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Abstract

We define a complexity class for randomized algorithms with one-sided error that is exactly equal to a
constant (unlike the usual definitions, in which the error is only bounded above or below by a constant).
We show that the corresponding quantum classes (one each for a different error probability) are in fact
all equivalent to each other and to EQP, the quantum analogue of P. The technique used is a form of
quantum amplitude amplification.
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1 Introduction

One of the major, and still open, challenging questions of Complexity Theory is the question of how the
complexity class P compares to BPP. One approach towards settling this question is looking at the in-
termediate classes lying between P and BPP, e.g., RP. However, the current best results (without using
oracles) are the obvious inclusions P ⊆ RP ⊆ BPP, though there are some evidences, leading to a strong
belief, towards equivalence of these classes.

RP is the class of (decision) problems which admit randomized one-sided polynomial-error (worst-case)
polynomial-time algorithms. We consider a simplied class that lies between P and RP. Problems in RPE

have randomized algorithms similar to those for RP, but with an additional requirement that the one-sided
error is same for all “no” instances of a certain size. Note that, like RP, RPE have many similar properties
as those of RP. For example, RPE is closed under union, and intersection. We similarly define its quantum
analog, RQPE. The immediate questions are therefore, the structure of these classes and their relationship
with P and RP (EQP and RQP for quantum classes)1.

Rarely, complexity classes are defined in terms of exact error (or, number of accepting paths, for counting
classes). The primary reason is the lack of robustness in definition that accompanies this concept. Conceptu-
ally, there should not be much difference between complexity of problems that admit randomized algorithms
with one-sided error exactly, say, 0.3 to that with error exactly 0.31. However, we show in this paper, that
this is not a problem for analogous quantum complexity classes.

Based on what we know, P 6= RPE – but we were able to prove that the quantum analogues of these
classes have identical power: EQP = RQPE (EQP is the quantum analog of P). This was achieved by show-
ing how to completely eliminate the (one-sided) error, using quantum amplitude amplification – something
which is impossible in general for classical classes without making any complexity theoretic assumptions.

Quantum amplitude amplification[1, 3] is the key ingredient behind the famous quantum unordered
search algorithm designed by Lok Grover[4]. The technique shows how to increase the success probability of
a quantum circuit, where success probability is defined as the probability that the output state of the circuit
lies in a particular subspace. This technique and its variations has underwent a lot of analysis, and has been
successfully used to design quantum algorithms that are more efficient compared to classical ones.

In this paper we focus on the effect of amplitude amplification on quantum circuits with one-sided error.
We prove our results by adapting a quantum amplitude amplification result from [1] which shows how to

1A similar question was asked for BPP in http://cstheory.stackexchange.com/questions/20027/

in-what-class-are-randomized-algorithms-that-err-with-exactly-25-chance
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remove any probability of error from a quantum algorithm with one-sided error exactly equal to 1/2. This
is not possible, in general, for classical randomized algorithms with one-sided error.

Background on quantum computing models and corresponding complexity classes are omitted. Our
quantum circuits use arbitrary single qubit gates, whose usage is similar to arbitrary coins (with constant
bias) in randomized algorithms.

2 One-sided Error Quantum Polynomial Time

The complexity class RQPε denotes the set of problems decided by a polynomial-time quantum algorithm
with one-sided error at most ε. It is well known that for all polynomials p(), if ε = Ω(1/p(n)), then all RQPε

are, in fact, the same class.
EQP constitutes the problems with exact polynomial-time quantum algorithms, in other words, EQP =

RQP0.
We define a new complexity class, named RQPE

ε which is like RQPε but with one sided error exactly
equal to ε. Formally,

Definition 2.1. RQPE
ε denotes the class of languages L for which there exists a uniform family of quantum

circuits C, and a suitable measurement operator M such that,

• if x 6∈ L, Pr[MC(x) = |0〉] = 1

• if x ∈ L, Pr[MC(x) = |1〉] = ε

Definition 2.2. RQPE =
⋃
ε RQPE

ε

Now we state and prove the main theorem of this paper. ı denotes
√
−1.

Theorem 2.3. RQPE = EQP.

EQP is trivially contained in RQPE, in fact RQPE
ε. For example, for ε = 1/2, the EQP algorithm

can be simply modified to apply a controlled Hadamard gate with target as a qubit initialized to |0〉, and as
control the specified measurement qubit. The target qubit, upon measurement in the computational basis,
exhibits a one-sided error of 1/2. For any other constant ε, similar controlled gates can be used.

The rest of this section is on the proof of the more difficult direction. We will first show a special case of
the other direction (Lemma 2.4), and then generalize it (Corollary 2.5).
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Figure 1: Circuit for C′ (left) and S0 gate in C′ (right)

Lemma 2.4. If a language L ∈ RQPE
1/2, then L ∈ EQP.

Proof. We will assume that the algorithms end with a measurement of a specified qubit in the computational
basis – this is equivalent most other ways measurement strategies that are commonly applied.

Take any L ∈ RQPE
1/2, and consider the corresponding circuit C. Suppose m denotes the number of

ancillæ qubits used by C, and n denotes the length of any input x, then C acts on H⊗n ⊗ H⊗m and its
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output is given by |ψ〉 = C|x〉|0m〉. Without loss of generality, suppose that the first qubit is specified for
measurement, then the projective measurement operator applied is |0〉〈0| ⊗ I.

We will now a construct an EQP circuit C′ to decide the same language L. But first note that, |ψ〉 =
|0〉|ψ0〉 + |1〉|ψ1〉 and that, if x 6∈ L, 〈ψ1|ψ1〉 = 0, and if x ∈ L, 〈ψ1|ψ1〉 = 1/2 (= 〈ψ0|ψ0〉). The circuit is
constructed as C′ = AS0A−1SFA and described in Figure 1. C′ acts on H⊗n ⊗ H⊗n ⊗ H⊗m, and we will
denote the space as 3 registers P,Q,R, respectively, of n, n,m qubits. The gates will be labelled with the
registers (as superscripts) they are applied on in the following description.

Besides the circuit C, which will be used always on registers QR, we will make frequent use of the fanout
operator[2]. This, and the other components of C′, are listed below.

• The fanout operator effectively copies basis states from a control qubit to a target qubit. On two
registers of n qubits each, it works as Fn|a1 . . . an〉|b1 . . . bn〉 = |a1 . . . an〉|(b1 ⊕ a1) . . . (bn ⊕ an)〉. Note
that, F †n = Fn.

• A = (FPQn ⊗ I)⊗ (I ⊗ CQR)

• SQF = P where the phase gate P is applied on the first qubit of register Q. Notice that, the first qubit
of register Q is the measurement qubit with respect to C.

• SQR0 = I − (1 − ı)|0n+m〉〈0n+m| which changes the phase of the basis state in which all qubits are in
the state |0〉. Implementation of S0 is shown in Figure 1 – it requires one additional qubit initialized to
|0〉. However this qubit is in state |0〉 after application of this operator, so this qubit could be reused
if required. This extra qubit has been left out in the description of C′.

• The input to C′ will be |x〉|0⊗n〉|0⊗m〉.

• We will measure the first qubit of register Q in the standard basis at the end.

Next, we will describe the operation of C′.

C′|x〉|0n〉|0m〉 =CQR · FPQn · SQR0 · FPQn · C†QR · SQF · C
QR · FPQn |x〉|0n〉|0m〉

=CQR · FPQn · SQR0 · FPQn · C†QR · SQF · C
QR |x〉|x〉|0n〉

=CQR · FPQn · SQR0 · FPQn · C†QR · SQF |x〉
(
|0〉|ψ0〉+ |1〉|ψ1〉

)
=CQR · FPQn · SQR0 · FPQn · C†QR |x〉

(
|0〉|ψ0〉+ ı|1〉|ψ1〉

)
(∗)

We will now simplify the remaining operator.

CQR · FPQn · SQR0 · FPQn · C†QR

=CQR · FPQn ·
(
I − (1− ı)IP ⊗ |0n+m〉〈0n+m|

)
· FPQn · C†QR

=CQR · FPQn ·
(
I − (1− ı)

∑
n-bit p

|p, 0n+m〉〈p, 0n+m|
)
· FPQn · C†QR

=CQR ·
(
I − (1− ı)

∑
n-bit p

FPQn |p, 0n+m〉〈p, 0n+m|FPQn
)
· C†QR

=CQR ·
(
I − (1− ı)

∑
n-bit p

|p, p, 0m〉〈p, p, 0m|
)
· C†QR

=I − (1− ı)
∑
n-bit p

|p〉〈p| ⊗ (CQR|p, 0m〉〈p, 0m|C†QR
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Substituting this simplification in (∗) above,

C′|x〉|0n〉|0m〉

=

(
I − (1− ı)

∑
n-bit p

|p〉〈p| ⊗ (CQR|p, 0m〉〈p, 0m|C†QR
)
|x〉
(
|0〉|ψ0〉+ ı|1〉|ψ1〉

)

=|x〉
(
|0〉|ψ0〉+ ı|1〉|ψ1〉

)
−

(1− ı)
∑
n-bit p

|p〉〈p|x〉 ⊗
(
CQR|p, 0m〉〈p, 0m|C†QR

) (
|0〉|ψ0〉+ ı|1〉|ψ1〉

)

=|x〉
(
|0〉|ψ0〉+ ı|1〉|ψ1〉

)
− (1− ı)|x〉 ⊗

(
CQR|x, 0m〉〈x, 0m|C†QR

) (
|0〉|ψ0〉+ ı|1〉|ψ1〉

)
=|x〉

((
|0〉|ψ0〉+ ı|1〉|ψ1〉

)
− (1− ı)

(
|0〉|ψ0〉+ |1〉|ψ1〉

)(
〈0|〈ψ0|+ 〈1|〈ψ1|

) (
|0〉|ψ0〉+ ı|1〉|ψ1〉

))
=|x〉

((
|0〉|ψ0〉+ ı|1〉|ψ1〉

)
− (1− ı)

(
|0〉|ψ0〉+ |1〉|ψ1〉

)(
〈ψ0|ψ0〉+ ı〈ψ1|ψ1〉

))
=|x〉

((
1− (1− ı)K

)
|0〉|ψ0〉+

(
ı− (1− ı)K

)
|1〉|ψ1〉

)
where, K = 〈ψ0|ψ0〉+ ı〈ψ1|ψ1〉

=

{
ı|x〉|0〉|ψ0〉 if, x 6∈ L i.e., 〈ψ1|ψ1〉 = 0, 〈ψ0|ψ0〉 = 1
(ı− 1)|x〉|1〉|ψ1〉 if, x ∈ L i.e., 〈ψ1|ψ1〉 = 〈ψ0|ψ0〉 = 1/2

Measuring the first qubit of register Q therefore shows |1〉 if and only if x ∈ L.

It can be readily observed that this proof extends to several other quantum classes as well, e.g., RQACk1/2 =

EQACk for all k ≥ 0 and RQNCk1/2 = EQNCk for k ≥ 1. We now generalize the 1/2 to any arbitrary small
constant 0 < ε < 1.

Lemma 2.5. If a language L ∈ RQPE
ε, then L ∈ EQP.

Proof. We will essentially use the same proof as in Lemma 2.4 with a modification of the S0 operator. We
will therefore, only discuss the changes from the main Lemma. In the same framework as used by the proof
of that lemma, L ∈ RQPE

ε implies that there is a circuit C which either rejects all strings not in L, or
accepts the other strings with probability 1/2.

Notice that, for our question K (defined in the proof of the above lemma) is (1 − ε + ıε). Choose φ so
that, 1 − (1 − eıφ)(1 − ε + ıε) = 0. Referring to the proof above, for the current lemma we have: if x 6∈ L,

〈ψ1|ψ1〉 = 0, and if x ∈ L, 〈ψ1|ψ1〉 = ε. Say, we choose operator SQR0 = I − (1 − eıφ)|0n+m〉〈0n+m|. It
changes the phase of the basis state in which all qubits are in the state |0〉, by eıφ; S0 can be implemented
using similar construction as in Figure 1 – specifically, using a different single qubit gate instead of phase
(P ) gate2. Now, recalculating the steps of the above lemma proves that C′ now accepts or rejects a string
with zero probability of error.

3 Conclusion

Consider the language EQ = {〈x, y〉 | x and y are identical n-bit strings}. Suppose, the only operations
allowed on the input are inner product between two n-bit strings. Classically, this requires Ω(n) operations
to determine with certainty, and Ω(log n) queries to get an one-sided error randomized algorithm with

2The proof requires using a customized single qubit gate for every ε appearing in RQPE
ε, which we feel is okay since usual

quantum circuit models allow use of arbitrary single qubit gates.
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polynomially small error. However, the results proved in this paper can be used to obtain a quantum
algorithm with O(1) queries without any probability of error.

Complexity classes for problems allowing error are never defined in terms of an exact error, but upper or
lower bounds of error probability. In this paper, we took the unusual route of defining an one-sided exact-
error complexity class RPE

ε and its quantum analogue RQPE
ε (ε denotes the one-sided error). For the

classical class, it is not clear whether RPE
ε is robust enough (like RP) so that RPE

ε1 = RPE
ε2 for ε1 6= ε2,

and furthermore, the relationship among these classes with each other and with P is unknown. However, we
were able to resolve this question for the corresponding quantum classes. We showed that RQPE

ε = EQP
for all constant ε. We showed this by employing the technique of quantum amplitude amplification, and were
able to reduce the (one-sided) error probability to 0 – something that is not currently possible for arbitrary
one-sided classical randomized algorithms.
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