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Abstract

Sensitivity conjecture is a longstanding and fundamental open problem in the area of
complexity measures of Boolean functions and decision tree complexity. The conjecture
postulates that the maximum sensitivity of a Boolean function is polynomially related
to other major complexity measures. Despite much attention to the problem and major
advances in analysis of Boolean functions in the past decade, the problem remains wide
open with no positive result toward the conjecture since the work of Kenyon and Kutin
from 2004 [11].

In this work, we present new upper bounds for various complexity measures in terms
of sensitivity improving the bounds provided by Kenyon and Kutin. Specifically, we
show that degpfq1´op1q “ Op2spfqq and Cpfq ď 2spfq´1spfq; these in turn imply various
corollaries regarding the relation between sensitivity and other complexity measures,
such as block sensitivity, via known results. The gap between sensitivity and other
complexity measures remains exponential but these results are the first improvement
for this difficult problem that has been achieved in a decade.
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1 Introduction

In this paper, we are concerned with a fundamental and challenging open problem in com-
plexity theory known as the Sensitivity Conjecture (also called sensitivity vs. block sensi-
tivity problem). Since its appearance in Nisan and Szegedy [12], the problem has received
a considerable amount of attention from numerous researchers (see [1, 10]). By now many
equivalent formulations and connections between this conjecture and other unsolved prob-
lems in combinatorics and analysis of Boolean functions have been discovered which has
resulted in an increase in the prominence and popularity of the conjecture.

The conjecture originates from the theory of complexity measures of Boolean functions and
decision tree complexity. The basic object of study in this area is decision tree complexity of
Boolean functions and also its randomized or quantum variants.1 The study of decision tree
complexity is directly connected (and is usually done via) the study of more combinatorial
and analytic measures of complexity of Boolean functions such as Fourier degree, block
sensitivity, certificate complexity and etc. Since the time of Nisan and Szegedy [12], it was
known that the above and all other major complexity measures of Boolean functions are
polynomially related to one another. The only major exception to the above principle is the
maximum sensitivity which is still unknown to be polynomially related to other complexity
measures. The sensitivity conjecture is precisely the statement that the above principle also
holds in the case of maximum sensitivity.

Conjecture 1.1 (sensitivity conjecture). There exists a constant d P R` such that for any
Boolean function f : t´1, 1un Ñ t´1, 1u we have

bspfq “ Opspfqdq,

where spfq and bspfq denote the sensitivity and the block sensitivity (defined in Section 2)
of the function f .

Let us note that in the formulation of the conjecture, we could have opted to replace the
block sensitivity with any other widely used complexity measure of Boolean functions (such
as Fourier degree, deterministic decision tree complexity, etc.) because as we mentioned
before, all these are polynomially related to block sensitivity [5, 12].

1.1 Prior work

As discussed above, through the work of various researchers by now many different equiv-
alent forms of the sensitivity conjecture are available. Almost all of these different formu-
lations and various approaches to the conjecture are discussed in the excellent survey of
P. Hatami et al. [10] (see also the blogpost of Aaronson [1]). We refer to these works for a
more detailed exposition of the background. We briefly recall some of the more immediately
relevant facts:

1Recall that given a Boolean function f : t0, 1un Ñ t0, 1u, decision tree complexity of f refers to the
minimum number of queries that an algorithm querying the input variables px1, x2, . . . , xnq must make to
be able to successfully compute f on every input. The reason for the name decision tree is that any query
algorithm can be identified with a directed tree with inner vertices labeled by the input variables, directed
edges corresponding to the value of the variable just read while each leaf contains the value outputted by
the algorithm upon reaching that leaf. With this picture, the query complexity of the algorithm exactly
corresponds to the depth of the tree.
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The best known upper bound on block sensitivity is

bspfq ď p
e
?

2π
qespfq

a

spfq, (1)

given by Kenyon and Kutin [11]. In the other direction, the first progress on the lower bound
was made by Rubinstein [13] who gave the first quadratic separation for block sensitivity
and sensitivity by constructing a Boolean function f with bspfq “ 1

2spfq
2. Currently,

the best lower bound is due to Ambainis and Sun who in [3] exhibited a function with
bspfq “ 2

3spfq
2 ´ 1

2spfq.

1.2 Our results

Our first result in this paper is the following estimate regarding the relation between the
maximum sensitivity and Fourier degree of a Boolean function.

Theorem 1. Let f : t0, 1un Ñ t´1, 1u be a Boolean function. Then

degpfq1´op1q ď spfq2spfq ,

where op1q denotes a term that vanishes as degpfq Ñ 8.

The proof of the above theorem is a mixture of techniques from Fourier analysis and com-
binatorics. The argument is partly inspired by the arguments in the paper of Chung et
al. [6] which recently played an important role in [2] where the query complexity of partial
functions coming from the restrictions of parity function was studied.

For sensitivity versus certificate complexity, we can prove a somewhat stronger theorem
which has direct consequences for sensitivity versus block sensitivity problem (which is the
original formulation of sensitivity conjecture by Nisan and Szegedy [12]).

Theorem 2. For any Boolean function f ,

C1pfq ď 2s0pfq´1s1pfq, C0pfq ď 2s1pfq´1s0pfq. (2)

Here C0pfq and C1pfq denote the 0-certificate complexity and 1-certificate complexity of f .
These notions – along with the rest of the background material on complexity measures of
Boolean functions – are presented in Section 2.

Using the known relations between various complexity measures of Boolean functions, we
can derive several consequences from the above result.

Corollary 1.2. For any Boolean function f ,

bspfq ď Cpfq ď 2spfq´1spfq.

Combining Theorem 2 and some previous results, we can also give another upper bound for
block sensitivity.

Corollary 1.3. For any Boolean function f ,

bspfq ď mint2s0pfq, 2s1pfqus1pfqs0pfq. (3)
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Hence, we see that our Theorems 1 and 2 and their corollaries show an improved exponent in
relation between sensitivity and various complexity measures of Boolean functions compared
to the previous best bound shown in equation (1). Beside being the first positive result
toward the sensitivity conjecture since the work of Kenyon and Kutin from 2004, we believe
our results have the merit of introducing new ideas and techniques which could be valuable
elesewhere as well as in the future works on this fundamental conjecture.

Although the bounds obtained in Theorems 1 and Theorem 2 look quite similar, the theo-
rems do not follow one from one another by using the known relations between certificate
complexity and Fourier degree. On the contrary, the two theorems are obtained by using
rather different techniques. However, we shall note that despite their differences both proofs
of Theorem 1 and 2 crucially rely on the small set expansion properties of Boolean hyper-
cube. It is plausible that better analytic estimates along the lines of [7] could be useful
to slightly improve our results— though a significant improvement is likely to require new
ideas.

Organization. In Section 2 we recall some basic definitions and concepts relevant to this
work. In Section 3, we prove Theorem 1 and in Section 4, we prove Theorem 2 and its
corollaries. Both Sections 3 and 4 are self-contained and can be read in any order.

2 Preliminaries

In this paper, we work with total Boolean functions over the hypercube and their measures of
complexity. or completeness, we briefly recall some basic definitions. For more information
regarding the complexity measures and their relations we recommend the survey [5].

We work with the usual graph structure on the hypercube by connecting x, y P t0, 1un if
and only if x, y differ in a single coordinate. We always denote by logp¨q the logarithm with
the base 2.

Definition 2.1. The pointwise sensitivity spf, xq of a function f on input x is defined as
the number of bits on which the function is sensitive, i.e.

spf, xq “
ˇ

ˇti P rns|fpxq ‰ fpxpiqqu
ˇ

ˇ,

where xpiq is obtained by flipping the i-th bit of x. We define the total sensitivity by

spfq “ max
 

spf, xq|x P t0, 1un
(

,

and the 0-sensitivity and 1-sensitivity by

s0pfq “ max
 

spf, xq|x P t0, 1un, fpxq “ 0
(

, s1pfq “ max
 

spf, xq|x P t0, 1un, fpxq “ 1
(

.

Block sensitivity is another important complexity measure which is obtained by relaxing
the requirement that we have to only flip single coordinates by allowing flipping disjoint
blocks. More formally block sensitivity is defined as follows:

Definition 2.2. The pointwise block sensitivity bspf, xq of f on input x is defined as
maximum number of pairwise disjoint subsets B1, ..., Bk of rns such that fpxq ‰ fpxpBiqq
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for all i P rks. Here xpBiq is obtained by flipping all the bits txj |j P Biu of x. Define the
block sensitivity of f as

bspfq “ max
 

bspf, xq|x P t0, 1un
(

,

and the 0-block sensitivity and 1-block sensitivity, analogously to Definition 2.1, by

bs0pfq “ max
 

bspf, xq|x P t0, 1un, fpxq “ 0
(

, bs1pfq “ max
 

bspf, xq|x P t0, 1un, fpxq “ 1
(

.

The certificate complexity is another very useful complexity measure with a more non-
deterministic type of definition. It is defined as follows:

Definition 2.3. The certificate complexity Cpf, xq of f on input x is defined as the mini-
mum length of a partial assignment of x such that f is constant on this restriction. Define
the certificate complexity of f by

Cpfq “ max
 

Cpf, xq|x P t0, 1un
(

,

and the 0-certificate and 1-certificate by

C0pfq “ max
 

Cpf, xq|x P t0, 1un, fpxq “ 0
(

, C1pfq “ max
 

Cpf, xq|x P t0, 1un, fpxq “ 1
(

.

Another important notion for us is Fourier degree. It is also polynomially related to block-
sensitivity and certificate complexity. To define Fourier degree, recall that any function
f : t0, 1un Ñ C can be expanded in terms of Fourier characters as follows

fpxq “
ÿ

SĎrns

f̂pSqχSpxq ,

where χSpxq “ p´1q
ř

iPS xi .

Definition 2.4. Let f : t´1, 1un Ñ R and let f̂p¨q denote its Fourier transform. We define
Fourier degree of f by

degpfq “ max
f̂pSq‰0

|S| .

Finally, we mention an important and well-known combinatorial result over the hypercube,
usually attributed to Harper [9].

Lemma 2.5 (Hamming cube isoperimetry [9]). Assume H ‰ A Ď t0, 1un. Let d be the
average degree of vertices of A with graph structure on A induced from the natural Hamming
graph of t0, 1un. Then we have

|A| ě 2d .

The above lemma is quite easy to prove by induction. For a detailed proof which covers the
application to combinatorics, we recommend consulting the book by Bollobás [4].

The above theorem implies that if |A| is small, the average degree d must also be relatively
small. In this case, the ratio between the number of the edges leaving the set A and the total
number of incident edges to A, which is equal to 1 ´ d{n, is relatively large. This justifies
the alternative name given to the above theorem as the “small set expansion” property of
the Hamming cube.

In Section 4, we need an equivalent formulation of discrete isoperimetric inequality, Lemma
2.5, which will be a more convenient for our purposes there.
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Lemma 2.6. For any A Ď t0, 1un, the edges between A and Ā “ t0, 1unzA is lower bounded
by

|EpA, Āq| ě |A|pn´ log2 |A|q.

3 Sensitivity versus degree

In this section, we shall prove Theorem 1. Let f : t0, 1un Ñ t´1, 1u be a Boolean function.
To prove Theorem 1, the key idea is to count the following objects.

Definition 3.1. An pl, rq S-triple consists of a point x P t0, 1un and two sets L Ď R Ď rns
with |L| “ l and |R| “ r such that fpxq ‰ fpxiq for any i P L.

In our application, the two parameters l ď r are chosen as follows: l “ c log r, for some
c ą 0 an appropriately chosen constant, and r will be a slowly growing function of n which
will be asymptotically log log n. The upper bound on the number of S-triples is easy to
establish.

Lemma 3.2. The number of pl, rq S-triples is less than or equal to

2n
spfql nr´l

l!pr ´ lq!
.

Proof. We can assume spfq ě l as otherwise the number of S-triples is zero. Consider any
x P t0, 1un. The number of S-triples involving x is bound by max1ďqďspfq

`

q
l

˘`

n´l
r´l

˘

. This is

clearly bounded by spfql nr´l

l!pr´lq! which implies the above lemma.

Now we are in a position to layout the structure of the proof.

3.1 The overall structure of the proof

The technical of proving Theorem 1 is to prove a lower bound on the number of S-triples
which coupled with the above lemma gives the desired lower bound on spfq. To do so, we
shall need the following two facts:

1. A weak bound for spfq versus degpfq. For example it follows from the work of
Kenyon and Kutin that degpfq ď 10spfq`1.

2. Hypercube isoperimetric inequality as in Lemma 2.6.

Briefly, the plan is to use the isoperimetric inequality to boost the weak bound to our desired
bound of degpfq1´op1q ď 2spfq. The key steps of the arguments are as follows.

A. We consider the restriction of the functions f to the subcubes of dimension r. For
any such restriction, we show the existence of a pl, rq S-tripes consistent with that
restriction by applying the weak bound. The precise dependence of l on r is simply
dictated by the known weak bound we use.
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B. We use isoperimetric inequality to show that the existence of a single S-triple consis-
tent with a particular restriction z immediately gives rise to many S-triples consistent
with the same restriction z.

C. This provides for us a lower bound on the number of S-triples which combined with
Lemma 3.2 gives us the desired result.

In order to carry out the argument, we will need a few definition regarding restrictions of
functions over the discrete cube which we now present.

3.2 Restrictions of Boolean functions

Definition 3.3. Given z P t0, 1, ˚un and R Ď rns, we call them a compatible pair if R “
ti P rns : zpiq “ ˚u. Each z P t0, 1, ˚un naturally corresponds to |R|-dimensional subcube
Qz Ď t0, 1u

n defined as follows:

Qz “ ty P t0, 1u
n : zi ‰ ˚ ñ yi “ ziu,

i.e. Qz is constructed by freezing the coordinates of y in rnszR according to z, and letting
the rest of coordinates yi for i P R to be free.

Let f : t0, 1un Ñ R. Given a compatible pair z P t0, 1, ˚un and R “ ti P rns : zpiq “ ˚u we
obtain a restriction function f |z given by restricting f to Qz

Definition 3.4. Given z P t0, 1, ˚un and x P t0, 1un (here x is not necessarily in Qz), define
y “ px Ó zq to be projection of x to Qz given by yi “ zi for any i P rns such that zpiq ‰ ˚
and yi “ xi for all the other i P rns. We define

f |zpxq “ fpx Ó zq .

Notice that f |zpxq is a function over whole t0, 1un though its value only depends on R the
coordinates which zpiq “ ˚. Given the above definition one can easily infer the Fourier
expansion of the restriction function f |zp¨q from that of f as follows.

pf |zq pxq “
ÿ

SĎR

χSpxq
ÿ

UXR“S

f̂pUqχUzSpzq .

We need the following lemma regarding the degree of restrictions of a function.

Lemma 3.5. Let f : t´1, 1un Ñ t´1, 1u be function of degree n. Let R Ď rns. Then there
exist z P t´1, 1, ˚un compatible with R such that pf |zq is also full-degree |R|.

Proof. The coefficient of the highest monomial in Fourier expansion of pf |zq is given by
ÿ

RĎU

f̂pUqχUzRpzq.

Now we calculate the expectation of the square of this value for a random z compatible
with R.

E
z

˜

ÿ

RĎU

f̂pUqχUzRpzq

¸2

“
ÿ

RĎU

f̂pUq2 ě f̂prnsq2 ą 0

where for the last inequality we used the fact that f is full-degree.
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The importance of the above lemma is that it allows us to apply the weak bound in line with
our boosting strategy: Fix some R Ď rns. By the lemma above, there exists z P t0, 1, ˚un

compatible with R such that f |z is full-degree. The importance of existence of z is that Qz
always contain an S-triple which was the object we were interested to count. More precisely,
since f |z is full-degree by induction on the degree in Theorem 1 there exists subset L Ď R
with |L| ě 1

4 log |R| such that there exist x P Qz such that f |zpxq ‰ f |zpx
iq for every i P L.

Taking l “ |L| and r “ |R| we see that px, L,Rq constitutes an S-triple. We use the existence
of z and Harper’s lemma 2.5 to prove that for every R there exists not only one such z but
in fact many. This is the key estimate we need to prove our result.

3.3 The main proof of sensitivity versus Fourier degree estimate

Proof of Theorem 1. Without loss of generality we can assume f is full-degree. If this is
not the case, choose S Ď rns with |S| “ degpfq such that f̂pSq ‰ 0, then set the coordinates
outside S arbitrarily to get a Boolean function on the |S|-dimensional hypercube with full-
degree. It is enough to prove the statement for this restriction of the original f as restricting
a function can only decrease the sensitivity.

Let r “ ωp1q be a very slowly growing function of n to be specified later. Fix a set R Ď rns
with |R| “ r. By Lemma 3.5 there exist z P t0, 1, ˚un compatible with R such that the
restricted function pf |zq has degree r. Now by induction spf |zq ě l where l “ Θplog rq.
(we can take l “ 1

3 log r for concreteness.) This means we can find a point x P Qz with l
neighbors x1, x2, . . . , xl such that

pf |zqpx1q “ pf |zqpx2q “ . . . “ pf |zqpxlq ‰ pf |zqpxq .

Let L “ ti1, i2, . . . , ilu Ď R be the direction of the edges px, x1q, px, x2q, . . . , px, xlq respec-
tively. Then px, L,Rq constitutes a pl, rq S-triple.

So far for any R Ď rns we have shown the existence of one such S-triple. Now we show there
are many such triples. Consider ZR which is the set of all z P t0, 1, ˚un compatible with
R. Notice that ZR can be naturally associated with a pn ´ rq-hypercube with z1, z2 P ZR
said to be neighbors in direction j P rnszR if z1piq “ z2piq for i P rnsztju and z1pjq ‰ z2pjq.
(Clearly z1pjq ‰ ˚ and z2pjq ‰ ˚ as both z1 and z2 are compatible with R. )

We call a rz P ZR good if

pf |
rzqpx1q “ pf |

rzqpx2q “ . . . “ pf |
rzqpxlq ‰ pf |rzqpxq .

Let A be the set of all good rz in ZR. Notice that if rz is good, ppx Ó rzq, L,Rq constitutes
an S-triple. We have so far shown that z P A, so A is non-empty. Now we prove all
elements of A have high degree when seen as a subset of pn´ rq-hypercube. Indeed, notice
that for any z̄ P ZR and any x̄, there are at most spfq directions j P rnszR such that
pf |z̄q px̄

pjqq ‰ pf |z̄q px̄q. Applying the same reasoning to all x, x1, x2, . . . , xl, we see that
for any z P A there is at least n ´ r ´ spfqpl ` 1q neighbors of z in A. Now applying our
isoperimetric inequality (Lemma 2.5) to A we see that there are at least 2n´r´pl`1qspfq such
special triples for a fixed R Ď rns of size r.

On the other hand, the number of such special triples is bounded from the above by Lemma
3.2. Thus,

ˆ

n

r

˙

2n´r´spfqpl`1q ď 2n
spfql nr´l

l!pr ´ lq!
.
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As r ! n we have
`

n
r

˘

ě nr

2rr! . Simplifying we see n
l

l`1 ď 4r
`

r
l

˘

spfq2spfq. Choosing r log r “

log n and l “ log r
3 we get

n
1´O

´

1
log logn

¯

ď spfq2spfq ,

which is our desired result.

4 Sensitivity versus certificate complexity

In this section we prove Theorem 2. Actually, we prove a slightly stronger result.

Theorem 3. Let f : t0, 1un Ñ t0, 1u be a Boolean function, then

C1pfq ď 2s0pfq´1s1pfq ´ ps0pfq ´ 1q, C0pfq ď 2s1pfq´1s0pfq ´ ps1pfq ´ 1q.2

Proof. By symmetry we only need to prove C1pfq ď 2s0pfq´1s1pfq´ps0pfq´1q. Without the
loss of generality, we assume C1pfq “ Cpf, 0nq, i.e. the 1-certificate complexity is achieved
on the input 0n. We have fp0nq “ 1. We assume that the minimal certificate of 0n consists
of x1 “ 0, x2 “ 0, . . . , xm “ 0, where m “ Cpf, 0nq “ C1pfq.

Let Q0 be the set of inputs x that satisfies x1 “ x2 “ . . . “ xm “ 0. Since x1 “ 0, x2 “

0, . . . , xm “ 0 is a 1-certificate, we have @ x P Q0, fpxq “ 1.

For each i P rms, let Qi be the set of inputs x with x1 “ . . . “ xi´1 “ xi`1 “ . . . “ xm “ 0
and xi “ 1. Let S be the total sensitivity of all inputs x P

Ťm
i“1Qi. It consists of three

parts: sensitivity between Qi and Q0 (denoted by S1), sensitivity inside Qi (denoted by S2)
and sensitivity between Qi and other input (denoted by S3), i.e.

S “
m
ÿ

i“1

ÿ

xPQi

spf, xq “ S1 ` S2 ` S3. (4)

In the following we estimate S1, S2 and S3 separately. We use A1, . . . , Am to denote the
set of 0-inputs in Q1, . . . , Qm, respectively, i.e. Ai “ tx P Qi|fpxq “ 0u (i P rms). Since
x1 “ . . . “ xm “ 0 is the minimal certificate, i.e. Q0 is maximal, thus A1, . . . , Am are all
nonempty.

We also need the following lemma which follows from Lemma 2.6 but can be also proven
without using it [14]:

Lemma 4.1. For any i P rms,

|Ai| ě 2n´m´s0pfq`1.

The sensitivity between Qi and Q0 is |Ai|. By summing over all possible i we get:

S1 “

m
ÿ

i“1

|Ai|. (5)

2If s0pfq “ 0 or s1pfq “ 0, then f is constant, hence spfq “ bspfq “ Cpfq “ 0.
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Sensitivity inside Q1, . . . , Qm: By Lemma 2.6, for each i P rms, the number of edges
between Ai and QizAi is bounded by:

|EpAi, QizAiq| ě |Ai|plog2 |Qi| ´ log2 |Ai|q “ |Ai|pn´m´ log2 |Ai|q.

Therefore,

S2 “ 2
m
ÿ

i“1

|EpAi, QizAiq|

ě 2
m
ÿ

i“1

|Ai|pn´m´ log2 |Ai|q. (6)

Sensitivity between Qi and other inputs (i.e. t0, 1unz
Ťm
j“0Qj): For each 1 ď i ă j ď

m, let Qi,j be the set of inputs (not in Q0) that are adjacent to both Qi and Qj , i.e. Qi,j
is the set of inputs x that satisfy x1 “ . . . xi´1 “ xi`1 “ . . . xj´1 “ xj`1 “ . . . xm “ 0 and
xi “ xj “ 1. The sensitivity between Qi, Qj and Qi,j is lower bounded by

ÿ

xPQ0

|fpx` eiq ´ fpx` ejq|.

where ei is the unit vector with the i-th coordinate equal to 1 and all other coordinates
equal to 0. Then, x` ei, x` ej are the neighbors of x in Qi and Qj , respectively. Summing
over all possible pairs of pi, jq we get

S3 ě
ÿ

1ďiăjďm

ÿ

xPQ0

|fpx` eiq ´ fpx` ejq|

“
ÿ

xPQ0

˜

m
ÿ

i“1

fpx` eiq

¸˜

m´
m
ÿ

i“1

fpx` eiq

¸

“
ÿ

xPQ0

spf, xqpm´ spf, xqq. (7)

If we combine inequalities (5)-(7), we get

S “

m
ÿ

i“1

ÿ

xPQi

spf, xq

ě

m
ÿ

i“1

|Ai| ` 2
m
ÿ

i“1

|Ai|pn´m´ log2 |Ai|q `
ÿ

xPQ0

spf, xqpm´ spf, xqq. (8)

Since spf, xq is upper bounded by s0pfq or s1pfq (depending on whether fpxq “ 0 or
fpxq “ 1), we have

ÿ

xPQi

spf, xq ď |Ai|s0pfq ` p|Qi| ´ |Ai|qs1pfq

“ |Ai|s0pfq ` p2
n´m ´ |Ai|qs1pfq
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Thus,

S “
m
ÿ

i“1

ÿ

xPQi

spf, xq ď
m
ÿ

i“1

´

|Ai|s0pfq ` p2
n´m ´ |Ai|qs1pfq

¯

. (9)

We use w to denote the total number of 0-inputs in Q1, . . . , Qm. Then,

w “
m
ÿ

i“1

|Ai| “
ÿ

xPQ0

spf, xq.

The inequality (9) can be rewritten as

S ď w ¨ s0pfq ` pm ¨ 2
n´m ´ wqs1pfq. (10)

Also, spf, xq ď s1pfq for each x P Q0. Thus, the right-hand side of inequality (8) is

m
ÿ

i“1

|Ai| ` 2
m
ÿ

i“1

|Ai|pn´m´ log2 |Ai|q `
ÿ

xPQ0

spf, xqpm´ spf, xqq

ě w ` 2
m
ÿ

i“1

|Ai|pn´m´ log2 |Ai|q ` pm´ s1pfqq
ÿ

xPQ0

spf, xq

“ w ` 2wpn´mq ´ 2
m
ÿ

i“1

|Ai| log2 |Ai| ` pm´ s1pfqqw

“ wp1` 2n´m´ s1pfqq ´ 2
m
ÿ

i“1

|Ai| log2 |Ai|. (11)

By combining inequalities (8)-(11) we get

wp1` 2n´m´ s1pfqq ´ 2
m
ÿ

i“1

|Ai| log2 |Ai| ď w ¨ s0pfq ` pm ¨ 2
n´m ´ wqs1pfq.

By rearranging the inequality we get

wp1` 2n´m´ s0pfqq ď 2
m
ÿ

i“1

|Ai| log2 |Ai| `m ¨ 2
n´ms1pfq. (12)

Since the function gpxq “ x log2 x is convex and we know that |Ai| ď |Qi| “ 2n´m, from
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Lemma 4.1 |Ai| ě 2n´m´s0pfq`1. Therefore,

gp|Ai|q “ g

˜

|Ai| ´ 2n´m´s0pfq`1

2n´m ´ 2n´m´s0pfq`1
¨ 2n´m `

2n´m ´ |Ai|

2n´m ´ 2n´m´s0pfq`1
¨ 2n´m´s0pfq`1

¸

ď
|Ai| ´ 2n´m´s0pfq`1

2n´m ´ 2n´m´s0pfq`1
¨ gp2n´mq `

2n´m ´ |Ai|

2n´m ´ 2n´m´s0pfq`1
¨ gp2n´m´s0pfq`1q

“
|Ai| ´ 2n´m´s0pfq`1

2n´m ´ 2n´m´s0pfq`1
¨ 2n´mpn´mq

`
2n´m ´ |Ai|

2n´m ´ 2n´m´s0pfq`1
¨ 2n´m´s0pfq`1pn´m´ s0pfq ` 1q

“
|Ai| ´ 2n´m´s0pfq`1

2s0pfq´1 ´ 1
¨ 2s0pfq´1pn´mq `

2n´m ´ |Ai|

2s0pfq´1 ´ 1
pn´m´ s0pfq ` 1q

“

˜

|Ai| ´ 2n´m´s0pfq`1

2s0pfq´1 ´ 1
2s0pfq´1 `

2n´m ´ |Ai|

2s0pfq´1 ´ 1

¸

pn´mq ´
2n´m ´ |Ai|

2s0pfq´1 ´ 1
ps0pfq ´ 1q

“ |Ai|pn´mq ´
2n´m ´ |Ai|

2s0pfq´1 ´ 1
ps0pfq ´ 1q.

Hence
m
ÿ

i“1

|Ai| log2 |Ai| “

m
ÿ

i“1

gp|Ai|q

ď

m
ÿ

i“1

ˆ

|Ai|pn´mq ´
2n´m ´ |Ai|

2s0pfq´1 ´ 1
ps0pfq ´ 1q

˙

“ wpn´m`
s0pfq ´ 1

2s0pfq´1 ´ 1
q ´m ¨ 2n´m

s0pfq ´ 1

2s0pfq´1 ´ 1
. (13)

By combining inequalities (12) and (13), we get

wp1` 2n´m´ s0pfqq

ď 2

ˆ

wpn´m`
s0pfq ´ 1

2s0pfq´1 ´ 1
q ´m ¨ 2n´m

s0pfq ´ 1

2s0pfq´1 ´ 1

˙

`m ¨ 2n´ms1pfq.

It implies that

w

ˆ

1`m´ s0pfq ´
2ps0pfq ´ 1q

2s0pfq´1 ´ 1

˙

ď m ¨ 2n´m
ˆ

s1pfq ´
2ps0pfq ´ 1q

2s0pfq´1 ´ 1

˙

,

Substituting w “
řm
i“1 |Ai| ě m ¨ 2n´m´s0pfq`1, we get

m ¨ 2n´m´s0pfq`1

ˆ

1`m´ s0pfq ´
2ps0pfq ´ 1q

2s0pfq´1 ´ 1

˙

ď m ¨ 2n´m
ˆ

s1pfq ´
2ps0pfq ´ 1q

2s0pfq´1 ´ 1

˙

,

i.e.

1`m´ s0pfq ´
2ps0pfq ´ 1q

2s0pfq´1 ´ 1
ď 2s0pfq´1

ˆ

s1pfq ´
2ps0pfq ´ 1q

2s0pfq´1 ´ 1

˙

,

which implies
m ď 2s0pfq´1s1pfq ´ s0pfq ` 1.
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4.1 Proof of Corollary 1.3

To prove Corollary 1.3, we need the following Lemma by Kenyon and Kutin.3

Lemma 4.2. [11] bs0pfq ď 2pC1pfq ´
1
2qs0pfq, bs1pfq ď 2pC0pfq ´

1
2qs1pfq.

Proof. (of Corollary 1.3) From Theorem 2, we have bs0pfq ď C0pfq ď 2s1pfq´1s0pfq. From
Corollary 4.2 we have bs0pfq ď 2pC1pfq´

1
2qs0pfq, together with Theorem 2 we get bs0pfq ď

2p2s0pfq´1s1pfq´
1
2qs0pfq. Therefore, bs0pfq ď mint2s1pfqs0pfq, 2s0pfqs1pfqs0pfqu. Similarly

we can show that bs1pfq ď mint2s1pfqs0pfqs1pfq, 2s0pfqs1pfqu.

5 Concluding remarks

In this work we presented some results toward the sensitivity conjecture providing the
first improvement since the work of Kenyon and Kutin [11]. It is certainly desirable to
understand the limits of the techniques introduced here. Another interesting problem is to
unify our approaches in Sections 3 and 4. Although, the structure of the two proofs appear
quite different, the fact that they both crucially rely on Harper’s isoperimetric inequality
might be hinting at a more explicit relationship between the two.

In this work we have been mostly concerned with the original formulation of the Sensitivity
Conjecture in terms of complexity measures of Boolean functions. Before ending this paper
however, we would like to take the opportunity to recount a purely combinatorial formula-
tion of the problem which may be more accessible to the wider mathematics community.

It turns out that the sensitivity conjecture is equivalent to the validity of the following
Ramsey-type statement: There exists a constant δ ą 0 such that for any unbalanced two-
coloring of vertices of hypercube t0, 1un contains a vertex x P t0, 1un such that x has ě nδ

neighbors in the same color class as x. Implicit in the above statement is the following
observation: It is rather easy to construct a balanced two-coloring of the vertices of Ham-
ming cube, i.e. each of size 2n´1, such that each point x P t0, 1un would have only the
elements of the other color class as its neighbors; this can be seen by putting the points
with odd Hamming weight in one class, and the ones with even Hamming weight in the
other. However, after trying to find subsets of slightly larger than half with small maximum
degree, one soon realizes that such sets are indeed hard to construct. 4

The above discussion provides further evidence for the well-known intuition that averaging
type arguments (including most purely Fourier analytic ones) are hopeless in addressing the
conjecture without further input. However, at the moment it remains unclear what type
of extra input one may need, beside the well-known Fourier analytic ones, to tackle the
conjecture.
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