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Abstract

We study the problem of constructing multi-source extractors in the quantum setting, which
extract almost uniform random bits against an adversary who collects quantum side information
from several initially independent classical random sources. This is a natural generalization of the
two much studied problems of seeded randomness extraction against quantum side information, and
classical independent source extractors. With new challenges such as potential entanglement in the
side information, it is not a prior clear under what conditions do quantum multi-source extractors
exist; the only previous work in this setting is [19], where the classical inner-product two-source
extractors of [7] and [10] are shown to be quantum secure in the restricted Independent Adversary
(IA) Model and entangled Bounded Storage (BS) Model.

In this paper we propose a new model called General Entangled (GE) Adversary Model, which
allows arbitrary entanglement in the side information and subsumes both the IA model and the
BS model. We proceed to show how to construct GE-secure quantum multi-source extractors.
To that end, we propose another model called One-sided Adversary (OA) Model, which is weaker
than all the above models. Somewhat surprisingly, we establish an equivalence between strong
OA-security and strong GE-security. As a result, all classical multi-source extractors can either
directly work, or be modified to work in the GE model at the cost of one extra random source.
Thus, our constructions essentially match the best known constructions of classical multi-source
extractors. This answers several open questions in [19, 8].

We also apply our techniques to two important problems in cryptography and distributed com-
puting — privacy amplification and network extractor. Both problems deal with converting secret
weak random sources into secret uniform random bits in a communicating environment, with the
presence of a passive adversary who has unlimited computational power and can see every message
transmitted. We show that as long as the sources have certain amounts of conditional min-entropy
in our GE model (even with entangled quantum side information), we can design very efficient
privacy amplification protocols and network extractors.
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1 Introduction

The enormous benefit of using randomness in computation has been witnessed by the vast number of
applications in algorithms, distributed computing, cryptography and many more. However, often the
random sources in nature are imperfect with various biases and dependence. In many applications
these imperfect random sources need to be distilled before they can be used. Randomness extractors
are tools for this distilling process — they convert imperfect random sources into nearly uniform
random bits.

A random source can be imperfect for two reasons. First, it can have natural biases. This occurs
in for example thermal noises or computer mouse movements. Second, and more importantly in
applications related to security and privacy, it becomes imperfect because an adversary manages to
learn some side information about the source. Here, naturally we also require the output of the
randomness extractor to be (almost) independent of the side information. In the classical setting,
dealing with these two cases can often be unified by requiring the output of the extractor to be close
to uniform whenever the imperfect random source has a certain amount of min-entropy:

Definition 1.1 (Min-entropy) The min-entropy of a random variable X is given by

Hmin(X) = min
x∈X

log2(1/Pr[X = x]).

For X ∈ {0, 1}n, we call X an (n,Hmin(X))-source with entropy rate Hmin(X)/n.

Definition 1.2 (informal) A (deterministic or randomized) function Ext : {0, 1}n → {0, 1}m is an
error ε extractor for a class C of sources with min-entropy k, if for any source X ∈ C, we have

|Ext(X)− Um|tr ≤ ε.

The reason is that in most classical cases, we can fix the side information, and argue that condi-
tioned on this fixing, the source still has enough min-entropy (as long as the adversary does not learn
all information of the source). Thus, the output of the extractor will be close to uniform even given
the side information. This unified approach makes extractors the single tool to solve the above two
different problems. The remaining question is to decide for what classes of sources we can construct
extractors. For this purpose, it is not hard to show that no deterministic extractor can exist for general
(n, k) sources even when k is as large as n−1. Therefore, the study of randomness extractors has been
pursued in two directions. One is to allow an extractor to use a short independent uniform random
seed (i.e., Ext becomes a randomized function), and these extractors are known as seeded extractors.
The other is to construct extractors without seeds for random sources with special structures, where
an important case is to extract random bits from multiple (independent) random sources. Both kinds
of extractors have been studied extensively in the classical setting.

In many important problems related to cryptography and security, true (close to) uniform random-
ness is provably necessary. For example, Dodis et. al [11] showed that many important cryptographic
tasks, such as bit-commitment, encryption and zero-knowledge would become impossible even if the
random bits used have entropy rate 0.99. Thus, it is important to use multi-source extractors to gen-
erate true (close to) uniform random bits for these applications. We note that in the classical setting,
one can use the probabilistic method to show that very good extractors exist for just two indepen-
dent weak sources with logarithmic min-entropy. This is a strict generalization of seeded extractors
(where one can view the seed as another independent source) and only needs weaker requirements
on the randomness used in applications. In fact, one natural and important question is what are
the minimum requirements on randomness used in various applications; and in the classical setting,
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multi-source extractors provide an answer to this question in the case where independent weak sources
can be obtained. This paper, on the other hand, can be viewed as a step towards answering the above
question in the quantum setting.

Indeed, since our world is inherently non-classical, a more powerful adversary can use quantum
processes to obtain the side information; and we need to define quantum conditional min-entropy and
quantum extractors as follows.

Definition 1.3 (Quantum conditional Min-entropy) Let ρXE ∈ Dens (X ⊗ E) be a classical-
quantum state. The min-entropy of X conditioned on E is defined 1 as

Hmin(X|E)ρ
def
= max{λ ≥ 0 : ∃σE ∈ Dens (E) , s.t. 2−λidX ⊗ σE ≥ ρXE}.

Definition 1.4 (informal) A (deterministic or randomized) function Ext : {0, 1}n → {0, 1}m is an
error ε quantum extractor for a class C of sources with conditional min-entropy k, if for all cq states
ρXE ∈ C, we have ∣∣ρExt(X)E − Um ⊗ ρE

∣∣
tr
≤ ε.

Quantum side information presents much more challenge than classical side information, since we
do not know how to apply the technique of “conditioning” on side information. Therefore a classical
extractor is not necessarily an extractor secure against quantum side information. Indeed, Gavinsky
et al. [13] gave an example of a classical seeded extractor that is not secure even against a very small
amount of quantum side information. As it turns out, to construct quantum seeded extractors is a
non-trivial task; and today we only have a few constructions of such extractors, with parameters much
worse than the best known classical seeded extractors. For example, König, Maurer, and Renner
[20, 32, 33] showed that seeded extractors based on the leftover hash lemma [16, 17] are quantum
secure, and König and Terhal [22] showed that any one-bit output extractor is also quantum secure,
with roughly the same parameters. Ta-Shma [34], De and Vidick [9], and later De, Portmann, Vidick
and Renner [8] gave quantum seeded extractors with short seeds that can extract almost all of the
min-entropy2. All of these three constructions are based on Trevisan’s extractor [36]. It remains an
open problem to construct quantum seeded extractors that match the parameters of the best known
classical seeded extractors.

In the multi-source case, the situation is even worse. This is because measuring each source’s
quantum side information might break the independence of the sources — a condition that is needed
in classical multi-source extractors. Moreover, the quantum side information of each source can have
entanglement — a phenomenon that does not exist in the classical setting. Quantum entanglement
yields several surprising effects that cannot happen in the classical world, such as non-local correlation
[4] and superdense coding [5]. These issues apparently make the task of constructing quantum multi-
source extractors much harder than constructing classical multi-source extractors. Indeed, it is a prior
not clear under what conditions do quantum multi-source extractors exist (this is in sharp contrast
to the classical setting, where the existence of very good two-source extractors is guaranteed by
the probabilistic method); and it was only very recently that [19] gave a construction of two-source
extractors in the independent adversary model (which roughly corresponds to independent sources in
the classical setting), and the very restricted entangled bounded storage model.

However, the results of [19] are still very limited and do not give us a clear picture of quantum
multi-source extractors. The main reason is that in the case of independent adversary model, it does

1This definition has a simple operational interpretation shown in [21] that Hmin(X|E)ρ = − log(pguess(X|E)ρ), where
pguess(X|E)ρ is the maximum probability of guessing X by making arbitrary measurements on E system.

2Although the seed length is still much longer compared to the best known classical seeded extractor.
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not allow entangled side information; while in the case of entangled bounded storage model, it uses a
very special method to show that a particular function (namely the inner product function) is a two-
source extractor. For this function to be a two-source extractor, we need to require that the two sources
have large min-entropy (i.e., roughly have min-entropy rate > 1/2). On the other hand, this technique
of showing a two-source extractor in the entangled bounded storage model seems hard to generalize
to other functions (e.g., other classical two-source extractor constructions). Thus, given these results
it is still not clear if two-source (or multi-source) extractors can exist for smaller min-entropy, in the
entangled bounded storage model.

1.1 Sketch of Our Results

In this paper we significantly improve the situation in the case of multi-source extractors. We show,
somewhat surprisingly, that in a more general model, we can actually construct quantum multi-source
extractors that essentially match the best constructions of classical multi-source extractors, even in
the presence of entangled quantum side information. Our model is so general that it subsumes both
the independent adversary model and the bounded storage model, and parallels what can be achieved
in the classical setting. Indeed, our model is a strict generalization of the independent sources model in
the classical setting, and we actually show that any classical multi-source extractor can either directly
work, or be modified to work in our general model with roughly the same parameters. This not only
establishes the existence of multi-source extractors (e.g., two-source extractors for logarithmic min-
entropy) in the presence of (even entangled) quantum side information, but also gives us a general way
to construct them. In particular, we answer several open questions in [19, 8] and give stronger results
and simplified proofs. We view this new model as one of our main conceptual contributions. We then
apply our techniques to two important problems in cryptography and distributed computing.

Privacy Amplification. The most important application of seeded quantum extractors is privacy
amplification with quantum side information. The setting is that two parties (Alice and Bob) share a
secret weak random source X. They each also has local private random bits. The goal is to convert the
shared weak source X into a nearly uniform random string by having the two parties communicating
with each other. However, the communication channel is watched by a (passive) adversary Eve, and
we want to make sure that eventually the shared uniform random bits remain secret to Eve. In the
quantum setting, Eve may also have quantum side information about the shared source X.

One can use strong (classical or quantum) seeded extractors to solve this problem in one round
by having one party (say Alice) send a seed to Bob and they each apply the extractor to the shared
source using the seed. The strong property of the extractor guarantees that even if seeing the seed,
Eve has no information about the extracted uniform key. One advantage of this method is that if we
have good strong seeded extractors, then we can just use a short seed to extract a long shared key.

However, as mentioned before, it is not clear that we can simply assume that the two parties have
local uniform random bits. They may well only have weak random seeds which may also be subject
to (entangled) quantum side information. In this paper we show that as long as the two parties’ local
random seeds have arbitrarily constant min-entropy rate as measured in our general model, we can
still achieve privacy amplification with asymptotically the same parameters. In particular, this keeps
the nice property that we can use a short seed to extract a long uniform key. Note that in our model,
the two parties’ local random bits may be subject to entangled quantum side information with the
shared weak source, and we show that even in this case privacy amplification can be achieved.

As a by-product, we also give a general transformation that can convert any (classical or quantum)
strong seeded extractor into another (classical or quantum) strong seeded extractor with roughly the
same output size and error, and a constant factor larger size of seed, with the property that the new
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strong seeded extractor works as long as the entropy rate of the seed is at least 1/2+δ for any constant
δ > 0.3 Other known constructions of strong quantum seeded extractors that can work with a weak
random seed, such as that in [8] requires the seed to have entropy rate at least 0.9.

Network Extractor. One of the main applications of multi-source extractors in the classical setting
is in distributed computing and secure multi-party computation problems where multiple players each
has an imperfect random source. The players then need to communicate with each other to convert
their random sources into nearly uniform and private random bits. Therefore, we need to design a
protocol, known as network extractor protocol, as defined in [18]. Here, the setting is that part of
the players are corrupted by an adversary, who then manipulates these players to try to collapse the
protocol. As in [18], we allow the adversary to have unlimited computational power, see every message
transmitted in the protocol, and wait to transmit the faulty players’ messages after seeing all the other
players’ messages (this is called rushing). When each player leaks some side information, we require
that a set of honest players end up with (almost) private and uniform random bits even given all the
side information and the whole transcript of the protocol; and the goal is to sacrifice as few honest
players as possible. We note that this problem can be viewed as a generalization of the multi-source
extractor problem to the distributed and adversarial setting. A multi-source extractor can be thought
as a network extractor with no faulty players. It is the existence of the network adversary that makes
the construction of network extractors more challenging.

Another important thing to notice here is that in the network extractor model, we essentially
have two adversaries. One adversary, which we call AdvSI, obtains side information from the players’
sources; while the other adversary, which we call AdvNet, controls the faulty players to try to collapse
the protocol. These two adversaries may or may not collaborate. If they do not collaborate, then
AdvNet only makes rushing choices based on the public messages. We call this strategy independent
rushing. On the other hand, if they do collaborate, then the adversary becomes more powerful — he
can use the quantum side information (in addition to the messages) to make the rushing choices. By
doing this, the adversary can generate complicated correlations between different parts of the network
source system, even if originally the side information is obtained in the independent adversary model.
This phenomenon is special in the quantum setting and we call this strategy quantum rushing. It is
conceivable that quantum rushing is much more difficult to handle than independent rushing, because
of the potential entanglement the adversary can create. Nevertheless, we give network extractors in
the presence of quantum side information (even entangled) in the case of both independent rushing and
quantum rushing. In the former case, we can essentially match the performance of classical network
extractors (in fact, our construction improves and simplifies existing construction of [18]); while in the
latter case, we need to sacrifice a constant factor more of honest players.

1.2 Our New Model

Traditionally, extractors are designed to work whenever the class of sources satisfy a certain require-
ment on min-entropy (or quantum conditional min-entropy). An example in [19] showed that the
“min-entropy requirement” may be problematic and this motivates [19] to consider the more restricted
bounded storage model. In this paper we rectify this problem and go back to the standard min-entropy
requirement. To describe our new model, let us first revisit the example in [19].

First recall the following process where the adversary obtains quantum side information. Initially
we have t non-communicating parties, each of which has a classical independent random source Xi.

3[31] also has a similar transformation that can convert any classical seeded extractor into another classical seeded
extractor that works as long as the seed has entropy rate 1/2 + δ. However, that transformation may not keep the
property of strong extractors.
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The adversary Adv then prepares a quantum state ρ0 on registers A1, · · ·At (independent of the Xis,
but could be arbitrary entangled) and sends each register Ai to the i’th party who holds Xi. The i’th
party then applies some operation on Xi and Ai to produce the leakage Ei. Finally, the adversary
collects all Eis as the side information of the sources X1, · · · , Xt.

The example in [19] is classical but demonstrates the kind of problems that one may face when
presented with entangled side information. Suppose Alice and Bob have two classically independent
uniform n-bit sources X and Y , and the adversary Eve prepares two identical copies of another uniform
n-bit random string R, which is independent of (X,Y ). Eve then sends the two copies of R to Alice and
Bob, and obtains side information Ea = X ⊕ R and Eb = Y ⊕ R respectively. Note that conditioned
on (Ea, Eb), both X and Y have full entropy. Now suppose further that Eve obtains |X| mod 4 from
Alice and |Y | mod 4 from Bob4, which reduces the conditional min-entropy of X and Y by at most a
constant. However the classical inner-product two-source extractor X ·Y , which works if X and Y are
two independent sources with min-entropy > n/2, completely fails in this case since one can compute
X · Y = 1

2((|X|+ |Y | − |X ⊕ Y |) mod 4). [19] thus argues that this model (requiring that each source
has enough min-entropy given all side information) may be problematic.

Our crucial observation is that what this example tells us is not that the conditional min-entropy
requirement is problematic, but that the way the conditional min-entropy is measured is problematic.
More specifically, once the adversary learns Ea = X ⊕R and Eb = Y ⊕R, there is a bijection between
X and R, i.e., X = R⊕Ea; and similarly, there is a bijection between Y and R, i.e., Y = R⊕Eb. Thus,
given the side information (Ea, Eb), there is a bijection between X and Y , i.e., X = Y ⊕(Ea⊕Eb). This
means that, although both X and Y have high conditional min-entropy, X’s entropy now comes from
Y and vice versa. In other words, this way of measuring conditional min-entropy creates interference
between the entropies of different sources, and causes double counting of entropies. Thus the result
that traditional extractors such as X · Y may fail should come as no surprise.

This problem is actually quite general in the case of entangled side information. Whenever one
tries to measure a source’s conditional min-entropy given all side information, it is likely to create
interference among the sources. To rectify this problem, we choose an alternative way to measure
the conditional min-entropy: for any source X, we imagine that the adversary first obtains some
side information from X without obtaining any side information from the other sources. We propose
to measure X’s conditional min-entropy immediately after this step, and right before the adversary
obtains any side information from the other sources. In this way we can ensure that the measured
conditional min-entropy is specific to this particular source, and does not interfere with any other
source. Our model now requires each source to have sufficient conditional min-entropy according to
this way of measurement. We call this model the general entangled (GE for short) model. A formal
definition is given in Section 3.

Going back to the above example, if we measure conditional min-entropy in our GE model, then
we see that immediately after Eve obtains Ea = X⊕R, Eve still has a copy of R (which he has not sent
to Bob yet). Thus, at this moment X’s conditional min-entropy is 0 (since X = Ea ⊕ R). Therefore,
this example is not a counterexample in our model.

We remark that our proposed GE model has a few nice and important properties. First, it is not
hard to see that our GE model is a strict generalization of the no-side-information case, no matter
in the way the side information is generated or the entropy is measured. Second, the GE-entropy
measure, similar to the classical min-entropy measure, captures the amount of uniform randomness
that can be extracted from the source in the presence of GE-side information. This is because all of the
GE-entropy can be extracted and there exists sources with certain GE-side information, in which the
GE-entropy also upper bounds the amount of uniform randomness that can be extracted. Finally, we

4|X| and |Y | are the hamming weights of X and Y .
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argue that the one-round side-information-generating process in our GE model might be also appealing
due to practical reasons. For example, if the side information is generated simultaneously at distant
parties each holding one of the sources, then it can effectively be characterized by the one-round
process. We refer curious readers to Section 3 for details.

Special cases. We now briefly discuss some other models and their relations. In particular, [19]
considered the following two models: the Independent Adversarial (IA) Model and the Bounded Storage
(BS) Model. The IA model poses one additional constraint on the GE model: that is the initial state
ρ0 is a product state over A1, · · · , At, i.e., ρA1,··· ,At = ρA1 ⊗ · · · ⊗ ρAt . Thus, by definition, ρE1,···Et is
also a product state. The measurement of conditional min-entropy in our general GE model reduces
exactly to Hmin(Xi|Ei)ρ for each Xi.

The BS model poses a different constraint on the GE model: that is to bound the dimension of
each register Ei by 2bi ,∀i ∈ [t]. In this case, the quality of the source Xi is measured by its marginal
min-entropy k′i = Hmin(Xi) and the size bound bi on each register Ei. However, we can show that our
measurement of conditional min-entropy in the GE model here is at least k′i− 2bi, in which the factor
two is due to the possibility of super-dense coding. Therefore, it should also be clear that our model
subsumes both the IA model and the BS model.

We now define another model, the One-sided Adversary (OA) Model. Here the adversary is re-
stricted to collect leakage information from only one source Xi but has the freedom to choose which
i ∈ [t]. Namely, only one Ai∗ is nonempty among all Ais for some i∗. This is the weakest model of all.

1.3 OA-GE Security Equivalence

Somewhat surprisingly, we show an equivalence between strong security in the OA model (which is the
weakest) and strong security in the GE model (which is the strongest). We then use this equivalence
to give simple constructions of quantum multi-source extractors and network extractors in the GE
model. This equivalence is one of our major results and another conceptual contribution of this paper.

Our security equivalence is established by a simulation argument, which we now illustrate in
the context of strong two-source extractors. Consider a OA-secure Y -strong two-source extractor
Ext(X,Y ) for min-entropy k sources with error ε. That is, for every sources (X,Y ) where both X,Y
have min-entropy k in OA model, Ext(X,Y ) is ε-close to uniform given Y and the side information.
Consider a source (X,Y ) that both X,Y have min-entropy k w.r.t. GE side information adversary
AdvGE , who sends registers A1 and A2 to X and Y respectively to collect side information E1 and E2.
Consider a hybrid adversary Adv′ who only sends A1 to X but keeps A2 inside itself.5 Note that Adv′

is a OA side information adversary, and X has the same amount of min-entropy w.r.t. AdvGE and
Adv′ (since the entropy is measured immediately after the adversary obtain the side information E1

from X). Thus, Ext(X,Y ) is ε-close to uniform given Y and the side information (E1, A2) collected
by Adv′. Now, note that given Y and the side information collected by Adv′, we can simulate the side
information of AdvGE by internally applying leaking operation on Y and A2 to produce E2, which
can only decrease the trace distance. Therefore, Ext(X,Y ) is also ε-close to uniform given Y and the
side information (E1, E2) collected by AdvGE . Note that this simulation argument crucially relies on
the strong property of the extractors.

The above simple yet powerful argument can be generalized to the setting of multi-source extractors
that are strong on all-but-one sources (formally stated in Theorem 4.1 in Section 4). Furthermore, it
also extends to establishing equivalence of strong OA and GE security for honest players in network
extractors with independent rushing (formally stated in Theorem 8.7), where strong security requires

5Technically, in our formal model, we do not allow Adv′ to keep local register, so we instead let Adv′ sends A2 to X,
and have X send A2 back.
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the player’s output remains (close to) uniform even given all other players’ inputs (and the transcript).
The equivalence allows us to reduce the goal of achieving strong GE security in these settings to strong
OA security, which is much simpler to achieve in general. We are able to develop several techniques
for obtaining strong OA security, and thus provides strong GE-secure multi-source/network extractors
that essentially match the best known parameters (without side information) for these settings.

1.4 Multi-source Extractors with Quantum Side Information

In the classical setting, using the probabilistic method one can show that an extractor exists for two
independent (n, k) sources with k as small as log n + O(1). However constructing such extractors
turn out to be a very hard problem. Historically, Chor and Goldreich [7] were the first to formally
study multi-source extractors, where they constructed explicit extractors for two independent (n, k)
sources with k ≥ (1/2 + δ)n for any constant δ > 0. After that there had been essentially no progress
for two decades until Barak, Impagliazzo and Wigderson [1] showed how to extract from a constant
number (poly(1/δ)) of independent (n, δn) sources, for any constant δ > 0. Their work used advanced
techniques from additive combinatorics. Since then, new techniques for this problem have emerged,
resulting in a long line of research [2, 31, 6, 30, 3, 23, 25, 24] and culminating in Li’s extractor for a
constant number of independent (n, k) sources with k = polylog(n) [24]. In the two-source setting,
Bourgain’s extractor [6] works for two independent (n, k) sources with k ≥ (1/2−δ)n for some universal
constant δ > 0, which is the state of art.

In the quantum setting, the formal study of quantum multi-source extractors started with [19],
who focused on analyzing a two-source extractor of Dodis, Elbaz, Oliveira, Raz [10] (which in turn
based on the construction of Chor and Goldreich [7]) in the aforementioned independent adversary
model and entangled bounded storage model. [19] showed that the DEOR extractor is secure in the
BS model by a connection to communication complexity and establishing a communication complexity
lower bound, and showed the security of the DEOR extractor in the IA model by first establishing
security of its one-bit version (following [22]) and then appealing to a quantum version of XOR lemma.
In both models, they established the (strong) security of the DEOR extractor with slightly degraded
parameters; and this is currently the only known work about quantum multi-source extractors.

One-bit Argument. We observe that, the argument of [19] for establishing IA security is in fact
general, and can be used to establish strong OA security of best known two-source extractors [31, 6, 10],
or the existential two-source extractors for logarithmic min-entropy guaranteed by the probabilistic
method with essentially matching parameters. Armed with our security equivalence result, it imme-
diately implies that all known two-source extractors [31, 6, 10] are in fact strongly GE-secure.

Theorem 1.5 (informal) There exist two-source extractors for logarithmic min-entropy that are
strongly GE-secure.

Theorem 1.6 (informal, refer to Theorem 5.5, 5.7, and 5.9) The two-source extractors of Bour-
gain [6], Raz [31], and DEOR [10] are strongly GE-secure.

One-extra-source Argument. In the multi-source setting, it turns out we could avoid the pa-
rameter loss in the quantum XOR lemma at the cost of an extra independent source. Our crucial
observation is that for any marginally close-to-uniform distribution, one can add an independent quan-
tum min-entropy source and make use of a quantum strong seeded extractor to lift its security from
marginal to strong OA. This observation is so powerful that it suffices to lift the security at the last
step of the construction and work only with marginal security in all previous steps. Again, with
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our security equivalence result, we can construct a strong GE-secure multi-source extractor from any
known classical independent source extractors.

Theorem 1.7 (informal, refer to Theorem 5.11) From any independent source extractor IExt
with t sources, one can explicitly construct a GE-secure strong extractor QMExt with t+ 1 sources.

Corollary 1.8 (informal, refer to Theorem 5.13 and 5.15) There exist explicit multi-source ex-
tractors based on the one of Li [24], or BRSW [3, 30] that are strongly GE-secure.

One-extra-block Argument. In the context of block+general source extractors (e.g., [3]), one can
use an extra block to the existing block source and make use of one classical and one quantum strong
seeded extractor to lift its security. Comparing to the one-extra-source technique, we only require to
add one extra block that is not independent of existing sources. Conceivably, this is a strictly more
difficulty task, which is resolved by the technique called alternating extraction.

Theorem 1.9 (informal, refer to Theorem 5.16) From any strong block+general source extrac-
tor BExt with C blocks, one can explicitly construct a GE-secure strong block+general extractor QBExt
with C + 1 blocks.

Corollary 1.10 (informal, refer to Theorem 5.18 and Theorem 5.19) The block+general source
extractors based on the one of BRSW [3], or Raz [31] are strongly GE-secure.

1.5 Privacy Amplification with Weak Sources

To show how to achieve privacy amplification with local weak random bits, we first give an extractor
for a source X = (X1, X2) and an independent (n3, k3) source X3, where X1 is an (n1, k1 = δn1) source
for any constant δ > 0 and conditioned on X1, X2 is an (n2, k2) source (i.e., X is a block source). Our
construction is simple. We first use the sum-product theorem based condenser in [2, 38] to convert
X1 into a matrix of D = O(1) rows such that one row is 2−Ω(n1)-close to having entropy rate 0.9.6

Then we use each row in this matrix and the strong two-source extractor Raz in [31] to extract an
output from X3 and concatenate the outputs to obtain a somewhere random source W . This step
works because Raz works if one of the inputs has entropy rate > 0.5 and indeed one row in our matrix
has entropy rate 0.9. Since Raz is strong, even conditioned on X1, W is still somewhere random. We
can also limit the size of each output in W so that conditioned on W , Y still has a lot of min-entropy.
Now since W only has a constant number of rows, we can use W and a strong extractor from [30, 3]
to extract a uniform random string V from X2. Conditioned on the fixing of X1 and W , V and X3

are independent. We can take a classical strong seeded extractor Extc and use V as a seed to extract
a uniform random string from X3, which gives us a classical X-strong extractor.

The above argument naturally extends to the OA model, where we replace Extc by a quantum
strong seeded extractor Extq at the last step. The analysis turns out to be a special case of the “one-
extra-block” argument mentioned in the last section. Our OA-GE equivalence will then establish that
the resulted extractor is a GE-secure X-strong extractor. See Section 6 for details.

We further observe that the above extractor gives us a general way to transform any classical
or quantum strong seeded extractor into another strong seeded extractor that works as long as the
seed has entropy rate ≥ 1/2 + δ.7 In privacy amplification, if either party’s local random source has
entropy rate 1/2 + δ, then we can just use this strong extractor. Otherwise, if the parties both have

6Strictly speaking, it is a convex combination of such matrices, but it does not make a difference to our analysis.
7It is easy to see that one can divide the seed into two equal blocks and they form a block source with each block

having entropy rate at least δ/2
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local sources with entropy rate δ, then we can have both parties send their sources to each other and
they just apply the original strong extractor (notice that the sources of the two parties form a block
source X = (X1, X2)). Note that we can output a constant fraction of the entropy of X in V , thus
the size of X only needs to be a constant factor larger than what is needed in the case when we have
uniform random seeds. See Section 7 for details.

1.6 Network Extractor with Quantum Side Information

In the classical setting, network extractors are motivated by the problem of using imperfect random-
ness in distributed computing, a problem first studied by [14]. Kalai, Rao, Li, and Zuckerman formally
defined network extractors in [18], and gave several efficient constructions for both synchronous net-
works and asynchronous networks, and both the information-theoretic setting and the computational
setting. For simplicity and to better illustrate our ideas, in this paper we will focus on synchronous
networks and the information-theoretic setting.

Following [18], we gave an informal definition of network extractors with quantum side information
here. A formal definition is given in Section 8. We assume a set of p players such that t of them are
corrupted by an adversary AdvNet. Each (honest) player has an independent source Xi, and a side
information adversary AdvSI collects side information ρ from the sources X = (X1, . . . , Xp). We
assume each Xi has length n and conditional min-entropy at least k measured in our GE model.
Depending on the case of independent rushing (IR) or quantum rushing (QR), AdvNet and AdvSI may
or may not collaborate.

At the conclusion of protocol execution, let T denote the transcript of protocol messages that are
public, and Zi be the private output of (honest) player i.

Definition 1.11 A protocol ExtNet is a (t, g, ε) network extractor for adversary Adv = (AdvSI,AdvNet)
if at the end of the protocol, there exists a subset of honest players S with |S| ≥ g such that∣∣ρZSZ−STAdv − U ⊗ ρZ−STAdv

∣∣
tr
≤ ε,

where ZS and Z−S denote the outputs of the players in S and the outputs of the players outside of S
respectively.

We can now informally state our results. For the case of independent rushing, we are able to tolerate
close to 1/3-fraction of faulty players, scarify only roughly t honest players, and extract almost all
entropy out even for low entropy k = polylog(n).

Theorem 1.12 (IR-secure Network Extractor) For every constants α < γ ∈ (0, 1), c > 0, and
sufficiently large p, t, n, k s.t. p ≥ (3 + γ)t and k ≥ log10 n, there exists a 3-round (t, p− (2 +α)t, n−c)
network extractor ExtNet with output length m = k − o(k) in the independent rushing case.

We note that even in the classical setting (with no side information), Theorem 1.12 is the best
known. Essentially, this result matches the best known network extractor in the classical setting and
improves the results in [18]. The reasons are that (i) at the time of [18], they did not have Li’s
extractor for a constant number of weak sources with min-entropy k = polylog(n) [24], and (ii) we use
alternating extraction to extract almost all min-entropy out.

For the case of quantum rushing, we obtain slightly worse parameters, where we can tolerate a
constant fraction of faulty players, and scarifice O(t) honest players. Here we require the min-entropy
k to be sufficiently larger then t. We discuss at the end of the section how to relax this requirement.
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Theorem 1.13 (QR-secure Network Extractor) There exists a constant γ ∈ (0, 1) such that for
every constant c > 0, and sufficiently large p, t, n, k with p > t/γ and k ≥ max{log10 n, t/γ}, there
exists a 1-round (t, p−t/γ, n−c) network extractor ExtNet with output length m = Ω(k) in the quantum
rushing case.

Remark 1.14 Like in the classical setting, our network extractors can also be applied to distributed
computing problems. For example, Theorem 1.12 implies that in the independent rushing case, even
with min-entropy as small as k = polylog(n), we can achieve synchronous Byzantine agreement while
tolerating roughly 1/4 fraction of faulty players. This is almost optimal since the optimal tolerance is
roughly 1/3. Similarly, Theorem 1.13 implies that in the quantum rushing case, even with min-entropy
as small as k = polylog(n), we can achieve synchronous Byzantine agreement while still tolerating a
constant fraction of faulty players.

Our network extractor for the independent rushing case follows the same approach as our multi-
source extractors. We establish OA-GE security equivalence, and use a simple security-lifting trans-
formation to obtain OA security.

In contrast, achieving QR security is much more difficulty to handle. We first note that our
simulation argument for OA-GE security equivalence breaks down in this setting, since we can no
longer defer the collection of side information, which is used by AdvNet during the protocol execution.
Also, even getting OA-QR security seems already challenging. To see why, consider that at some point
of protocol execution, some public source Y is used to extract private randomness from some honest
player’s source Xi. Suppose that Y depends on some rushing information, which in turn can correlate
with Xi through side information. As such, it is hard to ensure that the extraction works.

To address the issue, we develop a security lifting technique from IR to QR security. Very infor-
mally, the idea is to break the correlation by guessing, which reduces QR attacks to IR ones, but at
the cost of 2rushing−length blow-up in error (along with other limitations). We thus carefully design the
protocol to restrict the (effective) length of rushing attacks, and this is the reason that we require that
k > t/γ in Theorem 1.13. However, we also sketch an approach for the case of k < t for quantum
rushing setting towards the end of Section 8.

1.7 Open Problems and Future Work

Our results leave several open problems. First, although our GE model is quite general, it may not
be the most general model. Thus, one can ask whether there is a more general model that also
allows the construction of quantum multi-source extractors in the presence of even entangled quantum
side information. Second, in our network extractor, we deal with quantum rushing using a naive
“guessing” technique, which results in a 2rushing−length blow-up in error. Is there a better way to tackle
this problem?

For future work, it would be nice to see if our techniques can be applied to other related problems
with quantum side information, such as privacy amplification with an active adversary.

Organization

The rest of the paper is organized as follows: in Section 2, we summarize necessary background
knowledge on quantum information, classical and quantum single/multi/block-source extractors. We
then formally introduce our GE model in Section 3 with detailed discussions. The strong OA-GE
security equivalence is established in Section 4. Three arguments for obtaining strong OA-security are
demonstrated in Section 5. A new construction of a three-source extractor is illustrated in Section 6
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with its application to privacy amplification in Section 7. We conclude with results about network
extractors in Section 8.

2 Preliminary

We assume familiarity with the standard concepts from quantum information and summarize our
notation and useful facts in Section 2.1. We also summarize necessary background about classical
independent source extractors in Section 2.2 and quantum extractors in Section 2.3.

2.1 Quantum Information

Quantum States. We only consider finite dimensional Hilbert spaces as quantum states in infinite
dimensions can be truncated to be within a finite dimensional space with an arbitrarily small error.
The state space A of m-qubit is the complex Euclidean space C2m . An m-qubit quantum state is
represented by a density operator ρ, i.e., a positive semidefinite operator over A with trace 1. The set
of all quantum states in A is denoted by Dens (A).

Let L (A) denote the set of all linear operators on space A. The Hilbert-Schmidt inner product on
L (A) is defined by 〈X,Y 〉 = tr(X∗Y ), for all X,Y ∈ L (A), where X∗ is the adjoint conjugate of X.
Let idX denote the identity operator over X , which might be omitted from the subscript if it is clear
in the context.

For a multi-partite state, e.g. ρABC ∈ Dens (A⊗ B ⊗ C), its reduced state on some subsystem(s) is
represented by the same state with the corresponding subscript(s). For example, the reduced state on
A system of ρABC is ρA = trBC(ρABC), and ρAB = trC(ρABC). When all subscript letters are omitted,
the notation represents the original state (e.g., ρ = ρABE).

A classical-quantum-, or cq-state ρ ∈ Dens (A⊗ B) indicates that the A subsystem is classical
and B is quantum. Likewise for ccq-, etc., states. We use lower case letters to denote specific values
assignment to the classical part of a state. For example, any cq-state ρAB =

∑
a pa |a〉〈a| ⊗ ρaB in

which pa = Pr[A = a] and ρaB is a normalized state.

Distance Measures. For any X ∈ L (A) with singular values σ1, · · · , σd, where d = dim(A), the
trace norm of A is ‖X‖tr =

∑d
i=1 σi. The trace distance between two quantum states ρ0 and ρ1 is

defined to be

|ρ0 − ρ1|tr
def
=

1

2
‖ρ0 − ρ1‖tr .

When ρ0 and ρ1 are classical states, the trace distance |ρ0 − ρ1|tr is equivalent to the statistical
distance between ρ0 and ρ1. It is also a well known fact that for two distributions X1, X2 over X , let
px = Pr[X1 = x] and qx = Pr[X2 = x] and their statistical distance satisfies

|X1 −X2|tr =
1

2

∑
x

|px − qx| =
∑

x:px>qx

(px − qx). (2.1)

For simplicity, when both states are classical, we use (X1) ≈ε (X2) to denote |X1 −X2|tr ≤ ε.
Moreover, the trace distance admits the following two simple facts.

Fact 2.1 For any state ρ1, ρ2 ∈ Dens (A) and σ ∈ Dens (B), we have

|ρ1 − ρ2|tr = |ρ1 ⊗ σ − ρ2 ⊗ σ|tr .
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Fact 2.2 Let ρ, σ ∈ Dens (A⊗ B) be any two cq-states where A is the classical part. Moreover,
ρ =

∑
a pa |a〉〈a| ⊗ ρaB and σ =

∑
a qa |a〉〈a| ⊗ σaB. Then we have

|ρ− σ|tr =
∑
a

|paρaB − qaσaB|tr .

The XOR-Lemma. Vazirani’s XOR-Lemma [37] relates the non-uniformity of a distribution to the
non-uniformity of the XOR of certain bit positions. For our application, we need the following more
general XOR-Lemma [19] which takes into account quantum side information.

Lemma 2.3 ([19], Lemma 2.6) Let ρZE be an arbitrary cq-state where Z ∈ {0, 1}m and the register
E is of dimension 2d. Then we have

|ρZE − Um ⊗ ρE |2tr ≤ 2min(d,m)
∑

∅6=S⊆{0,1}m

∣∣ρZ⊕SE − U1 ⊗ ρE
∣∣2
tr
,

where Z⊕S =
⊕

i∈S zi.

Quantum Operations. Let X and Y be state spaces. A super-operator from X to Y is a linear map

Ψ : L (X )→ L (Y) . (2.2)

Physically realizable quantum operations are represented by admissible super-operators, which are
completely positive and trace-preserving. Thus any classical operation (such as extractors) can be
viewed as an admissible super-operator. We shall use this abstraction in our analysis and make use of
the following observation.

Fact 2.4 (Monotonicity of trace distances) For any admissible super-operator Ψ : L (X )→ L (Y)
and ρ0, ρ1 ∈ Dens (X ), we have

|Ψ(ρ0)−Ψ(ρ1)|tr ≤ |ρ0 − ρ1|tr . (2.3)

Moreover, we adopt the convention that when Ψ is applied on a part of the quantum system, we
omit the identity operation applied on the rest part of the system when it is clear from the context.

Let {|i〉 : 1 ≤ i ≤ dim(X )} be the computational basis for X . An X -controlled quantum operation
on Y is an admissible operation Φ : L (X ⊗ Y) → L (X ⊗ Y ′) such that for some admissible Φi :
L (Y)→ L (Y ′), 1 ≤ i ≤ dim(X ),

Φ =
∑

1≤i≤dim(X )

〈i| · |i〉|i〉〈i| ⊗ Φi(·). (2.4)

2.2 Independent Source Extractors

Random variables and min-entropy sources. We use upper case letters to denote random vari-
ables which take values over {0, 1}n for some n. Usually, the calligraphy letter denotes the set of all
possible values that this random variable can take. Lower case letters are used to denote specific values
of the random variables, such as random variable A = a for some value a ∈ A. This is consistent with
our notation of quantum states when reduced to the classical cases. Moreover, if the whole system
is classical, we will treat it as a classical random variable only and thus omit notation such as ρ for
clarity. For convenience, we denote the set {1, · · · , t} by [t] for any positive integer t.
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Definition 2.5 (Min-entropy) The min-entropy of a random variable X is given by

Hmin(X) = min
x∈X

log2(1/Pr[X = x]).

For X ∈ {0, 1}n, we call X an (n,Hmin(X))-source (or Hmin(X)-source) with entropy rate Hmin(X)/n.

One useful property about min-entropy is the following lemma:

Lemma 2.6 ([27]) Let X and Y be random variables and let Y denote the range of Y . Then for all
ε > 0

Pr
Y

[
Hmin(X|Y = y) ≥ Hmin(X)− log |Y| − log

(
1

ε

)]
≥ 1− ε

Definition 2.7 (Block-source) A distribution X = X1 ◦ X2 ◦ · · · ◦ XC is called a (k1, k2, · · · , kC)
block-source if for any i ∈ [C], we have that for any x1 ∈ X 1, · · · , xi−1 ∈ X i−1, Hmin(Xi|X1 =
x1, · · · , Xi−1 = xi−1) ≥ ki, i.e., each block contains high min-entropy even conditioned on every
possible value of previous blocks. If k1 = k2 = · · · = kC , then X is called a k-block-source.

Two-source and Independent Sources Extractors. Here we review two (or multi) independent
source extractors, which turn two (or multi) independent min-entropy sources to a close-to-uniform
distribution. At this moment, we don’t consider the existence of adversaries and only look at the
marginal distribution of the output of the extractors. Therefore, we refer this as the marginal security
throughout this paper.

Let UA denote the completely mixed state on a space A, i.e., UA = 1
dim(A) idA. Let Un denote UA

when A = {0, 1}n. Moreover, for any given subset S ⊆ {1, · · · , t} and let XS = ◦i∈SXi.

Definition 2.8 (Independent Source Extractor) A function IExt : ({0, 1}n)t → {0, 1}m is a
(t, n, k,m, ε) independent source extractor that uses t sources and outputs m bits with error ε, if for
any t independent (n, k) sources X1, X2, · · · , Xt, we have

|IExt(X1, X2, · · · , Xt)− Um|tr ≤ ε.

For any subset S ⊆ [t], IExt is called S-strong if

|IExt(X1, X2, · · · , Xt)XS − Um ⊗XS |tr ≤ ε.

Definition 2.9 (Two-source Extractor) A function 2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m is a
(n1, k1, n2, k2,m, ε) two-source extractor if for any independent (n1, k1) source X1 and (n2, k2) source
X2, we have

|2Ext(X1, X2)− Um|tr ≤ ε.

Moreover, 2Ext is called X1-strong, (and similarly for X2-strong), if

|2Ext(X1, X2)X1 − Um ⊗X1|tr ≤ ε.

We say that an extractor is explicit if it can be computed in polynomial time.
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2.3 Quantum Seeded Extractors

Quantum Conditional Min-entropy. In the regime of quantum extractors, it is necessary to
consider the existence of adversaries who are furthermore given quantum computational power. In
the seeded extractor setting, it suffices to model the adversary as quantum side information which
is stored in the system E as follows. For a cq state ρXE ∈ Dens (X ⊗ E), the amount of extractable
randomness (from X against E) is characterized by its conditional min-entropy.

Definition 2.10 (Conditional Min-entropy) Let ρXE ∈ Dens (X ⊗ E). The min-entropy of X
conditioned on E is defined as

Hmin(X|E)ρ
def
= max{λ ≥ 0 : ∃σE ∈ Dens (E) , s.t. 2−λidX ⊗ σE ≥ ρXE}.

This definition has a simple operational interpretation shown in [21] that

Hmin(X|E)ρ = − log(pguess(X|E)ρ),

where pguess(X|E)ρ is the maximum probability of guessing X by making arbitrary measurements on
E system. Similar to the classical min-entropy, the quantum conditional entropy also satisfies the
following property.

Lemma 2.11 ([22]) Given any ccq state ρXWE in which W ↔ X ↔ E 8, we have

Pr
w∼W

[Hmin(X|W = w,E) ≥ Hmin(X)− log dim(W)− log(1/ε)] ≥ 1− ε

We can also consider the smooth min-entropy that consists in maximizing the min-entropy over all
sub-normalized states that are ε-close to the actual state ρXE in trace distance. Note that allowing
an extra error ε can increase the min-entropy of a certain state very significantly.

Definition 2.12 (smooth min-entropy) Let ε ≥ 0 and ρXE ∈ Dens (X ⊗ E), then the ε-smooth
min-entropy of X conditioned on E is defined as

Hε
min(X|E)ρ

def
= max
|σXE−ρXE |tr≤ε

Hmin(X|E)σ,

Similarly, we call ρXE a (smooth) (n, k)-source (or k-source) if X ∈ {0, 1}n and Hmin(X|E)ρ ≥ k.
(Hε

min(X|E)ρ ≥ k)

Definition 2.13 (Quantum block-source) Let ρX1···XCE ∈ Dens
(
X1 ⊗ · · · ⊗XC ⊗ E

)
is called a

(k1, k2, · · · , kC) quantum block-source if for any i ∈ [C], we have that for any x1 ∈ X 1, · · · , xi−1 ∈
X i−1, Hmin(Xi|X1 = x1, · · · , Xi−1 = xi−1, E) ≥ ki, i.e., each block contains high min-entropy even
conditioned on every possible value of previous blocks and the quantum system E. If k1 = k2 = · · · =
kC , then X is called a quantum k-block-source.

In the following survey a few useful lemmata about conditional quantum min-entropy.

Lemma 2.14 (Data Processing) Let ρXE be a cq state, Φ : L (E) → L (E ′) be any admissible
operation. Moreover, let σXE′ = Φ(ρXE). Then we have

Hmin(X|E)ρ ≤ Hmin(X|E′)σ.
8Namely, we have ρXWE =

∑
x,w Pr[X = x,W = w] |x,w〉〈x,w| ⊗ ρxE .
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Lemma 2.15 (Chain-rule) Let ε > 0, ε′ > 0, ε′′ > 0 and ρ ∈ Dens (A⊗ B ⊗ C), then we have the
following chain rule:

Hε+2ε′+ε′′

min (AB|C)ρ ≥ Hε′
min(A|BC)ρ +Hε′′

min(B|C)ρ − log
2

ε2
.

Lemma 2.16 ([28]) Let X be an n-bit random variable with min-entropy k, and suppose Alice wishes
to convey X to Bob over a one-way quantum communication channel using b qubits with shared en-
tanglement. Let Y be Bob’s guess for X. Then we have Pr[Y = X] ≤ 2−(k−2b).

Quantum Seeded Extractors. Here we review quantum seeded randomness extractors, which turn
a min-entropy source to a quantum-secure uniform output, with the help of a short seed. Since now
the system involves a quantum adversary, we refer this as the quantum security.

Definition 2.17 (Quantum Strong Seeded Extractor) A function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is a quantum-secure (or simply quantum) (k, ε)-strong seeded (randomness) extractor, if for
all cq states ρXE with Hmin(X|E) ≥ k, and for a uniform seed Y independent of ρXE, we have∣∣ρExt(X,Y )Y E − Um ⊗ ρY ⊗ ρE

∣∣
tr
≤ ε. (2.5)

We state the following quantum strong seeded extractor in [8] that will be useful for us to instantiate
our multi-source and network extractors.

Theorem 2.18 ([8], Corollary 5.4) For every n, k ∈ N and ε > 0 with k ≥ 4 log(1/ε) + O(1),
there exists a quantum (k, ε)-strong seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with m =
k − 4 log(1/ε)−O(1) and d = O(log2(n/ε) logm).

3 Adversarial Model in Multi-source Extraction

In this section, we formally define the adversarial model in the context of randomness extraction form
multi-independent sources, in which the adversary could have access to quantum resources. As we
discussed in the introduction, the multi-source setting, contrasting to the single-source setting, offers
a completely new aspect of the problem: the adversaries could potentially share entanglement prior to
tampering with the sources and the obtained leakage could be stored in entanglement. A preliminary
discussion of such adversarial models can be found in [19], which correspond to the independent
adversary (IA) model and the bounded storage (BS) model in our later discussion. In the following,
we identify a more general (powerful) adversarial model, which we called the general entangled (GE)
model that includes the IA and BS model as special cases (yet we show that randomness extraction
is possible provided there are sufficient min-entropy in the sources). At the same time, we identify a
much less powerful adversarial model, called the one-sided adversary (OA) model, which is a common
special case of the GE and IA model, and is a weaker model than the BS model with incomparable
entropy measure.

Given any extractor, if its output is uniform against any adversary in the GE model, then we call
that extractor is secure against the GE model (or GE-secure for short). Similarly for the IA, BS and
OA models. One of the main results in this paper (which is presented in Section 4) is to establish a
surprising equivalence between the GE and the OA model in the following sense: any strong OA-secure
extractor is automatically a strong GE-secure extractor without any loss of parameters.
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General Entangled Adversarial Model

Generating Side Information. First recall, in the classical independent source extraction setting,
one is given t independent random variables X1, · · · , Xt such that Xi ∈ {0, 1}n for i ∈ [t]. Assume there
are t non-communicating parties, each of which receives one classical random variable Xi for i ∈ [t]
each with We imagine an adversary who will generate the side information of the source X1, · · · , Xt

via the following procedure.
The adversary initially prepares a quantum state ρ0 on registers A1, · · ·At (which is independent

of Xis) and sends each register Ai to the ith party who holds Xi. Note that there could be arbitrary
entanglement among A1, · · · , At. Depending on the source Xi, the ith party then applies an arbitrary
admissible leaking operation from Xi to its own quantum register. Precisely, this leaking operation
can be formulated as a Xi-controlled operation denoted by Φi(·) : L (Xi ⊗Ai)→ L (Xi ⊗ Ei). It is easy
to see that Φi commutes with Φj for any different i, j. Finally, the adversary collects all Eis as the side
information of the sources X1, · · · , Xt. Formally, the generated quantum side information together
with the source ρX1···XtAdv (Adv = E1, · · · , Et) is given by ρX1···XtAdv = Φ1⊗ · · ·⊗Φt(X1 · · ·Xt⊗ ρ0).

The above procedure is a generalization of the one discussed in [19] to the multi-source case.
However, what makes our model significantly different from theirs is the following crucial observation
on how to measure the quality (or entropy) of the sources, which allows us to directly deal with the
more powerful GE model, rather than to work with much restricted IA or BS model like in [19].

Entropy Measure and Properties. For any i ∈ [t], the quality of source Xi is measured by the
(in)ability of the adversary to guess it given the quantum side information that contains only the
leakage from Xi. Formally, this measure is captured by

ki
def
= Hmin(Xi|Advi)ρi and ρi = Φi(X1 · · ·Xt ⊗ ρ0),∀i ∈ [t]. (3.1)

Let X−i denote all Xj except j = i and A−i denote all Aj except j = i. In this notation, ρi =
X−i ⊗ Φi(Xi ⊗ ρ0) and Advi = (A−i, Ei). Thus, ρiXiAdvi

= Φi(Xi ⊗ ρ0). Intuitively, ki measures
the min-entropy of Xi conditioned on Adv at an imaginary step after the leaking operation Φi is
performed, but before all the other leaking operations are performed. Such entropy measure enjoys
the following natural expected properties.

(1) Non-decreasing property. Since X1, · · · , Xt are independent and Φ1, · · · ,Φt commute with
each other, applying other leaking operations only increases the min-entropy of Xi conditioned on the
quantum side information, which is captured by the following proposition:

Proposition 3.1 For any i ∈ [t], ki = Hmin(Xi|Advi)ρi ≤ Hmin(Xi|X−iAdv)ρ ≤ Hmin(Xi|Adv)ρ.

Proof. This is almost by definition and the data processing lemma of min-entropy (Lemma 2.14).
First note that X−i is independent of Xi and can be locally generated on the Adv side. Thus, there
is an admissible operation converting ρi to ρ only applying on Advi side by first generating X−i and
then applying the leaking operation on them. This gives the first inequality. The second inequality
follows because tracing out X−i system is an admissible quantum operation.

(2) Additivity property. Our measure of entropy is genuine and can be added in the following sense:
the smooth min-entropy of X1, · · · , Xt conditioned on Adv in the final quantum side information ρ is
almost

∑t
i=1 ki, the sum of entropies measured for each source Xi, i ∈ [t].

Proposition 3.2 For any ε > 0 and any S ⊆ [t] (let |S| = s), H
(s−1)ε
min (XS |Adv)ρ ≥

∑
i∈S ki − (s −

1) log(2/ε2).
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Proof. This proposition follows from a sequential application of the chain-rule for smooth min-
entropy in Lemma 2.15. Without loss of generality, let us assume |S| = s and S = {1, · · · , s}. By
Proposition 3.1, we have

Hmin(Xi|X−iAdv)ρ ≥ ki,∀i ∈ [t].

Thus, we have Hmin(Xi|X1 · · ·Xi−1Adv)ρ ≥ ki,∀i ∈ [t]. The following comes from a sequential use of
Lemma 2.15,

Hε
min(X2X1|Adv)ρ ≥ Hmin(X2|X1Adv)ρ +Hmin(X1|Adv)− log

2

ε2

H2ε
min(X3X2X1|Adv)ρ ≥ Hmin(X3|X2X1Adv)ρ +Hε

min(X2X1|Adv)− log
2

ε2
· · · · · ·

H
(s−1)ε
min (XsXs−1 · · ·X1|Adv)ρ ≥ Hmin(Xs|Xs−1 · · ·X1Adv)ρ +H

(s−2)ε
min (Xs−1 · · ·X1|Adv)− log

2

ε2

Therefore, by rearranging all the above inequalities, we have

H
(s−1)ε
min (XS |Adv) ≥

∑
i∈S

ki − (s− 1) log
2

ε2
.

Remark. Comparing to our model, the entropy measure in the model of [19] is only on the final
quantum side information ρ when all leaking operations have been performed (e.g., Hmin(Xi|Adv)ρ),
whereas our entropy measure is on the state ρi for each Xi. By Proposition 3.1, the entropy measure on
the final quantum side information could potentially be much higher than ki due to possible interference
from other leaking operations, which, hence, fails to characterize the right amount of entropy from
each Xi. This is exactly our motivation to study our notion of entropy ki that is measured before
any interference happens. As shown in Proposition 3.2, the total min-entropy of the source is lower
bounded by the sum of kis. Thus, there is no double counting of entropy with our measure.

Justification of GE model

In this section, we further justify our proposed GE model by demonstrating a few nice properties
about the model as follows.

First, we claim that our GE model is a strict generalization of the no-side-information case. Recall
the no-side-information case, the sources are independent X1, · · · , Xt ∈ {0, 1}n each with min-entropy
ki = Hmin(Xi), ∀i ∈ [t]. In the framework of GE model, this implies trivial space A1, · · · , At, E1, · · · , Et
and trivial leaking operations Φi(·), ∀i ∈ [t]. By the entropy measure of GE model, we have the entropy
for source Xi is k′i = Hmin(Xi|Adv)ρi = Hmin(Xi|Adv)ρ = Hmin(Xi) = ki. Namely, the GE-entropy
exactly matches the original entropy measure in the no-side-information case. Thus, the GE model is
a strict generalization.

Second, the GE-entropy measure, similar to the classical min-entropy measure, captures the amount
of uniform randomness that can be extracted from the source in the presence of GE-side information.
We support the above statement with the following two points: 1) all of the GE-entropy can be
extracted and 2) there exists sources with certain GE-side information, in which the GE-entropy also
upper bounds the amount of uniform randomness that can be extracted. The first point is validated by
the existence of strong GE-secure multi-source extractors in Section 5.9 The second point is due to the

9Precisely, to extract all the GE-entropy, one first notice that there exist t-source GE-secure multi-source extractors
QMExt that are strong to t − 1 sources, which extracts the GE-entropy from one source. One can then apply a strong
quantum-proof seeded extractor to the t − 1 sources by using the output of QMExt as the seed. In this way, one can
further extract all the GE-entropy within the t− 1 sources guaranteed by Proposition 3.2.
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fact that classical independent flat k-sources10 are just special cases of GE-sources with GE-entropy
also being k and no side information. It is easy to see that in this case k upper bounds the amount of
uniform randomness that can be extracted from each source.

Finally, we argue that the one-round side-information-generating process in our GE model (es-
sentially from [19]) is appealing due to both theoretical and practical reasons. In the theoretical
aspect, this one-round process together with our GE-entropy measure, for the first time, allows the
randomness extraction in the presence of general entangled side information. Moreover, if one extends
this one-round process to multi-rounds, then there will necessarily be interference between different
sources. It is again not a prior clear whether the randomness extraction is possible. On the other side,
the one-round process also characterizes several side-information generating scenarios in practice. For
example, if the side information is generated simultaneously at distant parties each holding one of the
sources, then it can effectively be characterized by the one-round process.

Special cases: IA, BS and OA model

Now we are ready to introduce special cases of the GE model when imposing various restrictions on
the adversary and discuss the relation between the measure of entropies within each model.

Independent Adversarial (IA) Model imposes one additional constraint on the GE model: that is the
initial state ρ0 is a product state over A1, · · · , At, i.e., ρA1,··· ,At = ρA1 ⊗ · · ·⊗ ρAt . Thus, by definition,
the side information state ρE1,···Et is also a product state.11 In this case, the entropy of each Xi is
measured by k′i = Hmin(Xi|Ei)ρ, for i ∈ [t], which matches exactly the definition of our more general
entropy measure ki in (3.1) when reduced to the IA model. (i.e., Hmin(Xi|Ei)ρ = Hmin(Xi|EiA−i)ρi)
Bounded Storage (BS) Model imposes a different constraint on the GE model: that is to bound the
dimension of each register Ei by 2bi ,∀i ∈ [t] that are collected at the last step. In this case, the quality
of the source Xi is measured by its marginal min-entropy k′i = Hmin(Xi) and the size bound bi on
each register Ei. By Lemma 2.16, we can relate ki in (3.1) with k′i and bi by ki ≥ k′i − 2bi, in which
the factor two is due to the possibility of super-dense coding.

One-sided Adversary (OA) Model is the weakest model in which the adversary is restricted to collect
leakage information from only one source Xi but has the freedom to choose which i ∈ [t]. Let i∗ be
the adversary’s choice. Namely, only Ai∗ is nonempty among all Ais. That is, Adv = Advi∗ = Ei∗ and
other Advj = ∅ for j 6= i∗. The only non-trivial leaking operation is Φi∗ . It is easy to see that ρ = ρi∗

but different from ρi,∀i 6= i∗, which equals ρ0. According to (3.1), the entropy of Xi∗ is measured by
ki∗ = Hmin(Xi∗ |Advi∗)ρi∗ = Hmin(Xi∗ |Ei∗)ρ and the entropy of other Xis (i 6= i∗) is measured by ki =
Hmin(Xi|Advi)ρi = Hmin(Xi)ρ0 = Hmin(Xi). It is easy to see that Hmin(Xi) = Hmin(Xi|Adv)ρ, ∀i 6= i∗

as Xi is independent of ρ. By definition, the OA model is also a special case of the IA model. In
terms of the adversary’s power, it is also a special case of the BS model. However, the measure of the
quality of sources in the BS model is incomparable from the OA model.

Quantum Multi-source Extractor

Consider any t independent sources X1, · · · , Xt ∈ {0, 1}n with the quantum side information generated
in the GE model. For simplicity, we usually denote (k1, · · · , kt) from (3.1) by some k such that

10A distribution X over {0, 1}n is called a flat k-source if the support of X is 2k and for each x in its support, the
probability Pr[X = x] = 2−k.

11This definition is slightly different from the one (called quantum knowledge) of [19] which only requires the side
information is a product state. However, it is a simple exercise to see that any product side information can be produced
by a product initial state. Thus, two definitions are equivalent.
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k ≤ ki, ∀i ∈ [t] unless explicitly specified and denote all such sources together with the generated
quantum side information by GE-(t, n, k) sources. Similarly for the IA, BS and OA model. Note that
any IA, BS, or OA source is automatically a GE source by definition. Thus, if any extractor is GE-
secure, it is automatically secure against IA, BS and OA. In the following, we only define extractors
for GE and OA models for simplicity.

Definition 3.3 (Quantum Multi-source Extractor) Any function QMExt : ({0, 1}n)t → {0, 1}m
is a (t, n, k,m, ε) MM -secure multi-source extractor if for any MM -(t, n, k) source, the function
QMExt outputs m bits that are close to uniform with error ε against the side information in the
MM model, where MM ∈ {GE,OA}. Namely, with Adv = (E1, · · · , Et),∣∣ρQMExt(X1,X2,··· ,Xt)Adv − Um ⊗ ρAdv

∣∣
tr
≤ ε.

Moreover, for any given subset S ⊆ {1, · · · , t} and let XS = ◦i∈SXi , QMExt is called S-strong if,∣∣ρQMExt(X1,X2,··· ,Xt)XSAdv − Um ⊗ ρXSAdv

∣∣
tr
≤ ε.

For the convenience of illustrating parameters, we define formally a special case of the multi-source
extractors when t = 2, namely, two-source extractors, as follows.

Definition 3.4 (Quantum Two-source Extractor) Any function QTExt : {0, 1}n1 × {0, 1}n2 →
{0, 1}m is a (n1, k1, n2, k2,m, ε) MM -secure two-source extractor, where MM ∈ {GE,OA}, if the
following holds. Given two independent random variables X1 ∈ {0, 1}n1 , X2 ∈ {0, 1}n2, let the side
information ρAdv (Adv = E1, E2) be generated in the MM model and let (k1, k2) be the entropy
measure defined in (3.1). For any such source, we have∣∣ρQTExt(X1,X2)Adv − Um ⊗ ρAdv

∣∣
tr
≤ ε.

Moreover, then QTExt is called X1-strong, (and similarly for X2-strong), if,∣∣ρQTExt(X1,X2)X1Adv − Um ⊗ ρX1Adv

∣∣
tr
≤ ε.

4 Equivalence between Strong OA Security and Strong GE Security

In Section 4, we establish the equivalence between the strong one-sided adversary security and the
general adversary security in the following sense: any strong OA-secure extractor is automatically a
strong GE-secure extractor without any loss of parameters. The reverse direction is straightforward
by definition.

Equivalence by a simulation argument

The establishment of the equivalence is due to the following simulation argument. Given any GE-
(t, n, k) source, for some index i∗ chosen later, our first observation is that at the imaginary step
when ki∗ (from (3.1)) is defined, the source and the side information ρi∗ actually forms a OA-(t, n, k)
source. Thus, by applying some OA-secure extractor, one can extract randomness from this source.
The problem here is that the imaginary OA-(t, n, k) source is different from the initial GE-(t, n, k)
source. Our second observation is to make use of the strong OA-security, which requires the OA-
secure extractor to be strong for all Xj except j = i∗. Then because of all leaking operations commute
and commute with the extractor itself, one can safely convert the OA-(t, n, k) source to the initial
GE-(t, n, k) source after applying the OA-secure extractor, without increasing the error. The above
intuition is formally presented in the following theorem.
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Theorem 4.1 Any S-strong (t, n, k,m, ε) OA-secure multi-source extractor QMExt is also a S-strong
(t, n, k,m, ε) GE-secure multi-source extractor if the size of S is t− 1, i.e., |S| = t− 1.

Proof. Our proof follows from the two-step intuition illustrated above. Given any GE-(t, n, k), let
X1, · · · , Xt be the source, ρ0 ∈ Dens (A1 ⊗ · · · ,⊗At) the initial state, Φi : L (Xi ⊗Ai) → L (Xi ⊗ Ei)
the leaking operation for the ith party, and ki ≥ k, ρi defined as (3.1). Without loss of generality, let
us assume S = {1, · · · , t− 1}.
(Step 1): we prove that the source X1, · · · , Xt and ρt forms a specific OA-(t, n, k) source, by describing
a OA procedure to generate the side information ρt. For clarity, we denote the notations in the OA
model with an extra prime. Let the OA adversary choose to collect only the leakage from Xt. Choose
A′t = (A1, · · · , At) and E′t = (A1, · · · , At−1, Et) and Φ′t(·) = Φt. Thus, it is easy to see that the
side information ρ′ collected in the OA procedure is exactly ρt. Moreover, by definition, we have
k′t = kt ≥ k and k′i ≥ ki ≥ k for i ∈ [t− 1]. Thus, it is a OA-(t, n, k) source. By definition, for any S-
strong (t, n, k,m, ε) OA-secure multi-source extractor QMExt, we have, for Advt = (A1, · · · , At−1, Et),∣∣∣ρtQMExt(X1,··· ,Xt)X1···Xt−1Advt

− Um ⊗ ρtX1···Xt−1Advt

∣∣∣
tr
≤ ε. (4.1)

(Step 2): now we can apply Φi : i ∈ [t− 1] to both states in (4.1). Since all Φi : i ∈ [t] commute, we
have, for Adv = (E1, · · · , Et),

Φ1 ⊗ · · · ⊗ Φt−1(ρt) = ρX1···XtAdv.

Thus, by Fact 2.4, we have∣∣ρQMExt(X1,··· ,Xt)X1···Xt−1Adv − Um ⊗ ρX1···Xt−1Adv

∣∣
tr
≤ ε,

which, by definition, completes the proof.

5 Obtaining Strong OA Security from Marginal Security

In this section, we demonstrate three different techniques to obtain strong OA security from marginal
security, i.e., from the extractors that are only known to be marginal-secure. These techniques include
the one-bit argument (in Section 5.1), the one-extra-source argument (in Section 5.2), and the one-
extra-block argument (in Section 5.3). Together with Theorem 4.1, we shall obtain strong GE security
for these extractors.

5.1 With one-bit argument and XOR lemma

This technique relies on the equivalence between the strong marginal security and the strong OA
security for one-bit extractors demonstrated in [19, 22]. Thus, our argument first shows any strong
multi-bit extractor with marginal security is trivially a strong marginal-secure one-bit extractor. Then
we make use of the aforementioned connection to upgrade the strong marginal security to the strong
OA security. Finally, by making use of the XOR lemma, we can generalize the analysis to multi-bit
extractors with a loss on the parameters.

It is worth mentioning that this technique is so general that it could be applied to single-source,
two-source, and multi-source settings. However, in the single-source setting, the parameter loss is so
huge to afford, whereas in the multi-source settings, we can do better by using one extra source (see
Section 5.2).
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On the other side, our technique is particularly useful for two-source extractors, and implies that all
best-known two-source extractors,12 as they are, are in fact strongly quantum-secure with essentially
the same parameters.

Lemma 5.1 For any ∅ 6= S ⊆ [m], any m-bit extractor with output Z ∈ {0, 1}m is also a one-bit
extractor with the same set of parameters and properties by outputting ZS =

⊕
i∈S zi.

Proof. The lemma simply follows by definition and Fact 2.4.
Then by a corollary13 from [19] (which is a simple application of techniques from [22]), we have

Lemma 5.2 ([19], Corollary 5.5) If 2Ext is a classical (n1, k1, n2, k2, 1, ε) X1-strong two-source ex-
tractor, then it is also a OA-secure (n1, k1, n2, k2+log(1/ε), 1,

√
ε) X1-strong two-source extractor. Sim-

ilarly for 2Ext being X2-strong. As a consequence, if 2Ext is a classical (n1, k1, n2, k2, 1, ε) two-source
extractor that is both X1-strong and X2-strong, then it is also a OA-secure (n1, k1 + log(1/ε), n2, k2 +
log(1/ε), 1,

√
ε) two-source extractor that is both X1-strong and X2-strong.

Thus, by making use of the quantum version of the XOR Lemma (Lemma 2.3), we have

Theorem 5.3 If 2Ext is a classical (n1, k1, n2, k2,m, ε) X1-strong two-source extractor, then it is also
a OA-secure (n1, k1, n2, k2 +log(1/ε),m, 2m

√
ε) X1-strong two-source extractor. Similarly for 2Ext be-

ing X2-strong. As a consequence, if 2Ext is a classical (n1, k1, n2, k2,m, ε) two-source extractor that is
both X1-strong and X2-strong, then it is also a OA-secure (n1, k1 +log(1/ε), n2, k2 +log(1/ε),m, 2m

√
ε)

two-source extractor that is both X1-strong and X2-strong.

Proof. We only prove the theorem for the extractor being X1-strong. A similar argument proves
when the extractor is X2-strong. By Lemma 2.3, and for any subset ∅ 6= τ ⊆ [t], let 2Extτ (·) = 2Ext(·)τ
as defined in Lemma 5.1 , then we have,∣∣ρ2Ext(X1,X2)X1Adv − Um ⊗ ρX1Adv

∣∣
tr
≤

√
2m
∑
τ 6=∅

∣∣ρ2Extτ (X1,X2)X1Adv − U1 ⊗ ρX1Adv

∣∣2
tr

≤
√

2m · 2mε = 2m
√
ε,

where the second inequality is due to Lemma 5.1 and Lemma 5.2.

Instantiations

Here we apply Theorem 5.3 and Theorem 4.1 to lift the security of existing (marginally secure)
two-sources extractors to obtain GE-secure extractors with essentially the same parameters (up to
a constant factor loss). We first consider Raz’s extractor, which has the advantage to apply to two
unequal length sources but one of them needs to have > 1/2 entropy rate.

Theorem 5.4 (Raz’s Extractor [31]) For any n1, n2, k1, k2,m, and any 0 < δ < 1/2 with

• n1 ≥ 6 log n1 + 2 log n2

• k1 ≥ (0.5 + δ)n1 + 3 log n1 + log n2

• k2 ≥ 5 log(n1 − k1)

12There are several incomparable two-source extractors with different advantages. See below for details.
13This corollary was originally stated for the IA security, which implies the OA security automatically.
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• m ≤ δmin{n1/8, k2/40} − 1

There is an explicit (n1, k1, n2, k2,m, ε) two-source extractor with error ε = 2−1.5m. Furthermore, the
extractor is both X1-strong and X2-strong.

Theorem 5.5 (GE-secure Raz’s Extractor) For any n1, n2, k1, k2,m, and any 0 < δ < 1/2 with

• n1 ≥ 6 log n1 + 2 log n2

• k1 ≥ (0.5 + δ)n1 + 3 log n1 + log n2

• k2 ≥ 6 log(n1 − k1)

• m ≤ (δ/16) min{n1/8, k2/40} − 1

There is an explicit (n1, k1, n2, k2,m, ε) GE-secure two-source extractor with error ε = 2−1.5m. Fur-
thermore, the extractor is both X1-strong and X2-strong.

Proof. Let k′1 = k1− 5m, k′2 = k2− 5m, δ′ = δ/2, and m′ = δ′min{n1/8, k
′
2/40}− 1. Note that k′1 ≥

(0.5 + δ′)n1 + 3 log n1 + log n2, k′2 ≥ 5 log(n1−k1). By Theorem 5.4, there exists a (n1, k
′
1, n2, k

′
2,m, ε

′)
two-source extractor 2Ext with ε′ = 2−5m ≥ 2−1.5m′ that is both X1-strong and X2-strong. By
Theorem 5.3, 2Ext is also a OA-secure (n1, k

′
1 + log(1/ε′), n2, k

′
2 + log(1/ε′),m, 2m

√
ε′) two-source

extractor that is both X1-strong and X2-strong. Note that k1 ≥ k′1 + log(1/ε′), k2 ≥ k′2 + log(1/ε′),
and 2m

√
ε′ ≤ ε. By Theorem 4.1, 2Ext is also a (n1, k1, n2, k2,m, ε) GE-secure two-source extractor

that is both X1-strong and X2-strong.
We next consider Bourgain’s extractor, which breaks the “1/2-barrier”. That is, the extractor

works even if both sources have entropy rate (slightly) below 1/2.

Theorem 5.6 (Bourgain’s Extractor [6]) There exists a universal constant α such that for any
n ∈ N, there is an explicit (n, k, n, k,m, ε) two source extractor with k = (0.5 − α)n, m = αn and
ε = 2−αn. Furthermore, the extractor is both X1-strong and X2-strong.

Theorem 5.7 (GE-secure Bourgain’s Extractor) There exists a universal constant β such that
for any n ∈ N, there is an explicit (n, k, n, k,m, ε) GE-secure two source extractor with k = (0.5−β)n,
m = βn and ε = 2−βn. Furthermore, the extractor is both X1-strong and X2-strong.

Proof. Let β = α/5, where α is the universal constant in Theorem 5.6. Let 2Ext be the
(n, k′, n, k′,m′, ε′) two-source extractor in Theorem 5.6 that is both X1-strong and X2-strong, where
k′ = (0.5 − α)n, m′ = αn, and ε′ = 2−αn. Let ε′′ = 2−4βn ≥ ε′. By Theorem 5.3, 2Ext is also a
OA-secure (n, k′ + log(1/ε′′), n, k′ + log(1/ε′′),m, 2m

√
ε′′) two-source extractor that is both X1-strong

and X2-strong. Note that k ≥ k′ + log(1/ε′′), and 2m
√
ε′′ ≥ ε. By Theorem 4.1, 2Ext is also a

(n, k, n, k,m, ε) GE-secure two-source extractor that is both X1-strong and X2-strong.
Finally, we consider the DEOR extractor [10], which has the advantage that the extractor works

as long as the sum of the entropy from two sources is greater than n.

Theorem 5.8 (DEOR Extractors [10]) For any n, k1, k2,m, there is an explicit (n, k1, n, k2,m, ε)
two-source extractor with error ε = 2−(k1+k2+1−n−m)/2. Furthermore, the extractor is both X1-strong
and X2-strong.

Theorem 5.9 (GE-secure DEOR Extractors) For any n, k1, k2 with k1 + k2 > n− 1, there is an
explicit (n, k1, n, k2,m, ε) two-source extractor with m = min{(k1 + k2 + 1 − n)/20, k1/4, k2/4} and
ε = 2−m. Furthermore, the extractor is both X1-strong and X2-strong.
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Proof. Let k′1 = k1− 4m and k′2 = k2− 4m. Let 2Ext be the (n, k′1, n, k
′
2,m, ε

′) two source extractor
in Theorem 5.8 that is X1-strong and X2-strong, where ε′ = 2−4m. By Theorem 5.3, 2Ext is also a
OA-secure (n, k′+log(1/ε′), n, k′+log(1/ε′),m, 2m

√
ε′) two-source extractor that is both X1-strong and

X2-strong. Note that ka ≥ k′a + log(1/ε′) for both a ∈ {1, 2}, and 2m
√
ε′ ≥ ε. By Theorem 4.1, 2Ext

is also a (n, k1, n, k1,m, ε) GE-secure two-source extractor that is both X1-strong and X2-strong.

Remark. With similar arguments, it is not hard to show that the best existential two-source ex-
tractor with logarithmic min-entropy (guaranteed by the probabilistic method) is also GE-secure with
almost the same parameters.

5.2 With one extra independent source

Our second technique is a transformation that uses one extra source to obtain strong OA security,
and is particularly useful for the multi-source setting. In fact, it additionally offers several extra
advantages: the original multi-source extractor does not need to be strong, yet the resulting extractor
is strong for all but the last source, and extracts almost all min-entropy out from the last block. This
in turn, allows us to use the output to extract from all but the last source, and extract all min-entropy
out from all sources!

This technique relies on the following observation: for any marginally close-to-uniform distribution,
one can add an independent quantum min-entropy source and make use of a quantum strong seeded
extractor to lift its security. Precisely, the marginal distribution will be used as the seed to extract
from the additional independent quantum min-entropy source. Because the extractor is a strong seeded
extractor, any quantum system that is associated with the marginal distribution can be added back
without destroying its security. The following lemma formalizes the above idea.

Lemma 5.10 Consider two independent cq states ρX1E1 and ρX2E2 such that X1 = {0, 1}n1 and
X2 = {0, 1}n2 (i.e., the global system ρX1X2E1E2 = ρX1E1 ⊗ ρX2E2). Let f : {0, 1}n2 → {0, 1}d
be any classical deterministic function. If Hmin(X1|E1)ρ ≥ k and the marginal of f(X2) satisfies
|f(X2)− Ud|tr ≤ δ, then for any quantum strong (k, ε) extractor Ext : {0, 1}n1 ×{0, 1}d → {0, 1}m, we
have ∣∣ρExt(X1,f(X2))X2E1E2

− Um ⊗ ρX2E1E2

∣∣
tr
≤ ε+ δ.

Note that ρX2E1E2 = ρE1 ⊗ ρX2E2.

Proof. First note that since Ext is a quantum strong (k, ε) extractor and Hmin(X1|E1) ≥ k, we have
that for an independent seed ρY = Ud,∣∣ρExt(X1,Y )Y E1

− Um ⊗ ρY ⊗ ρE1

∣∣
tr
≤ ε,

which is equivalent to

wy
def
=
∣∣ρExt(X,y)yE1

− Um ⊗ |y〉〈y| ⊗ ρE1

∣∣
tr

and
∑

y∈{0,1}d

1

2d
wy ≤ ε. (5.1)

Moreover, let ρf(X2)X2E2
=
∑

x2∈{0,1}n2 px2 |f(x2), x2〉〈f(x2), x2| ⊗ ρx2
E2

. For each x2 ∈ {0, 1}n2 , define

ux2

def
=
∣∣∣ρExt(X1,f(x2))f(x2)x2E1E2

− Um ⊗ |f(x2), x2〉〈f(x2), x2| ⊗ ρx2
E1E2

∣∣∣
tr
. (5.2)
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Multi-source Extractor QMExt

Let IExt : ({0, 1}n)t → {0, 1}m be a classical (t, n, k,m, ε1) independent source extractor.

Let Extq : {0, 1}n × {0, 1}m → {0, 1}l be a quantum strong (k, ε2) seeded extractor.

Construct QMExt : ({0, 1}n)t+1 → {0, 1}l as follows:

1. Let Z = IExt(X1, · · · , Xt).

2. QMExt(X1, · · · , Xt, Xt+1)
def
= Extq(Xt+1, Z) = Extq(Xt+1, IExt(X1, · · · , Xt)).

Figure 1: Construction of QMExt from any classical independent source extractor IExt.

Note that ρExt(X1,f(x2))f(x2)x2E1E2
= ρExt(X1,f(x2))f(x2)E1

⊗ |x2〉〈x2| ⊗ ρx2
E2

and ρx2
E1E2

= ρE1 ⊗ ρx2
E2

.
Hence, by Fact 2.1, for each x2 ∈ {0, 1}n2 ,

ux2 =
∣∣∣ρExt(X1,f(x2))f(x2)x2E1E2

− Um ⊗ |f(x2), x2〉〈f(x2), x2| ⊗ ρx2
E1E2

∣∣∣
tr

=
∣∣ρExt(X1,f(x2))f(x2)E1

− Um ⊗ |f(x2)〉〈f(x2)| ⊗ ρE1

∣∣
tr

= wf(x2). (5.3)

By Fact 2.2, observe that∣∣ρExt(X1,f(X2))X2E1E2
− Um ⊗ ρX2E1E2

∣∣
tr

=
∣∣ρExt(X1,f(X2))f(X2)X2E1E2

− Um ⊗ ρf(X2)X2E1E2

∣∣
tr

=
∑

x2∈{0,1}n2

px2ux2 .

By (5.3), it is easy to see that∑
x2∈{0,1}n2

px2ux2 =
∑

z∈{0,1}d

∑
f(x2)=z

px2ux2 =
∑

z∈{0,1}d
wz

∑
f(x2)=z

px2 =
∑

z∈{0,1}d
pzwz,

in which pz denotes the marginal distribution of f(X2). Finally, we have∑
x2∈{0,1}n2

px2ux2 =
∑

z∈{0,1}d
pzwz =

∑
z∈{0,1}d

1

2d
wz +

∑
z∈{0,1}d

(pz −
1

2d
)wz

≤ ε+
∑

z:pz>
1

2d

(pz −
1

2d
) ≤ ε+ δ,

where the first inequality is because of (5.1) and 0 ≤ wz ≤ 1 and the second inequality is due to
|Z = f(X2)− Ud|tr ≤ δ and (2.1).

Now we present a general construction of strong OA-secure multi-source extractors from a clas-
sical independent source extractor and a quantum strong seeded extractor, which requires one more
independent source but can match almost all parameters of classical independent source extractors.

Theorem 5.11 Let IExt : ({0, 1}n)t → {0, 1}m be any classical (t, n, k,m, ε1) independent source
extractor. Let Extq : {0, 1}n × {0, 1}m → {0, 1}l be a quantum strong (k, ε2) randomness extractor.
Then QMExt (constructed in Fig. 1) is an OA-secure (t + 1, n, k, l, ε1 + ε2) multi-source extractor.
Moreover, QMExt is XS-strong for S = {1, · · · , t}.
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Proof. Consider any t + 1 independent sources X1, · · · , Xt+1 ∈ {0, 1}n and the quantum side
information ρAdv that is generated in the OA model. Note that in this case Adv = Ei∗ for a single
i∗ ∈ [t + 1]. By definition, Hmin(Xi) ≥ Hmin(Xi|Ei)ρi = Hmin(Xi|Ei)ρ ≥ k for each i ∈ [t + 1], and
moreover X1, · · ·Xt are independent. Because IExt is a (t, n, k,m, ε1) independent source extractor,
by definition, we have

|IExt(X1, · · · , Xt)− Um|tr ≤ ε1.

Let Z = IExt(X1, · · · , Xt). Hence, we have |Z − Um|tr ≤ ε1. If i∗ ∈ [t], then we have ρX1···XtAdv and
ρXt+1 are independent cq states and Hmin(Xt+1) ≥ k. Otherwise, we have i∗ = t+ 1, and ρX1···Xt and
ρXt+1Adv are independent cq states and Hmin(Xt+1|Adv)ρ ≥ k. In either case, by Lemma 5.10, we
have ∣∣ρExt(Z,Xt+1)X1···XtAdv − Ul ⊗ ρX1···XtAdv

∣∣
tr
≤ ε1 + ε2,

which, by definition, completes the proof.

Instantiations

Here we apply Theorem 5.11 and Theorem 4.1 to lift the security of existing (marginally secure)
multi-sources extractors to obtain strong GE-secure extractors that extract all min-entropy out.

The best known multi-source extractor is Li’s extractor [24], which can extract randomness from
a constant number of sources with entropy as low as polylog(n).

Theorem 5.12 (Li’s Extractor [24]) For every constant η > 0 and all n, k ∈ N with k ≥ log2+η n,
there exists an explicit (t, n, k,m, ε) independent source extractor with m = Ω(k), t = O(1/η) +O(1),

and ε = 1/poly(n) + 2−k
Ω(1)

.

By using the quantum strong seeded extractor from Theorem 2.18 in Theorem 5.11 (and applying
Theorem 4.1), we obtain strong GE-secure version of Li’s extractor with improved output length.

Theorem 5.13 (GE-secure Li’s Extractor) For every constant η > 0 and all n, k ∈ N with k ≥
log2+η n, there exists an explicit (t + 1, n, k,m, ε) independent source extractor with m = k − o(k),

t = O(1/η) + O(1), and ε = 1/poly(n) + 2−k
Ω(1)

. Furthermore, the extractor is XS-strong for S =
{1, . . . , t}.

The downside of Li’s extractor is that it has at least 1/poly(n) error. The following extractor
from [3, 30] achieves (sub-)exponentially small error, but uses O(log n/ log k) sources.

Theorem 5.14 (BRSW Extractor[3, 30]) For any n, k ∈ N with k ≥ log10 n, there exists an

explicit (t, n, k,m, ε) independent source extractor with m = Ω(k), t = O(log n/ log k), and ε = 2−k
Ω(1)

.

As before, using the quantum strong seeded extractor from Theorem 2.18 in Theorem 5.11 (and
applying Theorem 4.1), we obtain strong GE-secure version of BRSW extractor with improved output
length.

Theorem 5.15 (GE-secure BRSW Extractor[3, 30]) For any n, k ∈ N with k ≥ log10 n, there
exists an explicit (t+ 1, n, k,m, ε) independent source extractor with m = k− o(k), t = O(log n/ log k),

and ε = 2−k
Ω(1)

. Furthermore, the extractor is XS-strong for S = {1, . . . , t}.
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Block + General Source Extractor QBExt

Let BExt : {0, 1}n1 × {0, 1}n3 → {0, 1}m1 be a classical block+general source extractor that works
with a k1-block-source and an independent (n3, k3) source. Moreover, the extractor is strong in
the block-source side and with error ε1.

Let Extc : {0, 1}n2 × {0, 1}m′1 → {0, 1}m2 be a classical strong (k2, ε2) seeded extractor.

Let Extq : {0, 1}n3 × {0, 1}m2 → {0, 1}l be a quantum strong (0.9k3, ε3) seeded extractor.

Let (X1, X2) ∈ {0, 1}n1 × {0, 1}n2 be a block-source with C + 1 blocks in which X1 contains k1-
block-source with C blocks and X2 is the last block and an (n2, k2) source conditioned on X1.
Let X3 ∈ {0, 1}n3 be an independent min-entropy source. Both (X1, X2) and X3 could have
quantum side information.

Construct QBExt : {0, 1}n1+n2 × {0, 1}n3 → {0, 1}l as follows:

1. Apply BExt to obtain R that is the first 0.05k3 bits of BExt(X1, X3). (i.e., m′1 < m1. )

2. Alternating Extraction: let T = Extc(X2, R) and Z = Extq(X3, T ).

3. QBExt((X1, X2), X3)
def
= Z.

Figure 2: Construction of QBExt from any classical block + general source extractor BExt.

5.3 With one extra block in block-sources

In the context of block+general source extractors (e.g., [3]), our third technique is to add one extra
block to the existing block source and make use of one classical and one quantum strong seeded
extractor to lift its security. Comparing to the technique in Section 5.2, we only require to add one
extra block that is not independent of existing sources. Thus, it is conceivable that we need more
complicated techniques to obtain strong OA security in this case. To that end, we make use of the
technique called alternating extraction, and moreover, a quantum strong seeded extractor at the last
step to achieve this goal. As in Section 5.2, we are able to improve the output length to extract all
min-entropy out, but this time, we need to start from a strong block+general source extractor.

Theorem 5.16 Let BExt : {0, 1}n1×{0, 1}n3 → {0, 1}m1 be a classical block+general source extractor
that makes use of a k1-block source with C blocks and one extra k3-source to output m1 uniform bits with
error ε1. Moreover, BExt is strong in the block-source side. Then QBExt : {0, 1}n1+n2 × {0, 1}n3 →
{0, 1}l constructed in Fig. 2 is an OA-secure block+general source extractor that makes use of a
(k2, k1, · · · , k1)-block source with C + 1 blocks and one extra k3-source, both entropy measured in the
OA model, to output l uniform bits with error 4ε1 + 2ε2 + ε3 + 2−Ω(k3). Moreover, QBExt is strong in
the block source (X1, X2).

Proof. Let us first argue that such alternating extraction works without considering the OA side
information. For now, let us imagine all the entropies are measured in the no side information case
and lie in the range for the extractors to work. Thus, by definition of BExt, we have

|(X1, R)−X1 ⊗ Um1 |tr ≤ ε1.
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Fix X1 = x1 and let wx1 = |(x1, R)− x1 ⊗ Um1 |tr. Then we have Ex1∼X1 wx1 ≤ ε1. Because X2 is
independent of R conditioned on x1, thus we have

|(X2, x1, R)− (X2, x1)⊗ Um1 |tr = wx1 .

Now by definition of Extc and the fact that (X2, X1) is a k-block source, we have

|(T, x1, R)− Um2 ⊗ x1 ⊗ Um1 |tr ≤ wx1 + ε2. (5.4)

By an triangle inequality and the definition of wx1 , it is easy to see that

|(T, x1, R)− Um2 ⊗ (x1, R)|tr ≤ 2wx1 + ε2.

Because T and X3 are independent conditioned on x1 and R, then we have

|(T, x1, R,X3)− Um2 ⊗ (x1, R,X3)|tr ≤ 2wx1 + ε2.

Let us further condition on R = r, and let

wx1,r = |(T, x1, r,X3)− Um2 ⊗ (x1, r,X3)|tr ,

Namely, we have Er∼R|x1
wx1,r ≤ 2wx1 + ε2. By Lemma 2.6 (resp. in the presence of quantum side

information, we invoke Lemma 2.11), with probability 1 − 2−0.05k3 over r, X3 still has min-entropy
(resp. quantum conditional min-entropy) at least k3 − 0.05k3 − 0.05k3 ≥ 0.9k3. By the definition of
Extq we have

|(T, x1, r, Z)− Um2 ⊗ (x1, r)⊗ Ul|tr ≤ wx1,r + ε3 + 2−Ω(k3). (5.5)

By triangle inequalities, and take average over x1, r, then we have

|(T,X1, R, Z)− (T,X1, R)⊗ Ul|tr ≤ 4ε1 + 2ε2 + ε3 + 2−Ω(k3).

Because X2 and Z are independent conditioned on T and R, thus we have

|(X2, X1, Z)− (X2, X1)⊗ Ul|tr ≤ 4ε1 + 2ε2 + ε3 + 2−Ω(k3). (5.6)

Namely, we prove our claim in the case of no side information.
Now let us proceed to see what happens with the OA side information. First notice that no matter

which source the OA adversary gets side information from, the OA entropy is a lower bound on the
marginal entropy. Moreover, we will invoke Lemma 2.11 instead of Lemma 2.6 in the presence of
quantum side information. Thus all the sources have sufficient entropy to guarantee the success of the
above argument.

In the case in which the OA adversary gets side information from the block-source (X1, X2), we
are already done because the side information can be generated after obtaining (5.6). In the case in
which the side information is from X3, because we use a quantum-proof strong extractor at the last
step, we still have the side information version of (5.5). All of the rest arguments still apply. Thus,
let Adv denote the OA side information, we always have∣∣ρX1X2QBExt(X1,X2,X3)Adv − Ul ⊗ ρX1X2Adv

∣∣
tr
≤ 4ε1 + 2ε2 + ε3 + 2−Ω(k3),

which completes the proof.
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Instantiations

Here we apply Theorem 5.16 and Theorem 4.1 to lift the security of a block+general source extractor
of [3] to obtain a strong GE-secure version extractor that extracts all min-entropy out.

Theorem 5.17 (BRSW Block+general Source Extractor [3]) There exists a constant c such
that for every n, k ∈ N, and C = c · log n/ log k there exists a classical block+general source extractor
BExt : {0, 1}Cn × {0, 1}n → {0, 1}m that make use of a k-block source with C blocks and one general
k-source to output m = Ω(k) uniform bits with error ε = n−Ω(1). Moreover, BExt is strong in the
block-source side.

Note that the extractor we cite above is strong in the block-source side but has inverse polynomial
error. [3] also showed their construction has exponentially small error, but it is no longer clear if it
is strong in the block-source side. It is an interesting question to see whether the extractor is strong
with exponentially small error.

By using the quantum strong seeded extractor from Theorem 2.18 in Theorem 5.16 (as both Extc
and Extq) and applying Theorem 4.1, we obtain GE-secure version of this extractor.

Theorem 5.18 (GE-secure BRSW Block+general Source Extractor) There exists a constant
c such that for every n, k ∈ N with k ≥ log3 n, and C = c · log n/ log k there exists a GE-secure
block+general source extractor QBExt : {0, 1}(C+1)n × {0, 1}n → {0, 1}m that make use of a k-block
source with C + 1 blocks and one general k-source to output m = k − o(k) uniform bits with error
ε = n−Ω(1). Moreover, QBExt is strong in the block-source side.

We also apply this technique to Raz’s two-source extractor to obtain a strong GE-secure two-
block+general source extractor that extracts all entropy out. We will later use this extractor in
Section 8.14

Theorem 5.19 (GE-secure Two-block+general Source Extractor) For any n1, n2, k1, k2 ∈ N
and any 0 < δ < 1/2 with k1, k2 ≥ log5(n1 + n2) and k1 ≥ (0.5 + δ)n1, there exists a GE-secure
block+general source extractor QBExt : {0, 1}2n1 × {0, 1}n2 → {0, 1}m that make use of a k1-block
source with 2 blocks and one general k2-source to output m = k − o(k) uniform bits with error ε =

2−k
Ω(1)
2 . Moreover, QBExt is strong in the block-source side.

6 A New Three-source Extractor and its GE-security

In this section we construct a new strong three-source extractor for sources of uneven lengths. More-
over, we prove the strong OA-security of the newly constructed extractor (which is essentially due to
our technique in Section 5.3) and then make use our OA-GE equivalence to convert it into a GE-secure
strong three source extractor. We also make use of the newly constructed three source extractor to
obtain a strong GE-secure seeded extractor that works even if the seed only has min-entropy rate
bigger than a half. We will demonstrate its application to privacy amplification and quantum key
distribution in Section 7.

We start with the construction of a strong classical three source extractor. We will first list some
of the previous work that we use.

14We mention that we do not make attempt to optimize the parameters of this extractor. For example, the entropy
rate of the second block do not need to be ≥ 1/2. We state the extractor in a way that it is sufficient to be used in
Section 8.
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6.1 Somewhere Random Sources, Extractors and Condensers

Definition 6.1 (Somewhere Random sources) A source X = (X1, · · · , Xt) is (t×r) somewhere-
random (SR-source for short) if each Xi takes values in {0, 1}r and there is an i such that Xi is
uniformly distributed.

Definition 6.2 An elementary somewhere-k-source is a vector of sources (X1, · · · , Xt), such that some
Xi is a k-source. A somewhere k-source is a convex combination of elementary somewhere-k-sources.

Definition 6.3 A function C : {0, 1}n × {0, 1}d → {0, 1}m is a (k → l, ε)-condenser if for every
k-source X, C(X,Ud) is ε-close to some l-source. When convenient, we call C a rate-(k/n→ l/m, ε)-
condenser.

Definition 6.4 A function C : {0, 1}n×{0, 1}d → {0, 1}m is a (k → l, ε)-somewhere-condenser if for
every k-source X, the vector (C(X, y)y∈{0,1}d) is ε-close to a somewhere-l-source. When convenient,
we call C a rate-(k/n→ l/m, ε)-somewhere-condenser.

Theorem 6.5 ([2, 38]) For any constant δ > 0, there is an efficient family of rate-(δ → 0.9, ε =
2−Ω(n))-somewhere condensers Cond : {0, 1}n → ({0, 1}m)D where D = poly(1/δ) = O(1) and m =
Ω(n).

Theorem 6.6 ([30, 3]) For any constant C > 1 and every n, k(n) with k > log2 n, there is a poly-
nomial time computable function SRExt : {0, 1}n × {0, 1}Ck → {0, 1}m s.t. if X is an (n, k) source
and Y is a (C × k)-SR-source,

|(Y, SRExt(X,Y ))− (Y, Um)| < ε

and
|(X,SRExt(X,Y ))− (X,Um)| < ε

where Um is independent of X,Y , m = Ω(k) and ε = 2−Ω(k).

6.2 Extractor Construction and its Marginal Security

Given a (k1, k2) block source X = (X1, X2) ∈ {0, 1}n1 × {0, 1}n2 and an independent source (n3, k3)
source X3 such that k1 ≥ δn1 for some constant δ > 0, our block source extractor is given in Figure 3.

We note the proof here share a lot of similarity with the one for Theorem 5.16, however, with
concrete instantiation and parameters.

Theorem 6.7 For all n1, k1, n2, k2, n3, k3, k ∈ N and constant δ > 0 such that k1 ≥ δn1, min(k1, k2, k3) ≥
k ≥ log3(max(n1, n2, n3)), the function BExt : {0, 1}n1 × {0, 1}n2 × {0, 1}n3 → {0, 1}m described in
Figure 3 is a block source extractor such that if X = (X1, X2) is a (k1, k2) block source on n1 +n2 bits
and X3 is an independent (n3, k3) source, then

|(BExt(X,X3), X)− Um ⊗X|tr ≤ 2−Ω(k) + ε.

Proof. By Theorem 6.5, Y is 2−Ω(n1)-close to a somewhere entropy rate 0.9 source. Without loss
of generality we can assume that it is an elementary somewhere-rate-0.9 source. Ignoring the error,
now by Theorem 5.4, W3 is 2−Ω(k)-close to a somewhere random source with D = O(1) rows and each
row has length ` = Ω(k). Note that since Raz is a strong two-source extractor, thus the previous
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Block-source Extractor BExt (QBExt)

Let Cond be the somewhere condenser in Theorem 6.5.

Let Raz be the strong two-source extractor from Theorem 5.4.

Let SRExt be the extractor from Theorem 6.6.

Let Extc be a strong seeded extractor that uses Ω(k) bits to extract m bits from an (n3, 0.9k3) source
with error ε. In the quantum case, we will use a quantum strong seeded extractor Extq.

Construct BExt : {0, 1}n1 × {0, 1}n2 × {0, 1}n3 → {0, 1}m as follows:

1. Y = Cond(X1) such that Y has D = O(1) rows and each row has length Ω(n1).

2. For each row i of Y , apply Raz to Yi and X3 and output ` = Ω(k) bits such that D` ≤ 0.05k3.
Concatenate these outputs to get W3.

3. Let V = SRExt(X2,W3)

4. BExt(X1, X2, X3)
def
= Z = Extc(X3, V ).

In the quantum case, QBExt(X1, X2, X3)
def
= Z = Extq(X3, v).

Figure 3: Construction of BExt (QBExt) for a weak source and a block source of two blocks.

statement is true even if we condition on the fixing of the source X1. Note that after this fixing, W3

is a deterministic function of X3, and is thus independent of X2.
Note that since X = (X1, X2) is a (k1, k2) block source, we have that conditioned on the fixing of

X1, X2 is an (n2, k2) source. Now by Theorem 8.12, we have

|(V,W3)− U ⊗W3|tr ≤ 2−Ω(`) = 2−Ω(k).

Thus we can further fix W3, and condition on this fixing, V is 2−Ω(k)-close to uniform. Note that
after this conditioning, V is a deterministic function of X2, and is thus independent of X3. Furthermore
by Lemma 2.6 we know that with probability 1− 2−0.05k over this fixing, X3 still has min-entropy at
least k3 − 0.05k −D` ≥ 0.9k3. Since Ext is a strong (0.9k3, ε) extractor, we have that

|(Z, V )− Um ⊗ V |tr ≤ ε.

Note that Z = Ext(X3, V ). Thus conditioned on V , Z is a deterministic function of X3, which is
independent of X2. Thus we also have that

|(Z,X2)− Um ⊗X2|tr ≤ ε.

Note that we have already fixed X1. Thus adding back all the errors we get

|(Z,X1, X2)− Um ⊗ (X1, X2)|tr ≤ ε+ 2−Ω(n1) + 2−Ω(k) + 2−Ω(k) + 2−0.05k = 2−Ω(k) + ε.

One corollary of this theorem is as follows.

31



Corollary 6.8 For any constant δ > 0 there exists a constant C = poly(1/δ) such that if there is a
classical strong (k, ε) extractor Extc : {0, 1}n × {0, 1}d → {0, 1}m with d ≤ k/C, then there is another
strong (1.2k, ε+ 2−Ω(d)) extractor Ext′c : {0, 1}n × {0, 1}d′ → {0, 1}m where d′ = O(d) and Ext′c works
even if the seed only has min-entropy (1/2 + δ)d′.

Proof. We first show that for any weak source R on d′ bits with min-entropy (1/2+δ)d′, if we divide
it into two equal blocks R = (R1, R2), then it is 2−Ω(d′)-close to a (δd′, δd′/2) block source. Indeed, we
have that for any r ∈ Supp(R1), Pr[R1 = r] ≤ 2d

′/22−(1/2+δ)d′ = 2−δd
′
. Thus R1 is a δd′ source. Now

by Lemma 2.6, we have that with probability 1 − 2−δd
′/2 over the fixing of R1, R2 has min-entropy

at least (1/2 + δ)d′ − d′/2 − δd′/2 = δd′/2. Thus R = (R1, R2) is 2−Ω(d′)-close to a (δd′, δd′/2) block
source.

Now we can apply Theorem 6.7 where R = (R1, R2) is the block source and X is an independent
(n, k) source to construct Ext′c, where the k in that theorem will be δd′/2 = O(d). We can choose
C = poly(1/δ) large enough so that in step 3 we can output d bits while still satisfying that D` ≤
0.05k3. Note that 0.9 · 1.2k > k, so we can use the strong extractor Extc to compute the final output
Z = Extc(X,V ), and the error is ε+ 2−Ω(d).

Instantiations. We can instantiate with the following classical extractor of best-known parameters
and get two corollaries.

Theorem 6.9 ([15]) For every constant α > 0, and all positive integers n, k and ε > 0, there is an
explicit construction of a strong (k, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n +
log(1/ε)) and m ≥ (1− α)k.

Corollary 6.10 For any constant δ > 0 there exist constants C > 1 and α > 0 such that for any
n, k ∈ N and 2−αk ≤ ε ≤ 2−C log3 n there is an efficient strong (k, ε) extractor Ext : {0, 1}n×{0, 1}d →
{0, 1}m with d = O(log(n/ε)) and m = 0.9k that works even if the seed only has min-entropy (1/2+δ)d.

Proof. This follows directly from Corollary 6.8 and Theorem 6.9.

Corollary 6.11 For any constant δ > 0 there exist constants C > 1 and α > 0 such that for any
n, k ∈ N and 2−αk ≤ ε ≤ 2−C log3 n there is an efficient function Ext : {0, 1}d × {0, 1}d × {0, 1}n →
{0, 1}m with d = O(log(n/ε)) and m = 0.9k, such that if X1, X2 are two independent (d, δd) sources
and X3 is an independent (n, k) source then

|(Ext(X1, X2, X3), X1, X2)− (Um, X1, X2)|tr ≤ ε.

Proof. Note that since X1, X2 are independent, they form a (δd, δd) block source. Note that
δd = Ω(log3 n) > log2 n, so we can apply Theorem 6.7 such that the final error is at most ε.

6.3 Strong OA-security and Instantiations

The strong OA-security of BExt in Figure 3 is quite straightforward from the proof of Theorem 6.7
and Theorem 5.16.

Theorem 6.12 For all n1, k1, n2, k2, n3, k3, k ∈ N and constant δ > 0 such that k1 ≥ δn1, min(k1, k2, k3) ≥
k ≥ log3(max(n1, n2, n3)), the function QBExt : {0, 1}n1 × {0, 1}n2 × {0, 1}n3 → {0, 1}m described in
Figure 3 is an OA-secure block source extractor such that if X = (X1, X2) is a (k1, k2) block source on
n1 + n2 bits and X3 is an independent (n3, k3) source, and let Adv denote the side information, then∣∣ρQBExt(X,X3)XAdv − Um ⊗ ρXAdv

∣∣
tr
≤ 2−Ω(k) + ε.
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Proof. (Sketch): the proof of Theorem 6.7 demonstrates the parameters are correct. Then we can
make use of the same argument in the proof of Theorem 5.16 to lift its security to strong OA.

Similar to the classical case, we could turn this OA-secure extractor QBExt into an OA-secure
strong seeded extractor that works even if the seed only has entropy rate > 1/2. However, different
from the classical case, we will consider side information generated in the OA model. (and later in
the instantiations, the side information could be generated in the GE model). In such models, the
(weak) seed for the extractor could have quantum side information (in the OA model) that could even
be entangled with the side information of the source (in the GE model).

Corollary 6.13 For any constant δ > 0 there exists a constant C = poly(1/δ) such that if there is a
quantum strong (k, ε) extractor Extq : {0, 1}n×{0, 1}d → {0, 1}m with d ≤ k/C, then there is another
OA-secure strong (1.2k, ε+ 2−Ω(d)) extractor Ext′q : {0, 1}n × {0, 1}d′ → {0, 1}m where d′ = O(d) and
Ext′q works even if the seed only has min-entropy (1/2 + δ)d′.

Proof. We note the proof here resembles the one of Corollary 6.8. It suffices to prove the arguments
therein extend to the quantum case.

Firstly, given any quantum weak source (i.e., cq state) ρRE , R ∈ {0, 1}d
′

such that Hmin(R|E)ρ ≥
(1/2 + δ)d′, if we divide it into two equal blocks R = (R1, R2), then it is 2−Ω(d′)-close to a quantum
(δd′, δd′/2) block source. By definition, there exists a σ ∈ Dens (E), such that

ρRE =
∑
r

Pr[R = r] |r〉〈r| ⊗ ρEr ≤ 2−(1/2+δ)d′ idR ⊗ σ.

Thus, by taking a partial trace over R2, we have

ρR1E =
∑
r1

Pr[R1 = r1] |r1〉〈r1| ⊗ ρEr1 ≤ 2d
′/22−(1/2+δ)d′ idR1 ⊗ σ.

By definition, we have Hmin(R1|E)ρ ≥ δd′. Morever by Lemma 2.11, we have that with probability
1− 2−δd

′/2 over the fixing of R1 = r1, Hmin(R2|R1 = r1, E) ≥ (1/2 + δ)d′− d′/2− δd′/2 = δd′/2. Thus
R = (R1, R2) is 2−Ω(d′)-close to a quantum (δd′, δd′/2) block source.

Now we can apply Theorem 6.12 (instead of Theorem 6.7) to construct Ext′q. The rest argument
remains the same.

Instantiations. We can have the following two instantiations of GE-secure extractors, similar to the
classical setting. Two points are worth noticing. First, there is no quantum strong seeded extractors
like the one of Theorem 6.9. Instead, we make use of the Trevisan’s extractor from Theorem 2.18.
Second, after obtaining the strong OA-security, we apply Theorem 4.1 to lift its security to strong GE.

Corollary 6.14 For any constant δ > 0 there exist constants C > 1 and α > 0 such that for any
n, k ∈ N and 2−αk ≤ ε ≤ 2−C log3 n there is an efficient GE-secure strong (k, ε) extractor Extq :
{0, 1}n × {0, 1}d → {0, 1}m with d = O(log3(n/ε)) and m = 0.9k that works even if the seed only has
min-entropy (1/2 + δ)d.

Proof. We instantiate the OA-secure extractor in Corollary 6.13 with the one from Theorem 2.18.
Then we apply Theorem 4.1 to obtain the GE-security.

Corollary 6.15 For any constant δ > 0 there exist constants C > 1 and α > 0 such that for any n, k ∈
N and 2−αk ≤ ε ≤ 2−C log3 n there is an efficient GE-secure strong extractor Extq : {0, 1}d × {0, 1}d ×
{0, 1}n → {0, 1}m with d = O(log3(n/ε)) and m = 0.9k. Namely, if X1, X2 are two independent (d, δd)
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sources and X3 is an independent (n, k) source (all entropy are measured in the GE model), and let
Adv denote the side information in the GE model, then∣∣ρExtq(X1,X2,X3)X1X2Adv − Um ⊗ ρX1X2Adv

∣∣
tr
≤ ε.

Proof. Let us prove its strong OA security first. (i.e., assume for now all the entropies are measured
in the OA model). Then we claim that (X1, X2) forms a (δd, δd) block source. The reason is that
X1, X2 are independent and the side information can only be from one (or none) of them. Note that
δd = Ω(log3 n) > log2 n, so we can apply Theorem 6.12 to construct a strong OA-secure Extq such
that the final error is at most ε. Then we apply Theorem 4.1 to obtain the GE-security.

7 Application to Privacy Amplification

Privacy amplification is a basic and important task in cryptography and an important ingredient in
quantum key distribution. The setting is that two parties, Alice and Bob share a secret weak random
source X. Alice and Bob each also has local private random bits. The goal is to convert the shared
weak source X into a nearly uniform random string by having the two parties communicating with
each other. However, the communication channel is watched by a (passive) adversary Eve, and we
want to make sure that eventually the shared uniform random bits remain secret to Eve. In the
quantum setting, Eve can also have quantum side information to the shared source X.

Strong seeded extractors (and quantum secure strong seeded extractors) can be used to solve this
problem in one round by having one party (say Alice) send a seed to Bob and they each apply the
extractor to the shared source using the seed. The strong property of the extractor guarantees that
even if seeing the seed, Eve has no information about the extracted uniform key. One advantage of
this method is that if we have good strong seeded extractors, then we can just use a small seed to
extract a long shared key.

However, as we stated before, it is not clear that we can simply assume that the two parties
have local uniform random bits. There may well only have weak sources which may be subject
to (entangled) quantum side information. Here we show that as long as the local random sources
have arbitrary constant min-entropy rate as measured by our GE model, we can still achieve privacy
amplification with asymptotically the same parameters. In particular, this keeps the nice property
that we can use a small (weak) seed to extract a long uniform key.

Privacy Amplification with Local Weak Sources

We present two scenarios in which we can perform privacy amplification with weak sources. In the first
case, only one local random source with entropy rate > 1/2 is needed. In the second one, two local
random sources are needed, however, can be of any constant entropy rate. See Figure 4 for details.
The correctness of such protocols follow directly from Corollary 6.14 and Corollary 6.15.

We remark that in our GE model, the two parties local randomness may even have entangled
quantum side information with the shared weak source, and we show that even in this case privacy
amplification can still be achieved.

8 Network Extractor

In the classical setting, network extractors are motivated by the problem of using imperfect random-
ness in distributed computing, a problem first studied by [14]. Kalai, Rao, Li, and Zuckerman formally
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Privacy Amplification with One Local Random Source

Alice and Bob share a weak random source X with entropy at least k. Moreover, Alice has a local
random source Y that is independent of X with entropy rate > 1/2. Both entropies are measured
in the GE model.

Let Extq be the extractor from Corollary 6.14.

1. Alice sends Y to Bob.

2. Then both parties compute Z = Extq(X,Y ), which is their shared randomness.

Privacy Amplification with Two Local Random Sources

Alice and Bob share a weak random source X with entropy at least k. Moreover, Alice has a local
independent random source Y1 and Bob has a local independent random source Y2. Both are of
entropy rate δ for any constant δ > 0. All entropies are measured in the GE model.

Let Extq be the extractor from Corollary 6.15.

1. Alice sends Y1 to Bob. And Bob sends Y2 to Alice.

2. Then both parties compute Z = Extq(Y1, Y2, X), which is their shared randomness.

Figure 4: Privacy Amplification with Weak Sources
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defined network extractors in [18], and gave several efficient constructions for both synchronous net-
works and asynchronous networks, and both the information-theoretic setting and the computational
setting. For simplicity and to better illustrate our ideas, in this paper we will focus on synchronous
networks and the information-theoretic setting. We start with formal definitions.

8.1 Model Definition

We consider a set P = [p] of p players execute a classical protocol in a synchronized network. Each
(honest) player receives an independent source Xi, and a side information adversary AdvSI collects
side information ρ from the sources X = (X1, . . . , Xp) (in certain adversarial models such as OA
and GE). We assume each Xi has length n and min-entropy at least k measured in the same way
as (3.1). We call (X,AdvSI) a (n, k)-source for P . Formally, such a source is represented by a state
ρ ∈ Dens (X1 ⊗ · · · ⊗ Xp ⊗AdvSI). We assume k > C log p for some constant C > 1 (This is because
in distributed computing problems such as Byzantine agreement or leader election, each player needs
at least C log p random bits).

We consider adaptive corruption in a full information model, where an all powerful adversary
AdvNet may decide to corrupt a set Faulty ⊂ P of up to t players at any time during the protocol
execution, and can perform rushing attack to determine the messages of the corrupted players after
seeing all communication messages from honest players at each round, potentially with the help of
quantum side information generated by AdvSI. At the conclusion of protocol execution, let T denote
the transcript of protocol messages that are public, and Zi be the private output of (honest) player i.

We call (X,AdvSI,AdvNet) a (p, t, n, k) network-source-adversary (NSA ) system, and AdvSI,AdvNet

the adversary for the system. Let Adv denote all the space that is used by AdvSI and AdvNet.
The goal of a network extractor protocol ExtNet is to let (as many) honest players to extract private

uniform randomness at the conclusion of the protocol when executed on any (p, t, n, k) NSA system.
To formally define the security, we need to specify the way that AdvSI collects side information from
X as well as the way that AdvNet perform rushing attacks. For AdvSI, as before, we consider only
the one-sided adversary (OA) and the general entangled (GE) adversary. For AdvNet, we consider
independent rushing (IR) adversary and quantum rushing (QR) adversary.

• Independent rushing (IR) adversary: The rushing messages of the corrupted players depends
only on the protocol messages that AdvNet sees, but not on the (quantum) side information
ρ collected by AdvSI. This models the situation where the side information ρ is not available
during the protocol execution, or the scenario that AdvNet is classical and cannot process the
quantum side information (which can be later used by a quantum distinguisher to distinguish
the (private) outputs of the honest players from uniform.

• Quantum rushing (QR) adversary: The rushing messages can depend on both the protocol
messages and the side information collected by both AdvNet and AdvSI. Moreover, AdvNet could
simultaneously manipulate the rushing message and the quantum side information, creating
complicated correlations among the protocol messages and the side information. This models
the situation that the side information ρ is available to AdvNet at the beginning of protocol
execution.

Clearly, quantum rushing adversaries are more general and characterize the general power of a
fully quantum adversary. On the other hand, the scenario of independent rushing adversary seems
also quite natural and reasonable when the adversary is semi-quantum. Therefore, we consider both
settings.

We note that handling quantum rushing is much more challenging, since it allows protocol messages
to depend on the whole side information ρ, which in turn depends on all sources X. As such, it
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introduces global correlation among all sources and protocol messages, and destroys the structure of
side information. For example, consider that at some point of the protocol, a public seed (or high
entropy string) Y is generated and used by a honest player i to extract private uniform randomness
from Xi (which is the case for existing protocols). If Y depends on the rushing messages (which is
hard to prevent), then Y is correlated with Xi through rushing messages, and thus, extraction has no
guarantee to work.

We proceed to define various security notion for network extractors against side information,
parametrized by the type of adversaries AdvSI and AdvNet. Our definition is slightly stronger than
the definition in [18], where we guarantees security for a fixed set of players (if they are honest).

Definition 8.1 A network extractor ExtNet for (p, t, n, k) NSA system is XX-YY secure for a player
set S ⊂ P with error ε if for every (p, t, n, k) NSA system (X,AdvSI ,AdvNet) with XX AdvSI and
YY AdvNet, let S′ = S\Faulty, ∣∣∣ρZS′Z−S′TAdv − U ⊗ ρZ−S′TAdv

∣∣∣
tr
≤ ε,

where XX ∈ { M, OA, GEA }, and YY ∈ { IR, QR }.

We note that when there is no side information, it suffices to require that a honest player’s output Zi
is close to uniform given the transcript T , as defined in [18], since conditioned on T , Zi is independent
of X−i. In the presence of side information, we need to explicitly require ZS′ to be close to uniform
given Z−S′ , T, and Adv.

The above definition implies that at the conclusion of the protocol, at least g = |S| − t players
obtain secure private uniform randomness. Thus, our definition implies the (t, g = |S| − t, ε) notion
in [18], and has the additional property that the set of successful honest players is fixed before the
protocol execution. The KLRZ construction actually satisfies this property.

To reason about security for a set of players, we also define strong security for an individual player
i, where we require Zi to be close to uniform even given other players’ input X−i.

Definition 8.2 A network extractor ExtNet for (p, t, n, k) NSA system is strongly XX-YY secure for
a player i ∈ P with error ε if for every (p, t, n, k) NSA system (X,AdvSI,AdvNet) with XX AdvSI and
YY AdvNet such that i /∈ Faulty, for some uniform distribution U∣∣ρZiX−iTAdv − U ⊗ ρX−iTAdv

∣∣
tr
≤ ε,

where XX ∈ { M, OA, GE }, and YY ∈ { IR, QR }.

The following lemma says that if ExtNet is strongly secure for every i ∈ S, then ExtNet is secure
for S.

Lemma 8.3 If ExtNet is a network extractor for (p, t, n, k) NSA system with strong XX-YY security
for every i ∈ S for some set S ⊂ P , then ExtNet is also XX-YY secure for S.

Proof. Let S′ = S\Faulty = {i1, . . . , is} and S′j = {i1, . . . , ij}. We have for every i ∈ S′,∣∣ρZiX−iTAdv − U ⊗ ρX−iTAdv

∣∣
tr
≤ ε.

We show ∣∣∣ρZS′X−S′TAdv − U ⊗ ρX−S′TAdv

∣∣∣
tr
≤ |S′|ε,
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by induction on j for the following statement:∣∣∣∣ρZS′
j
X−S′

j
TAdv − U ⊗ ρX−S′

j
TAdv

∣∣∣∣
tr

≤ jε.

The base case S1 is trivial. Now, suppose induction holds for j − 1. That is,∣∣∣∣ρZS′
j−1

X−S′
j−1

TAdv − U ⊗ ρX−S′
j−1

TAdv

∣∣∣∣
tr

≤ (j − 1)ε.

Note that Zij is a deterministic function of T and Xj . We have∣∣∣∣ρZS′
j−1

ZijX−S′j
TAdv − U ⊗ ρZijX−S′jTAdv

∣∣∣∣
tr

≤ (j − 1)ε.

We also have ∣∣∣ρZijX−ijTAdv − U ⊗ ρX−ijTAdv

∣∣∣
tr
≤ ε,

which implies ∣∣∣∣ρZijX−S′jTAdv − U ⊗ ρX−S′
j
TAdv

∣∣∣∣
tr

≤ ε.

Therefore, by triangle inequality, we have∣∣∣∣ρZS′
j
X−S′

j
TAdv − U ⊗ ρX−S′

j
TAdv

∣∣∣∣
tr

≤ jε.

8.2 Our Results

Here we formally state our results for network extractors against side information. For the case of
independent rushing, we are able to tolerate close to 1/3-fraction of faulty players, scarify only roughly
t honest players, and extract almost all entropy out even for low entropy k = polylog(n).

Theorem 8.4 (GE-IR-secure Network Extractors) For every constants α < γ ∈ (0, 1) and c >
0, for sufficiently large p, t, n, k such that p ≥ (3 + γ)t and k ≥ log10 n, there exists a 3-round network
extractor ExtNet for (p, t, n, k) NSA system with output length m = k − o(k) and a set S ⊂ [p] of size
|S| ≥ p− (1 + α)t such that ExtNet is GE-IR secure for set S with error ε = n−c.

We note that even without side information, Theorem 8.4 is the best known and improves the
result of [18]. The reasons are that (i) at the time of [18], they did not have Li’s extractor for a
constant number of weak sources with min-entropy k = polylog(n) [24], and (ii) we additionally use
alternating extraction to extract almost all entropy out.

For the case of quantum rushing, we obtain slightly worse parameters, where we can tolerate a
constant fraction of faulty players, and scarify O(t) honest players. Here we require the min-entropy
k to be sufficiently larger then t. We discuss at the end of the section how to relax this requirement.

Theorem 8.5 (GE-QR-secure Network Extractor) There exists a constant γ ∈ (0, 1) such that
for every constant c > 0, for sufficiently large p, t, n, k with p > t/γ and k ≥ max{log10 n, t/γ}, there
exists a network extractor ExtNet for (p, t, n, k) NSA system with output length m = Ω(k) and a set
S ⊂ [p] of size |S| ≥ p− t/γ such that ExtNet is GE-QR secure for set S with error ε = n−c.
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8.3 Security Lifting Lemmas for Network Extractors

In this section we present two security equivalence/lifting tools in the context of network extractors,
which we consider as one of our main contributions in this paper. The first one is about the equivalence
between the strong OA security and the strong GE security in the context of network extraction,
which is an analogue of their equivalence in the multi-source extraction. However, to make it work,
our argument relies on the fact that protocols only have independent rushing but no quantum rushing.
The second one is a new tool to connect the IR security to the QR security, by another simulation
argument which suffers a certain amount of loss of parameters. We start with the OA-GE equivalence
as follows.

Theorem 8.6 If ExtNet is strongly OA-IR-secure for a player i ∈ [p] with error ε, then ExtNet is
GE-IR-secure for i with error ε.

Proof. The proof of theorem is quite similar to the one of Theorem 4.1. Thus, we only provide a
sketch here and highlight the difference. Given any GE source in the network extraction context, for
each i ∈ S, one can perform exactly the same first step in the proof of Theorem 4.1 by working at
an imaginary step after the leakage from the source Xi but before any leakage from X−i happens. At
that step, one obtains an OA source, and can apply ExtNet because it is strongly OA-IR-secure.

The second step is slightly different, where we need to make crucial use of the fact that the
protocol only allows IR, which makes the operation ExtNet commute with all leaking operations Φi on
the source. In contrast, if there were QR, then such commutativity is violated and we cannot proceed
with our current technique. Then we can follow the original argument to make use of the fact that
ExtNet is strongly OA-IR-secure and safely convert the OA source at the imaginary step to the final
GE source.

Now we switch to dealing with quantum rushing. To that end, we need to formally define the pos-
sible correlations that could be generated between classical and quantum systems during the execution
of the protocol. However, our simulation idea is so general that we don’t want to restrict to a very
specific protocol design in discussion. Thus, we formulate a relatively general model as below which
will fit our use in the later analysis for specific protocols, and at the same time serve as an intuitive
model to understand independent rushing, quantum rushing and our idea to bridge them.

Imagine a ccq state ρXYAdv ∈ Dens (X ⊗ Y ⊗Adv) where X ,Y are classical. In a real protocol
execution, this state ρ could represent the system at some point. Moreover, let Y be the public
message and X be some private information. Now imagine a rushing message YR and a function
E : X × Y × YR → Z that could be the output of the protocol. The difference between independent
rushing and quantum rushing can be formulated as

• (IR): the rushing message YR is only a function of the public Y , i.e., YR = YR(Y ). The correlation
between X,Y and the quantum part Adv remains the same. Only some new purely classical
correlation is established between X,Y and YR.

• (QR): the rushing message YR is generated by an admissible operation on both Y and Adv.
Precisely, let Φq : L (Y ⊗Adv)→ L (Y ⊗ YR ⊗Adv) be a Y -controlled admissible operation that
captures the quantum rushing strategy. Thus, after the quantum rushing, the whole system
becomes,

ρXY YRAdv = Φq(ρXYAdv).

As a result, the correlation between X,Y and the quantum part Adv could be completely
changed.
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In the context of randomness extraction, we care about whether the output Z = E(X,Y, YR) is
close to uniform against Adv. Let us denote its distance by ε. By the following simulation argument,
if Z is ε close to uniform against Adv when subject to any IR attack, then it is 2mε close to uniform
against Adv when subject to any QR attack, where m = |YR|.

Theorem 8.7 (IR to QR) For any ρXYAdv system described above, let Z ∈ {0, 1}l and YR ∈
{0, 1}m. If for any IR attack, ∣∣ρE(X,Y,YR)YAdv − Ul ⊗ ρYAdv

∣∣
tr
≤ ε,

then for any QR attack, we have∣∣ρE(X,Y,YR)YAdv − Ul ⊗ ρYAdv

∣∣
tr
≤ 2mε.

Proof. Let Φq be a quantum rushing operation that defines a QR attack.
For any r ∈ {0, 1}m, we can consider an IR attack that set YR = r deterministically. By the

premise of the theorem, we have

wr
def
=
∣∣ρE(X,Y,r)YAdv − Ul ⊗ ρYAdv

∣∣
tr
≤ ε.

We can apply Φq on both sides:∣∣ρE(X,Y,r)YRYAdv − Ul ⊗ ρYRYAdv

∣∣
tr
≤ ε.

Define
urr′

def
=
∣∣ρE(X,Y,r)yR=r′YAdv − Ul ⊗ ρyR=r′YAdv

∣∣
tr
.

Note that ρE(X,Y,r)yR=r′YAdv is a sub-normalized state and
∑

r′ ρE(X,Y,r)yR=r′YAdv = ρE(X,Y,r)YRYAdv.
Thus, it is easy to see that

∑
r′∈{0,1}m urr′ ≤ wr ≤ ε, ∀r ∈ {0, 1}m. Finally, observe that when r′ = r,

the classical part and the quantum part have the correct correlation after the QR attack, and thus,∣∣ρE(X,Y,YR)YAdv − Ul ⊗ ρYAdv

∣∣
tr
≤

∑
r∈{0,1}m

urr ≤
∑

r,r′∈{0,1}m
urr′ ≤ 2mε.

The above theorem provides an important tool to handle QR attacks. However, this technique
incurs a significant loss in parameters and using this technique alone would fail to handle the QR
setting for known protocols. We shall address the additional issues and provide our solutions in
Section 8.6

As a final remark of the two theorems in this section, we shall first apply Theorem 8.6 to lift the
OA-IR security to the GE-IR security as our simulation technique there does not handle QR. Then we
apply Theorem 8.7 together with the ideas from Section 8.6 to lift the GE-IR security to the GE-QR
security.

8.4 Combinatorial and Extractor Tools

Before moving to the construction and the analysis of our protocol, we briefly review a few combina-
torial tools that will be used later. First, we shall need the concept of an AND-disperser defined in
[18]:

Definition 8.8 (AND-disperser) An (l, r, d, δ, γ) AND-disperser is a bipartite graph with left vertex
set [l], right vertex set [r], left degree d s.t. for every set V ⊂ [r] with |V | = δr, there exists a set
U ⊂ [l] with |U | ≥ γl whose neighborhood is contained in V .
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The following lemma is proved in [18].

Lemma 8.9 (AND-disperser) There exists a constant c > 0 such that if D = o(logM) then for ev-
ery constant 0 < α < 1 and large enough M , there exists an explicit construction of an (N,M,D,α, β)
AND-disperser G such that M < N ≤MdD and β > µD. Here d = cα−8, µ = α2/3.

Another well studied object that we need is a construction of a bipartite expander.

Definition 8.10 (Bipartite Expander) A (l, r, d, β) bipartite expander is a bipartite graph with left
vertex set [l], right vertex set [r], left degree d and the property that for any two sets U ⊂ [l], |U | = βl
and V ⊂ [r], |V | = βr, there is an edge from U to V .

Pippenger proved the following theorem:

Theorem 8.11 (Explicit Bipartite Expander [29, 26]) For every β > 0, there exists a constant
d(β) < O(1/β2) and a family of polynomial time constructible (l, l, d(β), β) bipartite expanders.

We will also need to use the following extractor for a special type of sources.

Theorem 8.12 (General Source vs Somewhere random source with few rows Extractor [3])
There exist constants α, β < 1 such that for every n, k(n) with k > log10 n, and constant 0 < γ < 1/2,
there is a polynomial time computable function SRExt : {0, 1}n × {0, 1}kγ+1 → {0, 1}m s.t. if X is an
(n, k) source and Y is a (kγ × k)-SR-source,15

|(Y, SRExt(X,Y ))− (Y, Um)| < ε

and
|(X,SRExt(X,Y ))− (X,Um)| < ε

where Um is independent of X,Y , m = k − kO(1) and ε = 2−k
α

.

8.5 Our Network Extractor for the Independent Rushing Case

We construct our network extractors for the independent rushing case and prove Theorem 8.4 in this
section. Note that by Theorem 8.6 and Lemma 8.3, it suffices to construct a strongly OA-IR secure
network extractor. Our construction follows the construction in [18], but lift the marginal security to
OA security. Along the way, we obtain a simpler construction that improves several aspects of the
KLRZ network extractors by using improved independent source extractor of Li [24], and an alternate
extraction idea.

Lemma 8.13 (Strong OA-IR Network Extractors) For every constants α < γ ∈ (0, 1) and c >
0, for sufficiently large p, t, n, k such that p ≥ (3+γ)t and k ≥ log10 n, there exists a network extractor
ExtNet for (p, t, n, k) NSA system with output length m = k − o(k) and a set S ⊂ [p] of size |S| ≥
p− (1 + α)t such that ExtNet is strongly OA-IR secure for every i ∈ S with error ε = n−c.

15Here, we view Y as kγ rows of strings of length k, and Y is a (kγ × k)-SR-source if there exist a marginally uniform
row in Y .
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At a high level, to lift the security, we simply replace the extractor in the last step of [18] by a
strongly OA-secure one with a similar idea appeared in Section 5.2. More precisely, the construction
of [18] can be viewed in two steps, where the first step generates a public high min-entropy source
Y , which is used by each honest player i in the second step to extract private uniform randomness
Zi = Ext(Xi, Y ) using some Y -strong randomness extractor Ext. We show that if Ext is strongly
OA-secure for Xi, then the network extractor is strongly OA-IR secure for player i. We proceed to
present our (simplified) construction in steps as follows.

• In step 1, we construct a three-round sub-protocol ExtPub that outputs a public two-block
source y = (y1, y2) with marginal security using AND-dispersers (Lemma 8.9), expanders (The-
orem 8.11), BRSW extractors (Theorem 8.12), and improved independent source extractors
(Theorem 5.12).

• In step 2, each honest player i uses y to extract uniform randomness from xi using a y-strong
OA-secure randomness extractor.

Let δ = (γ − α)/4. Throughout the protocol, we partition players into three disjoint sets P =
A ∪B ∪ C of size |A| = (1 + α) · t, |B| = 2 · (1 + 2δ) · t, and |C| = p− |A| − |B|.

Step 1. Obtain a public block source with marginal security. In this step, we construct a
ExtPub sub-protocol that outputs a public two-block source y = (y1, y2) with (marginal) entropy rate
> 0.5 in both blocks. A formal description of the ExtPub protocol can be found in Figure 5. Note
that only marginal security is required here. We prove the following lemma by adapting the analysis
of [18]. The proof explains the intuition behind the construction.

Lemma 8.14 For every (p, t, n, k) NSA system (X,AdvSI,AdvNet) with OA AdvSI and IR AdvNet,
there exists a set BGood ⊂ B\Faulty of size at least |BGood| ≥ (1/2 + δ/4) · |B| + 1 such that at the
conclusion of ExtPub, for every j ∈ BGood, we have (Yj , T1) ≈ε1+ε2 (Um2 , T1), where T1 denotes the
transcript of the first round.

Proof. Let AFaulty and BFaulty denotes the sets of faulty players in A and B, respectively. Since
|AFaulty| ≤ t, by the property of the AND-disperser, there exists a good set V ⊂ [N ] of size |V | ≥ β1N
such that the neighbors of V in G are contained in A\AFaulty. Thus, for every v ∈ V with neighbors
i1, . . . , id1 , Sv = IExt(Xi1 , . . . , Xid1

) is ε1-close to uniform. Let BBad be the set of left vertices j ∈ H
such that all neighbors of j are outside V . By the property of the expander, we have |BBad| ≤ β2N ≤ δt.
Let BGood = B\(BFaulty ∪ BBad). We have |BGood| ≥ |B| − t− δt ≥ (1/2 + δ/4)|B|. By definition, for
every j ∈ BGood, j is a honest player and j has a neighbor in V . Thus, Sj is ε1-close to a somewhere
random source, and Yj = SRExt(Xj , S

j) is (ε1 +ε2)-close to uniform given Sj . Finally, note that given
Sj , Yj is independent of T1. Therefore, (Yj , T1) ≈ε1+ε2 (Um2 , T1).

The above lemma readily implies the following technical statement, which says that the output
(Y 1, Y 2) forms a block source even given the transcript T1.

Lemma 8.15 For every (p, t, n, k) NSA system (X,AdvSI,AdvNet) with OA AdvSI and IR AdvNet,
at the conclusion of ExtPub, the output (T1, Y

1, Y 2) is ε′-close to a block source with entropy rate at
least 1/2 + δ/4 in second and third blocks (i.e., Y = (Y 1, Y 2) is a two-block source even conditioned
on T1), where ε′ = |B| · (ε1 + ε2).

Furthermore, for every j ∈ B\Faulty, let Y−j = (Y 1
−j , Y

2
−j) be the two-block string Y with the j-th

component removed. (T1, Y
1
j , Y

2
j , Y

1
−j , Y

2
−j) is a block source with entropy rate at least (1/2 + δ/4) for

the last two blocks.
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Protocol ExtPub: Obtain a public block source with marginal security.

Protocol Input: Private weak sources xi’s of players i in sets A and B.

Protocol Output: A public block source y = (y1, y2) ∈ {0, 1}|B|·
√
k+|B|·

√
k.

Sub-Routines and Parameters:

1. Let IExt be a (d1, n, k,m1, ε1) independent source extractor with some constant d1 and
ε1 ≤ n−2c from Theorem 5.12.

2. Let G be an explicit AND-disperser with parameters (N,M = |A|, d1, α1 = (α/(1 +α)), β1)
from Theorem 8.9, where M ≤ N ≤M · poly(α−d1

1 ) and β1 ≥ poly(αd1
1 ).

3. Let H be an explicit bipartite expander with parameters (N,N, d2, β2) from Theorem 8.11,
where β2 = min{β1, δt/N}, and d2 = O(1/β2

2).

4. Let SRExt be the BRSW extractor from Theorem 8.12 with error parameter 2−k
Ω(1)

and
output length m2 ≥

√
k.

Round 1.

1. Every player i ∈ A sends his source xi to all the players in B.

Round 2 and 3.

1. Identify A with the right vertex set of G. Identify B with (arbitrary subset of) left vertex
set of H. Identify right vertex set of H with left vertex set of G.

2. For each left vertex v ∈ [N ] in G, let i1, . . . , id1 be its neighbors. Define sv =
IExt(xi1 , . . . , xid1 ).

3. For j ∈ B, let v1, . . . , vd2 be his neighbors in H. Let sj = (sv1 , . . . , svd2 ). Player j computes

yj = SRExt(xj , s
j) and output the first

√
k bits as y1

j in round 2 and and the next
√
k bits

as y2
j in round 3.

4. The public outputs y1 and y2 are concatenation of y1
j and y2

j for j ∈ B, respectively.

Figure 5: Step 1 of our GE-IR secure network extractor protocol.
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Proof. By Lemma 8.14, there exists a setBGood ⊂ B\Faulty of size at least |BGood| ≥ (1/2+δ/4)·|B|+1
such that at the conclusion of ExtPub, for every j ∈ BGood, we have (Yj , T1) ≈ε1+ε2 (Um2 , T1). Note
that conditioned on T1, {Yj}j∈BGood

are mutually independent. For notational convenience, let B̄ =
B\BGood, and let YBGood

denote {Yj}j∈BGood
. By a standard hybrid argument, we have (YBGood

, T1) ≈ε′
(U|BGood|·m2

, T1). Therefore, up to a ε′ statistical error, we can switch to a hybrid where YBGood
is

uniform given T1. (Moe precisely, we can define a hybrid experiment where YBGood
is perfectly uniform

and independent of T1, and the real experiment is ε′ close to the hybrid experiment.)
In this hybrid, since |BGood| ≥ (1/2 + δ/4) · |B|+ 1, Y 1 has entropy rate at least 1/2 + δ/4 given

T1. Also, note that Y 2
BGood

is uniform given both T1 and Y 1
BGood

, and since Y 1 and Y 2 are released

in different round, Y 1
B̄

can only depend on Y 1
BGood

and T1, but independent of Y 2
BGood

. Thus, Y 2 has

entropy rate at least 1/2 + δ/4 given Y 1 and T1. It follows that in this hybrid, (T1, Y
1, Y 2) is ε′-close

to a block source with entropy rate at least 1/2 + δ/4 in second and third blocks, which proves the
first statement of the lemma.

The “furthermore” part of the lemma follows by the same argument and noting that the BGood\{j}
components already provide sufficient entropy.

Step 2. Extract OA-secure private uniform randomness using y. In this step, each honest
player in B ∪ C simply uses a Y -strong OA-secure two-block+general extractor from Theorem 5.19
to extract private uniform randomness (there is no interaction). A formal description of the ExtPri

protocol can be found in Figure 5.
We show that the output is OA-IR secure for every player i ∈ B ∪ C. To see this, let us consider

a honest player i ∈ C. Note that an OA AdvSI can only get side information from one source. Let
us first consider the case that AdvSI gets side information ρi from Xi. In this case, by the Y -strong
OA-security of OAExt, Zi is close to uniform given both Y and ρi. Now, note that conditioned on Y ,
Zi is independent of X−i and transcript T . Therefore, Zi is close to uniform even given (X−i, T, ρi).
Similarly, for the case that AdvSI gets side information ρj from some Xj for j 6= i, Zi is close to
uniform given Y , and contitioned on Y , Zi is independent of X−i, T , and ρj . Thus, Zi is close to
uniform given (X−i, T, ρi). The analysis generalizes to handle players j ∈ B by additionally condition
on T1 and (Y 1

j , Y
2
j ).

Proof. (of Lemma 8.13) We consider ExtNet that execute ExtPub and ExtPri sub-protocols in order,
and the set S = B ∪ C. We show that ExtNet is OA-IR secure for every i ∈ S with error ε ≤ n−c.

Let (X,AdvSI,AdvNet) be a (p, t, n, k) NSA system with OA AdvSI and IR AdvNet. Let us first
consider a honest player i ∈ C. By Lemma 8.15, at the conclusion of ExtPub, (T1, Y

1, Y 2) is ε′-close
to a block source with entropy rate at least 1/2 + δ/4 in second and third blocks. Thus, up to a ε′

error in the trace distance, we can switch to a hybrid where the condition holds with no error.
Suppose the OA AdvSI chooses to only get side information ρi from Xi. Note that Y is indepen-

dent of (Xi, ρi), and Xi has k-bits of entropy given ρi. By strong OA-security of OAExt, we have
|ρZiYAdv − Um ⊗ ρYAdv|tr ≤ ε3 (note that Adv denotes the space of (AdvSI,AdvNet), and here it refers
to the side information space) . Also note that given Y , Zi is independent of X−i and transcript T .
Therefore, ∣∣ρZiX−iTAdv − Um ⊗ ρX−iTAdv

∣∣
tr
≤ ε3.

Similarly, suppose the OA AdvSI chooses to get side information for ρi′ from Xi′ for some i′ 6= i.
Note that Y is independent of Xi, and Xi has k-bits of entropy. By strong OA-security of OAExt, we
have |ρZiYAdv − Um ⊗ ρYAdv|tr ≤ ε3. Also note that given Y , Zi is independent of X−i, transcript T ,
and side information ρi′ . Therefore,∣∣ρZiX−iTAdv − Um ⊗ ρX−iTAdv

∣∣
tr
≤ ε3.
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Protocol ExtPri: Extract OA-secure Private Uniform Randomness.

Protocol Input: Private weak sources xi ∈ {0, 1}n of players i in sets B and C. Public two-block

source y = (y1, y2) ∈ {0, 1}|B|
√
k+|B|

√
k.

Protocol Output: A private string zi ∈ {0, 1}m for each player i ∈ B ∪ C.

Sub-Routines and Parameters:

1. Let OAExt(X,Y ) be a Y -strong OA-secure two-block+general source extractor from The-

orem 5.19 with output length m = k − o(k) and error ε3 ≤ 2−Ω(kΩ(1)).

The protocol has no interaction. Each player i ∈ B ∪ C generates a private output zi.

1. For every i ∈ C, player i computes zi = OAExt(xi, y) and output zi.

2. For every j ∈ B, let y−j = (y1
−j , y

2
−j) be the two-block string y with the j-th component

removed. Player j computes zj = OAExt(xj , y−j) and output zj .

Figure 6: Step 2 of our GE-IR secure network extractor protocol.

Now, let us consider a honest player j ∈ B. Again by Lemma 8.15, at the conclusion of ExtPub,
(T1, Y

1
j , Y

2
j , Y

1
−j , Y

2
−j) is a block source with entropy rate at least (1/2 + δ/4) for the last two blocks.

Thus, up to an ε′ error in trace distance, we can switch to a hybrid where the condition holds with no
error. In what follows, we perform our analysis conditioned on H = (T1, Y

1
j , Y

2
j ).

Suppose the OA AdvSI gets side information ρj from Xj . Note that given H and ρj , Xj has at
least k − 2

√
k = k − o(k) bits of min-entropy, and is independent of Y−j = (Y 1

−j , Y
2
−j), which is a

two block source with at least 1/2 + δ/4 entropy rate per block. By OA-security of OAExt, we have
|ρZjY−jHAdv − Um ⊗ ρY−jHAdv| ≤ ε3. Also note that given Y−j , H, Zj is independent of X−j and T .
Thus, ∣∣ρZjX−jTAdv − Um ⊗ ρX−jTAdv

∣∣
tr
≤ ε3.

For the final case that the OA AdvSI gets side information ρj′ from Xj′ for some j′ 6= j, by the
same argument and OA-security of OAExt, we have ρZjY−jH − Um ⊗ ρY−jH | ≤ ε3. Again note that
given Y−j , H, Zj is independent of X−j , T , and ρj′ . Thus,∣∣ρZjX−jTAdv − Um ⊗ ρX−jTAdv

∣∣
tr
≤ ε3.

8.6 Our Network Extractor for the Quantum Rushing Case

In this section, we discuss how to deal with quantum rushing (QR) adversaries and present our GE-QR
secure network extractor. Recall that it means the protocol adversary AdvNet is allowed to operate
on the quantum side information collected by AdvSI to produce rushing messages for faulty players.
This is clearly more general, and it turns out that this setting is very different from the IR adversary
setting, and much more challenging to handle, as explained as follows.

We first note that whether OA and GE security are equivalent is no longer clear in the QR setting,
and even if it’s true, it seems unlikely to be proven by existing techniques. Recall that in the proof of
the equivalence in the IR setting, we crucially rely on the fact that the side information can be collected
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after the protocol execution. This is no longer true in the QR setting, since the side information is
used by AdvNet during the protocol execution and the operations are not commute in general.

Secondly, even getting OA-QR security seems already challenging. To see the issues, for example,
consider our network extractor in Figure 5 and 6. There, a public high min-entropy source Y is
generated in ExtPub protocol, which is used by each honest player i in the second step to extract
private randomness from his source Xi using a Y -strong OA-secure randomness extractor OAExt.
Now, suppose that Y depends on some rushing information, which in turn can be correlated with the
side information ρi of Xi collected by AdvSI. As such, it can create correlation between Y and Xi and
the extractor OAExt cannot be guaranteed to work. Indeed, by corrupting different set of players,
AdvNet can create such correlation for every bit of Y .

Thus, a natural approach is to avoid such correlation. Note that if a message y depends only on
honest players, then it is not subject to rushing attack. For example, consider a simple solution that we
group players into s = p/d groups of size d, and apply a quantum-secure multi-source extractor QMExt
to extract private randomness for each group. Since there are only t faulty players, at least s−t groups
contains only honest players. It can be shown that if we use GE-secure multi-source extractor, then
the outputs of honest groups are GE-QR secure. However, note that to compute QMExt(x1, . . . , xd),
d − 1 players need to send their inputs to the remaining player, so these s · (d − 1) = (1 − 1/d) · p
players cannot hope to obtain private randomness.

One can do better by letting s < p/d groups publish uniform seeds extracted by QMExt, and let
the remaining players choose one seed to extract their private randomness (distributed evenly since t
out of s groups can be faulty). It can be shown that if the seeded extractor in use is OA-secure, then
the output is GE-QR secure when both the group and the player are honest. By setting s = Θ(

√
pt),

we can ensure that at least p−O(
√
pt) players obtain uniform private output. However, we still lose

O(
√
pt) players, which is much worse than losing a small O(t) players in the IR setting when t = o(p).

Furthermore, for players using seeds from faulty groups, they may generate far from uniform output
without knowing their failure, which can be devastated for cryptographic applications. It is not clear
to us if we can get around these issues if we only rely on non-rushing messages.

Our Approach. Our key idea here is a simulation-based security lifting technique (from IR to QR)
that allows us to handle a limited amount of quantum rushing correlation, which we already elaborate
on in Section 8.3. However, as we explained before, this technique alone fails to resolve the quantum
rushing issue.

To illustrate the idea, let us consider the following construction. Let us again have s groups publish
s uniform seeds y1, . . . , ys extracted from QMExt, and concatenate short slices from each seed to obtain
a public source y (as in ExtPub in Fig. 5), which is used to extract randomness for the remaining player
i from their private xi using a OA-secure two-source extractor QTExt.

Let y = (yGood, yBad) where yGood (resp., yBad) are the components from honest (resp., faulty)
groups. Since yGood is from honest group, it is uniform and independent of xi, which also implies y
has good amount of min-entropy. However, yBad is subject to quantum rushing and can depend on
both yGood and the side information ρ that depends on xi, and thus, xi and y are not independent.
Nevertheless, such quantum rushing correlation is limited to the yBad part, which can be a small
fraction of y if s is sufficiently larger than t. Also, note that if only independent rushing is allowed
(i.e., yBad can only depend on yGood, but not the side information), then y remains independent of xi
and thus the extraction works as long as QTExt is y-strong and OA-secure.

Our idea now is to break the quantum rush correlation by the simulation idea in Theorem 8.7,
which guesses the value of yBad and only looks at the situation when the guess value matches the real
value. As a result, it occurs a 2|yBad| factor loss in the error, however, reduces any correlation generated

46



Protocol ExtNet: GE-QR secure network extractor.

Protocol Input: A private weak sources xi for each i ∈ P .

Protocol Output: A private output string zi for each i ∈ P .

Sub-Routines and Parameters:

1. Let IExt be a (d, n, k,m, ε1) independent source extractor with some constant d and ε1 ≤
n−2c from Theorem 5.12.

2. Let QTExtRaz(X,Y ) be the Y -strong quantum-secure two-source extractor from Theo-
rem 5.5 for for sources with min-entropy at least 0.9k and error ε2 ≤ 2−αk and output
length m2 = Ω(k).

Round 1.

1. Let s = t/2α (where α is the constant in the exponent of the error of QTExt). For each
i ∈ [s], let Ai = {(i− 1) · d+ 1, . . . , i · d}. Let B = P\(A1 ∪ · · · ∪As).

2. All players i in A1, . . . , As publish their input xi and output zi = ⊥. For each i ∈ [s], let yi
be the first k/s bits of IExt(x(i−1)d+1, . . . , xi·d). Let y = (y1, . . . , ys) ∈ {0, 1}k.

3. For each i ∈ B, player i computes zi = QTExtRaz(xi, y) and outputs zi. The remaining
players i /∈ B output zi = ⊥.

Figure 7: Our GE-QR secure network extractor.

by quantum rushing to a correlation generated only by independent rushing. One still needs to prove
the IR security of the protocol, which is a simpler task than directly proving the QR security. The
caveat is, however, that one needs to be able to afford the 2|yBad| blow-up in the error parameter.

In the above construction, we have errors from both QMExt and QTExt extractors, where QMExt
has large error 1/poly(n), which we cannot afford. Fortunately, note that QMExt is used to generate
yGood from honest groups, which is not subject to rushing. Thus, we can switch to a hybrid where
yGood is actually uniform, and avoid paying the 2|yBad| blow-up for the QMExt error. On the other
hand, we have two-source extractors QTExt with exponentially small error in the smaller entropy
of the two sources. If k is sufficiently large (compared to t), then we can set s to be a sufficiently
large O(t) so that yBad is a sufficiently small fraction of y and the blow-up is affordable. This leads
to a GE-QR secure network extractor that lose only O(t) honest players and ensure private uniform
randomness for every players with outputs, resolving the issues from the above naive approach.

On the other hand, for the k < t case, we cannot afford the blow-up since |yBad| is at least t but
the extractor error is at least 2−k. For clarity of exposition, we defer discussion about how to handle
k < t case in later sections. In what follows, we formalize the above construction to give a GE-QR
secure network extractor for the case where k is sufficiently larger than t.

Our GE-QR Secure Network Extractor for Sufficiently Large k We present a formal de-
scription of the above protocol in Fig. 7. Note that in the actual protocol, we only require marginal
security from the multi-source extractors. We use the construction to prove Theorem 8.5.
Proof. (of Theorem 8.5; sketch) We first note that the protocol has the same structure as our
GE-IR secure network extractor constructed in Section 8.5, where a public high min-entropy source is

47



published, and used to extract private randomness for the remaining players. Therefore, an analogous
analysis proves that ExtNet in Fig 7 is OA-IR secure with error ε′ = sε1 + ε2 for players in set B.
It follows by Theorem 8.6 that ExtNet is GE-IR secure with error ε′ for players in set B. We next
demonstrate how to apply Theorem 8.7 to show that ExtNet is GE-QR secure with error 2kt/s ·ε′. Note
that since ε1 = 1/poly(n), 2kt/s · ε′ > 1 so the conclusion is not useful. Nevertheless, we discuss how
to modify the proof to avoid the loss of 2kt/s · ε1 afterword.

To apply Theorem 8.7, we need to argue that the premise of the theorem holds for some ρX′Y ′Adv′

system with rushing part Y ′R and output Z ′, described in Theorem 8.7. Let us consider a honest player
j ∈ B. Let A =

⋃
iAi. We set X ′ = Xj , Z

′ = Zj Y
′ = XA, and let Y ′R be the components of Y in

the protocol that are subject to rushing. Note that while the components depends on the set Faulty of
faulty players, but the length |Y ′R| is always bounded by kt/s, since t faulty players can only control
up to t groups. Finally, let Adv′ be the remaining quantum system. Note that the GE-IR security of
player j with error ε′ implies the premise of Theorem 8.7 with error ε′. Therefore, the conclusion of
Theorem 8.7 implies that player j is GE-QR secure with error 2kt/s · ε′.

As mentioned, 2kt/s · sε1 > 1 so the conclusion is not useful. Note, however, the sε1 error comes
from application of IExt, and we only need to pay the error for the honest groups. To avoid paying
2kt/s · sε1, we can first switch to a hybrid input distribution X ′ such that the application of IExt to
the honest groups produce perfectly uniform output. Then, it can be shown by similar steps as before
that a honest player j ∈ B is GE-IR secure with error ε2. We can then apply Theorem 8.7 as before
to show that player j is GE-QR secure with error 2kt/s · ε2 ≤ 2αk/2. Finally, we can switch back to the
real experiment, and conclude that player j is GE-QR secure with error 2αk/2 + sε1.

We defer a full proof to the full version of this paper.

Sketch of handling k < t. When k < t, the above approach fails because we could have t faulty
players in B, which makes |YBad| > t while the error of the extractor is always at most 2−k. To deal
with this, we have to reduce the size of YBad. In other words, we need to somehow be able to select
a small subset from B that roughly contains the same fraction of honest players. One natural way
to do this is to sample a random subset of B. However, this is problematic because we need private
uniform random bits to sample, which we do not have (in fact, this is our goal). Fortunately, we can
use other combinatorial tools to do this step.

Specifically, here we will use an extractor graph. An [N,M,K,D, ε] extractor graph is a bipartite
graph with left vertex set [N ], right vertex set [M ], left degree D. It has the property that for any
subset T ⊂ [M ] with |T | = αM , all but K vertices in [N ] have roughly α fraction of neighbors in
T (with a deviation of at most ε). Non-constructively, ∀N > K > 0, ε > 0 such graphs exist with
D = O(log(N/K)/ε2) and M = Ω(KDε2).16 To apply an extractor graph here, we can identify the
set B with [M ] and identify the set C of remaining players with [N ]. We will then have each player
in C choose its neighbors in B as a set S, and use YS as the random string to apply QTExtRaz. This
will ensure that most of YS will roughly have the same fraction of entropy rate as Y . Note here we
can choose ε to be a small enough constant and choose K = o(t). Thus the degree D = O(logN) =
O(log p). By our assumption that k > C log p for some big enough constant C > 1, this will ensure
that k > D and thus we can afford to use YS in QTExtRaz for quantum rushing. Note that in this
way we only lose o(t) honest players in C. However, one slight drawback is that the honest players do
not know if they have obtained private uniform random bits in the end, as they do not know if they
are the K unlucky players given by the extractor graph.

16We also have explicit constructions, such as [15].
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