
Applications of Quantum Amplitude Amplification
Debajyoti Bera1

1 IIIT-Delhi, New Delhi, India. Email: dbera@iiitd.ac.in

Abstract
Amplitude amplification is a central tool used in Grover’s quantum search algorithm and has
been used in various forms in numerous quantum algorithms since then. It has been shown to
completely eliminate one-sided error of quantum search algorithms where input is accessed in
the form of black-box queries. We generalize amplitude amplification for decision problems in
the familiar form where input is accessed in the form of initial states of quantum circuits and
where arbitrary projective measurements may be used to ascertain success or failure. This gener-
alization allows us to derive interesting applications of amplitude amplification for distinguishing
between two given distributions based on their samples, detection of faults in quantum circuits
and eliminating error of one and two-sided quantum algorithms with exact errors.
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1 Introduction

The motivation behind this work is to investigate the characteristics of quantum computation
when viewed as randomized algorithms. It is known that quantum amplitude amplification,
the key technique underlying Grover’s unordered search algorithm, is able to reduce and
even eliminate error of one-sided quantum black-box algorithms for search problems [7]. We
explored that direction further for two-sided error algorithms for decision problems based on
the key observation that quantum algorithms appear to be better at distinguishing between
two given probability distributions compared to classical randomized algorithms.

Suppose we are given a biased coin whose distribution is either µ1 = 〈1/3, 2/3〉 or
µ2 = 〈2/3, 1/3〉. A classical problem of probabilistic classification is to determine the
distribution of the coin by tossing it several times. Various techniques exist like Bayesian
classification and maximum likelihood estimation, all of which aim to minimize some kind of
error that is inherent in such a probabilistic inference. But it is not believed to be possible to
confidently classify a distribution without any error. This is true even if µ1 = 〈0, 1〉 instead.

However, such classification is possible when the distributions come from a quantum
system, our definition of a quantum source of random samples. We define a quantum system
(QS) as a combination of a quantum circuit C, an input to the circuit |ψ〉 and a two-outcome
projective measurement operator P = 〈PE , I−PE〉 (two outcomes will be always labeled as E
and F for convenience) and denote it by 〈|ψ〉, C,P〉. If we are given an actual instance of a QS
and we apply the circuit on the input followed by measurement using the projective operator,
we will obtain a sample in {E,F} from the output probability distribution 〈pE , 1 − pE〉
where pE denotes the probability of observing outcome E when C|ψ〉 is measured using P.

The quantum version of the above question of classifying between µ1 and µ2 becomes this:
given an instance Q which can be either a quantum system Q1 with output distribution µ1 or
QS Q2 with output distribution µ2, can we confidently figure out if Q is Q1 or Q2 (in other
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words, determine the actual distribution of Q) by using Q in a black-box manner? Assume
that both Q1 andQ2 involve the same number of qubits and the same set of outcomes (E
and F ). This is analogous to asking if two or more distinct distributions (over same support
of two elements) can be distinguished without any probability of error. Even though classical
techniques cannot identify the exact distribution from the sample distribution without any
error, we show that it is possible to do so for distributions of quantum systems.

I Theorem 1. Given a quantum system Q = 〈|ψ〉, C,P〉 whose output distribution can either
be 〈δ, 1 − δ〉 or 〈ε, 1 − ε〉 for some 0 ≤ δ < ε ≤ 1, there is a quantum circuit C ′ which can
determine the output distribution of Q without any probability of error. C ′ takes |ψ〉 as input,
makes repeated calls to C, C† and employs gates that depend upon operators of P and |ψ〉.

The core technique is once again, quantum amplitude amplification. It can be thought
of as a quantum analog of repeated trials used in randomized algorithms for reducing mis-
classification error. It is popular among algorithm designers like a magic wand which could be
waved towards almost any problem to yield a surprising improvement, usually quadratic, over
classical algorithms. It is the workhorse behind Grover’s famous quantum unordered search
algorithm [8] and was later shown to be also applicable to the Deutsch-Jozsa problem [3].
The most generalized and popular version of this technique was given by Brassard et al.

I Theorem 2 (Exact amplitude amplification [7]). Consider a Boolean function Φ : X → {0, 1}
that partitions a set X between its good (those which Φ evaluates to 1) and bad (those which
evaluate to 0) elements. Consider also a quantum algorithm that uses no measurements and
uses oracle gates for computing Φ such that C|0〉 is quantum superposition of the elements
of X and let a > 0 denote the success probability that a good element is observed if C|0〉 is
measured (in the standard basis). There exists a quantum circuit (that depends upon a) which
finds a good solution with certainty using at most Θ(1/

√
a) applications of C and C†.

This theorem is highly versatile as it is. However, for our applications we require further
generalizations. For example, we are interested in not only one-sided, but also two-sided error
algorithms. We also want to apply it to algorithms which are measured not necessarily in
the standard basis. Lastly, we want algorithms which act on non-|0〉 input states, specifically,
input states that correspond to the input Φ, suitably encoded – this is similar to classical
Boolean circuits without oracle gates. Lastly, for the results of this paper we stick to only
decision versions of the above theorem (though our results could be extended to circuits
that output some solution). The following theorem is our version of Theorem 2 with the
constraint that the probability a is fixed for every possible Φ (condition of exactness).

I Theorem 3 (Decision version of generalized exact amplitude amplification). Consider a
Boolean function Φ : X → {0, 1} that partitions a set X between its good (those which Φ
evaluates to 1) and bad (the rest of X) elements. Suppose C is a quantum algorithm (or
circuit) that uses no measurement and decides Φ with two-sided exact error (δ, ε) for some
δ < ε. That is, the probability of error when C is given a good x ∈ X is exactly ε and when
x is bad is exactly δ. Here success and error is determined upon measurement of the output
state of C by any projective measurement with two outcomes. There exists a quantum circuit
C ′ that calls C and C†, uses the same input as that of C (maybe with ancillæ), is measured
using an extension of the measurement operator for C and decides Φ with certainty,

The primary contribution of this paper are a few interesting applications of amplitude
amplification. If we have two quantum systems which differ only in their circuit, then we can
essentially use their output distribution, after suitably amplifying the systems, to distinguish
between those circuits. We show how this can be used to detect faults in quantum circuits.
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On the other hand, if we have two systems that differ only in their input states, then we
get a way to amplify their probability of acceptance. This is exactly at the core of our proof
that quantum classes equivalent to exact two-sided and exact one-sided error classes can be
“derandomized”, in the sense that their errors can be completely eliminated.

One of the major, and still open, questions of Complexity Theory is how P compares to
RP and BPP, one-sided and two-sided bounded error polynomial-time complexity classes.
The current best results are the obvious inclusions P ⊆ RP ⊆ BPP, though there are some
evidences of their equivalence. Same question for their quantum analogs is in an equally
indeterminate state, i.e., EQP ⊆ RQP ⊆ BQP; these are quantum analogs of P, RP and
BPP, respectively. There is not even much evidence that EQP = BQP. One approach
towards settling this question is studying restricted versions of these classes. Our results
show that their exact error versions, ERQP and EBQP, are identical to EQP as long as
the two(one)-sided errors are fixed for all instances 1.

Organization: The rest of the paper is organized as follows. We discuss quantum distin-
guishability of quantum systems in Section 2. The proof of our main theorem on distinguisha-
bility is given in Section 3. This theorem, even though quite general, is not suitable enough
to amplify a collection of quantum systems in a uniform manner; in Section 4 we discuss a
uniform version of our main theorem. Section 5 contains one of the applications about detec-
tion of faults in quantum circuits and in Section 6 we show that EBQP = ERQP = EQP
and prove Theorem 3 for regular circuits and those with oracle gates.

2 Distinguishing quantum systems

We will use µp to denote a distribution 〈p, 1− p〉 over outcomes 〈E,F 〉 and µ(Q) to denote
output distribution of a quantum system Q.

As explained earlier, the main problem we are interested in involves a given instance of a
quantum system Q which can be either Qδ with output distribution µδ = 〈δ, 1− δ〉 or Qε
with output distribution µε = 〈ε, 1− ε〉. We want to construct a quantum algorithm, rather
a circuit, that can “call Q as a subroutine” and determine if Q = Qδ or Q = Qε.

We can even extend this to multiple quantum systems S = {Q1,Q2, . . .} where output
distribution of any Qi is either µδ or µε. We use the notation QD(Q1,Q2, . . .) or even shorter
QD(S) to refer to the quantum distinguishability problem among quantum systems of S.

Our goal is to design a quantum circuit in which we can “embed any given Q” as a
black-box. This motivated us to define a notion of black-box extension for quantum systems,
similar to quantum algorithms with subroutines or quantum circuits with black-box operators,
allowing only trivial extensions to inputs states and projection operators. We refer to these
as B-transforms (B standing for “black-box”). A general illustration is given in Figure 1.

(a)

(b)

C
P

|ψ〉
|ψ〉

|0〉
C PE,PF

P

Pa
C ′ C†

Figure 1 Schematic for B-transform

1 The same question for classical classes was asked here: http://cstheory.stackexchange.com/
questions/20027/in-what-class-are-randomized-algorithms-that-err-with-exactly-25-chance.

http://cstheory.stackexchange.com/questions/20027/in-what-class-are-randomized-algorithms-that-err-with-exactly-25-chance
http://cstheory.stackexchange.com/questions/20027/in-what-class-are-randomized-algorithms-that-err-with-exactly-25-chance
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I Definition 4 (B-transform). A (non-uniform) Bnδ,ε-transform for n-qubit systems is a (non-
uniform) procedure for extending an n-qubit QS Q1 =

〈
|ψ〉, C,P

〉
to a (possibly larger) QS

Q2 =
〈
|ψ′〉, C ′,P ′

〉
whose components are black-box extensions of the components of Q1.

The input in Q2 is an extension of the input in Q1 supplemented by ancillæ qubits
initialized to a fixed state (wlog. in state |0〉), i.e., |ψ′〉 = |ψ〉 ⊗ |00 · · · 00〉.
The projection operator in Q2 is an extension of the projection operator in Q1 to include
measurement of the ancillæ in a basis independent of Q1, i.e., P ′ = P ⊗ Pa.
The number of ancillæ and the operator Pa are independent of Q1 and depend upon δ, ε.
The circuit in Q2 calls C and C† and uses additional gates that depend upon δ and ε.
C ′ may also use gates that depend upon PE and |ψ〉.

We call the transformations that satisfy the final condition as “non-uniform” since the
transformed circuit could be using gates that depend upon the input states and measurement
operators of the respective quantum system. Note that the non-uniformity is not with respect
to n, the number of qubits of the quantum system, but with respect to the gates of the
transformed circuit. It will be clear from the proof of Theorem 6 that the transformations
that will be used in this paper are anyway uniform in n. In any case, we will always drop n
from the superscript of Bnδ,ε. We will revisit the notion of non-uniformity in Section 4.

We want transformed quantum circuits that solve the quantum distinguishing problem
without any error which motives the next definition.

I Definition 5. For a set of quantum systems S = {Q1,Q2, . . .} with output distributions
either µp or µq (for p < q), a B-transform B is said to solve QD(S) with error (δ, ε), in other
words B is a (δ, ε)-solution of QD(S), if the following holds for some δ < ε and all Q ∈ S.

If µ(Q) = µp, then outcome of B(Q) is E with probability δ.
If µ(Q) = µq, then outcome of B(Q) is E with probability ε.

QD(S) is said to have a perfect solution if B is a (0, 1)-solution of QD(S).

It can be seen that the identity B-transform is a trivial solution of the above QD(S)
with error (p, q). The last part of the above definition is based on the fact that if B is a
(0, 1)-solution of QD(S), then the outcome of Q′ = B(Q) can be used to correctly infer the
output distribution of any given instance Q ∈ S. Let Q′ = B(Q) – which is essentially an
extension of the input of Q with some ancillæ, an extension of its measurement operator
and a circuit that can call the circuits of Q (and its inverse) in a black-box manner. If the
output distribution of Q is µp, then the outcome of Q′ is never E and otherwise (i.e., if the
output distribution of Q is µq) the outcome of Q′ is always E without any error.

The main theorem of our work is stated next.

I Theorem 6. Let S = {Q1,Q2, . . .} be a collection of quantum systems such that output
distribution of any Qi ∈ S is either µδ or µε for some δ < ε. Then S is perfectly-solvable via
some B-transition Bδ,ε, i.e., any Qi ∈ S can be transformed by Bδ,ε to some Q′i such that:

if output distribution of Qi is µδ, then outcome of Q′i is never E and
if output distribution of Qi is µε, then outcome of Q′i is always E.

The proof of this theorem is presented in the next section. Note that, unlike Theorem 2
which only applies to one-sided error algorithms, we prove that two-sided error algorithms
can also be “amplified to certainty”. A straight-forward application of this is to exactly
distinguish between two QS with known output distributions, such as Theorem 1 (Section 1).

Proof of Theorem 1. Consider the transformation Bnδ,ε from Theorem 6. Given an n-qubit
Q = 〈|ψ〉, C,P〉, construct the transformed QS Bnδ,ε(Q) =

〈
|ψ〉 ⊗ |00 . . .0〉, C ′,P ⊗ Pa

〉
. By
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Theorem 6, the output state of the transformed circuit C ′, when given |ψ〉 (along with a few
ancillæ in a fixed state), upon measurement by a simple extension of P, has outcome either
E or F , depending upon whether µ(Q) = µδ or µ(Q) = µε. J

3 Proof of Theorem 6

We first state and prove our main technical tool – the Separability Lemma which essentially
amplifies amplitudes of one-sided error algorithms. The Lemma can be proven using already
known techniques of amplitude amplifications (e.g., see [7, Sec 2.1]). We give an alternative
recursive construction that is optimized towards amplifying fixed probabilities.

We use the following notation for the sake of brevity. Given a collection of quantum
systems {Q1,Q2, . . .} (such collections will be always denoted by S), we say that S is
(δ, ε)-separable (for some δ < ε) if output distribution of any Qi in S is either µδ or µε.

I Lemma 7. [Separability] For δ < ε < 1 and a collection of quantum systems S1 which is
(δ, ε)-separable, there is a B-transform Bε which converts S1 to a (δ′, 1)-separable collection
of quantum systems (for some δ ≤ δ′ < 1). Additionally, δ = δ′ = 0 if and only if δ = 0.

Given an instance Q = 〈|ψ〉, C,P〉 of some Qi ∈ S1, Lemma 7 gives us a way to
determine whether the distribution of Q is 〈0, 1〉 or 〈ε, 1 − ε〉 by first transforming Q to
B(Q) = Q′ = 〈|ψ′〉, C ′,P ′〉 and then measuring the output of C ′ on |ψ′〉 (which is a simple
extension of the original input state) using measurement operator P ′ (which is also a simple
extension of the original measurement operator).

3.1 Grover iterator
As is usual in all analysis of amplitude amplification, the main operator to study is the
Grover iterator [8, 7]. Suppose we have a circuit C acting on an input state |ψ〉 and supposed
to be measured using a two-output projective measurement operator P = 〈PE , I − PE〉. We
consider a generalized version, similar to the one studied by Høyer [9]: G(C, |ψ〉,P, θ, α) =
CS|ψ〉C

†SPC using these additional gates: S|ψ〉 = I−(1−eıθ)|ψ〉〈ψ| and SP = I−(1−eıα)PE .
Let |ψ′〉 = C|ψ〉 denote the output state, |ψE〉 = PE |ψ′〉 and p denote 〈ψE |ψE〉 – the

probability of measuring outcome E for this output state.
It is easy to see that CS|ψ〉C† = I− (1−eıθ)|ψ′〉〈ψ′| and SPC|ψ〉 =

(
I− (1−eıα)PE

)
|ψ′〉.

One can then compute |ψ′′〉 = G|ψ〉 as
(
eıθ + (1 − eıα)(1 − eıθ)p

)
|ψ′〉 − (1 − eıα)|ψE〉 and

PE |ψ′′〉 =
(
eıθ + eıα − 1 + (1− eıα)(1− eıθ)p

)
|ψE〉.

We get the following lemma summarizing the relative increase in probability after one
application of our Grover iterator. We will use p′(θ, α, p) to denote the new probability of
measuring outcome E on the output state after applying G on input |ψ〉.

I Lemma 8. Given a quantum system Q1 = 〈|ψ〉, C,P〉 and α, θ ∈ [0, π], let G be the circuit
for the Grover iterator G(C, |ψ〉,P, θ, α) = CS|ψ〉C

†SPC. If p denotes the probability of
observing outcome E for Q1 and p′ denotes the same probability for the QS 〈|ψ〉, G,P〉, then
p′ = p∆ where ∆ =

∣∣(eıθ + eıα − 1 + (1− eıα)(1− eıθ)p
)∣∣2.

First, p = 0 if and only if p′ = 0 which means amplification has no effect on impossible
outcomes. On the other hand, if p > 0, p′ is maximized when θ = α; it can be shown that
∆ =

(
(1− 2p) cos θ− 2(1− p)

)2 + sin2 θ in that case. We will use ∆∗p to denote the maximum
value of ∆ for any p and using optimal θ and α. The corresponding optimal Grover iterator
will be denoted as G∗p(C, |ψ〉,P); note that G∗ increases the probability from p to p′ = p∆∗p.
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Range of initial
probability p Optimum α = θ Relative increase p′

p
= ∆∗p

Amplified probability
p′ = p∆∗p

p = 0.5 π/2 2 1
0.25 ≤ p ≤ 0.5 arccos

(
1− 1

2p

)
1
p

1
p ≤ 0.25 π (3− 4p)2 ≥ 4 p(3− 4p)2 ≥ 4p

Table 1 Optimum Grover iterator for different values of initial probability

Table 1 summarizes the optimum value of p′ and the relative increase for different possible
values of initial probability p. Details of the relevant calculations are given in Appendix.

The following definition and corollary essentially describes the optimum B-transform.

I Definition 9 (Optimal B-transform). B∗p :
〈
|ψ〉, C,P

〉
−→

〈
|ψ〉, G∗p

(
C, |ψ〉,P

)
,P
〉

I Corollary 10. If the output distribution of a QS Q is µε, then the output distribution of
B∗ε (Q) is 〈ε∆∗ε , 1− ε∆∗ε 〉. On the other hand, if the output distribution is µδ (for some δ < ε),
then the output distribution of B∗ε (Q) is 〈δ′, 1− δ′〉 for some δ′ ≥ δ which can be computed
using δ and ε. Furthermore, δ = δ′ if and only if δ = 0 (in which case, δ′ = 0).

In the next few subsections, we prove Separability Lemma for different values of ε.

3.2 Bε for ε ∈ [1/4, 1/2]
This is the simplest of all cases, to B-transform (δ, ε)-separable S1 to a (δ′, 1)-separable
one, for any 1/4 ≤ ε ≤ 1/2 and for some δ ≤ δ′. We can clearly use Bε = B∗ε defined in
Definition 9. Separability Lemma immediately follows from Corollary 10 and Table 1.

3.3 Bε for ε > 1
2

We use the idea proposed by Brassard et al. [7] to first convert S1 to a (δ′, 1
2 )-separable

S2; let B+
ε denote this transformation which is illustrated in Equation 1. This involves an

additional qubit in state |0〉 and an additional projective operator Pε = 〈P 0
ε , I − P 0

ε 〉, where,

P 0
ε = 1

2ε |0〉〈0|+
√

1− 1
2ε

√
1
2ε |1〉〈0|+

√
1− 1

2ε

√
1
2ε |0〉〈1|+

(
1− 1

2ε
)
|1〉〈1|

Then we convert S2 to a (δ′′, 1)-separable S3 by using B 1
2
(see Subsection 3.2). Combining

both of these, we propose the following transformation for Bε. Here P ′ denotes P ⊗ Pε.〈
|ψ〉, C,P

〉 B+
ε−→
〈
|ψ〉 ⊗ |0〉, C ⊗ I,P ′

〉 B 1
2−→
〈
|ψ〉 ⊗ |0〉, G∗1/2

(
C ⊗ I, |ψ〉 ⊗ |0〉,P ′

)
,P ′
〉

(1)

Proof of Separability Lemma: The transformation from S2 to S3 was shown to be correct
in Subsection 3.2. Correctness of B+

ε follows from the fact that the probability of measuring
outcome 0 on the state |0〉 is 1

2ε (since
1
2 < ε ≤ 1, 1

2 ≤
1
2ε < 1). Let p denote the probability of

measuring outcome E for some Q = 〈|ψ〉, C,P
〉
∈ S1 and let p′ denote the same probability

for the QS 〈|ψ〉 ⊗ |0〉, C ⊗ I,P ⊗ Pε〉 of S2. Observe that, if p = 0, then p′ = 0; furthermore,
if p = ε > 1

2 , then p
′ = ε 1

2ε = 1
2 . Of course, the transformation does not depend upon δ. J

3.4 Bε for ε < 1
4

To transform (δ, ε)-separable S1 to (δ′, 1)-separable one, we first repeatedly apply the optimum
Grover iterator enough number of times to amplify ε beyond 1

4 and then apply a suitable
Bεk from Subsection 3.2.
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Suppose ε < 1/4. Let ε1 = ε∆∗ε , ε2 = ε1∆∗ε1
, ε3 = ε2∆∗ε2

, · · · . Let k be the smallest integer
such that εk ≥ 1/4; clearly, ε1, . . . , εk−1 < 1/4 and εk ∈ [1/4, 1/2]. We define Bε as the k
transformations B∗ε ,B∗ε1

,B∗ε2
, . . .B∗εk−1

applied successively and then followed by Bεk .

Bε : 〈|ψ〉, C,P〉 B∗ε−→ 〈|ψ〉, C1,P〉 output dist. = 〈ε1, 1− ε1〉 & C1 = G∗ε (C, |ψ〉,P)
B∗ε1−→ 〈|ψ〉, C2,P〉 output dist. = 〈ε2, 1− ε2〉 & C2 = G∗ε1

(C1, |ψ〉,P)
B∗ε2−→ · · · . . .

B∗εk−1−→ 〈|ψ〉, Ck,P〉 output dist. = 〈εk, 1− εk〉 & Ck = G∗εk−1
(Ck−1, |ψ〉,P)

Bεk−→〈|ψ
′〉, Ck+1,P ′〉

Proof of Separability Lemma: Satisfiability Lemma is easily proved by observing that εk ∈
[1/4, 1/2] and so, applying Bεk (from Subsection 3.2) at the last step ensures that the final
QS has output distribution 〈1, 0〉. It is also easy to check that these output distributions
remain unchanged if and only if δ = 0. J

3.5 Performance Evaluation
Even though we propose a recursive approach to reduce error-probability of exact error
quantum systems, we show that our approach is essentially same as the existing iterative
approaches for amplitude amplification in terms of the number of calls to C and C†.

Take any quantum system QS = 〈|ψ〉, C,P〉. The existing approaches [7, 9] repeatedly
apply the iterative Grover operator Q = (CS|ψ〉C†SP) (generalized to act on input encoded
as the initial state and output state to be measured by any projective operator) on C|ψ〉. Here
S|ψ〉 and SP modify the phase of certain states by θ = α = π as specified in Subsection 3.1.

Let ε denote the probability of observing outcome E; let β ∈ [0, π/2] be such that
sin2 β = ε. Then, the probability of observing E on repeated applications of Q, say b times,
on C|ψ〉 (i.e., on the output state of QbC|ψ〉) can be shown to be sin2 ((2b+ 1)β

)
.

As shown in Table 1, suitably choice of phases in S|ψ〉 and SP can amplify any ε ∈ [0.25, 1]
to 1 using a B-transform that effectively corresponds to one application of Q on C|ψ〉. So, if
ε ≥ 0.25, our recursive method and the iterative approach are identical.

So, we will now analyze Bε for ε < 0.25, in fact, for ε � 0.25. Let k be the number of
B∗-transforms required. Recall from Subsection 3.4 that Bε keeps the input and the projective
operator unchanged and converts C to some Ck+1 via intermediate circuits C1, C2, . . . , Ck
where Cj+1 = G∗εj (Cj , |ψ〉,P) for ε < ε1 < . . . < εk ∈ [1/4, 1/2]. The S|ψ〉 and SP operators
in those G∗ are defined using phases θ = α = π as per Table 1.

I Lemma 11. For any j ∈ [1, k], Cj = Q 3j−1
2 C.

This lemma can be easily proved by induction on k (see Appendix). It shows that the
final circuit obtained by our recursive approach is identical to that obtained by apply a fixed
Q a certain number of times. Therefore, εk = sin2 (3kβ) which must be at least 1/4. This
stipulates that k ≥ log3

π
6β . The total number of calls to C and C† made by our recursive

algorithm to amplify ε < 0.25 to some εk > 0.25 can then be easily shown to be 1 + π
3β

(rather, the next higher integer) – which is exactly the same as that in Q(3k−1)/2C.

3.6 Proof of Theorem 6
We are now ready to prove Theorem 6 using Separability Lemma. We will use the following
notation. If B is a transformation for a set of quantum systems S, then the set of transformed
quantum systems after applying B will be denoted by B(S).



XX:8 Applications of Quantum Amplitude Amplification

Proof. The given S in the theorem is (δ, ε)-separable. Our required Bδ,ε will be composed of
a series of B-transforms: Bε, B2 and Bδ.
Bε is chosen such so as to solve QD(S) with error (δ′, 1) for some δ < δ′. This step can

skipped (Bε can be set to identity) if ε = 1; on the other hand, if ε < 1, we can use Bε from
Lemma 7, which implies that Bε(S) is (δ′, 1)-separable for some δ′ (that depends on δ and ε).
Let S1 denote Bε(S).
B2 is the following transform:

〈
|ψ〉, C, (P1, P2)

〉
−→

〈
|ψ〉, C, (P2, P1)

〉
. Let S2 = B2(S1).

Any QS ∈ S1 with µ(QS) = µδ′ is transformed to QS′ ∈ S2 with µ(QS′) = 1 − δ′ and
similarly, if µ(QS) = µ1, then µ(QS′) = µ0. Therefore, S2 is (0, 1− δ′)-separable.

By property of Bε, δ = δ′ = 0 if and only if δ = 0 and in that case, we have obtained
(0, 1)-separable S2. On the other hand, if δ > 0, then δ′ > 0. Let δ′′ denote 1− δ′. Since S2
is (0, δ′′)-separable, apply Lemma 7 again to get Bδ such that S ′ = Bδ(S2) is (0, 1)-separable.

Our required transform B is a sequential application of Bε followed by B2 followed by Bδ.
As explained above, Bδ(B2(Bε(·))) is a (0, 1)-solution of QD(S). J

4 Uniform version of Theorem 6

The non-uniformity in Definition 4 is not very helpful if we wish to obtain a true black-box
extension of a quantum system Q =

〈
|ψ〉, C,P

〉
. Note that the extension to the input qubits

and the extension to the projective measurement operator is anyway independent of Q and
n, the gates in C ′ are uniform in n, and furthermore, the transformed circuit C ′ is allowed
to call the original circuit C (and its inverse C†) in a black-box manner; however, some of
the gates in C ′ may additionally depend upon |ψ〉 and operators of P. It would be really
good to obtain a more uniform conversion which necessitates the following definition.

IDefinition 12 (Uniform B-transform). A B-transform for converting multiple QS {Q1,Q2, . . .}
is said to be uniform if the circuit of B(Qi) is identical for all source Qi except for the calls
to C and C† corresponding to Qi.

4.1 Uniform Grover iterator
We want to study some sufficient conditions for the B-transforms to be uniform by constructing
a uniform version of Grover iterator.

Since Grover iterator uses SP , it is crucial to have identical measurement operators for all
quantum systems. This is, however, not such a major requirement since it is always possible
to change measurement operators by extending a quantum circuit with suitable operators.

Except the gates S|ψ〉 = I− (1−eıθ)|ψ〉〈ψ| which depend upon the corresponding input to
the circuit (|ψ〉), none of the other gates used in B-transforms that are involved in the proof
of Theorem 6 depend upon the input state (see Section 3). However, a B-transform may still
become uniform if all the inputs in S1, and hence all such S|ψ〉 gates, will be identical.

Now consider a second option – all measurement operators are identical and all the input
states are not identical but they form an orthonormal set. We show that it is still possible to
apply S|ψ〉 in a uniform manner. Recall that this gate changes the phase of any state depending
upon whether it is |ψ〉 or not and the main difficulty appears to be the fact that the input state
cannot be copied and stored for a later application of the conditional phase gate. So our main
idea is to convert |ψ〉 to some state in the standard basis since it is possible to copy and store
states in the standard basis using the quantum fanout gate [4]. This gate copies a standard
basis state to another register: Fm|x1 . . . xm〉|b1 . . . bm〉 = |x1 . . . xm〉|(x1 ⊕ b1) . . . (xm ⊕ bm)〉
for x1 . . . xm ∈ {0, 1}m and b1 . . . bm ∈ {0, 1}m shows the operation for “copying” m-qubits.
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Figure 2 Applying operator S|ψ〉 in a uniform manner. Figure 2a shows the non-uniform operator
and Figure 2b shows its uniform version (dotted box on the left shows initialization and dotted box
on the right shows S|ψ〉 being applied uniformly). Figure 2c shows the Sθ operator from Figure 2b.

See Figure 2 for a uniform version of S|ψ〉. Figure 2a shows S|ψ〉 as a part of an arbitrary
quantum circuit, say C that takes as input an m-qubit state |ψ〉 (and some ancillæ) and
S|ψ〉, on m-qubits, is one of its gates Since we are now considering the case that C is applied
only on orthogonal input states (suppose denoted by |ψ1〉, |ψ2〉, · · · ), therefore, there exists a
one to one mapping between these states and a subset of the m-qubit standard basis states
|1〉, |2〉, · · · . Let U denote the unitary operator for the mapping, i.e., U |ψv〉 = |v〉.

Figure 2b illustrates a circuit C ′ that applies S|ψ〉 without requiring a gate that explicitly
depends upon |ψ〉. Apart from the two registers of C (the input |ψ〉 and ancillæ qubits), C ′
also uses m additional ancillæ qubits in state |0〉. Other than the standard gates (T stands
for the unbounded fanout Toffoli and X is the quantum NOT gate), C ′ uses three additional
gates: Fm, Pθ and Sθ. The Fm gate is the quantum fanout gate. Pθ changes phase of |1〉 by
eıθ: Pθ = I − (1− eıθ)|0〉〈0|. The Sθ gate uses an additional reusable ancillæ |0〉 and changes
the phase by eıθ only for the state |0m〉 (illustrated in Figure 2c).

The state of the first two registers after the left dotted box in Figure 2b is simply
|0m〉|ψ〉 → |v〉|ψ〉 where |v〉 is the standard basis vector U |ψ〉. We will next analyze the
operator for the right dotted box, say denoted by UR. Sθ can be written as I−(1−eıθ)|0m〉〈0m|
and the Fm operator essentially behaves like Fm|b1 . . . bm〉 → |(v1 ⊕ b1), . . . (vm ⊕ bm)〉. The
following calculation (for only the qubits involved) shows that the operator for the right
dotted box is identical with S|ψ〉.

UR =(I ⊗ U†)Fm(I ⊗ Sθ)Fm(I ⊗ U) = (I ⊗ U†)Fm
(
I ⊗ (I − (1− eıθ)|0m〉〈0m|)

)
Fm(I ⊗ U)

=(I ⊗ U†)
(
I ⊗ (I − (1− eıθ)|v〉〈v|)

)
(I ⊗ U) = I ⊗ (I − (1− eıθ)|ψ〉〈ψ|) = I ⊗ S|ψ〉

The results of this subsection can be summarized in the following lemma.

I Lemma 13. The B-transform in Theorem 6 can be made uniform if all projection operators
in the quantum systems of S are identical and all input states in S are either identical or
form an orthonormal set of states.

5 Distinguishing two circuits

Suppose we are given a quantum circuit C (as black-box) and two different operators C1 and
C2, all acting on the same Hilbert space, and we are told that the operator for C is either C1
or C2. We have to determine C corresponds to which one. We assume that we also have
access to its inverse operator C†.
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The analogous problem for deterministic (classical) functions is trivial. Two distinct
functions must differ at some input which can be determined from their function descriptions
(the problem is NP-hard but we are not concerned about feasibility, not efficiency, for this
discussion). The output of C on this input will identify whether C is C1 or C2. However, if
C is a randomized circuit or algorithm, then except for a few trivial cases, the output of C
generates a sample distribution over the output of C1 and C2; the question of determining
the correct distribution of C without any error is believed to be hard, if not impossible.

However, it is possible to give a positive answer to the same question for quantum circuits.
Select a suitable |φ〉 and compute the two possible output states |ψ1〉 = C1|φ〉, |ψ2〉 = C2|φ〉.
Choose projective operators P = 〈I − |ψ1〉〈ψ1|, |ψ1〉〈ψ1|〉 with respective outcomes E and F .

Consider these two quantum systems: 〈|φ〉, C1,P
〉
and 〈|φ〉, C2,P

〉
. The output distribu-

tion of the first QS is 〈0, 1〉 and that of the second is 〈ε, 1− ε〉 where ε = 1− |〈ψ1|ψ2〉|2 > 0.
Now, Theorem 6 can be applied on the QS 〈|φ〉, C,P〉 which essentially gives us a circuit

C ′ (that calls C and C†) along with suitably extended input and measurement operators,
with the property that if the outcome of the QS is E, then C is surely C1 and otherwise C2.

It is perfectly okay to use any |φ〉 as the input state; however, since the size of C ′ depends
inversely upon ε so it makes sense to have the largest possible ε. A recent result [2] can be
used to determine the optimum initial state (details of this is presented in the Appendix).

Single-fault detection

Fault detection is a major step in the workflow of circuit fabrication. It is common in research
and industry to assume that practically most faults appear according to a few known fault
models. A standard approach to detecting if a circuit is faulty is to generate a set of test
patterns (inputs) such that the output of a fault-free circuit would be different from that of
a faulty-circuit. This method is known as ATPG (automatic test-pattern generation) and is
well-studied for classical circuits and very recently, seeing use even for quantum circuits [11].

ATPG is computationally difficult being NP-hard [10], and even harder for quantum
circuits because the measurement output of these circuits is probabilistic, and hence even a
single test pattern will generate a distribution over possible outcomes.

However, the technique described earlier in this section can come to our rescue in the
special case of only one fault model, i.e., given a circuit C as a black-box unit, we wish to
determine if C is fault-free (i.e., C = C1) or C is faulty (with fault model C2). We can
reliably answer this question without any chance of error using the approach described above.

6 Exact Error Algorithms

Usual probabilistic classes like RP and BPP are defined in terms of errors that are upper
bounded by constants. They are rarely defined in terms of exact error, primarily due to
the lack of robustness in definition that accompanies this concept. There is no known
technique to show that the class of problems with one-sided error exactly same as 0.3 remains
unchanged if the error is instead 0.301. Consider, for example, the simplified class ERP
(P ⊆ ERP ⊆ RP) whose problems have randomized algorithms similar to those for RP,
but with an additional requirement that the error is same for all “no” instances (of any
length). We similarly define EBPP as the class of problems with exact two-sided error
polymomial-time algorithms. Based on what we know, P 6= ERP 6= EBPP. However, we
were able to prove that the quantum analogs of these classes have identical complexity using
our generalization of quantum amplitude amplification.
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I Definition 14. EBQPδ,ε is the class of languages L for which there exists a uniform family
of polynomial-size quantum circuits {Cn}, a uniform family of states for an ancillæ qubits
|An〉 and a uniform family of two-outcome projective measurement operators {Pn} such that
Cn and Pn act on a space of n+ an qubits and the following hold for any x ∈ {0, 1}n, ∀n:

if x 6∈ L, then the output distribution of
〈
|x〉 ⊗ |An〉, Cn,Pn

〉
is µδ (i.e., when the output

state of Cn on input state |x〉 ⊗ |An〉 is measured using Pn, outcome E is observed with
probability δ) and
if x ∈ L, then the output distribution of

〈
|x〉 ⊗ |An〉, Cn,Pn

〉
is µε (i.e., outcome E is

observed with probability ε upon similar measurement as the above case).
ERQPε is simply EBQP0,ε. Define EBQP =

⋃
ε>δ≥0

EBQPδ,ε and ERQP =
⋃
ε>0

ERQPε.

Note that, unlike the usual definitions of probabilistic classes, for these classes it is not
even clear if the different classes EBQPδ,ε for different δ and ε are identical. However, the
following lemma is obvious from these definitions.

I Lemma 15. EQP = EBQP0,1 = ERQP1 and EQP ⊆ ERQP ⊆ EBQP.

The main result of this section is a simple application of Theorem 6 and Lemma 13.

I Theorem 16. EQP = ERQP = EBQP.

Proof. We essentially need to show that EBQP ⊆ EQP. To prove this we will show that
for any L, if L ∈ EBQPδ,ε (for any ε > δ ≥ 0), then L ∈ EBQP0,1.

Fix an arbitrary n. For any binary string x of length n, define the quantum system
Qx =

〈
|x〉 ⊗ |An〉, Cn,Pn

〉
where |An〉, Cn and Pn are obtained from the definition of

EBQPδ,ε and the fact that L ∈ EBQPδ,ε. Now consider these sets of quantum systems
Sn = {Qx : x ∈ {0, 1}n} for all n > 0. Clearly, there are two possible output distributions
of any Sn, namely, µδ and µε. Since the input states in Sn are orthonormal and the
projection operators therein are identical, we can therefore apply Theorem 6 and Lemma 13
to obtain a uniform transformation Bδ,ε which perfectly solves the problem of QD(Sn). Let
Bδ,ε(Qx) = Q′x =

〈
|x〉 ⊗ |An〉 ⊗ |00 . . . 0〉, C ′n,P ′n

〉
which gives us (i) a circuit C ′n which

calls Cn (and C†n) (ii) a two-outcome projective measurement operator P ′n and a (iii) set
of ancillæ qubits in state |00 . . .0〉 such that the following holds for the outcome of C ′n on
|x〉 ⊗ |An〉 ⊗ |00 . . . 0〉 when measured using P ′n.

If x 6∈ L, then the output distribution of Q′x is µ0, i.e., the outcome is never E.
If x ∈ L, then the output distribution of Q′x is µ1, i.e., the outcome is always E.

Therefore, we get a uniform family of circuits {C ′n}, a uniform family of ancillæ qubits
|An〉 ⊗ |00 . . .0〉 and a uniform family of two-outcome projective measurement operator
{P ′n} such that the outcome of C ′|x| on any |x〉, with additional ancillæ qubits in a uniformly
generated state, when measured by P ′|x| indicates whether x ∈ L without any probability
of error. Since C ′n uses constantly many calls to Cn and C†n along with other gates (the
constant depends only on δ and ε), this shows that L ∈ EBQP0,1. J

We illustrate an application of the above theorem to obtain an error-free circuit for an
ERQP1/2 language L (see Appendix for an explicit proof). Consider circuit C in Figure 3(a)
which can identify if x ∈ L with one-sided error 0.5. As is typical in quantum circuits, in
this example only one of the output qubits of the circuit is measured in the standard basis
(PE = |0〉〈0| ⊗ I and P = 〈PE , 1− PE〉); therefore, if x 6∈ L, then the output qubit is never
observed in state |0〉 and if x ∈ L, then the output qubit is observed in states |0〉 or |1〉 with
equal probability. The circuit C ′ shown in Figure 3(b) shows how to remove the probability
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Figure 3 Circuit for C′ (left) and S0 gate in C′ (right)

of error; the same output qubit is measured in the standard basis for outcome and some
additional qubits in state |0〉 are used as ancillæ. Apart from calling C and C†, C ′ uses the
n-qubit Fanout gate Fn, a conditional phase gate S0

2 which changes phase of |00 . . . 0〉 by ı,
and P does the same to |1〉.

6.1 Exact amplitude amplification (Theorem 3)
Proof of Theorem 3. Let P denote the two-outcome projective measurement operator used
in the original two-sided exact error circuit C. C can be of two types depending on how it
accesses its input. Any input x ∈ X can be accessed either through the input state |x〉 (along
with ancillæ initialized to |00 . . .〉, wlog.) or through an oracle gate Ux : |x, b〉 → |x, b⊕Φ(x)〉
(for b ∈ {0, 1}). If C is of the former type, then Theorem 3 is essentially same as Theorem 16.

Next we focus on circuits with oracle gates. Let CUx denote this circuit when given Ux
as the oracle gate corresponding to an input x ∈ X. The input state to CUx can be taken to
be |00 . . . 0〉, wlog. The proof follows by applying Theorem 6 on this collection of quantum
systems:

{〈
|00 . . .〉, CUx ,P

〉
: x ∈ X

}
.

Observe that this collection satisfies the conditions of Lemma 13. So, the corresponding
B-transform is uniform which implies that all the transformed circuits for these quantum
systems are identical, except for the calls to C and C†. Therefore, we can choose this
transformed oracle circuit as our required C ′ of Theorem 3. J

7 Conclusion

Is there a classical method that can accurately decide the distribution of a random variable
X among two given distributions based on multiple samples of X? Probably no. On the
other hand, if the random variables come from a quantum source, we show that quantum
circuits exist that can do the same without any probability of error. A quantum circuit,
along with an input state and a measurement operator, can be consider as a quantum source
of samples drawn over the distribution of the measurement outcomes.

The underlying technique is a generalization of quantum amplitude amplification to
two-sided error and for circuits without oracle gates. We used our amplification technique to
distinguish between two circuits, when used as a black box, which has application in fault
detection of quantum circuits. We also defined a restricted version of quantum one-sided
and two-sided bounded error classes and used generalized amplification to show that those
complexity classes collapse to (error-free) quantum polynomial time complexity class.

It would be interesting to investigate if this approach can be used for ATPG with more
than one fault models and for amplifying standard bounded-error classes BQP and RQP.

2 S0|00 . . . 0〉 = ı|00 . . . 0〉 and for other states S0|x1x2 . . . xk〉 = |x1 . . . xk〉 (illustrated in Figure 3(c)).
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We will now a construct an EQP circuit C′ to decide the same language L. But first note
that, |ψ〉 = |0〉|ψ0〉 + |1〉|ψ1〉 and that, if x 6∈ L, 〈ψ1|ψ1〉 = 0, and if x ∈ L, 〈ψ1|ψ1〉 = 1/2
(= 〈ψ0|ψ0〉). The circuit is constructed as C′ = AS0A−1PA and described in Figure 3(b). C′
acts on H⊗n ⊗H⊗n ⊗H⊗m, and we will denote the space as 3 registers P,Q,R, respectively,
of n, n,m qubits. The gates will be labelled with the registers (as superscripts) they are
applied on in the following description.

Besides the circuit C, which will be used always on registers QR, we will make frequent
use of the fanout operator[4]. This, and the other components of C′, are listed below.

The fanout operator effectively copies basis states from a control qubit to a target qubit.
On two registers of n qubits each, it works as Fn|a1 . . . an〉|b1 . . . bn〉 = |a1 . . . an〉|(b1 ⊕
a1) . . . (bn ⊕ an)〉. Note that, F †n = Fn.
A = (FPQn ⊗ I)⊗ (I ⊗ CQR)
PQ = I − (1− ı)|0〉〈0| is the phase gate P applied on the first qubit of register Q. Notice
that, the first qubit of register Q is the measurement qubit with respect to C.
SQR0 = I − (1− ı)|0n+m〉〈0n+m| which changes the phase of the basis state in which all
qubits are in the state |0〉. Implementation of S0 is shown in Figure 3(c) – it requires one
additional qubit initialized to |0〉. However this qubit is in state |0〉 after application of
this operator, so this qubit could be reused if required. This extra qubit has been left out
in the description of C′.
The input to C′ will be |x〉|0⊗n〉|0⊗m〉.
We will measure the first qubit of register Q in the standard basis at the end.

Next, we will describe the operation of C′.

C′|x〉|0n〉|0m〉 =CQR · FPQn · SQR0 · FPQn · C†QR · PQ · CQR · FPQn |x〉|0n〉|0m〉

=CQR · FPQn · SQR0 · FPQn · C†QR · PQ · CQR |x〉|x〉|0n〉

=CQR · FPQn · SQR0 · FPQn · C†QR · PQ |x〉
(
|0〉|ψ0〉+ |1〉|ψ1〉

)
=CQR · FPQn · SQR0 · FPQn · C†QR |x〉

(
|0〉|ψ0〉+ ı|1〉|ψ1〉

)
(∗)

We will now simplify the remaining operator.

CQR · FPQn · SQR0 · FPQn · C†QR

=CQR · FPQn ·
(
I − (1− ı)IP ⊗ |0n+m〉〈0n+m|

)
· FPQn · C†QR

=CQR · FPQn ·
(
I − (1− ı)

∑
n-bit p

|p, 0n+m〉〈p, 0n+m|
)
· FPQn · C†QR

=CQR ·
(
I − (1− ı)

∑
n-bit p

FPQn |p, 0n+m〉〈p, 0n+m|FPQn
)
· C†QR

=CQR ·
(
I − (1− ı)

∑
n-bit p

|p, p, 0m〉〈p, p, 0m|
)
· C†QR

=I − (1− ı)
∑
n-bit p

|p〉〈p| ⊗ (CQR|p, 0m〉〈p, 0m|C†QR
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Substituting this simplification in (∗) above,

C′|x〉|0n〉|0m〉

=
(
I − (1− ı)

∑
n-bit p

|p〉〈p| ⊗ (CQR|p, 0m〉〈p, 0m|C†QR
)
|x〉
(
|0〉|ψ0〉+ ı|1〉|ψ1〉

)

=|x〉
(
|0〉|ψ0〉+ ı|1〉|ψ1〉

)
−

(1− ı)
∑
n-bit p

|p〉〈p|x〉 ⊗
(
CQR|p, 0m〉〈p, 0m|C†QR

) (
|0〉|ψ0〉+ ı|1〉|ψ1〉

)

=|x〉
(
|0〉|ψ0〉+ ı|1〉|ψ1〉

)
− (1− ı)|x〉 ⊗

(
CQR|x, 0m〉〈x, 0m|C†QR

) (
|0〉|ψ0〉+ ı|1〉|ψ1〉

)
=|x〉

((
|0〉|ψ0〉+ ı|1〉|ψ1〉

)
− (1− ı)

(
|0〉|ψ0〉+ |1〉|ψ1〉

)(
〈0|〈ψ0|+ 〈1|〈ψ1|

) (
|0〉|ψ0〉+ ı|1〉|ψ1〉

))
=|x〉

((
|0〉|ψ0〉+ ı|1〉|ψ1〉

)
− (1− ı)

(
|0〉|ψ0〉+ |1〉|ψ1〉

)(
〈ψ0|ψ0〉+ ı〈ψ1|ψ1〉

))
=|x〉

((
1− (1− ı)K

)
|0〉|ψ0〉+

(
ı− (1− ı)K

)
|1〉|ψ1〉

)
where, K = 〈ψ0|ψ0〉+ ı〈ψ1|ψ1〉

=
{
ı|x〉|0〉|ψ0〉 if, x 6∈ L i.e., 〈ψ1|ψ1〉 = 0, 〈ψ0|ψ0〉 = 1
(ı− 1)|x〉|1〉|ψ1〉 if, x ∈ L i.e., 〈ψ1|ψ1〉 = 〈ψ0|ψ0〉 = 1/2

Measuring the first qubit of register Q therefore shows |1〉 if and only if x ∈ L.
J

B Optimal values for Grover iterator

Let c denote
(
eıθ + eıα− 1 + (1− eıα)(1− eıθ)p

)
. Then, c∗ = −(1− p) + 2(1− p)e−ıθ + pe−2ıθ.

Therefore, if p > 0, then ∆ = cc∗ which we will compute below.

Computing ∆.

∆ = cc∗

= (1− p)2 − 2(1− p)2e−ıθ − p(1− p)e−2ıθ

− 2(1− p)2eıθ + 4(1− p)2 + 2p(1− p)e−ıθ

− p(1− p)e2ıθ + 2p(1− p)eıθ + p2

= [(1− p)2 + 4(1− p)2 + p2] + (e−ıθ + eıθ)[2p(1− p)− 2(1− p)2]− (e−2ıθ + e2ıθ)p(1− p)
= 6p2 − 10p+ 5 + 4(1− p)(2p− 1) cos θ − 2p cos 2θ + 2p2 cos 2θ
= (−10− 2 cos 2θ)p+ (6 + 2 cos 2θ)p2 + (sin2 θ + cos2 θ) + 4 + 4(1− p)(2p− 1) cos θ
= (−8− 4 cos2 θ)p+ (4 + 4 cos2 θ)p2 + sin2 θ + cos2 θ + 4 + 4(1− p)(2p− 1) cos θ
= sin2 θ + (4p2 − 4p+ 1) cos2 θ + 4 + 4p2 − 8p+ 4(1− p)(2p− 1) cos θ
= sin2 θ + (2p− 1)2 cos2 θ + 4(1− p)2 + 4(1− p)(2p− 1) cos θ
= [(2p− 1) cos θ + 2(1− p)]2 + sin2 θ

J

I Lemma 18. For any j ∈ [1, k], Cj = Q 3j−1
2 C.



XX:16 Applications of Quantum Amplitude Amplification

Proof. We will give a quick sketch of the proof by induction.
For k = 1, C1 = G∗ε = CS|ψ〉C

†SPC = QC so the claim holds for the base case.
Now, suppose that the claim holds for some 1 ≤ j < k. Before discussing the induction

case, note that (Q†)t = (SPCS|ψ〉C†)t = SP · Qt−1 · (CS|ψ〉C†) for any t.
Then, Cj+1 = G∗εj (Cj , |ψ〉,P) = CjS|ψ〉C

†
jSPCj which, using the induction hypothesis, is

Q(3j−1)/2C · S|ψ〉 · C†(Q†)(3j−1)/2 · SPQ(3j−1)/2C = (using the expression for (Q†)t above)
Q(3j−1)/2+1+(3j−1)/2−1+1+(3j−1)/2C = Q(3j+1−1)/2C. J

C Optimum initial state for distinguishing two circuits

Recall that |〈ψ1|ψ2〉| = |〈φ|C†1C2|φ〉|. Denoting C†1C2 by S, we would like to minimize
|〈φ|S|φ〉| over all possible pure state |φ〉. Suppose the eigenvalues of S are eiθ1 , . . . with
corresponding eigenvectors |v1〉, . . .. Using a recent result [2], the maximum value of ε is
obtained by solving the optimization problem

min f(θ1, . . .) =
(∑

j

c2
j +

∑
j 6=k

cjck cos(θj − θk)
)
, where,

∑
j

cj = 1, 0 ≤ cj ≤ 1

Suppose fOPT denotes the optimal value above and c1, . . . denote the corresponding
solution. Then, the optimal ε is 1− f2

OPT and |φ〉 can be set to
∑
j

√
cj |vj〉.
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