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Abstract

We describe a new hardness amplification result for point-wise approximation of Boolean func-
tions by low-degree polynomials. Specifically, for any function f on N bits, define F(x1, . . . ,xM) =
OMB( f (x1), . . . , f (xM)) to be the function on M ·N bits obtained by block-composing f with a specific
DNF known as ODD-MAX-BIT. We show that, if f requires large degree to approximate to error 2/3
in a certain one-sided sense (captured by a complexity measure known as positive one-sided approximate
degree), then F requires large degree to approximate even to error 1−2−M . This generalizes a result of
Beigel [5], who proved an identical result for the special case f = OR.

Unlike related prior work, our result implies strong approximate degree lower bounds even for many
functions F that have low threshold degree. Our proof is constructive: we exhibit a solution to the dual
of an appropriate linear program capturing the approximate degree of any function.

As an application, we give an explicit AC0 function with margin complexity exp
(
Ω̃(n2/5)

)
and

dimension complexity nO(logn). The previous best separation was due to Buhrman et al. [6], who gave an
AC0 function with margin complexity exp

(
Ω(n1/3)

)
and dimension complexity poly(n).
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1 Introduction

Approximate degree and threshold degree are two measures of Boolean function complexity that capture the
difficulty of point-wise approximation by low-degree polynomials. The ε-approximate degree of a function
f , denoted d̃egε( f ), is the least degree of a real polynomial that point-wise approximates f to error ε . The
threshold degree of f , denoted deg±( f ), is the least degree of a real polynomial that sign-represents f at all
points.

Approximate degree has found a diverse array of algorithmic and complexity-theoretic applications.
On the complexity side, approximate degree lower bounds underlie many tight lower bounds on quantum
query complexity [1, 2, 4, 21, 35], and have proven instrumental in resolving a host of long-standing open
problems in communication and circuit complexity [6, 10–12, 14, 23, 27, 28, 33–36, 38]. On the algorithms
side, upper bounds on these complexity measures underlie the fastest known learning algorithms in a number
of important models, including the PAC, agnostic, and mistake-bounded models [16, 19, 20, 29]. They also
yield fast algorithms for private data release [9, 41].

Despite these applications, our understanding of approximate and threshold degree remains limited.
While tight upper and lower bounds are known for some specific functions, including symmetric func-
tions [13, 26, 32] and certain read-once formulae, few general results are known, and characterizing the
approximate and threshold degrees of many simple functions remains open. However, a handful of recent
works has established various forms of “hardness amplification” for approximate degree [7,8,22,30,37,39].
Roughly speaking, these results show how to take a function f which is hard to approximate by low-degree
polynomials in a weak sense, and turn f into a related function F that is hard to approximate by low-degree
polynomials in a much stronger sense.

Our Contributions. We extend this recent line of work by establishing a new, generic form of hardness
amplification for approximate degree. Unlike prior work, our result implies strong lower bounds even for
many functions F that have low threshold degree (e.g., halfspaces). In contrast, analogous hardness ampli-
fication results [7,8,22,30,37,39] apply only to functions with polynomially large threshold degree. As the
main application of our technique, we exploit the aforementioned property to obtain an improved separation
between the margin and dimension complexities of an AC0 function.

We prove our results by constructing explicit dual polynomials, which are dual solutions to an appropri-
ate linear program capturing the approximate degree of any function. This “method of dual polynomials”
has proven to be a powerful technique for establishing lower bounds on approximate degree. Our con-
struction departs qualitatively from earlier applications of the method, and we believe it to be of interest
in its own right. In addition to implying approximate degree lower bounds, dual polynomials have been
used to resolve several long-standing open problems in communication complexity, and they yield explicit
distributions under which various communication problems are hard [12, 14, 27, 34–36, 38].

1.1 Overview of Our Results

Let f : {−1,1}n→ {−1,1} be a Boolean function. Our hardness amplification method relies heavily on a
complexity measure known as one-sided approximate degree, or, more precisely, its “positive” and “nega-
tive” variants, denoted d̃eg+,ε( f ) and d̃eg−,ε( f ) respectively. These are intermediate complexity measures
that lie between ε-approximate degree and threshold degree, and they have played a central role in recent
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prior work on hardness amplification for approximate degree [7,8,30,37].1 Unlike the latter two complexity
measures, d̃eg+,ε( f ) and d̃eg−,ε( f ) treat inputs in f−1(+1) and inputs in f−1(−1) asymmetrically.

In more detail, a polynomial p is said to be a positive one-sided ε-approximation for a Boolean function
f if |p(x)− f (x)| ≤ ε for all x ∈ f−1(−1), and p(x) ≥ 1− ε for all x ∈ f−1(+1). The positive one-sided
ε-approximate degree of f is the least degree of a positive one-sided ε-approximation for f . Negative one-
sided ε-approximate degree is defined analogously. (Appendix A contains formal definitions.) Notice that
d̃eg+,ε( f ) and d̃eg−,ε( f ) are always at most d̃egε( f ), but can be much smaller. Similarly, d̃eg+,ε( f ) and
d̃eg−,ε( f ) are always at least deg±( f ), but can be much larger.

Let OMB : {−1,1}n→{−1,1} denote a specific polynomial size DNF formula known as ODD-MAX-BIT,
defined as follows. On input x = (x1, . . . ,xn), let i∗ denote the largest index such that xi∗ =−1, and let i∗ = 0
if no such index exists. We define

OMB(x1, . . . ,xn) =

{
−1 if i∗ is odd
1 otherwise

When appropriate, we also use subscripts after function symbols to indicate the number of variables over
which the function is defined. Thus, OMBM denotes the OMB function on M inputs.

For any function f : {−1,1}N , define F :
(
{−1,1}N

)M → {−1,1} to be the block-composition of
OMBM with f , i.e., F = OMBM( f , . . . , f ). Our hardness amplification result establishes that if d̃eg+,ε( f )
is large for some ε bounded away from 1, then d̃eg+,ε(F) is large even for ε exponentially close to 1.

Theorem 1. If d̃eg+,2/3( f )≥ d, then d̃eg+,ε(F)≥ d for ε = 1−2−M.

Theorem 1 is tight whenever f has a (1/3)-approximation q of degree d satisfying q(x) = f (x) for all
x ∈ f−1(−1). This is the case for many important functions, including f = ORN (see Section 1.2.2 and
Remark 6), and f = EDN , where EDN is a function arising in the proof of Theorem 2 below (see Remark
21).

An Application: Improved Margin-Dimension Gap for AC0. Margin complexity and dimension com-
plexity are combinatorial quantities that play central roles in learning theory, communication complexity,
and circuit complexity. For example, margin complexity is known to be essentially equivalent to discrep-
ancy [24], which in turn characterizes the communication complexity class PPcc. Meanwhile, dimension
complexity characterizes the communication complexity class UPPcc.

The communication complexity measures PPcc( f ) and UPPcc( f ) both capture the difficulty of com-
puting f to small-bias. UPPcc( f ) is the minimum communication cost of any randomized protocol that
computes f with strictly positive bias. PPcc( f ) is similar, but defines the cost of a protocol to be the sum
of the communication cost and the logarithm of the reciprocal of the protocol’s bias. We define PPcc and
UPPcc formally in Appendix B, where we also discuss applications of these communication models to
circuit complexity and learning theory.

Both UPPcc and PPcc were introduced in 1986 by Babai et al. [3], and determining whether these
classes were equal was open until 2008, when Buhrman et al. [6] and Sherstov [31] independently resolved

1Strictly speaking, the terms positive and negative one-sided approximate degree were introduced by Kanade and Thaler [17],
who gave applications of these complexity measures to learning theory. Earlier works on hardness amplification for pointwise
approximation by polynomials only used negative one-sided approximate degree, and referred to this complexity measure without
qualification as one-sided approximate degree [8, 30]. For our purposes, the distinction between positive and negative one-sided
approximate degree is crucial.
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the problem. Sherstov established the existence of a function F with PPcc communication complexity
PPcc(F) = Ω(n), and UPPcc communication complexity UPPcc(F) = O(logn) [31, Theorem 1.2]. How-
ever, this function is not in AC0. Buhrman et al. exhibited an explicit function F ′ in AC0 satisfying
PPcc(F ′) = Ω(n1/3), and UPPcc(F ′) = O(logn).

Prior to our work, the result of Burhman et al. was the best known separation between the PPcc and
UPPcc communication complexity of an AC0 function (equivalently, between the margin complexity and
dimension complexity of an AC0 function). We use Theorem 1 to improve on their separation, as formalized
in the following theorem.

Theorem 2. There is an explicit function F ′ computed by a polynomial size circuit of constant depth satis-
fying: UPPcc(F ′) = O(log2 n) and PPcc(F ′) = Ω̃(n2/5), where the Ω̃ notation hides logarithmic factors.

At the core of our proof of Theorem 2 is the identification of an AC0 function F such that d̃egε(F) is
“large” even for exponentially close to 1, yet deg±(F) is “small”. It is already well-known that this behavior
is exhibited by many halfspaces — in fact, crucial to the PPcc vs. UPPcc separation achieved by Burhman et
al. [6] is the fact that OMB itself is a halfspace (i.e., deg±(OMBn) = 1), and yet d̃egε(OMBn) = Ω(n1/3),
even for ε = 1−2−n1/3

(see Section 1.2.2).
We improve over the result of Burhman et al. by considering the function F = OMBn2/5(EDn3/5 , . . . ,EDn3/5).

Prior work has shown that EDN satisfies d̃eg+,2/3(EDN)= Ω̃(N2/3) [8], so Theorem 1 implies that d̃eg+,ε(F)=

Ω̃(n2/5) even for ε = 1− 2−n2/5
. Yet we show that deg±(F) = O(logn). The key property that we use to

establish this threshold degree upper bound is that EDN can be sign-represented by a polynomial p of degree
O(logN) such that p is exactly correct on all inputs x such that EDN(x) = +1.

1.2 Technical Comparison to Prior Work

1.2.1 The Method of Dual Polynomials

A dual witness to the statement d̃egε( f )≥ d is a non-zero real-valued function ψ : {−1,1}N→R satisfying
two conditions: (a) ∑x∈{−1,1}N ψ(x) · f (x)≥ ε ·C, where C = ∑x∈{−1,1}N |ψ(x)|, and (b) ψ has zero correla-
tion with all polynomials of degree at most d. We refer to Property (a) by saying that ψ is ε-correlated with
f . We refer to Property (b) by saying that ψ has pure high degree d. We refer to ψ as a dual polynomial for
f .

A dual witness to the statement that d̃eg+,ε( f ) ≥ d must satisfy an additional correlation condition,
namely: (c) φ(x) agrees in sign with f (x) for all x ∈ f−1(+1). We refer to Property (c) by saying that φ has
positive one-sided error. (See Appendix A for details of the duality theory.)

We prove Theorem 1 by showing the following: given a dual polynomial ψin witnessing the assumed
d̃eg+,2/3 lower bound on the inner function f , one can construct an explicit dual polynomial ψcomb witness-
ing the claimed lower bound on the composed function F = OMB( f , . . . , f ).

1.2.2 Prior Work on the Approximate Degree of OMB

Beigel [5] proved that for any d > 0, there is an ε ∈ 1− 2−Ω(n/d2) such that d̃egε(OMBn) ≥ d, and used
this result to give an oracle separating the (Turing Machine) complexity class PP from PNP. Note that
OMBM(ORN , . . . ,ORN) is a sub-function of OMBM·(2N). Moreover, it is known that d̃eg+,2/3(ORN) =

Ω(N1/2) [8, 15, 25]. Hence, Theorem 1 can be viewed as a substantial generalization of Beigel’s result: we
recover Beigel’s lower bound as a special case of Theorem 1 by letting f = ORd2 . Unlike Beigel’s proof,
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which used a non-constructive symmetrization technique, our proof of Theorem 1 constructs an explicit dual
polynomial witnessing the lower bound.

For any ε > 0, Klivans and Servedio [20] gave an optimal ε-approximating polynomial for the function
OMB, showing that Beigel’s lower bound (and hence also our Theorem 1) is asymptotically tight for all
d > 0.

1.2.3 Earlier Constructions of Dual Polynomials for Block-Composed Functions

Given functions gM, fN , Sherstov [39] and Lee [22] independently described a powerful method for con-
structing a dual polynomial for the composed function F = gM( fN , . . . , fN) : {−1,1}M·N → {−1,1}. This
method takes a dual polynomial ψin for fN , and a dual polynomial ψout for g, and combines them to obtain
a dual polynomial ψcomb for the composed function F .

Specifically, denoting an (M ·N)-bit input as (x1, . . . ,xM) ∈
(
{−1,1}N

)M, Sherstov and Lee defined

ψcomb(x1, . . . ,xM) = ψout (s̃gn(ψin (x1)) , . . . , s̃gn(ψin (xM))) ·
M

∏
i=1
|ψin(xi)|. (1)

Here, s̃gn : R→{−1,0,1} denotes the function satisfying s̃gn(t) = 1 if t > 0, s̃gn(t) =−1 if t < 0, and
s̃gn(0) = 0.

Recall that for ψcomb to witness a good lower bound for the approximate degree of F , it must be well-
correlated with F (Property (a) of Section 1.2.1), and it must have large pure high degree (Property (b) of
Section 1.2.1). Sherstov and Lee showed that the pure high degree of ψcomb is multiplicative in the pure high
degrees of ψin and ψout. That is, if ψin has pure high degree d1, and ψout has pure high degree d2, then ψcomb
has pure high degree d1 ·d2. And while ψcomb is not in general well-correlated with the composed function
F , several important examples have been identified in which this is the case, as we now explain.

Sherstov [37] and independently Bun and Thaler [7] used the combining technique of Eq. (1) to resolve
the (1/3)-approximate degree of the two-level AND-OR tree. Subsequent work by Bun and Thaler [8] used
Eq. (1) to establish a hardness amplification result that looks similar to our Theorem 1. Specifically, Bun
and Thaler proved:

Theorem 3 (Bun and Thaler [8]). Suppose d̃eg−,2/3( f ) ≥ d. Then d̃eg−,ε(ORM( f , . . . , f )) ≥ d, for ε =

1−2−M.

Theorem 3 is identical to our Theorem 1, but for two differences: first, in our Theorem 1, the outer
function in the composition is OMB, while in Theorem 3 it is OR. Second, the hypothesis in Theorem 1 is
that the inner function f satisfies d̃eg+,2/3( f )≥ d, while the assumption in Theorem 3 is that d̃eg−,2/3( f )≥
d. These differences are crucial for obtaining a hardness amplification result that applies to functions with
low threshold degree. Indeed, subsequent work by Sherstov refined Theorem 3 to yield a threshold degree
lower bound, rather than a d̃eg−,ε lower bound [30].

Theorem 4 (Sherstov [30]). Suppose d̃eg−,2/3( f )≥ d. Then deg±(ORM( f , . . . , f ))≥min{d,cM} for some
constant c > 0.

Sherstov gives several proofs of Theorem 4. One of them draws heavily on Eq. (1): he constructs a
dual witness of the form ψcomb +ψfix, where ψcomb is the dual witness constructed by Bun and Thaler using
Eq. (1) to prove Theorem 3, and ψfix is used “zero out” ψcomb on points x such that 0 6= s̃gn(ψcomb(x)) 6=
s̃gn(ORM( f , . . . , f )). This ensures that ψcomb +ψfix is perfectly correlated with F .

Sherstov used Theorem 4 to give a depth three circuit with threshold degree Ω̃(n2/5). He also established
the following result, which yields a polynomially stronger lower bound for depth k > 3.
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Theorem 5 (Sherstov [30]). For any k ≥ 2, there is a depth k (read-once) Boolean circuit computing a
function F satisfying deg±(F) = Ω(n(k−1)/(2k−1)).

Sherstov’s proof of Theorem 5 is not a refinement of the proof Theorem 3 from [8]. Rather it relies on
an elaborate inductive construction of a dual polynomial (which is nonetheless reminiscent of Eq. (1)).

1.2.4 Complementary Slackness and the Need for New Techniques

In this section, we explain why any dual witness establishing Theorem 1 must qualitatively depart from the
dual witnesses constructed in prior work (cf. Section 1.2.3). In brief, we first argue that the dual witnesses
constructed in prior work are implicitly tailored to show optimality of a specific technique for approximating
block-composed functions. We then explain that this technique is far from optimal for the functions to which
Theorem 1 applies.

Approximating Block-Composed Functions via “Robustification”. Sherstov [40] provided a generic
technique forapproximating block-composed functions. Specifically, he showed that for any polynomial
p : {−1,1}M → [−1,1], and every δ > 0, there is a polynomial probust : RM → R of degree O(deg(p)+
log(1/δ )) that is robust to noise in the sense that |p(y)− probust(y+ e)| < δ for all y ∈ {−1,1}M and e ∈
[1/3,1/3]M. Hence, given functions g = gM, f = fN , one can obtain an (ε +δ )-approximating polynomial
for the block-composition g( f , . . . , f ) as follows: let p be an ε-approximating polynomial for g, and q a
(1/3)-approximating polynomial for f . Then the block composition p∗ := probust(q, . . . ,q) is an (ε + δ )-
approximating polynomial for g( f , . . . , f ). Notice that the degree of p∗ is at most the product of the degrees
of probust and q.

This generic construction yields asymptotically optimal ε-approximating polynomials for essentially all
block-composed functions considered in prior work on hardness amplification. Indeed, this holds for the
two-level AND-OR tree when ε = 1/3 [7,37], as well as for the functions considered in Theorems 3, 4, and
5, for ε exponentially close to 1 (see e.g. [30, Theorem 1.2]).

Showing Robustification Is Optimal (Except When It’s Not). Intuitively, the dual witness ψcomb con-
structed via Eq. (1) is specifically tailored to show optimality of the above generic technique for approxi-
mating block-composed functions. Indeed, ψcomb “almost” obeys complementary slackness with respect to
p∗ in the following sense.

Suppose that probust achieved exactly optimal error ε among all degree d polynomial approximations to
the outer function g. Then probust yields an optimal solution to the relevant linear program capturing the
ε-approximate degree of g (cf. Appendix A). Complementary slackness states that there is an optimal dual
solution (i.e., a weighting of the constraints from the primal linear program) which places non-zero weight
only on constraints that are made tight by the primal optimum. In our context, this means that there is an
optimal dual polynomial ψout for g such that ψout(y) 6= 0 only for “maximal error points” y ∈ {−1,1}M,
i.e., points y satisfying |probust(y)−g(y)|= ε . Let ψin be any dual polynomial for the inner function f , and
suppose ψout is combined with ψin as per Eq. (1) to obtain a dual polynomial ψcomb for g( f , . . . , f ).

If ψin were perfectly correlated with f , then one can check that ψcomb(x) 6= 0 only for x = (x1, . . . ,xM) ∈(
{−1,1}N

)M such that

|probust (q(x1) , . . . ,q(xM))−g( f (x1) , . . . , f (xM))|=
|probust ( f (x1) , . . . , f (xM))−g( f (x1) , . . . , f (xM))|±δ ≥ε−δ ≈ ε.

Put another way, ψcomb places non-zero weight only on points on which probust(q, . . . ,q) achieves “nearly
maximal error” of at least ε−δ . This is what we mean when we say that ψcomb “almost” satisfies comple-
mentary slackness with respect to the primal solution corresponding to probust(q, . . . ,q).
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In general, ψin will not be perfectly correlated with f , but the analyses of ψcomb from prior work
identify settings in which ψcomb still places “most” of its weight on points x such that |probust(q, . . . ,q)−
g( f , . . . , f )|= ε±δ ≈ ε .

When Robustification Is Sub-Optimal. In contrast to these earlier results, Theorem 1 applies to functions
for which p∗ := probust(q, . . . ,q) is not an optimal approximating polynomial. To see this, recall from Section
1.2.2 that, for any ε > 0, Klivans and Servedio [20] gave an optimal ε-approximating polynomial for the
function OMBM·(2N), which contains the function OMBM(ORN , . . . ,ORN) as a subfunction. It can be seen
that the approximating polynomial exhibited by Klivans and Servedio is of the form p(q, . . . ,q), where
p is a non-robust ε-approximating polynomial for OMBM (for some ε = 1− 2−Θ(M)), and q is a (1/3)-
approximating polynomial for ORN .

Since probust(q, . . . ,q) is not an optimal approximating polynomial for OMBM(ORN , . . . ,ORN), we do
not expect there to be any dual witness obeying complementary slackness with respect to probust(q, . . . ,q).
Accordingly, the dual witness ψcomb that we construct to prove Theorem 1 departs from Eq. (1).

Remark 6. One reason that Klivans and Servedio [20] do not need to use a robust approximating polyno-
mial for the outer function OMBM is that they use an inner approximation q for the inner function f that
is exactly correct for inputs in f−1(+1). Hence, they can use an outer approximation p that is robust only
to highly restricted noise vectors. Namely, for any input x, p needs to be robust only to noise vectors e such
that ei = 0 on all coordinates i such that xi =+1.

1.2.5 Roadmap for the Rest of the Paper

For completeness, we collect formal definitions of approximate degree and its one-sided variants, along
with their dual characterizations, in Appendix A. We introduce notation and establish preliminary lemmas
in Section 2. Section 3 provides an intuitive overview of the dual witness we construct to prove Theorem 1,
before providing proof details. Section 4 proves Theorem 2.

2 Notation and Preliminary Facts

Given a set T ⊆ {−1,1}N , we let IT denote the indicator vector of T ; that is, IT (x) = 1 if x ∈ T , and
IT (x) = 0 otherwise. Given a dual polynomial ψ : {−1,1}N → R, we define the L1-weight of T under ψ to
be Wψ(T ) = ∑x∈T |ψ(x)|. We refer to Wψ({−1,1}N) as the L1-norm of ψ .

We define the function s̃gn : R→{−1,0,1} via:

s̃gn(t) =


1 if t > 0
−1 if t < 0
0 otherwise.

We say that a dual polynomial ψ for a function f makes an error on input x if 0 6= s̃gn(ψ(x)) 6= s̃gn( f (x)).
Crucial to our proof are the following two facts that provide methods of combining multiple dual wit-

nesses while preserving their pure high degree.

Fact 7. If ψ1,ψ2 :
(
{−1,1}N

)M →{−1,1} both have pure high degree d, then so does ψ1 +ψ2.
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Proof. Let g :
(
{−1,1}N

)M →{−1,1} be any polynomial of degree at most d. Then

∑
x∈({−1,1}N)M

(ψ1(x)+ψ2(x))g(x) =

 ∑
x∈({−1,1}N)M

ψ1(x)g(x)

+

 ∑
x∈({−1,1}N)M

ψ2(x)g(x)

= 0+0 = 0.

Fact 8. Suppose that ψ1, . . . ,ψM : {−1,1}N →{−1,1} are each defined over disjoint sets of variables, and
there is some i such that ψi has pure high degree d. Then so does the function ψ :

(
{−1,1}N

)M → {−1,1}
defined via ψ(x1, . . . ,xM) = ∏

M
i=1 ψi(xi).

Proof. Let g :
(
{−1,1}N

)M → R be any polynomial of degree at most d. Letting x = (x1, . . . ,xM) ∈(
{−1,1}N

)M, we assume without loss of generality that g = ∏
M
j=1 g j(xi), where deg(g j) ≤ d for all j (the

general case follows from this special case by linearity). We must show that ψ is uncorrelated with g. To
see this, note that:

∑
x∈({−1,1}N)M

ψ(x) ·g(x) = ∑
x1,...,xM∈{−1,1}N

ψ(x1, . . . ,xM) ·g(x1, . . . ,xM) = ∑
x1,...,xM∈{−1,1}N

M

∏
j=1

(ψ j(x j) ·g j(x j))

=

(
∑

x1,...,xi−1,xi+1,...,xM∈{−1,1}N

M

∏
j=1, j 6=i

ψi(xi) ·g j(xi)

)(
∑

xi∈{−1,1}N

ψi(xi) ·gi(xi)

)

=

(
∑

x1,...,xi−1,xi+1,...,xM∈{−1,1}N

M

∏
j=1, j 6=i

ψ j(x j) ·g j(x j)

)
·0 = 0

Here, the second equality holds by definition of ψ , and the fourth because ψi has pure high degree d and
deg(gi)≤ deg(g)≤ d.

3 Proof of Theorem 1

This section proves Theorem 1, which we restate here for the reader’s convenience. Recall from the intro-
duction that for any Boolean function f : {−1,1}N→{−1,1}, F denotes the function OMBM( f , . . . , f ) that
maps {−1,1}M·N to {−1,1}.

Theorem 1. If d̃eg+,2/3( f )≥ d, then d̃eg+,ε(F)≥ d for ε = 1−2−M.

Proof. Let ψin denote a dual witness for the fact that d̃eg+,2/3( f )≥ d, normalized to ensure that its L1-norm
is 1. Recall from Section 1.2.1 that ψin satisfies three properties: (a) ψin has pure high degree at least d, (b)
ψin has correlation ε ′ ≥ 2/3 with f , and (c) ψin(xi) ≥ 0 for all xi ∈ f−1(+1). Let E denote the set of all
xi ∈ {−1,1}N on which ψin(xi) is in error, i.e., 0 6= s̃gn(ψin(xi)) 6= s̃gn( f (xi)).

Proof Overview. For any vector x = (x1, . . . ,xM) ∈
(
{−1,1}N

)M, we think of xM as the “most significant”
block in x, because if f (xM) = −1, then F evaluates to −1 regardless of the values of the other blocks
x1, . . . ,xM−1. Similarly, we think of x1 as the “least significant block” of x.
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We think of our dual witness ψcomb as being constructed iteratively. The first iteration will create a dual
witness ψ(1) that “uses” the least significant block x1 to “achieve” pure high degree at least d. However,
ψ(1) will only have correlation ε ′ with F , and hence it will make errors if ε ′ < 1. The second iteration
creates a dual witness ψ

(2)
comb = ψ(1)+ψ(2), where ψ(2) is a correction term that zeros out there errors of

ψ(1). Moreover, ψ(2) will use the second block x2 to achieve pure high degree at least d. By Fact 7, this
ensures that ψ

(2)
comb also has pure high degree at least d.

If ψ(2) zeroed out all of the errors of ψ(1) without introducing any new errors, then ψ
(2)
comb would have

perfect correlation with F , and we would be done. Unfortunately, ψ(2) does introduce new errors. But we
have made tangible progress: we show that the number of errors ψ(2) makes, relative to ψ(1), falls by a factor
of Wψin( f−1(+1))/Wψin(E) = ε ′/(1− ε ′). Since ε ′ ≥ 2/3, we conclude that ε ′/(1− ε ′)≥ 2, and hence that
ψ(2) makes at most half as many errors as ψ(1).

In general, the ith iteration adds in a correction term ψ(i) that zeros out all of the errors of the dual
witness ψ

(i−1)
comb constructed in the previous iteration. ψ(i) will use the ith input block xi to achieve pure high

degree at least d, and will introduce at most a Wψin(E)/Wψin( f−1(+1))≤ 1/2 fraction of the errors made by
ψ(i−1). At the end of iteration M, we have constructed a dual witness ψcomb := ∑

M
i=1 ψ(i) that makes only a(

Wψin(E)/Wψin( f−1(+1))
)M

= ((1− ε ′)/ε ′)M ≤ 2−M fraction of the errors made by ψ(1), and we are done.

Proof Details.

Properties of ψin. Throughout, we let Q−,Q+ ⊆ {−1,1}N denote the set of inputs xi for which ψin(xi)< 0
and ψin(xi)> 0 respectively. We assume d ≥ 1, as otherwise Theorem 1 holds trivially. We make use of the
following simple facts about IQ+ and IQ− .

Fact 9. ∑xi∈{−1,1}N IQ−(xi) · |ψin(xi)|= ∑xi∈{−1,1}N IQ+(xi) · |ψin(xi)|= 1/2.

Proof. Since ψin witnesses the fact that d̃eg+,1/2( f )≥ d, ψin has pure high degree at least d ≥ 1. In particu-
lar, ψin is uncorrelated with any constant function. Hence, ∑xi∈{−1,1}N ψin(xi)= 0. Since ∑xi∈{−1,1}N |ψin(xi)|=
1, it follows that ∑xi∈{−1,1}N :xi∈Q+ |ψin(xi)| = ∑xi∈{−1,1}N :xi∈Q− |ψin(xi)| = 1/2, which is equivalent to the
statement we wished to prove.

A crucial implication of Property (c) is that if ψin outputs a negative value on input xi, we can “trust”
that f (xi) =−1, as formalized in the next fact.

Fact 10. For all xi ∈ Q−, it holds that f (xi) = −1. Equivalently, E ⊆ f−1(−1), or in other words E ∩
f−1(+1) = /0.

The following two facts relate the correlation of ψin with f to the L1-weight of the sets E and f−1(+1)
under ψin.

Fact 11. Wψin(E) = (1− ε ′)/2.

Proof. By Property (a), ε ′ = ∑xi∈{−1,1}N ψin(xi) · f (xi) = 1−2∑xi∈E |ψin(xi)|.

Fact 12. Wψin( f−1(+1)) = ε ′/2.

Proof. This holds by the following sequence of equalities:

1/2 = ∑
xi∈Q+

|ψin(xi)|= ∑
xi∈E
|ψin(xi)|+ ∑

xi∈ f−1(+1)

|ψin(xi)|=
(
1/2− ε

′/2
)
+ ∑

xi∈ f−1(+1)

|ψin(xi)|.
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Here, the first equality holds by Fact 9, the second because ψin satisfies Property (c), and the third by Fact
11.

Construction of ψcomb. The dual witness we construct is:

ψcomb(x1, . . . ,xM) =
M

∑
i=1

ψ
(i), where (2)

ψ
(i) = (−1)i−1 · (2/ε

′)M−1

(
∏
j<i

IE(x j) · |ψin(x j)|

)
·ψin(xi) ·

(
M

∏
j=i+1

I f−1(+1)(x j) · |ψin(x j)|

)
. (3)

Recall that, to show that ψcomb witnesses the fact that d̃eg+,ε(F)≥ d for ε = 1−2−M, it suffices to show
that ψcomb satisfies three properties (cf. Lemma 25 in Appendix A): (a) it must have pure high degree at
least d, (b) it must satisfy ∑x∈({−1,1}N)M ψcomb(x) ·F(x)≥C · ε , where C = ∑(x∈{−1,1}N)M |ψcomb(x)|, and (c)
it must have positive one-sided error. We establish each in turn below, in Propositions 13, 14, and 17.

Proposition 13. ψcomb has pure high degree at least d.

Proof. Since ψin has pure high degree at least d, Fact 8 implies that each term ψ(i) in the sum within Eq. (2)
also has pure high degree at least d. The lemma then follows by Fact 7.

Proposition 14. ∑x∈({−1,1}N)M ψcomb(x) ·F(x)≥C · ε .

The proof of Proposition 14 will make use of the following two lemmas.

Lemma 15. C ≥ 1/2.

Proof. Consider the set S = {(x1, . . . ,xM) : x1 ∈ Q− and x2, . . . ,xM ∈ f−1(+1)}. We claim that the weight,
Wψcomb(S), that ψcomb places on the set S is 1/2. The lemma clearly follows.

To see this, fix x = (x1, . . . ,xM) ∈ S. We first note that for all i≥ 2, ψ(i)(x) = 0. Indeed, Q−∩E = /0 (cf.
Fact 10), and hence IE(x1) = 0. Thus, it is immediate from Eq. (3) that ψ(i)(x) = 0 for i≥ 2.

So it suffices to show that ∑x∈S−ψ(1)(x)≥ 1/2. This follows from the following calculation:

∑
x∈S
−ψ

(1)(x) = (2/ε
′)M−1 ·

(
∑

x1∈Q−
−ψin(x1)

)
·

 M

∏
j=2

 ∑
x j∈{−1,1}N

I f−1(+1)(x j) · |ψin(x j)|


= (2/ε

′)M−1 · (1/2) ·
M

∏
j=2

(ε ′/2) = 1/2,

where the first equality holds by Eq. (3), and the second holds by Facts 9 and 12.

Lemma 16. Let Ecomb ⊆
(
{−1,1}N

)M denote the set of inputs on which ψcomb makes an error, i.e., 0 6=
s̃gn(ψcomb(x)) 6= s̃gn(F(x)). Let EM ⊆

(
{−1,1}N

)M denote {(x1, . . . ,xM) : xi ∈ E for all i}. Then Ecomb =
EM.

9



Proof. We first show that EM ⊆ Ecomb before showing that Ecomb ⊆ EM. Suppose that x = (x1, . . . ,xM) ∈
EM. Fact 10 states that E ⊆ f−1(−1), and hence I f−1(+1)(xM) = 0. It is then immediate from Eq. (3) that
ψ(i)(x) = 0 for all i < M. Meanwhile, by Eq. (3) it holds that

s̃gn(ψ(M)(x)) = (−1)M−1 · s̃gn(ψin(xM)) = (−1)M−1.

Here, we used the fact that s̃gn(ψin(xM))> 0 if xM ∈ E. (To see this, note that since xM ∈ E, it holds that

0 6= s̃gn(ψin(xM)) 6= f (xM) =−1,

where the final equality holds because E ⊆ f−1(−1).) At the same time, F(x) = OMBM(−1,−1, . . . ,−1) =
(−1)M. Thus, x ∈ Ecomb as claimed.

Fix any x = (x1, . . . ,xM) ∈
(
{−1,1}N

)M such that there exists an i ∈ {1, . . . ,M} satisfying xi 6∈ E. To
show that Ecomb ⊆ EM, we must show that x 6∈ Ecomb. To this end, let i∗ be the smallest coordinate such
that xi∗ 6∈ E. It is clear that ψcomb(x) = 0 if ψin(xi) = 0 for any i ∈ [M], and hence x 6∈ Ecomb. So assume
throughout that ψin(xi) 6= 0 for all i. The proof proceeds via a case analysis.

• Case 1: There exists a j > i∗ such that x j 6∈ f−1(+1). In this case, I f−1(+1)(x j) = 0, so it is immediate
from Eq. (3) that ψ(k)(x) = 0 for all k < j. Meanwhile, since IE(xi∗) = 0, it is immediate from Eq. (3)
that ψ(k)(x) = 0 for all k ≥ j. Thus, ψcomb(x) = ∑

M
k=0 ψ(k)(x) = 0, implying that x 6∈ Ecomb.

• Case 2: i∗ = 1, and x j ∈ f−1(+1) for all j > i∗. In this case, it is clear by Eq. (3) that

s̃gn(ψ(1)(x)) = (−1)0 · s̃gn(ψin(x1)) = s̃gn(ψin(x1)) = s̃gn( f (x1)) = F(x1, . . . ,xM). (4)

Here, the third equality holds because x1 6∈ E, and the fourth equality exploits the fact that if x j ∈
f−1(+1) for all j > 1, then F(x) = f (x1).

Meanwhile, since x1 6∈ E, it holds that IE(x1) = 0, and so it is clear by Eq. (3) that ψ(k)(x) = 0 for all
k ≥ 2. Combining this with Eq. (4), we conclude that s̃gn(ψcomb(x)) = s̃gn(ψ(1)(x)) = F(x1, . . . ,xM).
Thus, x 6∈ Ecomb.

• Case 3: i∗ ≥ 2, and x j ∈ f−1(+1) for all j > i∗. First, we argue that ψ(k) = 0 for all k < i∗−1. Indeed,
for all such k, xk+1 ∈ E ⊆ f−1(−1) (cf. Fact 10), and so it holds that I f−1(+1)(xk+1) = 0. Hence, it is
immediate from Eq. (3) that ψ(k)(x) = 0.

Next, we argue that ψ(k) = 0 for all k ≥ i∗+ 1. Indeed, xi∗ 6∈ E, so IE(xi∗) = 0. It is then immediate
from Eq. (3) that ψ(k)(x) = 0 for all k ≥ i∗+1.

Finally, we claim that either ψ(i∗−1)(x) +ψ(i∗)(x) = 0 or s̃gn(ψ(i∗−1)(x) +ψ(i∗)(x)) = F(x). This
follows from the following calculation.

– Case 3a: Suppose xi∗ 6∈ f−1(+1), i.e., that I f−1(+1)(xi∗) = 0. Then is clear from Eq. (3) that
ψ(i∗−1)(x) = 0. Meanwhile, since xi∗ 6∈ E, it is clear from Eq. (3) that

s̃gn(ψ(i∗)(x)) = (−1)i∗−1 · s̃gn(ψin(xi∗)) = (−1)i∗−1 · f (xi∗) = F(x),

where the final equality exploits the fact that if x j ∈ f−1(+1) for all j > i∗, and xi∗−1 ∈ E ⊆
f−1(−1) (Fact 10), then F(x) = (−1)i∗−1 · f (xi∗).
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– Case 3b: Suppose xi∗ ∈ f−1(+1). We claim that it holds that ψ(i∗−1)(x) = −ψ(i∗)(x). To see
this, note that in this case

ψ
(i∗−1)(x) = (−1)i∗−2 · (2/ε

′)M−1 ·ψin(xi∗−1) · ∏
j 6=i∗−1

|ψin(x j)|, and (5)

ψ
(i∗)(x) = (−1)i∗−1 · (2/ε

′)M−1 ·ψin(xi∗) ·∏
j 6=i∗
|ψin(x j)|. (6)

Both of the above quantities are clearly equal in absolute value, but it remains to show that
ψ(i∗−1)(x)=−ψ(i∗)(x). Since xi∗−1 ∈E ⊆ f−1(−1) (Fact 10), it holds that s̃gn(ψin(xi∗−1))=+1.
Meanwhile, since xi∗ 6∈ E, s̃gn(ψin(xi∗)) = f (xi∗) = +1. Hence, s̃gn(ψ(i∗−1)(x)) = (−1)i∗−2,
while s̃gn(ψ(i∗)(x)) = (−1)i∗−1, completing the proof.

Combining all of the above, we conclude that ψcomb(x) = ∑
M
j=1 ψ

( j)
comb(x) = ψ

(i∗−1)
comb (x)+ψ

(i∗)
comb(x), and

the latter expression is either equal to 0 or agrees in sign with F(x). Thus, x 6∈ Ecomb. This completes
the proof of Lemma 16.

Proof of Proposition 14. Note that

∑
x∈({−1,1}N)M

ψcomb(x) ·F(x) = ∑
x∈({−1,1}N)M

|ψcomb(x)|−2 ∑
x∈Ecomb

|ψcomb(x)|=C−2 ∑
x∈Ecomb

|ψcomb(x)|, (7)

where we recall from Lemma 16 that Ecomb = EM is the set of points on which ψcomb makes an error.
Observe that for each j:

∑
x∈EM

ψ
( j)(x) ≤ (2/ε

′)M−1
M

∏
i=1

(
∑

xi∈E
|ψin(xi)|

)
≤ (2/ε

′)M−1 ·
M

∏
i=1

(
(1− ε

′)/2
)
≤ 3M−1/6M < 2−M−1. (8)

Here, the first equality holds because, for all x ∈ EM and j < M, ψ( j)(x) = 0; this follows by combining
Eq. (3) with the fact that E∩ f−1(+1)= /0 (Fact 10) (see also the EM ⊆Ecomb direction in the proof of Lemma
16). The second inequality holds by Fact 11, and the third holds because ε ′ ≥ 2/3. Combining Lemma
15 with Eq. (7) and Eq. (8), we conclude that ∑x∈({−1,1}N)M ψcomb(x) ·F(x) ≥ C− 2−M−1 ≥ C(1− 2−M),
completing the proof.

Proposition 17. ψcomb(x)≥ 0 for all x ∈ F−1(+1).

Proof. Assume without loss of generality that M is odd. Lemma 16 implies that the set Ecomb on which
ψcomb makes an error is equal to EM. Since E ⊆ f−1(−1) (cf. Fact 10), it is obvious from the definition of
F that EM ⊆ F−1(−1). It follows that ψcomb makes no errors on F−1(+1), implying the proposition.

Theorem 1 follows by combining Propositions 13, 14, and 17 and the dual characterization of d̃eg+,ε

(cf. Lemma 25 in Appendix A).
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4 Proof of Theorem 2

For convenience, we restate Theorem 2, which gives an improved separation between the PPcc and UPPcc

communication complexities of an AC0 function F ′ (equivalently, between the margin and dimension com-
plexities of F ′). As stated in the introduction, the previous best separation for AC0 was due to Buhrman et
al. [6], who identified a function F ′ with UPPcc(F ′) = O(logn) and PPcc(F ′) = Ω(n1/3).

Theorem 2. There is an explicit function F ′ computed by a polynomial size circuit of constant depth
satisfying: UPPcc(F ′) =O(log2 n) and PPcc(F ′) = Ω̃(n2/5), where the Ω̃ notation hides logarithmic factors.

Proof. Before describing the function F ′, we first introduce the concept of discrepancy.

Discrepancy. Consider a Boolean function F : X×Y →{−1,1}, and let M(F) be its communication matrix
M(F) = [F(x,y)]x∈X ,y∈Y . A combinatorial rectangle of X×Y is a set of the form A×B with A⊆ X and B⊆Y .
For a distribution µ over X ×Y , the discrepancy of F with respect to µ is defined to be the maximum over
all rectangles R of the bias of F on R. That is:

discµ(F) = max
R

∣∣∣∣∣ ∑
(x,y)∈R

µ(x,y)F(x,y)

∣∣∣∣∣ .
The discrepancy of F , disc(F), is defined to be minµ discµ(F). It is known that discrepancy characterizes
the communication model PPcc, in the sense that PPcc(F) = Θ(log(1/disc(F))+ log log(|X | · |Y |)) [18].

Sherstov’s pattern matrix method [34] shows how to generically transform an AC0 function F such that
d̃egε(F) is large, into another AC0 function with low discrepancy, as long as ε is exponentially close to 1.

Lemma 18 ( [34], adapted from Corollary 1.2 and Theorem 7.3). Let F : {−1,1}n→{−1,1} be given, and
define the communication problem F ′ : {−1,1}4n×{−1,1}4n→{−1,1} by

F ′(x,y) = F(. . . ,∨4
j=1(xi, j ∧ yi, j), . . .).

Suppose that d̃egε(F)≥ d for ε = 1−2−d . Then disc(F ′)2 ≤ 2n ·2−d .

A Function F ′ with Small Discrepancy. Bun and Thaler [8, Corollary 3], building on work of Aaronson and
Shi [1], exhibit a function known as EDN : {−1,1}N→{−1,1} (short for ELEMENT DISTINCTNESS) that is
computed by a polynomial size CNF formula, and satisfies d̃eg−,1/3(EDN)=Ω((N/ logN)2/3). Specifically,
EDN is defined as follows: Fix an R = Θ(N) that is a power of 2, and let N = m · log2 R for some m =
Θ(N/ logN). EDN takes N bits as input, and interprets its input as m blocks (x1, . . . ,xm) with each block
consisting of log2 R bits. Each block is interpreted as a number in the range [R], and EDN evaluates to −1
on x if and only if all m numbers are distinct.

It is easy to see that for any function f , d̃eg+,ε( f ) = d̃eg−,ε( f ), where f denotes the negation of f .
Hence, Bun and Thaler’s result implies the following:

Lemma 19. There is a function, EDN : {−1,1}N → {−1,1}, computed by a DNF formula of polynomial
size, such that d̃eg+,2/3(EDN) = Ω((N/ logN)2/3).

Fix an n > 0. Let F : {−1,1}n→{−1,1} be defined via: F = OMBM(EDN , . . . ,EDN), where M = n2/5

and N = n3/5. Clearly F is computed by a polynomial size circuit of depth four. Theorem 1, combined with
Lemma 19, implies that

d̃eg+,ε(F) = Ω̃(n2/5), for some ε = 1−2−Ω̃(n2/5). (9)
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Combining Eq. (9) with Lemma 18, we obtain a function F ′ (computed by a polynomial size circuit of
depth 6) satisfying disc(F ′)≤ 2−Ω̃(n2/5). Since PPcc(F ′) = Θ(log(1/disc(F ′))+ log log(|X | · |Y |)), it follows
that PPcc(F ′) = Ω̃(n2/5). Thus, to complete the proof of Theorem 2, it suffices to show that UPPcc(F ′) =
O(log2 n).

Bounding UPPcc(F ′). The following lemma contains the core of the argument.

Lemma 20. deg±(F) = d for some d = O(logn).

Proof. Given two inputs zi,z j ∈ {−1,1}log2 R, let EQ(zi,z j) denote the function that evaluates to 1 if zi = z j,
and evaluates to 0 otherwise. Trivially, EQ(zi,z j) is exactly computed by a polynomial of degree at most
2 log2 R.

Let z = (z1, . . . ,zm) ∈
(
{−1,1}log2 R

)m
= {−1,1}N denote an input to ED. Define

q(z) := ∑
i, j∈[m],i 6= j

EQ(zi,z j).

Let K =
(m

2

)
. Notice that q satisfies the following two properties.

• Property 1: If EDN(z) = 1, then q(z) = 0, because zi 6= z j for all i 6= j.

• Property 2: If EDN(z) =−1, then q(z) ∈ {1, . . . ,K}, because there is at least one pair i 6= j such that
zi = z j.

Let x=(x1, . . . ,xM)∈
(
{−1,1}N

)M denote an input to the function F = OMBM(EDN , . . . ,EDN). Define

p(x) = 1/2+
M

∑
i=1

(−1)iK2·(i−1) ·q(xi). (10)

Notice that deg(p) ≤ deg(q) ≤ deg(EQ) ≤ 2logR. We claim that s̃gn(p(x)) = F(x) for all x. To see
this, first consider any x such that EDN(xi) = 1 for all i. Then F(x) = 1, and Property 1 above implies that
p(x) = 1/2, so s̃gn(p(x)) = F(x) in this case.

Now consider any x such that EDN(xi) = −1 for some i. Let i∗ be the largest such i. Suppose without
loss of generality that i∗ is odd (the analysis in the case that i∗ is even is analogous). Then F(x) = −1, so
we need only show that p(x)< 0.

Notice that term i∗ in the sum within Eq. (10) equals

(−1)i∗ ·K2·(i∗−1) ·q(xi∗) ∈ {−K2·(i∗−1),−2 ·K2·(i∗−1), . . . ,−K2·i∗−1}, (11)

where we have exploited Property 2 above, as well as the fact that i∗ is odd.
For all j > i∗, term j in the sum within Eq. (10) equals

(−K)2·( j−1) ·q(x j) = 0, (12)

where we have exploited Property 1 above.
Finally, we can bound the sum of the first i∗−1 terms in Eq. (10) via:

i∗−1

∑
j=1

(−1) j ·K2·( j−1) ·q(x j)≤
i∗−1

∑
j=1

K2·( j−1) ·K =
i∗−1

∑
j=1

K2· j−1 ≤ K2i∗−2−1. (13)
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Here, the inequality holds by Property 2 above.
Combining Equations Eq. (11), Eq. (12), and Eq. (13), we conclude that

p(x)≤ 1/2−K2i∗−2 +(K2i∗−2−1) =−1/2,

completing the proof.

Recall from Lemma 18 that in the communication problem corresponding to F ′, Alice has input x ∈
{−1,1}4n, Bob has input y ∈ {−1,1}4n, and the goal is to output F(. . . ,∨4

j=1(xi, j ∧ yi, j), . . .). We use
Lemma 20 in a standard way to give a simple UPPcc protocol P of cost O(log2 n) that computes the function
F ′.

Suppose that p(x) = ∑S⊆{−1,1}n,|S|≤d cSχS(x). Alice picks an S at random, with probability proportional
to |cS|. Alice then sends Bob the set S, along with the values {xi, j : i ∈ S,1 ≤ j ≤ 4}. Notice that the
total communication required is log

(n
d

)
+ 4 · d = O(log2 n) bits. Bob uses this information to compute

χS(. . . ,∨4
j=1(xi, j ∧ yi, j), . . .), and outputs s̃gn

(
cS ·χS(. . . ,∨4

j=1(xi, j ∧ yi, j), . . .)
)

.

It is easy to see that Bob outputs 1 with probability 1/2+ p(x)
2∑S⊆{−1,1}n ,|S|≤d |cS| . Since p(x) sign-represents

f (cf. Lemma 20), this implies that P computes f with positive bias, and hence P is a UPPcc protocol for f
achieving communication cost O(log2 n).

Remark 21. Theorem 1 is tight up to logarithmic factors for the function F = OMB(EDN , . . . ,EDN) ap-
pearing in the proof of Theorem 2, by the following analysis.

Since d̃eg+,2/3(EDN) = d for some d = Ω((N/ logN)2/3) (cf. Lemma 19), Theorem 1 states that

d̃eg+,ε(F) ≥ d for ε = 1− 2−M. Meanwhile, if M and N are polynomially related, the proof of Lemma
20 can easily be modified to demonstrate not just that deg±(F) = O(logn), but that d̃egε(F) = O(logN) for
some ε = 1−K−Θ(M) = 1−2Õ(M), where K = Θ̃(N2) is the parameter appearing in the proof of Lemma 20.

This analysis also reveals that the approximate degree of F experiences a “sharp threshold” as the
error parameter ε approaches 1 from below: while F can be approximated to error 1−2Θ̃(M) using degree
O(logN), degree Ω((N/ logN)2/3) is necessary to approximate F to error 1−2−M.

5 Future Directions

Our analysis naturally suggests several directions for future work. The primary question is to determine
what is the “right” analog of Theorem 1 when the hypothesis that d̃eg+,2/3( f ) ≥ d is replaced with the

hypothesis that d̃eg−,2/3( f )≥ d. We conjecture that the following bound holds:

Conjecture 22. Suppose that f : {−1,1}N→{−1,1} satisfies d̃eg−,2/3( f )≥ d. Then letting F = OMBM( f , . . . , f ),
it holds that deg±(F) = Ω(min{d ·M1/3,M}).

Recall that Bun and Thaler [8] proved that d̃eg−,2/3(EDN) = Ω((N/ logN)2/3) (cf. Lemma 19). Thus,
we obtain the following special case of Conjecture 22, which we highlight separately.

Conjecture 23. Let F = OMBn1/2(EDn1/2 , . . . ,EDn1/2). Then deg±(F) = Ω̃(n1/2).

A proof of Conjecture 23 would yield a polynomial improvement over the current best threshold degree
lower bound for an AC0 function, which is Ω(n(k−1)/(2k−1)) for any constant depth k ≥ 2 [30] (cf. Theorem
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5). On the other hand, disproving Conjecture 23 would likely require the development of new techniques
for constructing low-degree threshold representations for block-composed functions.

It would also be interesting to determine whether block-composition with OMB is still an effective
form of hardness amplification if the hypothesis that d̃eg+,2/3( f ) ≥ d from Theorem 1 is replaced with the

weaker hypothesis that d̃eg2/3( f ) ≥ d. Is this enough to guarantee that d̃egε(OMBM( f , . . . , f )) ≥ d, for
some ε = 1−2−Ω(M)?
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A Polynomial Approximations and their Dual Characterizations

The presentation in this section borrows heavily from our earlier work [8].
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A.1 Approximate Degree

The ε-approximate degree of a function f : {−1,1}n→ {−1,1}, denoted d̃egε( f ), is the minimum (total)
degree of any real polynomial p such that ‖p− f‖∞ ≤ ε , i.e., |p(x)− f (x)| ≤ ε for all x ∈ {−1,1}n. Any
polynomial p satisfying ‖p− f‖∞ ≤ ε is called an ε-approximation for f . By convention, d̃eg( f ) denotes

d̃eg1/3( f ), and this quantity is referred to with qualification as the approximate degree of a function. The

choice of 1/3 is arbitrary, as d̃eg( f ) is related to d̃egε( f ) by a constant factor for any constant ε ∈ (0,1).
Given a Boolean function f , let p be a real polynomial that minimizes ‖p− f‖∞ among all polynomials

of degree at most d. Since we work over x ∈ {−1,1}n, we may assume without loss of generality that p is
multilinear with the representation p(x) = ∑|S|≤d cSχS(x) where the coefficients cS are real numbers. Then
p is an optimum of the following linear program.

min ε

such that
∣∣∣ f (x)−∑|S|≤d cSχS(x)

∣∣∣≤ ε for each x ∈ {−1,1}n

cS ∈ R for each |S| ≤ d
ε ≥ 0

The dual LP is as follows.

max ∑x∈{−1,1}n φ(x) f (x)
such that ∑x∈{−1,1}n |φ(x)|= 1

∑x∈{−1,1}n φ(x)χS(x) = 0 for each |S| ≤ d
φ(x) ∈ R for each x ∈ {−1,1}n

Strong LP-duality thus yields the following well-known dual characterization of approximate degree
(cf. [34]).

Lemma 24. Let f : {−1,1}n→ {−1,1} be a Boolean function. Then d̃egε( f ) > d if and only if there is a
polynomial φ : {−1,1}n→ R such that

∑
x∈{−1,1}n

f (x)φ(x)> ε, (14)

∑
x∈{−1,1}n

|φ(x)|= 1, (15)

and
∑

x∈{−1,1}n

φ(x)χS(x) = 0 for each |S| ≤ d. (16)

If φ satisfies Eq. (16), we say φ has pure high degree d. We refer to any feasible solution φ to the dual
LP as a dual polynomial for f .

A.2 Positive One-Sided Approximate Degree

Positive one-sided ε-approximate degree, denoted d̃eg+,ε( f ), is the least degree of a real polynomial p with
that is an positive one-sided ε-approximation to f , meaning

1. |p(x)+1| ≤ ε for all x ∈ f−1(−1).
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2. p(x)≥ 1− ε for all x ∈ f−1(+1).

That is, we require p to be very accurate on inputs in f−1(−1), but only require “one-sided accuracy”
on inputs in f−1(+1). The primal and dual LPs change in a simple but crucial way if we look at one-sided
approximate degree rather than approximate degree. Let p(x) = ∑|S|≤d cSχS(x) be a polynomial of degree
d for which the positive one-sided ε-approximate degree of f is attained. Then p is an optimum of the
following linear program.

min ε

such that
∣∣∣ f (x)−∑|S|≤d cSχS(x)

∣∣∣≤ ε for each x ∈ f−1(−1)

∑|S|≤d cSχS(x)≥ 1− ε for each x ∈ f−1(+1)
cS ∈ R for each |S| ≤ d
ε ≥ 0

The dual LP is as follows.

max ∑x∈{−1,1}n φ(x) f (x)
such that ∑x∈{−1,1}n |φ(x)|= 1

∑x∈{−1,1}n φ(x)χS(x) = 0 for each |S| ≤ d
φ(x)≥ 0 for each x ∈ f−1(+1)
φ(x) ∈ R for each x ∈ {−1,1}n

We again appeal to strong LP-duality for the following dual characterization of positive one-sided ap-
proximate degree.

Lemma 25. Fix any constant C > 0. Let f : {−1,1}n→{−1,1} be a Boolean function. Then d̃eg+,ε( f )> d
if and only if there is a polynomial φ : {−1,1}n→ R such that

∑
x∈{−1,1}n

f (x)φ(x)>C · ε, (17)

∑
x∈{−1,1}n

|φ(x)|=C, (18)

∑
x∈{−1,1}n

φ(x)χS(x) = 0 for each |S| ≤ d, (19)

and
φ(x)≥ 0 for each x ∈ f−1(+1). (20)

Observe that a feasible solution φ to this dual LP is a feasible solution to the dual LP for approximate
degree, with the additional constraint that φ(x) agrees in sign with f (x) whenever x ∈ f−1(+1). We refer to
any such feasible solution φ as a dual polynomial for f with positive one-sided error.

A.3 Negative One-Sided Approximate Degree

Negative one-sided ε-approximate degree, denoted d̃eg−,ε( f ), is defined analogously to positive one-sided
ε-approximate degree. Specifically, it equals the least degree of a real polynomial p with that is an negative
one-sided ε-approximation to f , meaning
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1. |p(x)−1| ≤ ε for all x ∈ f−1(+1).

2. p(x)≤−1+ ε for all x ∈ f−1(−1).

Negative one-sided approximate degree has a dual characterization analogous to Lemma 25. However,
we do not make use of this dual characterization in this work, and therefore omit the details for brevity.

B Communication Complexity Models

Let f : X ×Y → {−1,1} be a function. Consider a two-party communication problem in which Alice is
given an input x ∈ X , Bob is given an input y ∈ Y , and their goal is to output f (x,y) with probability at
least 1/2+ β for some bias β > 0. Alice and Bob each have access to an arbitrarily long sequence of
private random bits, and the cost C(P) of a protocol P is the worst-case number of bits they must exchange
over all inputs (x,y)∈ X×Y . Babai et al. [3] defined the PP and UPP communication models to capture the
complexity of computing f with small bias. The PP communication complexity of f , denoted by PPcc( f ), is
the minimum value of C(P)+ log(1/β (P)) over all protocols P that compute f with positive bias. The UPP
communication complexity of f , denoted by UPPcc( f ), is the minimum value of C(P) over all protocols P
that compute f with positive bias.

Applications. Both PPcc and UPPcc have important applications in learning theory and circuit complexity.
On the circuit complexity side, lower bounds on PPcc( f ) imply corresponding lower bounds on the size
of majority-of-threshold circuits computing f (see, e.g., [33]). Meanwhile, lower bounds on UPPcc( f )
imply a corresponding lower bound on the size of threshold-of-majority circuits computing f (see e.g. [28]).
On the learning theory side, upper bounds on UPP communication complexity imply fast algorithms for
distribution-independent PAC learning [42]. For example, the fastest known algorithm for PAC learning
DNF formulae — a challenge problem posed in Valiant’s original paper [42] on the PAC model — is due
to Klivans and Servedio [19], and follows from an upper bound on the threshold degree of DNFs (which in
turn implies an upper bound on the UPP communication complexity of DNFs). Meanwhile, upper bounds
on PP communication complexity imply efficient algorithms in the online mistake-bounded learning model
(see, e.g., [20]).
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