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Abstract

We describe a new hardness amplification result for point-wise approximation of Boolean func-
tions by low-degree polynomials. Specifically, for any function f on N bits, define F(x1, . . . ,xM) =
OMB( f (x1), . . . , f (xM)) to be the function on M ·N bits obtained by block-composing f with a function
known as ODD-MAX-BIT. We show that, if f requires large degree to approximate to error 2/3 in
a certain one-sided sense (captured by a complexity measure known as positive one-sided approximate
degree), then F requires large degree to approximate even to error 1−2−M . This generalizes a result of
Beigel (Computational Complexity, 1994), who proved an identical result for the special case f = OR.

Unlike related prior work, our result implies strong approximate degree lower bounds even for many
functions F that have low threshold degree. Our proof is constructive: we exhibit a solution to the dual
of an appropriate linear program capturing the approximate degree of any function. We describe several
applications, including improved separations between the complexity classes PNP and PP in both the
query and communication complexity settings. Our separations improve on work of Beigel (1994) and
Buhrman, Vereshchagin, and de Wolf (CCC, 2007).
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1 Introduction
Approximate degree and threshold degree are two measures of Boolean function complexity that capture the
difficulty of point-wise approximation by low-degree polynomials. The ε-approximate degree of a function
f : {−1,1}n→ {−1,1}, denoted d̃egε( f ), is the least degree of a real polynomial that point-wise approxi-
mates f to error ε . The threshold degree of f , denoted deg±( f ), is the least degree of a real polynomial that
agrees in sign with f at all points.

Approximate degree and threshold degree have found a diverse array of algorithmic and complexity-
theoretic applications. On the complexity side, approximate degree lower bounds underlie many tight lower
bounds on quantum query complexity [1, 3, 7, 28, 45], and have proven instrumental in resolving a host of
long-standing open problems in communication and circuit complexity [11,15–17,19,30,37,38,43–46,48].
On the algorithms side, upper bounds on these complexity measures underlie the fastest known learning
algorithms in a number of important models, including the PAC, agnostic, and mistake-bounded models
[23, 26, 27, 39]. They also yield fast algorithms for private data release [14, 53].

Despite these applications, our understanding of approximate and threshold degree remains limited.
While tight upper and lower bounds are known for some specific functions, including symmetric functions
[18, 35, 42] and certain read-once formulae, few general results are known, and characterizing the approx-
imate and threshold degrees of many simple functions remains open. However, a handful of recent works
has established various forms of “hardness amplification” for approximate degree [12,13,29,40,47,49,51].
Roughly speaking, these results show how to take a function f which is hard to approximate by low-degree
polynomials in a weak sense, and turn f into a related function F that is hard to approximate by low-degree
polynomials in a much stronger sense.

Our Contributions. We extend this recent line of work by establishing a new, generic form of hardness
amplification for approximate degree. Unlike prior work, our result implies strong lower bounds even for
many functions F that have low threshold degree (e.g., halfspaces). In contrast, analogous hardness ampli-
fication results [12, 13, 29, 40, 47, 49, 51] apply only to functions with polynomially large threshold degree.
We describe several applications of our result, including an improved separation between the complexity
classes PNP and PP in both the query and communication complexity settings (see Section 1.3 for details).

We prove our results by constructing explicit dual polynomials, which are dual solutions to an appropri-
ate linear program capturing the approximate degree of any function. This “method of dual polynomials”
has proven to be a powerful technique for establishing lower bounds on approximate degree. Our con-
struction departs qualitatively from earlier applications of the method, and we believe it to be of interest
in its own right. In addition to implying approximate degree lower bounds, dual polynomials have been
used to resolve several long-standing open problems in communication complexity, and they yield explicit
distributions under which various communication problems are hard [17, 19, 37, 44–46, 48].

1.1 Overview of Our Results

Let f : {−1,1}n→ {−1,1} be a Boolean function. Our hardness amplification method relies heavily on a
complexity measure known as one-sided approximate degree, or, more precisely, its “positive” and “nega-
tive” variants, denoted d̃eg+,ε( f ) and d̃eg−,ε( f ) respectively. These are intermediate complexity measures
that lie between ε-approximate degree and threshold degree, and they have played a central role in recent
prior work on hardness amplification for approximate degree [12, 13, 47, 51].1 Unlike the latter two com-
plexity measures, d̃eg+,ε( f ) and d̃eg−,ε( f ) treat inputs in f−1(+1) and inputs in f−1(−1) asymmetrically.

1Strictly speaking, the terms positive and negative one-sided approximate degree were introduced by Kanade and Thaler [24],
who gave applications of these complexity measures to learning theory. Earlier works on hardness amplification for pointwise
approximation by polynomials only used negative one-sided approximate degree, and referred to this complexity measure without
qualification as one-sided approximate degree [13, 51]. For our purposes, the distinction between positive and negative one-sided
approximate degree is crucial.
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In more detail, a polynomial p is said to be a positive one-sided ε-approximation for a Boolean function
f if |p(x)− f (x)| ≤ ε for all x ∈ f−1(−1), and p(x) ≥ 1− ε for all x ∈ f−1(+1). The positive one-sided
ε-approximate degree of f is the least degree of a positive one-sided ε-approximation for f . Negative one-
sided ε-approximate degree is defined analogously. (Appendix A contains formal definitions.) Notice that
d̃eg+,ε( f ) and d̃eg−,ε( f ) are always at most d̃egε( f ), but can be much smaller. Similarly, d̃eg+,ε( f ) and
d̃eg−,ε( f ) are always at least deg±( f ), but can be much larger.

Let OMB : {−1,1}n→{−1,1} denote a specific polynomial size DNF formula known as ODD-MAX-BIT,
defined as follows. On input x = (x1, . . . ,xn), let i∗ denote the largest index such that xi∗ =−1, and let i∗ = 0
if no such index exists. We define

OMB(x1, . . . ,xn) =

{
−1 if i∗ is odd
1 otherwise

When appropriate, we also use subscripts after function symbols to indicate the number of variables over
which the function is defined. Thus, OMBM denotes the OMB function on M inputs.

For any function f : {−1,1}N→{−1,1}, define F :
(
{−1,1}N

)M→{−1,1} to be the block-composition
of OMBM with f , i.e., F = OMBM( f , . . . , f ). Our hardness amplification result establishes that if d̃eg+,ε( f )
is large for some ε bounded away from 1, then d̃eg+,ε(F) is large even for ε exponentially close to 1.

Theorem 1. Fix an f : {−1,1}N → {−1,1}, and let F = OMBM( f , . . . , f ). If d̃eg+,2/3( f ) ≥ d, then

d̃eg+,ε(F)≥ d for ε = 1−2−M.

A Matching Upper Bound for Theorem 1. To understand the intuition underlying Theorem 1, it is instruc-
tive to consider (matching) upper bounds. We begin by giving the well-known sign-representing polynomial
for OMBM itself. Define p : {−1,1}M → R via

p(x1, . . . ,xM) := 1+
M

∑
i=1

(−2)i · (1− xi)/2.

It is easy to see that OMBM(x) = sgn(p(x)), and in fact 2−M−1 · p(x) approximates OMBM to error
ε = 1−2−M−1.

We now turn to constructing approximants for OMBM( f , . . . , f ), for an arbitrary inner function f . Fix a
W ≥ 2, and let q : {−1,1}N → R be any degree d polynomial satisfying the following two properties.

q(x) = 0 for all x ∈ f−1(+1). (1)

1≤ q(x)≤W −1 for all x ∈ f−1(−1). (2)

Denoting an (M ·N)-bit input as (x1, . . . ,xM) ∈
(
{−1,1}N

)M, it is easy to check that

F(x1, . . . ,xM) = sgn(h(x1, . . . ,xM)), where h(x1, . . . ,xM) = 1+
M

∑
i=1

(−W )i ·q(xi).

In fact, W−M−1 ·h(x) approximates F to error 1−W−M−1, and has degree equal to that of q. If W = O(1),
then this construction shows that F can be approximated to error 1− 2−O(M) by a degree d polynomial,
which matches the error bound of Theorem 1 up to a constant factor in the exponent.

Observation 2. If there exists a polynomial q of degree d satisfying Eq. (1) and Eq. (2) with W = O(1), then
d̃egε(F)≤ d for some ε = 1−2−O(M).

A few words are in order regarding the relationship between the hypothesis of the upper bound (Obser-
vation 2), and the hypothesis of the lower bound (Theorem 1) that d̃eg+,2/3( f )≥ d. Notice that Conditions
1 and 2 together imply that r(x) := 1

2W · (1− 2q(x)) is a positive one-sided approximation to f for error
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parameter ε = 1− 1
2W . Moreover, r has the additional (crucial) property that this approximant is constant on

inputs in f−1(+1). Observe that the smaller W is, the smaller the error of the one-sided approximant r(x)
for f (x), and the smaller the error of the derived approximant W−M−1 ·h(x) that we constructed for F .

In general, requiring that r be constant on inputs in f−1(+1) is a very stringent condition, which will not
be satisfied by all one-sided approximations for f . However, Bun and Thaler [13, Theorem 2] have identified
a large class of functions for which any one-sided approximation for f can be transformed into one that is
constant on inputs in f−1(+1), without increasing its degree. This class includes important functions such
as f = OR (see Section 1.2.2), and f = ED, where ED is the well-studied Element Distinctness function
that we use in our applications to communication and query complexity (see Section 4.1.3 for the definition
of ED). For such functions, Observation 2 implies that Theorem 1 is tight.

Can the Hypothesis in Theorem 1 be Weakened? There are two natural ways to weaken the hypothesis of
Theorem 1, and it is natural to wonder whether Theorem 1 would continue to hold under these hypotheses.
Specifically, we can ask:

• Does Theorem 1 hold if we replace the outer function OMBM function with the simpler function
ORM, as in previous hardness amplification results for approximate degree [12, 13, 47, 51]?2

• Is a one-sided hardness assumption really essential for Theorem 1 to hold? That is, does OMBM

still amplify the hardness of f if we replace the assumption that d̃eg+,2/3( f ) ≥ d with the weaker

assumption that d̃eg2/3( f )≥ d?

The answer to the first question is no. A counterexample is given by f = ORN . It is known that
d̃eg+,2/3(ORN) = Ω(N1/2) (see, e.g., [13,20,33]), yet ORM(ORN , . . . ,ORN) = ORN·M can be approximated
to error 1− 1/(MN)� 1− 2−M by a polynomial of degree 1. Thus, the use of OMBM as the “hardness
amplifier” is essential to Theorem 1.

The answer to the second question, unfortunately, remains unknown. Formally, we leave the resolution
of the following conjecture as an open problem.

Conjecture 3. Suppose that f : {−1,1}N→{−1,1} satisfies d̃eg2/3( f )≥ d. Then letting F = OMBM( f , . . . , f ),

it holds that d̃egε(OMBM( f , . . . , f ))≥ d, for some ε = 1−2−Ω(M).

1.2 Technical Comparison to Prior Work

1.2.1 The Method of Dual Polynomials

A dual witness to the statement d̃egε( f )≥ d is a non-zero function ψ : {−1,1}N →R satisfying two condi-
tions: (a) ∑x∈{−1,1}N ψ(x) · f (x)≥ ε · ‖ψ‖1, where ‖ψ‖1 = ∑x∈{−1,1}N |ψ(x)|, and (b) ψ has zero correlation
with all polynomials of degree at most d. We refer to Property (a) by saying that ψ is ε-correlated with f .
We refer to Property (b) by saying that ψ has pure high degree d. We refer to ψ as a dual polynomial for f .

A dual witness to the statement that d̃eg+,ε( f ) ≥ d must satisfy an additional correlation condition,
namely: (c) φ(x) agrees in sign with f (x) for all x ∈ f−1(+1). We refer to Property (c) by saying that φ has
positive one-sided error. (See Appendix A for details of the duality theory.)

We prove Theorem 1 by showing the following: given a dual polynomial ψin witnessing the assumed
d̃eg+,2/3 lower bound on the inner function f , one can construct an explicit dual polynomial ψcomb witness-
ing the claimed lower bound on the composed function F = OMB( f , . . . , f ).

2One may also ask about replacing OMBM with ANDM in the statement of Theorem 1. Analyses from prior works [13, 51]
apply in this case, but show that the resulting function in fact has high threshold degree, and hence is not suitable for our applications
to query and communication complexity. We discuss this point in detail in the next section (see Theorem 5, Footnote 5, and the
surrounding discussion).
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1.2.2 Prior Work on the Approximate Degree of OMB
Beigel [8] proved that for any d > 0, there is an ε ∈ 1− 2−Ω(n/d2) such that d̃egε(OMBn) ≥ d, and used
this result3 to give an oracle separating the (Turing Machine) complexity class PP from PNP. Note that
OMBM(ORN , . . . ,ORN) is a sub-function of OMBM·(2N). As mentioned in Section 1.1, it is known that
d̃eg+,2/3(ORN) = Ω(N1/2). Hence, Theorem 1 can be viewed as a substantial strengthening of Beigel’s
result: we recover Beigel’s lower bound as a special case of Theorem 1 by letting f = ORd2 . Unlike
Beigel’s proof, which used a non-constructive symmetrization technique, our proof of Theorem 1 constructs
an explicit dual polynomial witnessing the lower bound.

For any ε > 0, Klivans and Servedio [27] gave an optimal ε-approximating polynomial for the func-
tion OMB, showing that Beigel’s lower bound (and hence also our Theorem 1 in the case f = ORN) is
asymptotically tight for all d > 0.4

1.2.3 Earlier Constructions of Dual Polynomials for Block-Composed Functions

Given functions gM, fN , Sherstov [49] and Lee [29] independently described a powerful method for con-
structing a dual polynomial for the composed function F = gM( fN , . . . , fN) : {−1,1}M·N → {−1,1}. This
method takes a dual polynomial ψin for fN , and a dual polynomial ψout for g, and combines them to obtain
a dual polynomial ψcomb for the composed function F .

Specifically, denoting an (M ·N)-bit input as (x1, . . . ,xM) ∈
(
{−1,1}N

)M, Sherstov and Lee defined

ψcomb(x1, . . . ,xM) = ψout (s̃gn(ψin (x1)) , . . . , s̃gn(ψin (xM))) ·
M

∏
i=1
|ψin(xi)|. (3)

Here, s̃gn : R→{−1,0,1} denotes the function satisfying s̃gn(t) = 1 if t > 0, s̃gn(t) =−1 if t < 0, and
s̃gn(0) = 0.

Recall that for ψcomb to witness a good lower bound for the approximate degree of F , it must be well-
correlated with F (Property (a) of Section 1.2.1), and it must have large pure high degree (Property (b) of
Section 1.2.1). Sherstov and Lee showed that the pure high degree of ψcomb is multiplicative in the pure high
degrees of ψin and ψout. That is, if ψin has pure high degree d1, and ψout has pure high degree d2, then ψcomb
has pure high degree d1 ·d2. And while ψcomb is not in general well-correlated with the composed function
F , several important examples have been identified in which this is the case, as we now explain.

Sherstov [47] and independently Bun and Thaler [12] used the combining technique of Eq. (3) to resolve
the (1/3)-approximate degree of the two-level AND-OR tree. Subsequent work by Bun and Thaler [13] used
Eq. (3) to establish a hardness amplification result that looks similar to our Theorem 1. Specifically, Bun
and Thaler proved:

Theorem 4 (Bun and Thaler [13]). Suppose d̃eg−,2/3( f ) ≥ d. Then d̃eg−,ε(ORM( f , . . . , f )) ≥ d, for ε =

1−2−M.

Theorem 4 is identical to our Theorem 1, but for two differences: first, in our Theorem 1, the outer func-
tion in the composition is OMB, while in Theorem 4 it is OR. Second, the hypothesis in Theorem 1 is that
the inner function f satisfies d̃eg+,2/3( f ) ≥ d, while the assumption in Theorem 4 is that d̃eg−,2/3( f ) ≥ d.
Both of these differences are crucial for obtaining a hardness amplification result that applies to functions
with low threshold degree (which is essential for our applications to the communication and query com-
plexity described in Section 1.3 below). Indeed, subsequent work by Sherstov refined Theorem 4 to yield a
threshold degree lower bound, rather than a d̃eg−,ε lower bound [51].

3Beigel describes his result as a lower bound on the degree-d threshold weight of OMBn. However, his argument is easily seen
to establish the claimed approximate degree lower bound.

4Like Beigel, Klivans and Servedio state their results in terms of degree-d threshold weight. However, their construction is
easily seen to imply the claimed upper bound on the approximate degree of OMBn.
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Theorem 5 (Sherstov [51]). Suppose d̃eg−,2/3( f )≥ d. Then deg±(ORM( f , . . . , f ))≥min{d,cM} for some
constant c > 0.5

Sherstov gives several proofs of Theorem 5. One of them draws heavily on Eq. (3): he constructs a
dual witness of the form ψcomb +ψfix, where ψcomb is the dual witness constructed by Bun and Thaler using
Eq. (3) to prove Theorem 4, and ψfix is used “zero out” ψcomb on points x such that 0 6= s̃gn(ψcomb(x)) 6=
s̃gn(ORM( f , . . . , f )). This ensures that ψcomb +ψfix is perfectly correlated with F .

Sherstov used Theorem 5 to give a depth three circuit with threshold degree Ω̃(n2/5). He also established
the following result, which yields a polynomially stronger lower bound for depth k > 3.

Theorem 6 (Sherstov [51]). For any k ≥ 2, there is a depth k (read-once) Boolean circuit computing a
function F satisfying deg±(F) = Ω(n(k−1)/(2k−1)).

Sherstov’s proof of Theorem 6 is not a refinement of the proof Theorem 4 from [13]. Rather it relies on
an elaborate inductive construction of a dual polynomial (which is nonetheless reminiscent of Eq. (3)).

1.2.4 Complementary Slackness and the Need for New Techniques

In this section, we explain why any dual witness establishing Theorem 1 must qualitatively depart from the
dual witnesses constructed in prior work (cf. Section 1.2.3). In brief, we first argue that the dual witnesses
constructed in prior work are implicitly tailored to show optimality of a specific technique for approximating
block-composed functions. We then explain that this technique is far from optimal for the functions to which
Theorem 1 applies.

Approximating Block-Composed Functions via “Robustification”. Sherstov [50] provided a generic
technique for approximating block-composed functions. Specifically, he showed that for any polynomial
p : {−1,1}M → [−1,1], and every δ > 0, there is a polynomial probust : RM → R of degree O(deg(p)+
log(1/δ )) that is robust to noise in the sense that |p(y)− probust(y+ e)| < δ for all y ∈ {−1,1}M and e ∈
[1/3,1/3]M. Hence, given functions g = gM, f = fN , one can obtain an (ε +δ )-approximating polynomial
for the block-composition g( f , . . . , f ) as follows: let p be an ε-approximating polynomial for g, and q a
(1/3)-approximating polynomial for f . Then the block composition p∗ := probust(q, . . . ,q) is an (ε + δ )-
approximating polynomial for g( f , . . . , f ). Notice that the degree of p∗ is at most the product of the degrees
of probust and q.

This generic construction yields asymptotically optimal ε-approximating polynomials for essentially all
block-composed functions considered in prior work on hardness amplification. Indeed, this holds for the
two-level AND-OR tree when ε = 1/3 [12, 47], as well as for the functions considered in Theorems 4, 5,
and 6, for ε exponentially close to 1 (see e.g. [51, Theorem 1.2]).

Showing Robustification Is Optimal (Except When It’s Not). Intuitively, the dual witness ψcomb con-
structed via Eq. (3) is specifically tailored to show optimality of the above generic technique for approxi-
mating block-composed functions. Indeed, ψcomb “almost” obeys complementary slackness with respect to
p∗ in the following sense.

Suppose that probust achieved exactly optimal error ε among all degree d polynomial approximations to
the outer function g. Then probust yields an optimal solution to the relevant linear program capturing the
ε-approximate degree of g (cf. Appendix A). Complementary slackness states that there is an optimal dual
solution (i.e., a weighting of the constraints from the primal linear program) which places non-zero weight
only on constraints that are made tight by the primal optimum. In our context, this means that there is an
optimal dual polynomial ψout for g such that ψout(y) 6= 0 only for “maximal error points” y ∈ {−1,1}M,
i.e., points y satisfying |probust(y)−g(y)|= ε . Let ψin be any dual polynomial for the inner function f , and

5By De Morgan’s laws and the observation that d̃eg−,ε ( f ) = d̃eg+,ε ( f ), the following is an equivalent formulation of Theorem

5. Suppose that d̃eg+,2/3( f )≥ d. Then deg±(ANDM( f , . . . , f ))≥min{d,cM} for some constant c > 0.
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suppose ψout is combined with ψin as per Eq. (3) to obtain a dual polynomial ψcomb for g( f , . . . , f ). If ψin

were perfectly correlated with f , then ψcomb(x) 6= 0 only for x = (x1, . . . ,xM) ∈
(
{−1,1}N

)M such that

|probust (q(x1) , . . . ,q(xM))−g( f (x1) , . . . , f (xM))|=
|probust ( f (x1) , . . . , f (xM))−g( f (x1) , . . . , f (xM))|±δ ≥ε−δ ≈ ε.

Put another way, ψcomb places non-zero weight only on points on which probust(q, . . . ,q) achieves “nearly
maximal error” of at least ε−δ . This is what we mean when we say that ψcomb “almost” satisfies comple-
mentary slackness with respect to the primal solution corresponding to probust(q, . . . ,q).

In general, ψin will not be perfectly correlated with f , but the analyses of ψcomb from prior work
identify settings in which ψcomb still places “most” of its weight on points x such that |probust(q, . . . ,q)−
g( f , . . . , f )|= ε±δ ≈ ε .

When Robustification Is Sub-Optimal. In contrast to these earlier results, Theorem 1 applies to functions
for which p∗ := probust(q, . . . ,q) is not an optimal approximating polynomial. To see this, recall the approx-
imation for OMBM( f , . . . , f ) described in the discussion surrounding Observation 2. This approximation
was of the form p(q, . . . ,q), where p was a non-robust ε-approximating polynomial for OMBM (for some
ε = 1−2−Θ(M)), and q is an approximating polynomial for f .

Since probust(q, . . . ,q) is not an optimal approximating polynomial for OMBM( f , . . . , f ), we do not
expect there to be any dual witness obeying complementary slackness with respect to probust(q, . . . ,q). Ac-
cordingly, the dual witness ψcomb that we construct to prove Theorem 1 departs from Eq. (3).

Remark 7. The reason that we did not need to use a robust approximating polynomial for the outer function
OMBM in Observation 2 is that we used an inner approximation q that is constant for inputs in f−1(+1).
Hence, we can use an outer approximation p that is robust only to highly restricted noise vectors. Namely,
for any input x, p needs to be robust only to noise vectors e such that ei is constant on all coordinates i such
that xi =+1.

1.3 Applications

This section gives an overview of our applications to query and communication complexity. Formal defi-
nitions of the complexity classes involved in these applications, and statements and proofs of the relevant
theorems, are deferred to Section 4.

Notation. Given a query or communication model C and a function f , the notation C( f ) denotes the least
cost of a protocol computing f in the model C. Following Babai et al. [5], we define a corresponding
complexity class, also denoted C, consisting of all problems that have polylogarithmic cost protocols in
the model C. Throughout, we use the superscript cc to denote communication complexity classes, and the
subscript query to denote query complexity classes. Any complexity class without a subscript refers to a
classical (Turing Machine) class.

1.3.1 Query Complexity

The Connection Between Query Complexity, Approximate Degree, and Oracle Separations. A signif-
icant motivation for studying query complexity is that separations of query complexity classes immediately
yield oracle separations of their classical counterparts. Such oracle separations are sometimes construed as
evidence that the same separation applies to the classes’ classical counterparts. At a minimum, oracle sepa-
rations imply a formal barrier (called the relativization barrier [6]) to disproving the corresponding Turing
Machine separation.

It is well-known that approximate degree lower bounds imply lower bounds on (even quantum) query
complexity. So to summarize, approximate degree lower bounds imply query complexity lower bounds,
which in turn often imply oracle separations for classical complexity classes.
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ODD-MAX-BIT, Counting, and the Polynomial Hierarchy. An important question in complexity theory
is to determine the relative power of alternation (as captured by the polynomial-hierarchy PH), and counting
(as captured by the complexity class #P and its decisional variant PP). Both PH and PP generalize NP in
natural ways. Toda famously showed that their power is related: PH ⊆ PPP [54].

Beigel [8] was interested in determining how much of the Polynomial Hierarchy is contained in PP
itself, and he set out to give an oracle separating PNP from PP. To do so, he introduced the function OMB
and observed that OMB is in the query complexity of analog of PNP — essentially, the query protocol uses
the NP oracle to perform a binary search for the largest index i∗ such that xi∗ = −1. Then, to show that
OMB is not in the query complexity analog of PP, Beigel proved a lower bound on the approximate degree
of OMB. (Recall from Section 1.2.2 that in [8] Beigel proved that for any d > 0, there is an ε ∈ 1−2−Ω(n/d2)

such that d̃egε(OMBn)≥ d).
Thus, Beigel’s result separated the query complexity classes PPquery and PNP

query, and this in turn implied
an oracle separating the classical classes PP from PNP.

An Improved Separation for Query Complexity. Quantitatively, Beigel’s analysis implies that PPquery(OMB)=
Ω(n1/3), and prior to our work, this was the best known separation between PPquery( f ) and PNP

query( f ) for any
function f . We improve on this separation by giving a function F in PNP

query such that PPquery(F) = Ω̃(n2/5).

Details of the separation. The function F we use to exhibit this improved separation is

F := OMBn2/5(EDn3/5 , . . . ,EDn3/5), (4)

where ED is a function computed by a polynomial size, logarithmic width DNF that we formally define
in Section 4.1.3. Prior work has shown that EDN satisfies d̃eg+,2/3(EDN) = Ω̃(N2/3) [13], so Theorem 1

implies that d̃eg+,ε(F) = Ω̃(n2/5) even for ε = 1− 2−n2/5
. This in turn implies the claimed lower bound

PPquery(F) = Ω̃(n2/5). Meanwhile, ED is in NPquery, and hence the same binary search-based PNP
query pro-

tocol that works for OMB also works for F .

1.3.2 Communication Complexity

Babai, Frankl, and Simon [5] defined the (two-party) communication analogs of many complexity classes
from the Turing Machine world. Since their seminal paper, these communication classes have been studied
intensely, with the following motivation.

Relationship to Turing Machine Complexity. Just as query complexity separations are sometimes con-
strued as evidence that the same separation applies to the classes’ classical counterparts, so too are com-
munication complexity separations. In addition, Aaronson and Wigderson [2] showed that a separation of
communication complexity classes implies a formal barrier (called the algebraization barrier) to disproving
the analogous separation in the Turing Machine world. Their result is analogous to how query complexity
separations imply that the relativization barrier applies in the Turing Machine world.

Thus, studying PNPcc
and PPcc sheds additional light on the relationship between their Turing Machine

counterparts. These communication classes are also of interest in their own right, as we now explain.

The class PNPcc . PNPcc
lies near the frontier of our current understanding of communication complexity

classes, in that it is one of the most powerful communication models against which we know how to prove
lower bounds. This communication class has received considerable attention in recent years: Impagliazzo
and Williams [22] were the first to prove lower bounds against this class, and Papakonstantinou et al. [34]
characterized the class in terms of limited memory communication models. Göös et al. [21] related PNPcc

to various other communication classes near the frontier of understanding.

The class PPcc. PPcc captures the difficulty of computing functions to small-bias, and it turns out to be
characterized by an important combinatorial quantity known as discrepancy [25]. Motivated in part by this
characterization, PPcc has received intense study (cf. [11, 21, 25, 32, 43, 44, 52] and many others).
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An improved separation between PPcc and PNPcc . Buhrman, Vereshchagin, and de Wolf [11] gave the first
separation between PPcc and PNPcc

.6 Specifically, they “lifted” Beigel’s query complexity lower bound for
OMB to the communication setting, showing that a certain communication problem G derived from OMB
satisfies PNPcc

(G) = O(log2 n), but PPcc(G) = Ω(n1/3). Prior to our work, this was the best separation
between these two communication classes.

We improve on this separation. By applying Sherstov’s pattern matrix method [44] to the function F
of Eq. (4), we obtain a communication problem F ′ that satisfies PNPcc

(F ′) = O(log2 n), but PPcc(F ′) =
Ω̃(n2/5).

An improved separation between PPcc and UPPcc for an AC0 function. Buhrman et al.’s function G
also exhibited the first separation between PPcc and a related communication class called UPPcc, which
captures the difficulty of computing f to strictly positive bias (Sherstov [41] independently separated these
two classes). In more detail, the function G used by Buhrman et al. satisfies UPPcc(G) = O(logn), while
PPcc(G) = Ω(n1/3), and until our work this remained the best known separation between PPcc and UPPcc

for any function in AC0. Our communication problem F ′ improves on this separation, giving a function F ′

in AC0 satisfying UPPcc(F ′) = O(logn), but PPcc(F ′) = Ω̃(n2/5).
To further motivate this application, we mention that PPcc is characterized not only by discrepancy,

but also by the learning-theoretic notion of margin complexity [31, 32], while UPPcc is characterized by
the notion of dimension complexity [36]. Both margin complexity and dimension complexity underly state-
of-the-art learning algorithms for constant-depth circuits in a variety of learning models (for details, see
[13, 26, 27, 38, 44] and the references therein). Separating these two quantities sheds light on the relative
power of these algorithms.

1.3.3 Roadmap for the Rest of the Paper
For completeness, we collect formal definitions of approximate degree and its one-sided variants, along with
their dual characterizations, in Appendix A. We introduce notation and establish preliminary lemmas in Sec-
tion 2. Section 3 provides an intuitive overview of the dual witness we construct to prove Theorem 1, before
providing proof details. Section 4 formalizes our applications to query and communication complexity.

2 Notation and Preliminary Facts
Given a set T ⊆ {−1,1}N , we let IT denote the indicator vector of T ; that is, IT (x) = 1 if x ∈ T , and
IT (x) = 0 otherwise. Given a dual polynomial ψ : {−1,1}N → R, we define the L1-weight of T under ψ to
be Wψ(T ) = ∑x∈T |ψ(x)|. We use the standard notation ‖ψ‖1 := Wψ({−1,1}N), and refer to ‖ψ‖1 as the
L1-norm of ψ . Define the function s̃gn : R→{−1,0,1} via:

s̃gn(t) =


1 if t > 0
−1 if t < 0
0 otherwise.

We say that a dual polynomial ψ for a function f makes an error on input x if 0 6= s̃gn(ψ(x)) 6= s̃gn( f (x)).
Crucial to our proof are the following two facts that provide methods of combining multiple dual wit-

nesses while preserving their pure high degree.

Fact 8. If ψ1,ψ2 :
(
{−1,1}N

)M →{−1,1} both have pure high degree d, then so does ψ1 +ψ2.

Fact 9. Suppose that ψ1, . . . ,ψM : {−1,1}N →{−1,1} are each defined over disjoint sets of variables, and
there is some i such that ψi has pure high degree d. Then so does the function ψ :

(
{−1,1}N

)M → {−1,1}
defined via ψ(x1, . . . ,xM) = ∏

M
i=1 ψi(xi).

6Buhrman et al. framed their result as an exponential separation between the PPcc and a related class called UPPcc. As pointed
out in subsequent work [21], their result also separates PNPcc

and PPcc.
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3 Proof of Theorem 1
This section proves Theorem 1, which we restate here for the reader’s convenience. Recall from the intro-
duction that for any Boolean function f : {−1,1}N→{−1,1}, F denotes the function OMBM( f , . . . , f ) that
maps {−1,1}M·N to {−1,1}.

Theorem 1. If d̃eg+,2/3( f )≥ d, then d̃eg+,ε(F)≥ d for ε = 1−2−M.

Proof. Let ψin denote a dual witness for the fact that d̃eg+,2/3( f )≥ d, normalized to ensure that its L1-norm
is 1. Recall from Section 1.2.1 that ψin satisfies three properties: (a) ψin has pure high degree at least d, (b)
ψin has correlation ε ′ ≥ 2/3 with f , and (c) ψin has positive one-sided error for f , i.e., ψin(xi) ≥ 0 for all
xi ∈ f−1(+1). Let E denote the set of all xi ∈ {−1,1}N on which ψin(xi) is in error, i.e., 0 6= s̃gn(ψin(xi)) 6=
s̃gn( f (xi)).

Proof Overview. For any vector x = (x1, . . . ,xM) ∈
(
{−1,1}N

)M, we think of xM as the “most significant”
block in x, because if f (xM) = −1, then F evaluates to −1 regardless of the values of the other blocks
x1, . . . ,xM−1. Similarly, we think of x1 as the “least significant block” of x.

We think of our dual witness ψcomb as being constructed iteratively. The first iteration will create a dual
witness ψ(1) that “uses” the least significant block x1 to “achieve” pure high degree at least d. That is, ψ(1)

will be uncorrelated with any polynomial p, unless the degree of p is at least d even when restricted to the
variables in the first block. However, ψ(1) will only have correlation ε ′ with F , and hence it will make errors
if ε ′ < 1. The second iteration creates a dual witness ψ

(2)
comb = ψ(1)+ψ(2), where ψ(2) is a correction term

that zeros out there errors of ψ(1). Moreover, ψ(2) will use the second block x2 to achieve pure high degree
at least d. By Fact 8, this ensures that ψ

(2)
comb also has pure high degree at least d.

If ψ(2) zeroed out all of the errors of ψ(1) without introducing any new errors, then ψ
(2)
comb would have

perfect correlation with F , and we would be done. Unfortunately, ψ(2) does introduce new errors. But we
have made tangible progress: we show that the number of errors ψ(2) makes, relative to ψ(1), falls by a factor
of Wψin( f−1(+1))/Wψin(E) = ε ′/(1− ε ′). Since ε ′ ≥ 2/3, we conclude that ε ′/(1− ε ′)≥ 2, and hence that
ψ(2) makes at most half as many errors as ψ(1).

In general, the ith iteration adds in a correction term ψ(i) that zeros out all of the errors of the dual
witness ψ

(i−1)
comb constructed in the previous iteration. ψ(i) will use the ith input block xi to achieve pure high

degree at least d, and will introduce at most a Wψin(E)/Wψin( f−1(+1))≤ 1/2 fraction of the errors made by
ψ(i−1). At the end of iteration M, we have constructed a dual witness ψcomb := ∑

M
i=1 ψ(i) that makes only a(

Wψin(E)/Wψin( f−1(+1))
)M

= ((1− ε ′)/ε ′)M ≤ 2−M fraction of the errors made by ψ(1), and we are done.

Proof Details. Throughout, we assume without loss of generality that M is odd (we only exploit this
assumption in the proof of Lemma 18, which shows that ψcomb has positive one-sided error for F).

Properties of ψin. Throughout, we let Q−,Q+ ⊆ {−1,1}N denote the set of inputs xi for which ψin(xi)< 0
and ψin(xi)> 0 respectively. We assume d ≥ 1, as otherwise Theorem 1 holds trivially. We make use of the
following simple facts about IQ+ and IQ− .

Fact 10. ∑xi∈{−1,1}N IQ−(xi) · |ψin(xi)|= ∑xi∈{−1,1}N IQ+(xi) · |ψin(xi)|= 1/2.

Proof. Since ψin witnesses the fact that d̃eg+,1/2( f )≥ d, ψin has pure high degree at least d ≥ 1. In particu-
lar, ψin is uncorrelated with any constant function. Hence, ∑xi∈{−1,1}N ψin(xi)= 0. Since ∑xi∈{−1,1}N |ψin(xi)|=
1, it follows that ∑xi∈{−1,1}N :xi∈Q+ |ψin(xi)| = ∑xi∈{−1,1}N :xi∈Q− |ψin(xi)| = 1/2, which is equivalent to the
statement we wished to prove.

A crucial implication of the fact that ψin has positive one-sided error is that if ψin outputs a negative
value on input xi, we can “trust” that f (xi) =−1. This is formalized in the next fact.
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Fact 11. For all xi ∈ Q−, it holds that f (xi) = −1. Equivalently, E ⊆ f−1(−1), or in other words E ∩
f−1(+1) = /0.

The following two facts relate the correlation of ψin with f to the L1-weight of the sets E and f−1(+1)
under ψin.

Fact 12. Wψin(E) = (1− ε ′)/2.

Proof. By Property (a), ε ′ = ∑xi∈{−1,1}N ψin(xi) · f (xi) = 1−2∑xi∈E |ψin(xi)|.

Fact 13. Wψin( f−1(+1)) = ε ′/2.

Proof. This holds by the following sequence of equalities:

1/2 = ∑
xi∈Q+

|ψin(xi)|= ∑
xi∈E
|ψin(xi)|+ ∑

xi∈ f−1(+1)

|ψin(xi)|=
(
1/2− ε

′/2
)
+ ∑

xi∈ f−1(+1)

|ψin(xi)|.

The first equality holds by Fact 10, the second because ψin satisfies Property (c), and the third by Fact
12.

Construction of ψcomb. The dual witness we construct is:

ψcomb(x1, . . . ,xM) =
M

∑
i=1

ψ
(i), where (5)

ψ
(i) = (−1)i−1 · (2/ε

′)M−1

(
∏
j<i

IE(x j) · |ψin(x j)|

)
·ψin(xi) ·

(
M

∏
j=i+1

I f−1(+1)(x j) · |ψin(x j)|

)
. (6)

Recall that, to show that ψcomb is a dual witness for the property d̃eg+,ε(F) ≥ d for ε = 1− 2−M,
it suffices to establish three properties of ψcomb (cf. Section 1.2.1 or Lemma 30 in Appendix A): (a) it
must have pure high degree at least d, (b) it must satisfy ∑x∈({−1,1}N)M ψcomb(x) ·F(x) ≥ ‖ψ‖1 · ε , where
‖ψ‖1 = ∑(x∈{−1,1}N)M |ψcomb(x)|, and (c) it must have positive one-sided error. We establish each in turn
below, in Propositions 14, 15, and 18.

Proposition 14. ψcomb has pure high degree at least d.

Proof. Since ψin has pure high degree at least d, Fact 9 implies that each term ψ(i) in the sum within Eq. (5)
also has pure high degree at least d. The lemma then follows by Fact 8.

Proposition 15. ∑x∈({−1,1}N)M ψcomb(x) ·F(x)≥ ‖ψ‖1 · ε .

The proof of Proposition 15 will make use of the following two lemmas.

Lemma 16. ‖ψ‖1 ≥ 1/2.

Proof. Consider the set S = {(x1, . . . ,xM) : x1 ∈ Q− and x2, . . . ,xM ∈ f−1(+1)}. We claim that the weight,
Wψcomb(S), that ψcomb places on the set S is 1/2. The lemma clearly follows.

To see this, fix x = (x1, . . . ,xM) ∈ S. We first note that for all i≥ 2, ψ(i)(x) = 0. Indeed, Q−∩E = /0 (cf.
Fact 11), and hence IE(x1) = 0. Thus, it is immediate from Eq. (6) that ψ(i)(x) = 0 for i≥ 2.

So it suffices to show that ∑x∈S−ψ(1)(x)≥ 1/2. This follows from the following calculation:

∑
x∈S
−ψ

(1)(x) = (2/ε
′)M−1 ·

(
∑

x1∈Q−
−ψin(x1)

)
·

 M

∏
j=2

 ∑
x j∈{−1,1}N

I f−1(+1)(x j) · |ψin(x j)|


= (2/ε

′)M−1 · (1/2) ·
M

∏
j=2

(ε ′/2) = 1/2,

where the first equality holds by Eq. (6), and the second holds by Facts 10 and 13.

10



Lemma 17. Let Ecomb ⊆
(
{−1,1}N

)M denote the set of inputs on which ψcomb makes an error, i.e., 0 6=
s̃gn(ψcomb(x)) 6= s̃gn(F(x)). Let EM ⊆

(
{−1,1}N

)M denote {(x1, . . . ,xM) : xi ∈ E for all i}. Then Ecomb =
EM.

Proof. We first show that EM ⊆ Ecomb before showing that Ecomb ⊆ EM. Suppose that x = (x1, . . . ,xM) ∈
EM. Fact 11 states that E ⊆ f−1(−1), and hence I f−1(+1)(xM) = 0. It is then immediate from Eq. (6) that
ψ(i)(x) = 0 for all i < M. Meanwhile, by Eq. (6) it holds that

s̃gn(ψ(M)(x)) = (−1)M−1 · s̃gn(ψin(xM)) = (−1)M−1.

Here, we used the fact that s̃gn(ψin(xM))> 0 if xM ∈ E. (To see this, note that since xM ∈ E, it holds that

0 6= s̃gn(ψin(xM)) 6= f (xM) =−1,

where the final equality holds because E ⊆ f−1(−1).) At the same time, F(x) = OMBM(−1,−1, . . . ,−1) =
(−1)M. Thus, x ∈ Ecomb as claimed.

Fix any x = (x1, . . . ,xM) ∈
(
{−1,1}N

)M such that there exists an i ∈ {1, . . . ,M} satisfying xi 6∈ E. To
show that Ecomb ⊆ EM, we must show that x 6∈ Ecomb. To this end, let i∗ be the smallest coordinate such
that xi∗ 6∈ E. It is clear that ψcomb(x) = 0 if ψin(xi) = 0 for any i ∈ [M], and hence x 6∈ Ecomb. So assume
throughout that ψin(xi) 6= 0 for all i. The proof proceeds via a case analysis.

• Case 1: There exists a j > i∗ such that x j 6∈ f−1(+1). In this case, I f−1(+1)(x j) = 0, so it is immediate
from Eq. (6) that ψ(k)(x) = 0 for all k < j. Meanwhile, since IE(xi∗) = 0, it is immediate from Eq. (6)
that ψ(k)(x) = 0 for all k ≥ j. Thus, ψcomb(x) = ∑

M
k=0 ψ(k)(x) = 0, implying that x 6∈ Ecomb.

• Case 2: i∗ = 1, and x j ∈ f−1(+1) for all j > i∗. In this case, it is clear by Eq. (6) that

s̃gn(ψ(1)(x)) = (−1)0 · s̃gn(ψin(x1)) = s̃gn(ψin(x1)) = s̃gn( f (x1)) = F(x1, . . . ,xM). (7)

Here, the third equality holds because x1 6∈ E, and the fourth equality exploits the fact that if x j ∈
f−1(+1) for all j > 1, then F(x) = f (x1).

Meanwhile, since x1 6∈ E, it holds that IE(x1) = 0, and so it is clear by Eq. (6) that ψ(k)(x) = 0 for all
k≥ 2. Combining this with Eq. (7), we conclude that s̃gn(ψcomb(x)) = s̃gn(ψ(1)(x)) = F(x1, . . . ,xM).
Thus, x 6∈ Ecomb.

• Case 3: i∗ ≥ 2, and x j ∈ f−1(+1) for all j > i∗. First, we argue that ψ(k) = 0 for all k < i∗−1. Indeed,
for all such k, xk+1 ∈ E ⊆ f−1(−1) (cf. Fact 11), and so it holds that I f−1(+1)(xk+1) = 0. Hence, it is
immediate from Eq. (6) that ψ(k)(x) = 0.

Next, we argue that ψ(k) = 0 for all k ≥ i∗+ 1. Indeed, xi∗ 6∈ E, so IE(xi∗) = 0. It is then immediate
from Eq. (6) that ψ(k)(x) = 0 for all k ≥ i∗+1.

Finally, we claim that either ψ(i∗−1)(x) +ψ(i∗)(x) = 0 or s̃gn(ψ(i∗−1)(x) +ψ(i∗)(x)) = F(x). This
follows from the following calculation.

– Case 3a: Suppose xi∗ 6∈ f−1(+1), i.e., that I f−1(+1)(xi∗) = 0. Then is clear from Eq. (6) that
ψ(i∗−1)(x) = 0. Meanwhile, since xi∗ 6∈ E, it is clear from Eq. (6) that

s̃gn(ψ(i∗)(x)) = (−1)i∗−1 · s̃gn(ψin(xi∗)) = (−1)i∗−1 · f (xi∗) = F(x),

where the final equality exploits the fact that if x j ∈ f−1(+1) for all j > i∗, and xi∗−1 ∈ E ⊆
f−1(−1) (Fact 11), then F(x) = (−1)i∗−1 · f (xi∗).
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– Case 3b: Suppose xi∗ ∈ f−1(+1). We claim that it holds that ψ(i∗−1)(x) = −ψ(i∗)(x). To see
this, note that in this case

ψ
(i∗−1)(x) = (−1)i∗−2 · (2/ε

′)M−1 ·ψin(xi∗−1) · ∏
j 6=i∗−1

|ψin(x j)|, and (8)

ψ
(i∗)(x) = (−1)i∗−1 · (2/ε

′)M−1 ·ψin(xi∗) ·∏
j 6=i∗
|ψin(x j)|. (9)

Both of the above quantities are clearly equal in absolute value, but it remains to show that
ψ(i∗−1)(x) = −ψ(i∗)(x). Since xi∗−1 ∈ E ⊆ f−1(−1) (Fact 11), it holds that s̃gn(ψin(xi∗−1)) =
+1. Meanwhile, since xi∗ 6∈ E, s̃gn(ψin(xi∗)) = f (xi∗) =+1. Hence, s̃gn(ψ(i∗−1)(x)) = (−1)i∗−2,
while s̃gn(ψ(i∗)(x)) = (−1)i∗−1, completing the proof.

Combining all of the above, we conclude that ψcomb(x) = ∑
M
j=1 ψ

( j)
comb(x) = ψ

(i∗−1)
comb (x)+ψ

(i∗)
comb(x), and

the latter expression is either equal to 0 or agrees in sign with F(x). Thus, x 6∈ Ecomb. This completes
the proof of Lemma 17.

Proof of Proposition 15. Note that

∑
x∈({−1,1}N)M

ψcomb(x) ·F(x) = ∑
x∈({−1,1}N)M

|ψcomb(x)|−2 ∑
x∈Ecomb

|ψcomb(x)|= ‖ψ‖1−2 ∑
x∈Ecomb

|ψcomb(x)|,

(10)
where we recall from Lemma 17 that Ecomb = EM is the set of points on which ψcomb makes an error.
Observe that for each j:

∑
x∈EM

ψ
( j)(x) ≤ (2/ε

′)M−1
M

∏
i=1

(
∑

xi∈E
|ψin(xi)|

)
≤ (2/ε

′)M−1 ·
M

∏
i=1

(
(1− ε

′)/2
)
≤ 3M−1/6M < 2−M−1.

(11)

Here, the first equality holds because, for all x ∈ EM and j < M, ψ( j)(x) = 0; this follows by combining
Eq. (6) with the fact that E ∩ f−1(+1) = /0 (Fact 11) (see also the EM ⊆ Ecomb direction in the proof of
Lemma 17). The second inequality holds by Fact 12, and the third holds because ε ′ ≥ 2/3. Combining
Lemma 16 with Eq. (10) and Eq. (11), we conclude that ∑x∈({−1,1}N)M ψcomb(x) ·F(x) ≥ ‖ψ‖1− 2−M−1 ≥
‖ψ‖1(1−2−M), completing the proof.

Proposition 18. ψcomb(x)≥ 0 for all x ∈ F−1(+1).

Proof. Lemma 17 implies that the set Ecomb on which ψcomb makes an error is equal to EM. Since E ⊆
f−1(−1) (cf. Fact 11), and we assumed that M is odd, it is obvious from the definition of F that EM ⊆
F−1(−1). It follows that ψcomb makes no errors on F−1(+1), implying the proposition.

Theorem 1 follows by combining Propositions 14, 15, and 18 and the dual characterization of d̃eg+,ε

(cf. Lemma 30 in Appendix A).
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4 Details of Applications to Query and Communication Complexity

4.1 Query Complexity

4.1.1 Definitions

Deterministic Query Complexity. A deterministic decision tree is a binary tree T , in which each internal
node is labeled with a variable xi, and each leaf of T is labeled with a value in {−1,+1}. Given an input
x∈ {−1,1}n, the tree is evaluated as follows. The tree queries the value of the variable xi associated with the
root. If xi = 1 (respectively, xi =−1) then the tree recursively evaluate the left (respectively, right) subtree.
When a leaf is reached, the tree outputs the value of the leaf, and this output is denoted T (x).

T is said to compute a function f : {−1,1}n→ {−1,1} if T (x) = f (x) for all x ∈ {−1,1}n. The deter-
ministic query complexity of f , denoted D( f ), is the least depth of a decision tree computing f .

Randomized Query Complexity. A randomized decision tree T is a probability distribution µ over deter-
ministic decision trees. T is evaluated by choosing a deterministic tree according to µ , and then evaluating
the deterministic tree as above. The complexity of T is the largest depth of any deterministic tree in the
support of µ . T is said to compute a function f : {−1,1}n→ {−1,1} with error ε if for all x ∈ {−1,1}n,
Pr[T (x) = f (x)] ≥ 1− ε . We use Rε( f ) to denote the least complexity of a randomized decision tree com-
puting f to error ε . We say T computes f if Pr[T (x) = f (x)]> 1/2 for all x ∈ {−1,1}n.

The class PPquery. Fix a function f : {−1,1}n→{−1,1}, and let T be a decision tree satisfying Pr[T (x) =
f (x)] > 1/2 for all x ∈ {−1,1}n. In analogy with the communication complexity class PPcc defined by
Babai, Frankl, and Simon [5] (see Section 4.2.1 below), we define the PP query complexity of T , denoted
PPquery(T ) to be the complexity of T plus log(1/β ), where β := minx (Pr[T (x) = f (x)]−1/2) is the bias
of T . We define PPquery( f ) to be the minimum of PPquery(T ) over all randomized decision trees T that
compute f .

The class PNP
query. A PNP decision tree is a deterministic decision tree that is allowed, at any internal node,

to query the output value of any DNF over x – if the DNF that is queried has size S and width k, then the
decision tree is charged a cost of k+ logS.7 Thus, the complexity of a PNP decision tree computing f is the
maximum over all root-to-leaf paths of the sum of the (standard) input queries along the path and the query
cost of the DNF queries along the path. We define PNP

query( f ) to be the minimum of PNP
query(T ) over all PNP

decision trees T that compute f .

4.1.2 The Polynomial Method for Lower Bounding Decision Tree Complexity

It is well-known that approximate degree lower bounds (even quantum) decision tree complexity. Formally,
we will use the following result that refers only to randomized decision tree complexity.

Lemma 19. (cf. [10, Theorem 15]) Suppose Rε( f )≤ d. Then d̃eg2ε( f )≤ d.

4.1.3 An Improved Separation Between PNP
query and PPquery.

The purpose of this section is to prove the following theorem.

Theorem 20. There is an (explicitly given) function F : {−1,1}n→{−1,1} such that PPquery(F)= Ω̃(n2/5),
and PNP

query(F) = O(log2 n).

7It would also be natural to charge the decision tree only k queries when querying the output value of a DNF of width k, since
this is the number of queries to the input x required to check a certificate that the DNF evaluates to TRUE (here, a certificate consists
of a clause of the DNF that is satisfied by the input x). We choose to charge the decision tree k+ logS queries to account for the logS
bits required to specify the certificate. Observe that logS ≤ k logn, and hence the cost of a DNF query under the two definitions
can differ by at most a logarithmic factor. Hence, the complexity class PNP

query of functions solvable by polylogarithmic cost PNP
query

protocols is the same under both definitions.
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The previous best separation was due to Beigel [8], who proved that PPquery(OMBn) = Ω(n1/3), while
PNP
query(OMBn) = O(log2 n).

Proof of Theorem 20. Bun and Thaler [13, Corollary 3], building on work of Aaronson and Shi [1], exhibit
a function known as EDN : {−1,1}N → {−1,1} (short for ELEMENT DISTINCTNESS) that is computed
by a polynomial size CNF formula of width O(logN), and satisfies d̃eg−,2/3(EDN) = Ω((N/ logN)2/3).8

Specifically, EDN is defined as follows: Fix an R = Θ(N) that is a power of 2, and let N = m · log2 R for
some m = Θ(N/ logN). EDN takes N bits as input, and interprets its input as m blocks (x1, . . . ,xm) with each
block consisting of log2 R bits. Each block is interpreted as a number in the range [R], and EDN evaluates to
−1 on x if and only if all m numbers are distinct.

It is easy to see that for any function f , d̃eg+,ε( f ) = d̃eg−,ε( f ), where f denotes the negation of f .
Hence, Bun and Thaler’s result implies the following:

Lemma 21. (Bun and Thaler) There is a function, EDN : {−1,1}N→{−1,1}, computed by a DNF formula
of polynomial size and width O(logN), such that d̃eg+,2/3(EDN) = Ω((N/ logN)2/3).

Fix an n > 0. Let F : {−1,1}n→{−1,1} be defined via: F = OMBM(EDN , . . . ,EDN), where M = n2/5

and N = n3/5. Theorem 1, combined with Lemma 21, implies the following corollary.

Corollary 22.
d̃eg+,ε(F) = Ω̃(n2/5), for some ε = 1−2−Ω̃(n2/5).

Combining Corollary 22 with Lemma 19, we conclude that any randomized decision tree for F of
complexity n2/5 has bias at most 2−Ω̃(n2/5). This immediately implies that PPquery(F) = Ω̃(n2/5). Hence,
the proof of Theorem 20 will be complete if we show that PNP

query(F) = O(log2 n).
The PNP

query protocol for F works as follows. The decision performs a binary search to find the largest
input i∗ coordinate of OMBM that is−1. Namely, the decision tree maintains upper and lower bounds `,u on
i∗. It repeatedly asks an NP oracle questions of the form ”is there an index i in the interval [(`+u)/2,u] such
that EDN(xi) = −1?”, and updates ` and u based on the answer. Notice that since EDN is itself computed
by a DNF of polynomial size and width O(logN), the answer to each such question is also computed by a
DNF of polynomial size and width O(logN).

After logN queries, the decision tree will have ascertained the largest index i∗ such that EDN(xi∗) =−1.
At this point, the decision tree outputs −1 if i∗ is odd, and outputs +1 if i∗ is even. Since each query to
the NP oracle has cost O(logn), and at most O(logn) such queries are made, the resulting protocol has cost
O(log2 n).

4.2 Communication Complexity

4.2.1 Definitions

Let f : X ×Y → {−1,1} be a function. Consider a two-party communication problem in which Alice is
given an input x ∈ X , Bob is given an input y ∈ Y , and their goal is to output f (x,y) with probability at least
1/2+ β for some bias β > 0. Alice and Bob each have access to an arbitrarily long sequence of private
random bits, and the cost C(P) of a protocol P is the worst-case number of bits they must exchange over all
inputs (x,y) ∈ X×Y .

The classes PPcc and UPPcc. Babai et al. [5] defined the PPcc to capture the complexity of computing
f with small bias. The PP communication complexity of f , denoted by PPcc( f ), is the minimum value
of C(P)+ log(1/β (P)) over all protocols P that compute f with positive bias.The UPP communication
complexity of f , denoted by UPPcc( f ), is the minimum value of C(P) over all protocols P that compute f
with positive bias.

8This bound is tight up to a logarithmic factor, as d̃eg2/3(EDN) = O(N2/3 log1/3(N)) [4].
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The class PNPcc . A PNPcc
protocol augments the standard two-party communication model to allow Alice

and Bob not only to exchange messages, but in addition to ask “NP queries”. Here, an NP query consists of a
collection of combinatorial rectangles {Sw : w ∈ {0,1}k}, where the output of the query (x,y) is determined
by whether or not (x,y) ∈ ∪wSw. The cost of the NP query is k. The cost of a PNPcc

protocol is the total
amount of communication, plus the cost of the NP queries made by the protocol.

4.2.2 An Improved Separation Between PNPcc and PPcc

The purpose of this section is to prove the following theorem.

Theorem 23. There is an (explicitly given) function F ′ : {−1,1}n×{−1,1}n→{−1,1} such that PPcc(F ′)=
Ω̃(n2/5), and PNPcc

(F ′) = O(log2 n).

The previous best separation was due to Buhrman, Vereshchagin, and de Wolf [11], who gave a commu-
nication problem G derived from OMB such that PPcc(G) = Ω(n1/3), while PNPcc

(G) = O(log2 n).

Proof of Theorem 23. Before describing the function F ′, we first introduce the concept of discrepancy.

Discrepancy. Consider a Boolean function F : X×Y →{−1,1}, and let M(F) be its communication matrix
M(F) = [F(x,y)]x∈X ,y∈Y . Recall that a combinatorial rectangle of X×Y is a set of the form A×B with A⊆ X
and B ⊆ Y . For a distribution µ over X ×Y , the discrepancy of F with respect to µ is defined to be the
maximum over all rectangles R of the bias of F on R. That is:

discµ(F) = max
R

∣∣∣∣∣ ∑
(x,y)∈R

µ(x,y)F(x,y)

∣∣∣∣∣ .
The discrepancy of F , disc(F), is defined to be minµ discµ(F). It is known that discrepancy characterizes
the communication model PPcc in the sense that PPcc(F) = Θ(log(1/disc(F))+ log log(|X | · |Y |)) [25].

Sherstov’s pattern matrix method [44] shows how to generically transform any function F such that
d̃egε(F) is large into another function with low discrepancy, as long as ε is exponentially close to 1.

Lemma 24 ( [44], adapted from Corollary 1.2 and Theorem 7.3). Let F : {−1,1}n→{−1,1} be given, and
define the communication problem F ′ : {−1,1}4n×{−1,1}4n→{−1,1} by

F ′(x,y) = F(∨4
j=1(x1, j ∧ y1, j), . . . ,∨4

j=1(xn, j ∧ yn, j)).

Suppose that d̃egε(F)≥ d for ε = 1−2−d . Then disc(F ′)2 ≤ 2n ·2−d .

A Function F ′ with Small Discrepancy. Combining Corollary 22 with Lemma 24, we obtain a function
F ′ satisfying disc(F ′)≤ 2−Ω̃(n2/5). Since PPcc(F ′) = Θ(log(1/disc(F ′))+ log log(|X | · |Y |)), it follows that
PPcc(F ′) = Ω̃(n2/5).

Thus, to complete the proof of Theorem 23, it suffices to show that PNPcc
(F ′) = O(log2 n). The PNPcc

protocol for F ′ simply simulates the PNP
query protocol for F , applied to the n-bit input

(∨4
v=1(x1,v∧ y1,v), . . . ,∨4

v=1(xn,v∧ yn,v)) ∈ {−1,1}n.

Observe that every time the PNP
query protocol queries an input bit i to F , Alice and Bob can simulate the

query with a constant amount of communication, by computing ∨4
j=1(xi, j ∧ yi, j). Furthermore, recall that

the PNP
query protocol makes O(logn) DNF queries, each to a polynomial size DNF of width O(logn). The

communication protocol can simulate each DNF query with an NP communication query of cost O(logn),
resulting in a PNPcc

protocol of total cost O(log2 n) that correctly computes the function F ′.
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4.2.3 An Improved Separation Between UPPcc and PPcc for an AC0 Function

The purpose of this section is to prove the following theorem.

Theorem 25. There is an (explicitly given) function F ′ : {−1,1}n×{−1,1}n → {−1,1} computed by a
Boolean circuit of polynomial size and constant depth such that PPcc(F ′) = Ω̃(n2/5), and UPPcc(F ′) =
O(logn).

The previous best separation between PPcc(G) and UPPcc(G) for any function G in AC0 was also due
to Buhrman, Vereshchagin, and de Wolf [11], who gave an AC0 function G satisfying PPcc(G) = Ω(n1/3),
while UPPcc(G) = O(logn).

Proof of Theorem 25. We use the same function F ′ as in Theorem 25. Theorem 23 already proved that
PPcc(F ′) = Ω̃(n2/5), so we only need to prove that UPPcc(F ′) = O(logn). A polylogarithmic upper bound
on UPPcc(F ′) follows directly from the fact that PNPcc

(F ′) = O(log2 n) (cf. Theorem 23), and the fact that
PNPcc ⊆ UPPcc (see, e.g., [21]). The core of our argument to obtain a tight O(logn) bound on UPPcc(F ′)
is contained in the following lemma.

Lemma 26. Let F = OMBM(EDN , . . . ,EDN). Then deg±(F) = d for some d = O(logn).

Proof. Given two inputs z j,zk ∈ {−1,1}log2 R, let EQ(z j,zk) denote the function that evaluates to 1 if z j = zk,
and evaluates to 0 otherwise. Trivially, EQ(z j,zk) is exactly computed by a polynomial of degree at most
2 log2 R.

Let z = (z1, . . . ,zm) ∈
(
{−1,1}log2 R

)m
= {−1,1}N denote an input to ED. Define

q(z) := ∑
j,k∈[m], j 6=k

EQ(z j,zk).

Let K =
(m

2

)
. Notice that q satisfies the following two properties.

• Property 1: If EDN(z) = 1, then q(z) = 0, because z j 6= zk for all j 6= k.

• Property 2: If EDN(z) =−1, then q(z) ∈ {1, . . . ,K}, because there is at least one pair j 6= k such that
z j = zk.

Hence, the discussion preceding Observation 2 from Section 1.1 implies that

F(x) = s̃gn(h(x)), where h(x1, . . . ,xM) = 1+
M

∑
i=1

(−(K +1))i ·q(xi). (12)

Recall from Lemma 24 that in the communication problem corresponding to F ′, Alice has input x ∈
{−1,1}4n, Bob has input y ∈ {−1,1}4n, and the goal is to output F(. . . ,∨4

v=1(xu,v ∧ yu,v), . . .), where u
ranges over {1, . . . ,n}. We first use Lemma 26 in a standard way to give a simple UPPcc protocol P of cost
O(log2 n) that computes the function F ′, before giving a refined protocol with cost O(logn).

Let h(x) = ∑S⊆{−1,1}n,|S|≤d cSχS(x) be a polynomial of degree d = O(logn) that sign-represents F as per
Lemma 26. Alice picks an S at random, with probability proportional to |cS|. Alice then sends Bob the set S,
and for each of the (at most) d indices u∈ S, Alice sends Bob the values {xu,v : u∈ S,1≤ v≤ 4}. Notice that
the total communication required is log

(n
d

)
+ 4 · d = O(log2 n) bits. Bob uses this information to compute

χS(. . . ,∨4
v=1(xu,v∧ yu,v), . . .), and outputs s̃gn

(
cS ·χS(. . . ,∨4

v=1(xu,v∧ yu,v), . . .)
)
.

It is easy to see that Bob outputs 1 with probability 1/2+ h(x)
2∑S⊆{−1,1}n ,|S|≤d |cS| . Since h(x) sign-represents

F , this implies that P computes F ′ with positive bias, and hence P is a UPPcc protocol for f achieving
communication cost O(log2 n).
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An O(logn) bound on UPPcc(F ′). Notice that there was nothing special about low-degree parities in the
above UPPcc protocol of cost O(log2 n): the only properties we exploited in the protocol were that (a) F is
sign-represented as a a linear combination of nO(logn) functions and (b) each such function depends on only
O(logn) variables. The key to refining the O(log2 n) upper bound on UPPcc(F ′) proved above is to observe
that the sign-representation h for F given in Eq. (12) actually sign-represents F as a linear combination of
just poly(n) functions (which are not low-degree parities), each of which depends on only O(logn) variables.

In more detail, let x=(x1, . . . ,xM)∈
(
{−1,1}N

)M denote an input to the function F = OMBM(EDN , . . . ,EDN)

as in the proof of Lemma 26. Let xi = (zi,1, . . . ,zi,m) ∈
(
{−1,1}log2 R

)m
= {−1,1}N for each i.

For each i ∈ [M] and j,k ∈ [m] such that j < k, let φi, j,k(x) denote the function EQ(zi, j,zi,k). Let T =
∪i, j,k{φi, j,k}. Notice that |T | = O(M ·m2), and each function φi, j,k ∈ T depends on only 2 · log2 R =
O(logn) variables. Then Eq. (12) gave a function h(x) satisfying the following two properties: (a) h(x)
sign-represents F and (b) h(x) is a linear combination of functions in T , i.e., h(x) = ∑φ∈T cφ · φ(x) for
some reals cφ ∈ R.

The remainder of the proof is essentially identical to the analysis of our earlier protocol. Consider the
following communication protocol for F ′. Alice picks a φ ∈ T at random, with probability proportional to
|cφ |. Alice then sends Bob φ ; this requires O(log |T |) = O(logn) bits. In addition, for each bit u∈ [n] that φ

depends on, Alice sends Bob the values {xu,v : 1≤ v≤ 4}. Since each φ depends on only 2 · log2 R=O(logn)
variables u, this requires O(logn) bits of communication as well. Bob uses this information to compute
φ(. . . ,∨4

j=1(xu,v∧ yu,v), . . .). Bob outputs s̃gn
(

cS ·χS(. . . ,∨4
j=1(xi, j ∧ yi, j), . . .)

)
.

Just as in the analysis of the protocol of cost O(log2 n), it is easy to see that Bob outputs 1 with probability
1/2+ h(x)

2∑φ∈T |cφ | . Since h(x) sign-represents F , this implies that P computes F ′ with positive bias, and hence
P is a UPPcc protocol for F ′ achieving communication cost O(logn).

5 Future Directions

Our analysis naturally suggests several directions for future work. Perhaps the primary question is to deter-
mine what is the “right” analog of Theorem 1 when the hypothesis that d̃eg+,2/3( f )≥ d is replaced with the

hypothesis that d̃eg−,2/3( f )≥ d. We conjecture that the following bound holds:

Conjecture 27. Suppose that f : {−1,1}N→{−1,1} satisfies d̃eg−,2/3( f )≥ d. Then letting F = OMBM( f , . . . , f ),
it holds that deg±(F) = Ω(min{d ·M1/3,M}).

Recall that Bun and Thaler [13] proved that d̃eg−,2/3(EDN) = Ω((N/ logN)2/3) (cf. Lemma 21). Thus,
we obtain the following special case of Conjecture 27, which we highlight separately.

Conjecture 28. Let F = OMBn1/2(EDn1/2 , . . . ,EDn1/2). Then deg±(F) = Ω̃(n1/2).

A proof of Conjecture 28 would yield a polynomial improvement over the current best threshold degree
lower bound for a depth three Boolean circuit of polynomial size, which is Ω(n3/7) [40].9 On the other
hand, disproving Conjecture 28 would likely require the development of new techniques for constructing
low-degree threshold representations for block-composed functions.

It would also be interesting to resolve Conjecture 3 (cf. Section 1.1), which we restate here informally
for reference. Is block-composition with OMB is still an effective form of hardness amplification if the
one-sided hypothesis that d̃eg+,2/3( f ) ≥ d from Theorem 1 is replaced with the weaker hypothesis that

d̃eg2/3( f )≥ d?

9Conjecture 28 appeared in an earlier version of this manuscript. At that time, the best threshold degree lower bound for any
constant depth Boolean circuit of polynomial size was polynomially smaller than n1/2 [51].
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Finally, it would be interesting to determine the largest possible separation between PP and PNP in
the query and communication models. We identified functions in PNP

query and PNPcc
that have, respectively,

PPquery and PNPcc
cost Ω̃(n2/5). Our methods would translate improved one-sided approximate degree

lower bounds into improved separations. Concretely, we conjecture that for any integer k > 0, there exists a
function f computed by a DNF of width k such that d̃eg+,2/3( f ) = Ω(nk/(k+1)). Indeed, for any k, the k-sum
function is a natural candidate for this conjecture — see [9] for details. Our methods would translate such
an f into functions in PNP

query and PNPcc
that have PPquery and PNPcc

cost Ω(nk/(2k+1)), which approaches
Ω(n1/2) as k→ ∞. Is it possible that such a separation is essentially tight? That is, for every function f in
PNP
query, is it the case that PPquery( f ) = O(n1/2)?
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A Polynomial Approximations and their Dual Characterizations

The presentation in this section borrows heavily from our earlier work [13].

A.1 Approximate Degree

The ε-approximate degree of a function f : {−1,1}n→ {−1,1}, denoted d̃egε( f ), is the minimum (total)
degree of any real polynomial p such that ‖p− f‖∞ ≤ ε , i.e., |p(x)− f (x)| ≤ ε for all x ∈ {−1,1}n. Any
polynomial p satisfying ‖p− f‖∞ ≤ ε is called an ε-approximation for f . By convention, d̃eg( f ) denotes

d̃eg1/3( f ), and this quantity is referred to with qualification as the approximate degree of a function. The

choice of 1/3 is arbitrary, as d̃eg( f ) is related to d̃egε( f ) by a constant factor for any constant ε ∈ (0,1).
Given a Boolean function f , let p be a real polynomial that minimizes ‖p− f‖∞ among all polynomials

of degree at most d. Since we work over x ∈ {−1,1}n, we may assume without loss of generality that p is
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multilinear with the representation p(x) = ∑|S|≤d cSχS(x) where the coefficients cS are real numbers. Then
p is an optimum of the following linear program.

min ε

such that
∣∣∣ f (x)−∑|S|≤d cSχS(x)

∣∣∣≤ ε for each x ∈ {−1,1}n

cS ∈ R for each |S| ≤ d
ε ≥ 0

The dual LP is as follows.

max ∑x∈{−1,1}n φ(x) f (x)
such that ∑x∈{−1,1}n |φ(x)|= 1

∑x∈{−1,1}n φ(x)χS(x) = 0 for each |S| ≤ d
φ(x) ∈ R for each x ∈ {−1,1}n

Strong LP-duality thus yields the following well-known dual characterization of approximate degree
(cf. [44]).

Lemma 29. Let f : {−1,1}n→ {−1,1} be a Boolean function. Then d̃egε( f ) > d if and only if there is a
polynomial φ : {−1,1}n→ R such that

∑
x∈{−1,1}n

f (x)φ(x)> ε, (13)

∑
x∈{−1,1}n

|φ(x)|= 1, (14)

and
∑

x∈{−1,1}n

φ(x)χS(x) = 0 for each |S| ≤ d. (15)

If φ satisfies Eq. (15), we say φ has pure high degree d. We refer to any feasible solution φ to the dual
LP as a dual polynomial for f .

A.2 Positive One-Sided Approximate Degree

Positive one-sided ε-approximate degree, denoted d̃eg+,ε( f ), is the least degree of a real polynomial p with
that is an positive one-sided ε-approximation to f , meaning

1. |p(x)+1| ≤ ε for all x ∈ f−1(−1).

2. p(x)≥ 1− ε for all x ∈ f−1(+1).

That is, we require p to be very accurate on inputs in f−1(−1), but only require “one-sided accuracy”
on inputs in f−1(+1). The primal and dual LPs change in a simple but crucial way if we look at one-sided
approximate degree rather than approximate degree. Let p(x) = ∑|S|≤d cSχS(x) be a polynomial of degree
d for which the positive one-sided ε-approximate degree of f is attained. Then p is an optimum of the
following linear program.

min ε

such that
∣∣∣ f (x)−∑|S|≤d cSχS(x)

∣∣∣≤ ε for each x ∈ f−1(−1)

∑|S|≤d cSχS(x)≥ 1− ε for each x ∈ f−1(+1)
cS ∈ R for each |S| ≤ d
ε ≥ 0
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The dual LP is as follows.

max ∑x∈{−1,1}n φ(x) f (x)
such that ∑x∈{−1,1}n |φ(x)|= 1

∑x∈{−1,1}n φ(x)χS(x) = 0 for each |S| ≤ d
φ(x)≥ 0 for each x ∈ f−1(+1)
φ(x) ∈ R for each x ∈ {−1,1}n

We again appeal to strong LP-duality for the following dual characterization of positive one-sided ap-
proximate degree.

Lemma 30. Fix any constant C > 0. Let f : {−1,1}n→{−1,1} be a Boolean function. Then d̃eg+,ε( f )> d
if and only if there is a polynomial φ : {−1,1}n→ R such that

∑
x∈{−1,1}n

f (x)φ(x)>C · ε, (16)

∑
x∈{−1,1}n

|φ(x)|=C, (17)

∑
x∈{−1,1}n

φ(x)χS(x) = 0 for each |S| ≤ d, (18)

and
φ(x)≥ 0 for each x ∈ f−1(+1). (19)

Observe that a feasible solution φ to this dual LP is a feasible solution to the dual LP for approximate
degree, with the additional constraint that φ(x) agrees in sign with f (x) whenever x ∈ f−1(+1). We refer to
any such feasible solution φ as a dual polynomial for f with positive one-sided error.

A.3 Negative One-Sided Approximate Degree

Negative one-sided ε-approximate degree, denoted d̃eg−,ε( f ), is defined analogously to positive one-sided
ε-approximate degree. Specifically, it equals the least degree of a real polynomial p with that is an negative
one-sided ε-approximation to f , meaning

1. |p(x)−1| ≤ ε for all x ∈ f−1(+1).

2. p(x)≤−1+ ε for all x ∈ f−1(−1).

Negative one-sided approximate degree has a dual characterization analogous to Lemma 30. However,
we do not make use of this dual characterization in this work, and therefore omit the details for brevity.
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