USBP}^{cc} \) has over \(\text{SBP}^{cc} \). Theorem 8 is analogous to, but more complicated than, Proposition 33 since both say that without loss of generality \(\alpha \) is not too small in the \(\text{SBP}^{cc} \) models.

Discussion of Theorem 9. The equivalence of \(\text{WAPP}^{cc} \) and \(\text{UWAPP}^{cc} \) implies the equivalence of the smooth rectangle bound (see Fact 24 below) and approximate nonnegative rank (see Fact 27 below), which was already known for total functions [KMSY14]. Our Theorem 9 implies that the equivalence holds even for partial functions, which was crucially used in the proof of Corollary 7. The situation is summarized in Figure 4.

6.1 The Truncation Lemma

The following lemma is a key component in the proofs of Theorem 8 and Theorem 9.

Definition 37. For a nonnegative matrix \(M \), we define its truncation \(\overline{M} \) to be the same matrix but where each entry \(> 1 \) is replaced with 1.

Lemma 38 (Truncation Lemma). For every \(2^n \times 2^n \) nonnegative rank-1 matrix \(M \) and every \(d \) there exists a \(O(d + \log n) \)-communication public-randomness protocol \(\Pi \) such that for every \((x, y) \) we have \(\text{acc}_{\Pi}(x, y) \in \overline{M}_{x,y} \pm 2^{-d} \).
We describe some intuition for the proof. We can write $M_{x,y} = u_x v_y$ where $u_x, v_y \geq 0$. First, note that if all entries of M are at most 1, then $\text{acc}_1(x,y) = M_{x,y}$ can be achieved in a zero-communication manner: scaling all u_x’s by some factor and scaling all v_y’s by the inverse factor, we may assume that all $u_x, v_y \leq 1$; then Alice can accept with probability u_x and Bob can independently accept with probability v_y. Truncation makes all the entries at most 1 but may destroy the rank-1 property. Also note that in general, for the non-truncated entries there may be no “global scaling” for which the zero-communication approach works: there may be some entries with $u_x v_y < 1$ but $u_x > 1$, and other entries with $u_x v_y < 1$ but $v_y > 1$. Roughly speaking, we instead think in terms of “local scaling” that depends on (x,y).

As a starting point, consider a protocol where Alice sends u_x to Bob, who then declares acceptance with probability $\min(u_x v_y, 1)$. We cannot afford to communicate u_x exactly, so we settle for an approximation. We express u_x and v_y in “scientific notation” with an appropriate base and round the mantissa of u_x to have limited precision. The exponent of u_x, however, may be too expensive to communicate, but since u_x, v_y are multiplied, all that matters is the sum of their exponents. Determining the sum of the exponents exactly may be too expensive, but the crux of the argument is that we only need to consider a limited number of cases. If the sum of the exponents is small, then the matrix entry is very close to 0 and we can reject without knowing the exact sum. If the sum of the exponents is large, then the matrix entry is guaranteed to be truncated and we can accept.

Provided the base is large enough, there are only a few “inbetween” cases. Determining which case holds can be reduced to a greater-than problem, which can be solved with error exponentially small in d using communication $O(d + \log n)$.

We now give the formal proof.

Proof of Lemma 38. Let $M_{x,y} = u_x v_y$ where $u_x, v_y \geq 0$, and define $\delta := 2^{-d}/2$ and $B := 1/\delta$.

Henceforth we fix an input (x,y). For convenience we let all notation be relative to (x,y), so we start by defining $u := u_x$ and $v := v_y$, and note that $\overline{M}_{x,y} = \min(u v, 1)$. Assuming $u > 0$, define $i := \lfloor \log_B u \rfloor$ (so $u \in (B^{i-1}, B^i]$) and $a := u/B^i$ (so $a \in (\delta, 1]$). Similarly, assuming $v > 0$, define $j := \lceil \log_B v \rceil$ (so $v \in (B^{j-1}, B^j]$) and $b := v/B^j$ (so $b \in (\delta, 1]$). Note that $uv = abB^{i+j} \in (B^{i+j-2}, B^{i+j}]$. The protocol Π is as follows. (Line 4 is underspecified but we will address that later.)

```
1: If $u = 0$ or $v = 0$ then reject
2: Alice sends Bob $\tilde{a} \in a \pm \delta^2$ (and ensuring $\tilde{a} \leq 1$) using $O(d)$ bits
3: Bob computes $p := \tilde{a} \cdot b$
4: Determine with probability at least $1 - \delta$ which of the following four cases holds:
5: If $i + j < 0$ then reject
6: If $i + j = 0$ then accept with probability $p$
7: If $i + j = 1$ then accept with probability $\min(p B, 1)$
8: If $i + j > 1$ then accept
```

We first argue correctness. Assume $u, v > 0$. We have $ab \in (\tilde{a} \pm \delta^2)b \subseteq p \pm \delta^2$ (using $b \leq 1$) and thus $uv \in (p \pm \delta^2)B^{i+j}$. Pretending for the moment that line 4 succeeds with probability 1, we can verify that in all four cases the acceptance probability would be in $\overline{M}_{x,y} \pm \delta$: 28
5: If \(i + j < 0 \) then \(0 \in M_{x,y} \pm \delta \) since \(uv \leq B^{i+j} \leq \delta \).
6: If \(i + j = 0 \) then \(p \in M_{x,y} \pm \delta \) since \(uv \in (p \pm \delta^2)B^{i+j} \subseteq p \pm \delta \).
7: If \(i + j = 1 \) then \(\min(pB, 1) \in M_{x,y} \pm \delta \) since \(uv \in (p \pm \delta^2)B^{i+j} \subseteq pB \pm \delta \).
8: If \(i + j > 1 \) then \(1 = M_{x,y} \) since \(uv > B^{i+j}-2 \geq 1 \).

The error probability of line 4 only affects the overall acceptance probability by \(\pm \delta \), so \(\text{acc}_\Pi(x, y) \in M_{x,y} \pm 2\delta \subseteq M_{x,y} \pm 2^{-d} \).

The communication cost is \(O(d) \) except for line 4. Line 4 can be implemented with three tests: \(i + j \geq 0, i + j \geq 1, i + j \geq 2 \), each having error probability \(\delta/3 \). These tests are implemented in the same way as each other, so we just describe how to test whether \(i + j \geq 0 \). In other words, if we let \(T \) denote the indicator matrix for \(i + j \geq 0 \), then we want to compute \(T \) with error probability \(\delta/3 \) and communication \(O(d + \log n) \). If we assume the rows are sorted in decreasing order of \(u \) and the columns are sorted in decreasing order of \(v \), then each row and each column of \(T \) consists of 1’s followed by 0’s. To compute \(T \), we may assume without loss of generality it has no duplicate rows and no duplicate columns, in which case it is a greater-than matrix (of size at most \(2^n \times 2^n \)) with the 1’s in the upper-left triangle, possibly with the all-0 row deleted and/or the all-0 column deleted. The greater-than function can be computed with any error probability \(\gamma > 0 \) and communication \(O(\log(n/\gamma)) \) by running the standard protocol [KN97, p. 170] for \(O(\log(n/\gamma)) \) many steps.

Remark 4. We note that the \(O(d + \log n) \) communication bound in Lemma 38 is optimal, assuming \(n \geq d \). Indeed, define a nonnegative rank-1 matrix \(M \) by \(M_{x,y} := (2^{-d})^{x-y} \) where \(x \) and \(y \) are viewed as nonnegative \(n \)-bit integers. Consider any protocol \(\Pi \) with \(\text{acc}_\Pi(x, y) \in M_{x,y} \pm 2^{-d} \), and note that it determines with error probability \(2^{-(d-1)} \) whether \(x \leq y \). The latter is known to require \(\Omega(\log n) \) communication (even for constant \(d \)) [Vio13]. Also, by a union bound there exists an outcome of the randomness for which \(\Pi \) determines whether \(x \leq y \) for all pairs \(x, y < 2^{d/2-1} \) (of which there are \(2^{d-2} \)), which requires \(O(d) \) communication by the deterministic lower bound for greater-than on \((d/2 - 1) \)-bit integers.

6.2 Proofs of unrestricted–restricted equivalences

We now give the (very similar) proofs of Theorem 8 and Theorem 9 using the Truncation Lemma. We make use of the following basic fact.

Fact 39. Given a private-randomness protocol \(\Pi \) of communication cost \(c \), label the accepting transcripts as \(\tau \in \{1, 2, \ldots, 2^c\} \). Then for each accepting transcript \(\tau \) there exists a nonnegative rank-1 matrix \(N^\tau \) such that the following holds. For each \((x, y) \), the probability of getting transcript \(\tau \) on input \((x, y) \) is \(N^\tau_{x,y} \), and thus \(\text{acc}_\Pi(x, y) = \sum_{\tau=1}^{2^c} N^\tau_{x,y} \).

For both proofs, we transform an \(\alpha \)-correct protocol, where \(\alpha \) might be prohibitively small, into a (roughly) \(2^{-c} \)-correct protocol without increasing the communication by too much. We use Fact 39 to express the acceptance probabilities as a sum of nonnegative rank-1 matrices. The basic intuition is to divide everything by \(\alpha \) to get a “1-correct” matrix sum; however, this new sum may not correspond to acceptance probabilities of a protocol. To achieve the latter, we truncate each summand (which does not hurt the correctness, and which makes each summand correspond to acceptance probabilities from the Truncation Lemma), then multiply each summand by \(2^{-c} \) (which essentially changes the correctness parameter from 1 to \(2^{-c} \), and which corresponds to picking a uniformly random summand).
Proof of Theorem 8. Fix a cost-c USBPcc protocol $Π$ for F with associated $α > 0$ and associated matrices N^r from Fact 39. Thus $∑_r N^r_{x,y}$ is $≥ α$ if $F(x, y) = 1$ and $≤ α/2$ if $F(x, y) = 0$. We claim that the following public-randomness protocol $Π'$ witnesses $SBP^{cc}(F) ≤ O(c + log n)$:

1. Pick $τ ∈ \{1, 2, \ldots, 2^c\}$ uniformly at random
2. Run the protocol from Lemma 38 with $M^r := \frac{1}{α} N^r$ and $d := c + 3$

We first argue correctness. We have $acc(\cdot)$ with probability v that $\sum_\tau M^r_{x,y}$ is $≥ 2^c$ and $\sum_\tau M^r_{x,y} ≤ 2$ with probability $1 - v$. Hence to accept with probability $\frac{1}{2}$, Alice can accept with probability $\frac{1}{2}$, and Bob can accept with probability $\frac{1}{2}$. Since the communication cost of $Π'$ is $O(d + log n) = O(c + log n)$, and the associated $α'$ value is $2^{-O(c)}$, the overall cost is $O(c + log n)$.

Proof of Theorem 9. Fix a cost-c UWAPPcc protocol $Π$ for F with associated $α > 0$ and associated matrices N^r from Fact 39. Thus $∑_r N^r_{x,y}$ is $∈ \{1 - ε\} α, α\}$ if $F(x, y) = 1$ and $∈ [0, εα]$ if $F(x, y) = 0$. We claim that the following public-randomness protocol $Π'$ witnesses $WAPP^{cc}_r(F) ≤ O(c + log (n/Δ))$ where $Δ := (δ - ϵ)/2$:

1. Pick $τ ∈ \{1, 2, \ldots, 2^c\}$ uniformly at random
2. Run the protocol from Lemma 38 with $M^r := \frac{1}{α} N^r$ and $d := c + [log(1/Δ)]$

We first argue correctness. We have $acc(\cdot)$ with probability v that $\sum_\tau M^r_{x,y}$ is $≥ 2^c(\sum_\tau M^r_{x,y} + Δ)$. Define $α' := 2^{-c}(1 + Δ)$. If $F(x, y) = 0$ then $\sum_\tau M^r_{x,y} ≤ \sum_\tau \frac{1}{α} N^r_{x,y} ≤ ε$ and thus $acc(\cdot)$ with probability v that $\sum_\tau M^r_{x,y} ≤ 2^{-c}(\sum_\tau M^r_{x,y} + Δ)$. Hence $\sum_\tau M^r_{x,y} = \sum_\tau \frac{1}{α} N^r_{x,y} ∈ [1 - ε, 1]$, and thus $acc(\cdot)$ with probability v that $\sum_\tau M^r_{x,y} ≤ 2^{-c}(1 - ε - Δ), 2^{-c}(1 + Δ) ∈ [(1 - δ)α', α']$. So $Π'$ is a $WAPP^{cc}_r(F)$ protocol for F of cost $O(d + log n) + log(1/α') ≤ O(c + log(n/Δ))$.

Remark 5. In the proof of Theorem 9, note that if F is total then Lemma 38 is not needed: The entries of each M^r are all bounded by 1, and thus $M^r_{x,y}$ can be written as $u_x v_y$ where $u_x, v_y ∈ [0, 1]$. Hence to accept with probability $M^r_{x,y}$, Alice can accept with probability u_x and Bob can accept with probability v_y. This incurs no loss in the ϵ parameter and has communication cost 2, witnessing that $WAPP^{cc}_r(F) ≤ UWAPP^{cc}_r(F) + 2$ if F is total.
A Appendix: Additional proofs

A.1 Proof of Fact 24

$s_{\epsilon}^1(F)$ is defined as the log of the optimum value of the following linear program, which has a variable w_R for each rectangle R.

\[
\begin{align*}
\text{minimize} & \quad \sum_R w_R \\
\text{subject to} & \quad \sum_{R: (x,y) \in R} w_R \in [1 - \epsilon, 1] \quad \forall (x,y) \in F^{-1}(1) \\
& \quad \sum_{R: (x,y) \in R} w_R \in [0, \epsilon] \quad \forall (x,y) \in F^{-1}(0) \\
& \quad w_R \geq 0 \quad \forall R
\end{align*}
\]

We first show the first inequality. Given a cost-c WAPP_{ϵ} protocol for F, put it in the “normal form” given by Fact 23 so that $\alpha = 2^{-c}$ and each outcome of the randomness is a rectangle. For each rectangle R, let $w_R := p_R/\alpha$ where p_R is the probability of R in the normal form protocol. This is a feasible solution with objective value $1/\alpha$, so $s_{\epsilon}^1(F) \leq \log(1/\alpha) = c$. We now show the second inequality. Given an optimal solution, let $\alpha := 1/\sum_R w_R$ and consider a protocol that selects rectangle R with probability αw_R. This is an α-correct WAPP_{ϵ} protocol for F of cost $2 + s_{\epsilon}^1(F)$.

A.2 Proof of Fact 27

We first show the first inequality. Fix a cost-c $\text{UWAPP}^\text{cc}_{\epsilon}$ protocol Π for F with associated $\alpha > 0$ and associated matrices N^τ from Fact 39. Thus $\sum_{r} N^\tau_{x,y}$ is in $[(1 - \epsilon)\alpha, \alpha]$ if $F(x,y) = 1$ and in $[0, \epsilon\alpha]$ if $F(x,y) = 0$. Hence letting $M := \sum_{r} \frac{1}{\alpha} N^\tau$, we have $M_{x,y} \in F(x,y) \pm \epsilon$ for all $(x,y) \in \text{dom} F$ and rank$^+(M) \leq 2^c$.

We now show the second inequality. Suppose M is such that $M_{x,y} \in F(x,y) \pm \epsilon/2$ for all $(x,y) \in \text{dom} F$ and $r := \text{rank}^+(M)$ is witnessed by $M = UV$, and let t be the maximum entry in U, V. We claim that the following private-randomness protocol Π witnesses $\text{UWAPP}^\text{cc}_{\epsilon}(F) \leq \lceil \log r \rceil + 2$:

1: Alice picks $i \in \{1, 2, \ldots, r\}$ uniformly at random and sends it to Bob
2: Alice accepts with probability $U_{x,i}/t$ and sends her decision to Bob
3: Bob accepts with probability $V_{i,y}/t$ and sends his decision to Alice
4: Accept iff both Alice and Bob accept

We have $\text{acc}_\Pi(x,y) = \frac{1}{r} \sum_i U_{x,i} V_{i,y}/t^2 = M_{x,y}/rt^2$. Let $\alpha := (1 + \epsilon/2)/rt^2$. If $F(x,y) = 1$ then $\text{acc}_\Pi(x,y) \in [(1 - \epsilon/2)/rt^2, (1 + \epsilon/2)/rt^2] \subseteq [(1 - \epsilon)\alpha, \alpha]$. If $F(x,y) = 0$ then $\text{acc}_\Pi(x,y) \in [0, (\epsilon/2)/rt^2] \subseteq [0, \epsilon\alpha]$. Thus the protocol is correct with respect to α.

A.3 Proof of Fact 34

We use the notation $(t)_m$ for the falling factorial $t(t-1) \cdots (t-m+1)$. The acceptance probability is

\[
\frac{(n-w-i)}{(n-w)} \cdot \frac{(n-d-w-i)}{(n-w)!} = \frac{(n)!}{(w-i)!} \cdot \frac{(w)}{(n)_w / (n-d)_w-i}.
\]

We claim that
We first prove (i) $h_1 \leq (w) i \leq w$, (ii) $n^w \cdot (1 - o(1)) \leq (n) w \leq n^w$, (iii) $n^{w-i} \cdot (1 - o(1)) \leq (n-d)_{w-i} \leq n^{w-i}$.

Then the acceptance probability is in

$$\frac{w^i}{n^w / n^{w-i}} \cdot (1 \pm o(1)) = (w/n)^i \cdot (1 \pm o(1)).$$

The three upper bounds are trivial. For the lower bound in (i), we have

$$(w)_i = w^i \cdot (1 - \frac{0}{w}) \cdots (1 - \frac{i-1}{w})$$

$$\geq w^i \cdot 4^{-0/w} \cdots 4^{-(i-1)/w}$$

$$= w^i \cdot 4^{-(i-1)/2w}$$

$$\geq w^i \cdot (1 - o(1))$$

since $i \leq d \leq o(\sqrt{w})$. The lower bound in (ii) follows similarly using $w \leq o(\sqrt{n})$. For (iii), we have

$$(n-d)_{w-i} \geq (n-d)^{w-i} \cdot (1 - o(1)) = n^{w-i} \cdot (1 - o(1)) \cdot (1 - d/n)^{w-i}$$

as above using $w - i \leq o(\sqrt{n-d})$, and we have $(1 - d/n)^{w-i} \geq (4^{-d/n}) \geq 1 - o(1)$ since $d < w \leq o(\sqrt{n})$.

A.4 Proof of Fact 36

We first prove (i) \Rightarrow (ii). Assume (i), and consider μ_1 distributed over $f^{-1}(1)$ and μ_0 distributed over $f^{-1}(0)$. We have for $h \sim \mathcal{H}$ and $z_1 \sim \mu_1$ that

$$E_h \Pr_{z_1} [h(z_1) = 1] = \Pr_{h,z_1} [h(z_1) = 1]$$

$$\geq \min_{z_1 \in f^{-1}(1)} \Pr_h [h(z_1) = 1]$$

$$> 2 \cdot \max_{z_0 \in f^{-1}(0)} \Pr_h [h(z_0) = 1]$$

$$\geq 2 \cdot \Pr_{h,z_0} [h(z_0) = 1]$$

$$= E_h 2 \cdot \Pr_{z_0} [h(z_0) = 1].$$

If $\Pr_{z_1} [h(z_1) = 1] \leq 2 \cdot \Pr_{z_0} [h(z_0) = 1]$ for all h, then the above would be false.

We now prove (ii) \Rightarrow (i). Assume (ii), and define α_{μ_1,μ_0} to be the maximum of $\Pr_{z_1 \sim \mu_1} [h(z_1) = 1]$ over all h such that $\Pr_{z_1 \sim \mu_1} [h(z_1) = 1] > 2 \cdot \Pr_{z_0 \sim \mu_0} [h(z_0) = 1]$. It is not difficult to see that the function $(\mu_1,\mu_0) \mapsto \alpha_{\mu_1,\mu_0}$ is lower semi-continuous, since if we change (μ_1,μ_0) infinitesimally then $\Pr_{z_1 \sim \mu_1} [h(z_1) = 1] > 2 \cdot \Pr_{z_0 \sim \mu_0} [h(z_0) = 1]$ still holds for the (previously) optimum h, and the left side of the inequality only changes infinitesimally (but another h may become “available” and raise the value of α_{μ_1,μ_0}; hence the function is not upper semi-continuous). It is a basic fact of analysis that a lower semi-continuous function on a compact set attains its infimum. Since the set of (μ_1,μ_0) pairs is compact, and since $\alpha_{\mu_1,\mu_0} > 0$ for all (μ_1,μ_0), we have $\inf_{\mu_1,\mu_0} \alpha_{\mu_1,\mu_0} > 0$. Let α^* be any real such that $0 < \alpha^* < \inf_{\mu_1,\mu_0} \alpha_{\mu_1,\mu_0}$. Hence we have $\alpha_{\mu_1,\mu_0} > \alpha^*$ for all (μ_1,μ_0).

Let M be the matrix with rows indexed by Z and columns indexed by \mathcal{H}, such that $M_{z,h} := h(z)$. Then for every (μ_1,μ_0) there exists an h such that $E_{z_1 \sim \mu_1} M_{z_1,h} > \alpha^*$ and $E_{z_1 \sim \mu_1} M_{z_1,h} >$
2 · E_{z_0 \sim \mu_0} M_{z_0,h}$. Let M' be the matrix with rows indexed by Z and (infinitely-many) columns indexed by $\mathcal{H} \times [0,1]$, such that $M'_{z,(h,s)} \equiv s \cdot h(z)$. Then for every (μ_1, μ_0) there exists a (h,s) such that $E_{z_1 \sim \mu_1} M'_{z_1,(h,s)} > \alpha^*$ and $E_{z_0 \sim \mu_0} M''_{z_0,(h,s)} < \alpha^*/2$ (by choosing s to be slightly greater than $\alpha^*/2$). Let M'' be the matrix indexed like M', such that $M''_{z,(h,s)} \equiv h(z)$ if $f(z) = 1$, and $M''_{z,(h,s)} \equiv A(M'_{z,(h,s)})$ if $f(z) = 0$. Then for every (μ_1, μ_0) there exists a (h,s) such that $E_{z_1 \sim \mu_1} M''_{z_1,(h,s)} > \alpha^*$ and, by linearity of expectation, $E_{z_0 \sim \mu_0} M''_{z_0,(h,s)} = A(E_{z_0 \sim \mu_0} M'_{z_0,(h,s)}) > (1 - \alpha^*/2) \cdot \frac{\alpha^*}{1-\alpha^*/2} = \alpha^*$.

We claim that for every distribution μ over Z there exists a (h,s) such that $E_{z \sim \mu} M''_{z,(h,s)} > \alpha^*$. If $\mu(f^{-1}(1)) > 0$ and $\mu(f^{-1}(0)) > 0$ then this follows from the above using $\mu_1 = (\mu \mid f^{-1}(1))$ and $\mu_0 = (\mu \mid f^{-1}(0))$. Otherwise if, say, $\mu(f^{-1}(0)) = 0$ (similarly if $\mu(f^{-1}(1)) = 0$) then we can let $\mu_1 = \mu$ and μ_0 be an arbitrary distribution over $f^{-1}(0)$, and apply the above.

Now by the minimax theorem (a continuous version as used in [TTV09]) the two-player zero-sum game given by M'' (with payoffs to the column player) has value $> \alpha^*$, and thus there exists a distribution \mathcal{H}' over $\mathcal{H} \times [0,1]$ such that for all $z \in Z$, $E_{(h,s) \sim \mathcal{H}'} M'_{z,(h,s)} > \alpha^*$. Thus for all $z_1 \in f^{-1}(1)$ we have $E_{(h,s) \sim \mathcal{H}'} M'_{z_1,(h,s)} > \alpha^*$, and for all $z_0 \in f^{-1}(0)$ by linearity of expectation we have $E_{(h,s) \sim \mathcal{H}'} M''_{z_0,(h,s)} = A^{-1}(E_{(h,s) \sim \mathcal{H}'} M''_{z_0,(h,s)}) < 1 - \alpha^* \cdot \frac{1 - \alpha^*/2}{\alpha^*} = \alpha^*/2$.

For $h \in \mathcal{H}$, if we define p_h to be the expectation under \mathcal{H}' of the function that outputs s on inputs (h,s) and outputs 0 otherwise, then for all z we have $E_{(h,s) \sim \mathcal{H}'} M''_{z,(h,s)} = \sum_h p_h \cdot M_{z,h}$. Finally, we define the distribution \mathcal{H} over \mathcal{H}' so the probability of h is p_h/P where $P := \sum_h p_h$. Then for all z we have $Pr_{h \sim \mathcal{H}}[h(z) = 1] = \frac{1}{P} \cdot E_{(h,s) \sim \mathcal{H}'} M'_{z,(h,s)}$. Thus for all $z_1 \in f^{-1}(1)$ we have $Pr_{h \sim \mathcal{H}}[h(z_1) = 1] > \alpha^*/P$, and for all $z_0 \in f^{-1}(0)$ we have $Pr_{h \sim \mathcal{H}}[h(z_0) = 1] < \alpha^*/2P$, and hence (i) holds.

Acknowledgements
We thank Troy Lee and Toniann Pitassi for discussions.

References

