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Abstract

The communication complexity of many fundamental problems reduces greatly when the
communicating parties share randomness that is independent of the inputs to the communication
task. Natural communication processes (say between humans) however often involve large amounts
of shared correlations among the communicating players, but rarely allow for perfect sharing of
randomness. Can the communication complexity benefit from shared correlations as well as it does
from shared randomness? This question was considered mainly in the context of simultaneous
communication by Bavarian et al. [1]. In this work we study this problem in the standard interactive
setting and give some general results. In particular, we show that every problem with communication
complexity of k bits with perfectly shared randomness has a protocol using imperfectly shared
randomness with complexity exp(k) bits. We also show that this is best possible by exhibiting a
promise problem with complexity k bits with perfectly shared randomness which requires exp(k)
bits when the randomness is imperfectly shared. Along the way we also highlight some other basic
problems such as compression, and agreement distillation, where shared randomness plays a central
role and analyze the complexity of these problems in the imperfectly shared randomness model.

The technical highlight of this work is the lower bound that goes into the result showing the
tightness of our general connection. This result builds on the intuition that communication with
imperfectly shared randomness needs to be less sensitive to its random inputs than communication
with perfectly shared randomness. The formal proof invokes results about the small-set expansion
of the noisy hypercube and an invariance principle to convert this intuition to a proof, thus giving a
new application domain for these fundamental results.
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1 Introduction

The availability of shared randomness can lead to enormous savings in communication complexity when
computing some basic functions whose inputs are spread out over different communicating players. A
basic example of this is Equality Testing, where two players Alice and Bob have inputs x ∈ {0,1}n and
y ∈ {0,1}n and need to determine if x = y. Deterministically this takes n bits of communication. This
reduces to Θ(logn) bits if Alice and Bob can toss coins and they are allowed some error. But if they
share some randomness r ∈ {0,1}∗ independent of x and y then the communication cost drops to O(1).
(See, for instance, [10]).

A more prevalent example of a communication problem is compression with uncertain priors. Here
Alice has a distribution P on a universe [N] = {1, . . . ,N}, and a message m ∈ [N] chosen according to
the distribution P. Alice is allowed to send some bits to Bob and Bob should output m and the goal is to
minimize the expected number of bits that Alice sends Bob (over the random choice of m). If Bob knows
the distribution P exactly then this is the classical compression problem, solved for example by Huffman
coding. In most forms of natural communication (e.g., think about the next email you are about to send),
Alice and Bob are not perfectly aware of the underlying context to their exchange, but have reasonably
good ideas about each other. One way to model this is to say that Bob has a distribution Q that is close
to the distribution P that Alice is working with, but is not identical to P. Compressing information down
to its entropy in the presence of such uncertainty (i.e., P 6= Q) turns out to be possible if Alice and Bob
share randomness that is independent of (P,Q,m) as shown by Juba et al. [8]. However it remains open
as to whether such compression can be effected deterministically, without the shared randomness —
the best known schemes can only achieve a compression length of roughly O(H(P)+ log logN), where
H(P) = ∑i∈[N] P(i) log1/P(i) denotes the entropy of P.1

In both examples above it is natural to ask the question: can the (presumed) savings in communication
be achieved in the absence of perfect sharing of randomness? The question especially makes sense in
the latter context where the essential motivation is that Alice and Bob are not in perfect synchrony with
each other: If Alice and Bob are not perfectly aware of the distributions P and Q, why should their
randomness be identical?

The question of communication with imperfectly shared randomness was considered recently in
the work of Bavarian et al. [1]. They consider the setting where Alice and Bob have randomness r and
s respectively, with some known correlation between r and s, and study the implications of correlated
randomness in the simultaneous message communication model (where a referee gets messages from
Alice and Bob and computes some joint function of their inputs). Their technical focus is on the different
kinds of correlations possible between r and s, but among basic results they show that equality testing
has a O(1) communication complexity protocol with correlated shared randomness.

In this work we are concerned with the setting of general communication protocols, where Alice
and Bob interact to determine the value of some function. From some perspectives, this setting does not
seem to offer a major difference between “private randomness” and “perfectly shared randomness” —
Newman [15] shows that the communication complexity in the former setting can be larger by at most
an additive logn term, where n is the input size. “Imperfectly shared randomness” being in between

1We stress that the setting of uncertain compression is completely different from that of compression with the “wrong
distribution”, a well-studied question in information theory. In the “wrong distribution problem” (see, for instance, [3, Theorem
5.4.3]) the sender and receiver agree on the distribution, say P, but both have it wrong and the distribution the message comes
from is R. This leads to a compression length of Em∼R[log(1/P(m))]≈ H(R)+D(R‖P). The important aspect here is that
while the compression is not as good, there is no confusion between sender and receiver; and the latter is the focus of our
problem.
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the two models cannot therefore be too far from them either. However, problems like compression
above highlight a different perspective. There N is the size of the universe of all possible messages, and
compression to logN bits of communication is trivial and uninteresting. Even a solution with loglogN
bits of communication is not completely satisfactory. The real target is O(H(P)) bits of communication,
which may be a constant independent of the universe size N (and for natural communication, the
set of possible messages could be thought of as an infinitely large set). Thus the gap between the
communication complexity with perfectly shared randomness and imperfectly shared randomness
remains a very interesting question, which we explore in this paper.

We provide a formal description of our models and results in the following section, and here give an
informal preview. We consider communication complexity in a simplified setting of imperfectly shared
randomness: Alice has a uniform binary string r ∈ {0,1}m and Bob has a string s obtained by flipping
each bit of r independently with some tiny probability. (While this setting is not the most general
possible, it seems to capture the most interesting aspects of the “lack of prior agreement” between Alice
and Bob.) Our main contributions in this work are the introduction of some new problems of interest
in the context of communication complexity, and a comparison of their communication complexity
with/without perfect sharing of randomness.

The first problem we study is the complexity of compression with uncertain priors. We show that
any distribution P can be compressed to O(H(P)) bits even when the randomness is not perfectly shared.
As in the analogous result of Juba et al. [8] this protocol sheds some light on natural communication
processes, and introduces an error-correcting element that was not previously explained.

The next problem we introduce is that of agreement distillation. Here Alice and Bob try to agree
on a small random string. This would be useful in providing a general reduction from the setting of
imperfectly shared randomness to the perfectly shared setting. We show that to agree on a uniformly
random k-bit string Alice and Bob can get a constant factor advantage (so they can communicate αk
bits for some α < 1) yet also that this is the best possible! (This lower bound follows relatively easily
from the small-set expansion of the noisy hypercube, but the connection is nevertheless illuminating.)
We note that the agreement distillation problem is similar in spirit to the non-interactive correlation
distillation (NICD) problem studied in [13, 14] and the information reconciliation problem studied in
[2, 17]. The main differences with NICD is that in NICD the interest is in the setting where many
players with correlated randomness want to extract one random bit without interaction. We consider
only the two-player setting, but they wish to extract many bits and they are willing to do so interactively.
Interestingly, though the analyses lead to similar techniques, we do not see a simple way of obtaining
our results from theirs or vice versa. The information reconciliation problem is also similar but different.
Here the focus is on Alice sending a message to Bob that allows Bob to recover Alice’s randomness
r (fully) based on the message and his knowledge of s. In our case we do not insist on the particular
form of the randomness that Alice and Bob agree on and allow them to use large amounts of shared
correlation (r,s ∈ {0,1}m) to extract some small amount k� m of entropy. Whereas in their setting
Renner and Wolf [17] get tight (to within 1+o(1) factor) bounds on the communication required, we
only get bounds to within constant factors. It would be interesting to see if the information-theoretic
tools used in their work can be applied to our problem as well.

Returning to our work, we next attempt to get a general conversion of communication protocols from
the perfectly-shared setting to the imperfectly-shared setting. We introduce a complete promise problem
GAPINNERPRODUCT which captures two-way communication, and use it to show that any problem
with k bits of communication with perfectly shared randomness also has a min{exp(k),k+ logn} bit
(one-way) protocol with imperfectly shared randomness. While the protocol is simple, we feel its
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existence is somewhat surprising; and indeed it yields a very different protocol for equality testing when
compared with Bavarian et al. [1].

Lastly, our main technical result is a matching lower bound giving a parameterized family of
promise problems, SPARSEGAPINNERPRODUCT, where the k’th problem can be solved with k bits of
communication with perfect randomness, but requires exp(Ω(k)) bits with imperfect sharing. This result
builds a new connection between influence of variables and communication complexity, which may be
of independent interest. Finally we conclude with a variety of open questions.

2 Model, Formal Description of Results and Main Ideas

Throughout the paper, we denote by Z+ the set of positive integers, and by [n] the set {1, . . . ,n}. Unless
specified otherwise, all logarithms are in base 2. We also recall, for x ∈ [0,1], the definition of the
binary entropy function h(x) = −x logx− (1− x) log(1− x); furthermore, for any p ∈ [0,1], we will
write Bern(p) for the Bernoulli distribution on {0,1} with parameter p, and Bernn(p) for the product
distribution on {0,1}n of n independent Bernoulli random variables. For a distribution P over a domain
Ω, we write H(P) = ∑x∈Ω P(x) log(1/P(x)) for its entropy, and x∼ P to indicate that x is drawn from P.
UΩ denotes the uniform distribution over Ω.

Finally, for two elements x,y ∈ {+1,−1}n, their Hamming distance dist(x,y) is defined as the
number of coordinates in which they differ (and similarly for x,y ∈ {0,1}n).

2.1 Model

We use the familiar model of communication complexity, augmented by the notion of correlated shared
randomness. Recall that in the standard model, two players, Alice and Bob, have access to inputs
x and y respectively. A protocol Π specifies the interaction between Alice and Bob (who speaks
when and what), and concludes with Alice and Bob producing outputs wA and wB respectively. A
communication problem P is (informally) specified by conditions on the inputs and outputs (x,y,wA,wB).
In usual (promise) problems this is simply a relationship on the 4-tuple. In sampling problems, this
may be given by requirements on the distribution of this output given x and y. For functional problems,
P = ( fA, fB) and the conditions require that wA = fA(x,y) and wB = fB(x,y). A randomized protocol
is said to solve a functional problem P if the outputs are correct with probability at least 2/3. The
(worst-case) complexity of a protocol Π, denoted cc(Π) is the maximum over all x,y of the expected
number of bits communicated by Π. This is the main complexity measure of interest to us, although
distributional complexity will also be considered, as also any mix. (For instance, the most natural
measure in compression is a max-average measure.)

We will be considering the setting where Alice and Bob have access to an arbitrarily long sequence
of correlated random bits. For this definition it will be convenient to let a random bit be an element of
{+1,−1}. For ρ ∈ [−1,+1], we say a pair of bits (a,b) are ρ-correlated (uniform) bits if E[a] =E[b] = 0
and E[ab] = ρ . We will consider the performance of protocols when given access to sequences (r,r′)
where each coordinate pair (ri,r

′
i) are ρ-correlated uniform bits chosen independently for each i. We

shall write r ∼ρ r′ for such ρ-correlated pairs.
The communication complexity of a problem P with access to ρ-correlated bits, denoted2 isr-ccρ(P)

is the minimum over all protocols Π that solve P with access to ρ-correlated bits of cc(Π). For

2All throughout “isr” stands for imperfect shared randomness, while psr refers to perfect shared randomness.
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integer k, we let ISR-CCρ(k) denote the collections of problems P with isr-ccρ(P)≤ k. The one-way
communication complexity and simultaneous message complexities are defined similarly (by restricting
to appropriate protocols) and denoted isr-ccow

ρ (P) and isr-ccsm
ρ (P) respectively. The corresponding

complexity classes are denoted similarly by ISR-CCow
ρ (k) and ISR-CCsm

ρ (k).
Note that when ρ = 1 we get the standard model of communication with shared randomness. We

denote this measure by psr-cc(P) = isr-cc1(P), and write PSR-CC(k) for the corresponding complexity
class. Similarly, when ρ = 0 we get communication complexity with private randomness private-cc(P) =
isr-cc0(P). We note that isr-ccρ(P) is non-increasing in ρ . Combined with Newman’s Theorem [15],
we obtain:

Proposition 2.1. For every problem P with inputs x,y ∈ {0,1}n and 0≤ ρ ≤ ρ ′ ≤ 1 we have

psr-cc(P)≤ isr-ccρ ′(P)≤ isr-ccρ(P)≤ private-cc(P)≤ psr-cc(P)+O(logn).

The proposition also holds for one-way communication, and (except for the last inequality) simultaneous
messages.

2.2 Problems, Results and Techniques

We now define some of the new problems we consider in this work and describe our main results.

2.2.1 Compression

Definition 2.2 (Uncertain Compression). For δ > 0, ∆≥ 0 and integers `,n, the uncertain compression
problem COMPRESS

`,n
∆,δ is a promise problem with Alice getting as input the pair (P,m), where P =

(P1, . . . ,Pn) is a probability distribution on [n] and m ∈ [n]. Bob gets a probability distribution Q on [n].
The promises are that H(P)≤ ` and for every i ∈ [n], |log(Pi/Qi)| ≤ ∆. The goal is for Bob to output
m, i.e., wB = m with probability at least 1− δ . The measure of interest here is the maximum, over
(P,Q) satisfying the promise, of the expected one-way communication complexity when m is sampled
according to P.

When ∆ = 0, this is the classical compression problem and Huffman coding achieves a compression
length of at most `+1; and this is optimal for “prefix-free” compressions. For larger values of ∆, the
work of [8] gives an upper bound of `+2∆+O(1) in the setting of perfectly shared randomness (to
get constant error probability). In the setting of deterministic communication or private randomness,
it is open if this communication complexity can be bounded by a function of ` and ∆ alone (without
dependence on n). (The work of [5] studies the deterministic setting.) Our first result shows that the
bound of [8] can be extended naturally to the setting of imperfectly shared randomness.

Theorem 2.3. For every ε,δ > 0 and 0 < ρ ≤ 1 there exists c = cε,δ ,ρ such that for every `,n, we have

isr-ccow
ρ

(
COMPRESS

`,n
∆,δ

)
≤ 1+ε

1−h((1−ρ)/2)(H(P)+2∆+ c).

We stress that the notation isr-ccow
ρ

(
COMPRESS

`,n
∆,δ

)
describes the worst-case complexity over P

with entropy H(P)≤ ` of the expected compression length when m← P. The protocol that achieves
this bound is a simple modification of the protocol of [8]. Roughly, Alice and Bob use their correlated
randomness to define a “redundant and ambiguous dictionary” with words of every length for every
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message. Alice communicates using a word of appropriate length given the distribution P, and Bob
decodes using maximum likelihood decoding given Q. The main difference in our case is that Alice and
Bob work knowing their dictionaries do not match exactly (as if they spelled the same words differently)
and so use even longer words during encoding and decoding with some error-correction to allow for
spelling errors. Details can be found in Section 3.

2.2.2 Agreement distillation

Next we turn to a very natural problem in the context of imperfect sharing of randomness. Can Alice
and Bob communicate to distill a few random bits from their large collection r and r′ (of correlated
random bits), bits on which they can agree perfectly?

Definition 2.4 (Agreement distillation). In the AGREEMENT-DISTILLATIONk
γ problem, Alice and Bob

have no inputs. Their goal is to output wA and wB satisfying the following properties:

(i) Pr[wA = wB ]≥ γ;

(ii) H∞(wA)≥ k; and

(iii) H∞(wB)≥ k

where H∞(X) = minx log 1
Pr[X=x ] .

A trivial way to distill randomness would be for Alice to toss random coins and send their outcome
to Bob. This would achieve γ = 1 and communication complexity of k for k bits of entropy. Our first
proposition says that with non-trivial correlation, some savings can always be achieved over this naive
protocol.

Proposition 2.5. For every ρ > 0, we have isr-ccow
ρ (AGREEMENT-DISTILLATIONk

γ) = (h(1−ρ

2 ) +
ok(1)) · k with γ = 1− ok(1). In particular for every ρ > 0 there exists α < 1 such that for every
sufficiently large k isr-ccow

ρ (AGREEMENT-DISTILLATIONk
1/2)≤ αk.

We prove this proposition in Section 4. Our next theorem says that these linear savings are the best
possible: one cannot get away with o(k) communication unless ρ = 1.

Theorem 2.6. ∀ρ < 1,∃ε > 0 such that isr-ccρ(AGREEMENT-DISTILLATIONk
γ)≥ εk− log 1

γ
.

The lower bound above is obtained by a reformulation of the agreement problem in terms of small
set expansion. Directly, this yields a bound saying that γ is exponentially small in k if no communication
is allowed. This immediately translates to the result above, as c bits of communication can only improve
the agreement probability by a factor of 2c. Section 4 contains details of this proof.

2.2.3 General relationships between perfect and imperfect sharing

Our final target in this work is to get some general relationships for communication complexity in the
settings of perfect and imperfectly shared randomness. Our upper bounds for communication complexity
are obtained by considering a natural promise problem, that we call GAPINNERPRODUCT, which is a
“hard problem” for communication complexity. We use a variant, SPARSEGAPINNERPRODUCT, for our
lower bounds. We define both problems below.
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Definition 2.7 (GAPINNERPRODUCTn
c,s, SPARSEGAPINNERPRODUCTn

q,c,s). The GAPINNERPRODUCTn
c,s

problem has parameters n ∈ Z+ (dimension), and c > s ∈ [0,1] (completeness and soundness). Both
yes- and no-instances of this problem have inputs x,y ∈ {0,1}n. An instance (x,y) is a yes-instance if
〈x,y〉 ≥ cn, and a no-instance if 〈x,y〉 < sn. The SPARSEGAPINNERPRODUCTn

q,c,s is a restriction of
GAPINNERPRODUCTn

c,s where both the yes- and the no-instances are sparse, i.e., ‖x‖2
2 ≤ n/q.

In Proposition 5.5 we show that GAPINNERPRODUCTn
c,s is “hard” for PSR-CC(k) with c=(2/3)2−k

and s = (1/3)2−k. Then in Lemma 5.6 we show that this problem is in ISR-CCow
ρ (poly(1/(c− s))).

Putting the two results together we get the following theorem giving a general upper bound on isr-ccow
ρ (P)

in terms of psr-cc(P) for any promise problem P.

Theorem 2.8. ∀ρ > 0, ∃c < ∞ such that ∀k, we have PSR-CC(k)⊆ ISR-CCow
ρ (ck).

We prove this theorem in Section 5.2.
Theorem 2.8 is obviously tight already because of known gaps between one-way and two-way

communication complexity. For instance, it is well known that the “indexing” problem (where Alice gets
a vector x ∈ {0,1}n and Bob an index i ∈ [n] and they wish to compute xi) has one-way communication
complexity of Ω(n) with perfectly shared randomness, while its deterministic two-way communication
complexity is at most logn+2. However one could hope for tighter results capturing promise problems
P with low psr-ccow(P), or to give better upper bounds on isr-cc(P) for P with low psr-cc(P). Our next
theorem rules out any further improvements to Theorem 2.8 when n is sufficiently large (compared to
k). We do so by focusing on the problem SPARSEGAPINNERPRODUCT. In Proposition 5.7 we show
that psr-ccow(SPARSEGAPINNERPRODUCTn

q,c,s) = O(poly( 1
q(c−s)) logq) for every q, n and c > s. In

particular if say c= 1/(2q) and s= 1/(4q) the one-way communication complexity with perfectly shared
randomness reduces to O(logq), in contrast to the poly(q) upper bound on the one-way communication
complexity with imperfectly shared randomness from Lemma 5.6.

Our main technical theorem shows that this gap is necessary for every ρ < 1. Specifically in
Theorem 5.8 we show that isr-ccρ(SPARSEGAPINNERPRODUCTn

q,c=.9/q,s=.6/q) = Ω(
√

q). Putting the
two together we get a strong converse to Theorem 2.8, stated below.

Theorem 2.9. For every k, there exists a promise problem P = (Pn)n∈Z+ such that psr-ccow(P)≤ k, but
for every ρ < 1 it is the case that isr-ccρ(P) = 2Ωρ (k).

Remarks on the proofs. Theorem 2.8 and Theorem 2.9 are the technical highlights of this paper and
we describe some of the ideas behind them here.

Theorem 2.8 gives an upper bound for isr-ccow
ρ for problems with low psr-cc. As such this ought to

be somewhat surprising in that for known problems with low probabilistic communication complexity
(notably, equality testing), the known solutions are very sensitive to perturbations of the randomness.
But the formulation in terms of GAPINNERPRODUCT suggests that any such problem reduces to
an approximate inner product calculation; and the theory of metric embeddings, and examples such
as locality sensitive hashing, suggest that one can reduce the dimensionality of the problems here
significantly and this may lead to some reduced complexity protocols that are also robust to the noise of
the ρ-correlated vectors. This leads us to the following idea: To estimate 〈x,y〉, where x,y ∈ {0,1}n,
Alice can compute a = 〈g1,x〉 where g1 is a random n-dimensional spherical Gaussian and send a (or
the most significant bits of a) to Bob. Bob can compute b = 〈g2,y〉 and a ·b is an unbiased estimator
(up to normalization) of 〈x,y〉 if g1 = g2. This protocol can be easily shown to be robust in that if g2 is
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only ρ-correlated with g1, a ·b is still a good estimator, with higher variance. And it is easy to convert a
collection of ρ-correlated bits to ρ-correlated Gaussians, so it is possible for Alice and Bob to generate
the g1 and g2 as desired from their imperfectly shared randomness. A careful analysis (of a variant of
this protocol) shows that to estimate 〈x,y〉 to within an additive error ε‖x‖2‖y‖2, it suffices for Alice to
send about 1/ε2 bits to Bob, and this leads to a proof of Theorem 2.8.

Next we turn to the proof of Theorem 2.9, which shows a roughly matching lower bound to
Theorem 2.8 above. The insight to this proof comes from examining the “Gaussian protocol” above
carefully and contrasting it with the protocol used in the perfect randomness setting. In the latter case
Alice uses the randomness to pick one (or few) coordinates of x and sends some function of these bits to
Bob achieving a communication complexity of roughly log(1/ε), using the fact that only O(εn) bits
of x are non-zero. In the Gaussian protocol Alice sends a very “non-junta”-like function of x to Bob;
this seems robust to the perturbations of the randomness, but leads to 1/ε2 bits of communication. This
difference in behavior suggests that perhaps functions where variables have low “influence” cannot be
good strategies in the setting of perfect randomness, and indeed we manage to prove such a statement
in Theorem 6.8. The proof of this theorem uses a variant of the invariance principle that we prove
(see Theorem 7.1), which shows that if a one-way communication protocol with low-influences works
in a “product-distributional” setting, it will also work with inputs being Gaussian and with the same
moments. This turns out to be a very useful reduction. The reason that SPARSEGAPINNERPRODUCT

has nice psr-ccow protocols is the asymmetry between the inputs of Alice and the inputs of Bob —
inputs of Alice are sparse! But with the Gaussian variables there is no notion of sparsity and indeed
Alice and Bob have symmetric inputs and so one can now reduce the “disjointness” problem from
communication complexity (where now Alice and Bob hold sets A,B ⊆ [1/ε], and would like to
distinguish |A∩B|= 0 from |A∩B|= 1) to the Gaussian inner product problem. Using the well-known
lower bound on disjointness, we conclude that Ω(1/ε) bits of communication are necessary and this
proves Theorem 6.8.

Of course, all this rules out only one part of the solution space for the communication complexity
problem, one where Alice and Bob use functions of low-influence. To turn this into a general lower
bound we note that if Alice and Bob use functions with some very influential variables, then they should
agree on which variable to use (given their randomness r and r′). Such agreement on the other hand
cannot happen with too high a probability by our lower bound on AGREEMENT-DISTILLATION (from
Theorem 2.6). Putting all these ingredients together gives us a proof of Theorem 2.9 (see Section 5.3)
for more details).

Organization of the rest of the paper The rest of the paper contains details and proofs of the
theorems mentioned in this section. In the next section (Section 3), we prove our isr upper bound for the
“Uncertain Compression” problem, namely Theorem 2.3. We then turn, in Section 4, to the matching
upper and lower bounds for ”Agreement Distillation” as described in Proposition 2.5 and Theorem 2.6.
Section 5 contains the details of our main results relating communication with perfect and imperfect
shared randomness, Theorem 2.8 and Theorem 2.9: we first describe an alternate characterization of
communication strategies in Section 5.1, which allows us to treat them as vectors in (carefully defined)
convex sets. This enables us to use ideas and machinery from Gaussian analysis: in particular, our lower
bound on isr presented in Section 6 relies on a new invariance theorem, Theorem 7.1, that we prove in
Section 7.
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3 Compression

In this section, we prove Theorem 2.3, restated below:

Theorem 2.3. For every ε,δ > 0 and 0 < ρ ≤ 1 there exists c = cε,δ ,ρ such that for every `,n, we have

isr-ccow
ρ

(
COMPRESS

`,n
∆,δ

)
≤ 1+ε

1−h((1−ρ)/2)(H(P)+2∆+ c).

Proof of Theorem 2.3. Let µ = (1−ρ)/2 and ε ′ > 0 be such that 1/(1− h(µ + ε ′)) = (1+ ε)/(1−
h(µ)). Let c = O( 1

ε ′2
ln(1/δ )).

We interpret the random strings r and r′ as two “dictionaries”, i.e., as describing words {wi, j ∈
{−1,+1} j} j∈[n] and {w′i, j ∈ {−1,+1} j} j∈[n], with the property that for every i, j and coordinate k ∈ [ j],
the kth coordinates of wi, j and w′i, j are ρ-correlated.

On input P,m Alice sends X = wm, j to Bob where j = max{c, 1+ε

1−h(µ) (log(1/P(m))+2∆+ log(1/δ ))}.
On input Q and on receiving X from Alice, Bob computes j = |X | and the set

SX =
{

m̃ : dist(w′m̃, j,X)≤ (µ + ε
′) j
}
,

where dist denotes the Hamming distance between strings. Bob then outputs argmaxm̃∈SX
{Q(m̃)} (so it

outputs the most likely message after some error-correction).
It is clear from construction that the expected length of the communication when m∼ P is at most

Em∼P

[
1+ ε

1−h(µ)
(log(1/P(m))+2∆+ c)

]
=

1+ ε

1−h(µ)
(Em∼P[log(1/P(m))]+2∆+ c) =

1+ ε

1−h(µ)
(H(P)+2∆+ c) .

We finally turn to correctness, i.e., to show that Bob’s output m̃ = m with probability at least
1− δ . First note that the probability that m ∈ SX is at least (1− δ/2) (by a simple application
of Chernoff bounds and the fact that j is sufficiently large compared to ε ′ and δ ). Now let Tm ={

m′ 6= m : P(m′)≥ P(m)/4∆
}

. Note that |Tm| ≤ 4∆/P(m). For any fixed m′ ∈ Tm, we have that the
probability (over the choice of w′m′, j) that m′ ∈ SX is at most 2−(1−h(µ+ε ′)) j. Taking the union bound over
m′ ∈ Tm and plugging in our choice of j, we have that with probability at least 1−δ/2, Tm∩SX = /0.
With probability at least 1−δ both events above happen and when they do we have m̃ = m.

4 Agreement Distillation

In this section we give proofs of Proposition 2.5 and Theorem 2.6 which respectively give upper and
lower bounds on the one-way communication complexity of randomness distillation.

We start with the upper bound, which relies on the existence of linear error-correcting codes, capable
of correcting µ , 1−ρ

2 fraction errors. The fact that such codes have rate approaching 1−h(µ) yields
the result that agreement distillation requires (1+ok(1)) ·h(µ) · k communication for γ → 1. Details
below.

Proof of Proposition 2.5. Let ε > 0 be any positive constant and let Bernk(µ) be the distribution on
{0,1}k where each bit is independent and is 1 with probability µ . Let ` ∈ Z+ be such that there exists a
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matrix H ∈ {0,1}`×k such that

Pr
e∼Bernk(µ)

[
∃e′ 6= e s.t. wt(e′)≤ (µ + ε)k and H · e′ = H · e

]
≤ δ/2.

Note a random matrix satisfies this condition for `= h(µ + ε)k with probability tending to 1 as k goes
to ∞.

Given ρ correlated strings r,r′ ∈ {0,1}k, Alice’s output is wA = r. She communicates y = H · r to
Bob. Bob’s output is wB = r̃ such that (i) H · r̃ = y and (ii) dist(r̃,r′)≤ (µ + ε)k, provided r̃ with these
properties exists and is unique. Else he outputs r′.

It follows that unless dist(r̃,r′) > (µ + ε)k or if ∃e′ 6= e , r− r′ such that wt(e′) ≤ (µ + ε)k and
H · e′ = H · e, we have r̃ = r. The probability of either event above is small (by Chernoff bound for the
first, and by the condition on H for the second).

We now turn towards a proof of Theorem 2.6. We first consider the setting of zero communication,
i.e., when Alice and Bob are not allowed to communicate at all. The following lemma shows that their
success probability γ is exponentially small in k.

Lemma 4.1. ∀ρ < 1,∃ε > 0 such that for every zero-communication protocol for AGREEMENT-DISTILLATION(γ,k),
we have γ ≤ 2−εk. (Furthermore, one can take ε = 1−O(ρ)).

Our proof of the above lemma relies on the following small-set expansion property of the “noisy
hypercube”.

Theorem 4.2 (Generalized Small-Set Expansion Theorem (see, for instance, [16, Section 10.1])). Let
0≤ ρ ≤ 1. Let A,B⊆ {+1,−1}n have volumes exp(−a2

2 ), exp(−b2

2 ) and assume 0≤ ρa≤ b≤ a. Then

Pr
x∼ρ y

[x ∈ A,y ∈ B ]≤ exp
(
−1

2
a2−2ρab+b2

1−ρ2

)
.

Proof of Lemma 4.1. Fix ρ > 0, and suppose there is a zero communication protocol for agreement.
Note that such a protocol is given by two functions ExtA,ExtB such that wA = ExtA(r) and wB = ExtB(r′).
Without loss of generality assume that the domain of ExtA and ExtB is {+1,−1}m for some integer m)
and the range is Z+. For n ∈ Z+ define the sets An = Ext−1

A {n}, Bn = Ext−1
B {n}. By the conditions

H∞(wA)≥ k and H∞(wB)≥ k, we get that |An| , |Bn| ≤ 2m−k, so that their volumes (|An|/2m, |Bn|/2m) are

exp(−a2
n/2),exp(−b2

n/2) for an,bn ≥ α
def
=
√

2k ln2. Assuming |An| ≤ |Bn| (or equivalently an ≥ bn),
Theorem 4.2 gives us when an ≥ bn ≥ ρan

Pr
r∼ρ r′

[
ExtA(r) = n, ExtB(r′) = n

]
= Pr

r∼ρ r′

[
r ∈ An,r′ ∈ Bn

]
≤ exp

(
−1

2
a2

n−2ρanbn +b2
n

1−ρ2

)
and so

Pr
[
ExtA(r) = n

∣∣ ExtB(r′) = n
]
≤ exp

(
−1

2
a2

n−2ρanbn +ρ2b2
n

1−ρ2

)
≤

(an≥bn)
exp
(
−b2

n

2
1−ρ

1+ρ

)
≤ 2−k 1−ρ

1+ρ .

On the other hand, when ρan ≥ bn ≥ 0 we can upperbound the probability as

Pr
r∼ρ r′

[
r ∈ An,r′ ∈ Bn

]
≤ Pr

r
[r ∈ An ] = exp

(
−a2

n

2

)
≤ exp

(
− b2

n

2ρ2

)
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and

Pr
[
ExtA(r) = n

∣∣ ExtB(r′) = n
]
≤ exp

(
−1−ρ2

2ρ2 b2
n

)
≤ exp

(
−
(

1−ρ

1+ρ

)
· b

2
n

2

)
≤ 2−k 1−ρ

1+ρ .

The symmetric (in An,Bn) bounds holds when |Bn| ≤ |An|. Putting the four cases together, we obtain

Pr
r∼ρ r′

[
ExtA(r) = ExtB(r′)

]
= ∑

n∈Z+

Pr
(r,r′)

[
ExtA(r) = n, ExtB(r′) = n

]
= ∑

n∈Z+

Pr
(r,r′)

[
r ∈ An,r′ ∈ Bn

]
= ∑

n : an≥bn

Pr
(r,r′)

[
r ∈ An,r′ ∈ Bn

]
+ ∑

n : bn>an

Pr
(r,r′)

[
r ∈ An,r′ ∈ Bn

]
= ∑

n : an≥bn

Pr
[

r ∈ An
∣∣ r′ ∈ Bn

]
Pr
[

r′ ∈ Bn
]
+ ∑

n : bn>an

Pr
[

r′ ∈ Bn
∣∣ r ∈ An

]
Pr[r ∈ An ]

≤ ∑
n∈Z+

2−k 1−ρ

1+ρ Pr
[

r′ ∈ Bn
]
+ ∑

n∈Z+

2−k 1−ρ

1+ρ Pr[r ∈ An ]

≤ 2 ·2−k 1−ρ

1+ρ

where the last inequality uses ∑n Prr′ [r′ ∈ Bn ] = ∑n∈Z+ Prr [r ∈ An ] = 1. This finally implies (using
γ ≤ Prr∼ρ r′ [ExtA(r) = ExtB(r′) ]) that γ < 1

2εk , for ε
def
= 1−ρ

1+ρ
= 1−2ρ +o(ρ).

We now derive Theorem 2.6 as an easy corollary of Lemma 4.1.

Proof of Theorem 2.6. Suppose Π is a c-bit communication protocol for AGREEMENT-DISTILLATIONk
γ .

We can convert Π to a zero-bit communication protocol where Bob simply guesses the bits Alice would
have sent him and Alice guesses the bits that Bob would have sent her. For each bit, the guess is correct
with probability 1/2 and so all guesses are correct with probability 2−c. Conditioned on Alice and Bob
guessing all bits correctly they succeed in outputting wB = wA with probability at least γ , giving a net
success probability of 2−c · γ . Applying Lemma 4.1, we get 2−cγ ≤ 2−εk and thus c≥ εk− log(1/γ) as
desired.

5 General connection between perfect and imperfect shared random-
ness

In this section we present proofs of Theorem 2.8 and Theorem 2.9. Key to both our upper bound on
isr-ccow(P) in terms of psr-cc(P), and our lower bound on isr-cc(SPARSEGAPINNERPRODUCT) is a
representation of communication strategies as vectors, where the success probability of an interaction is
proportional to the inner product of these vectors. We describe this representation in Section 5.1 below.
We then use this representation to show that GAPINNERPRODUCT is hard for PSR-CC(k) in Section 5.2.
We also give a one-way isr protocol for GAPINNERPRODUCT in the same section thus giving a proof of
Theorem 2.8. Finally in Section 5.3 we give a one-way psr protocol for SPARSEGAPINNERPRODUCT,
and then state our main technical result — an exponentially higher lower bound for it in the two-way
isr setting (with the proof deferred to Section 6 modulo an invariance principle which is established in
Section 7). The lower bound uses the fact that the space of strategies in the vector representation forms
a bounded convex set.
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5.1 Communication Strategies: Inner Products and Convexity

We start by formalizing deterministic and probabilistic (private-coin) two-way communication strategies
for Alice and Bob. By “strategy” we mean what Alice would do given her input and randomness, as
a function of different messages that Bob may send her, and vice versa. We restrict our attention to
canonical protocols in which Alice and Bob strictly alternate and communicate in bits; and the eventual
outcome is a Boolean one, determined after k rounds of communication. (So the only problems that can
be solved this way are “promise problems”.) Without loss of generality we also assume that the last bit
communicated is the output of the communication protocol.

The natural way to define strategies would be in terms of a triple ( fA, fB,v) where fA =( f 2i
A : {0,1}2i→

{0,1})0≤i<k/2 is a sequence of functions and so is fB =( f 2i+1
B : {0,1}2i+1→{0,1})0≤i<k/2 and v : {0,1}k→

{0,1}. The function f 2i
A (h) determines Alice’s message bit after 2i rounds of communication, with

h ∈ {0,1}2i being the transcript of the interaction thus far. Similarly the functions f 2i+1
B (h) deter-

mine Bob’s message bit after 2i+1 rounds of communication. Finally, v denotes the verdict function.
Since we assumed that the last bit transmitted is the output, we have v(`1, . . . , `k) = `k. Thus the
output of an interaction is given by v(`) where `= (`1, . . . , `k) is given by `2i+1 = f 2i

A (`1, . . . , `2i) and
`2i+2 = f 2i+1

B (`1, . . . , `2i+1) for 0≤ i≤ k/2. The interpretation is that Alice can determine the function
fA from her input and Bob can determine fB from his input, and this allows both to determine the output
after k rounds of interaction.

We will be moving on to the vector representation of strategies shortly, but first we describe
probabilistic interactions, where Alice and Bob have private randomness. Such an interaction is
also described by a triple ( fA, fB,v) except that now fA = ( f 2i

A : {0,1}2i → [0,1])0≤i<k/2 and fB =

( f 2i+1
B : {0,1}2i+1→ [0,1])0≤i<k/2. The outcome is now the random variable v(`) where `= (`1, . . . , `k)

is the random variable determined inductively by letting `2i+1 = 1 with probability f 2i
A (`1, . . . , `2i) and

`2i+2 = 1 with probability f 2i+1
B (`1, . . . , `2i+1) for 0≤ i≤ k/2.

Our vector representation of deterministic interactions is obtained by considering the set of “plausible
final transcripts” that a player might see given their own strategy. Recall that the transcript of an
interaction is a k-bit string and there are 2k possible transcripts. In the new representation, we represent
Alice’s strategy (i.e., the functions fA) by a vector x∈{0,1}2k

where x(`)= 1 if and only if `∈{0,1}k is a
transcript consistent with Alice’s strategy. (We give a more formal description shortly.) For probabilistic
communication strategies (corresponding to Alice and Bob working with private randomness), we
represent them by vectors x and y in [0,1]2

k
. We formalize the set of such strategies, and verdicts, below.

In what follows we describe sets K(k)
A ,K(k)

B ⊆ [0,1]2
k

that are supposed to describe the strategy space
for Alice and Bob. Roughly, we wish to allow x = (x(i1, . . . , ik))i1,...,ik∈{0,1} to be an “Alice strategy” (i.e.,
a member of KA) if for every i1, . . . , ik there exists a Bob strategy such that Alice reaches the transcript
i1, . . . , ik with probability x(i1, . . . , ik). To describe this set explicitly we introduce auxiliary variables
xA(i1, . . . , i j) for every 0≤ j≤ k and i1, . . . , i j ∈ {0,1} where xA(i j, . . . , i j) denotes the probability (again
maximized over Bob strategies) of reaching the partial transcript i1, . . . , i j. In what follows we first show
that the auxiliary variables are linear forms in x and then show the conditions that the auxiliary variables
satisfy. (We warn the reader that the first step — showing that the xA(· · ·)’s are linear forms in x – relies
on the constraints imposed later and so some of the definition may be slightly non-intuitive.) Together
the two steps allows us to show that the space of strategies is a (closed) convex set.

Definition 5.1. For vector x ∈ [0,1]2k
and i1, . . . , i j ∈ {0,1} let xA(i1, . . . , i j) and xB(i1, . . . , i j) be defined
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as follows:

xA(i1, . . . , i j) =


x(i1, . . . , ik) if j = k
xA(i1, . . . , i j,0)+ xA(i1, . . . , i j,1) if j is even.
1
2 (xA(i1, . . . , i j,0)+ xA(i1, . . . , i j,1)) if j is odd.

xB(i1, . . . , i j) =


x(i1, . . . , ik) if j = k
1
2 (xB(i1, . . . , i j,0)+ xB(i1, . . . , i j,1)) if j is even.
xB(i1, . . . , i j,0)+ xB(i1, . . . , i j,1) if j is odd.

Define

K̄A = K̄(k)
A =

{
x ∈ [0,1]2

k
: xA() = 1 and ∀ odd j,∀i1, . . . , i j ∈ {0,1}, xA(i1, . . . , i j,0) = xA(i1, . . . , i j,1)

}
,

and

K̄B = K̄(k)
B =

{
x ∈ [0,1]2

k
: xB() = 1 and ∀ even j,∀i1, . . . , i j ∈ {0,1}, xB(i1, . . . , i j,0) = xB(i1, . . . , i j,1)

}
.

Let KA = { x∗ v : x ∈ K̄A }, where v∈ {0,1}2k
is given by vi1,...,ik = ik (and a∗b denotes coordinate-wise

multiplication of vectors a and b). Let S̄A = K̄A∩{0,1}2k
, S̄B = K̄B∩{0,1}2k

, SA = KA∩{0,1}2k
, and

SB = KB∩{0,1}2k
.

xA(i1, . . . , i2 j)︸ ︷︷ ︸
0+1=1

xA(i1, . . . , i2 j, i2 j+1 = 0)︸ ︷︷ ︸
1
2 (0+0)=0

xA(i1, . . . , i2 j, i2 j+1,0)︸ ︷︷ ︸
0

0

xA(i1, . . . , i2 j, i2 j+1,1)︸ ︷︷ ︸
0

1

0

xA(i1, . . . , i2 j, i2 j+1 = 1)︸ ︷︷ ︸
1
2 (1+1)=1

xA(i1, . . . , i2 j, i2 j+1,0)︸ ︷︷ ︸
1

0

xA(i1, . . . , i2 j, i2 j+1,1)︸ ︷︷ ︸
1

1

1

Figure 1: Illustration of the constraints on xA (Definition 5.1).

In what follows we first focus on deterministic communication strategies and show that S̄A, S̄B

correspond to the space of deterministic communication strategies for Alice and Bob, while SA and
SB correspond to outputs computed by such strategies. This step is not strictly needed for this paper
since our main focus is on probabilistic strategies and the convex sets KA and KB, but the analysis of the
deterministic strategies clarifies the probabilistic case.

Proposition 5.2. . S̄A and S̄B correspond to the set of deterministic communication strategies with k bits.
For every strategy fA of Alice there exists vectors x̄ ∈ S̄A and x ∈ SA and for every strategy fB of Bob
there exist vectors y ∈ S̄B and y ∈ SB such that if ` ∈ {0,1}k is the transcript of the interaction between
Alice and Bob under strategies fA and fB, then ` is the unique sequence satisfying x̄(`) = ȳ(`) = 1 and
〈x,y〉= 1 if the interaction accepts and 0 otherwise.

Conversely every vector x ∈ SA corresponds to a strategy fA for Alice (and similarly for Bob) such
that Alice and Bob accept the interaction iff 〈x,y〉= 1.
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Proof. Given fA to construct x̄, we let x̄(`) = 1 if there exists fB,` such that the final transcript of
the interaction given by fA and fB,` is `. Furthermore let x̄A(i1, . . . , i j) = 1 if there exists a Bob
strategy fB,i1,...,i j) such that i1, . . . , i j is the partial transcript of the interaction between Alice and Bob.
It is now straightforward to verify that the x̄A(i1, . . . , i j) satisfy the conditions of the definition of
x̄A and the conditions required for membership in K̄A. In particular we have the following three
conditions: (1) x̄A() = 1 since the empty transcript is a legal partial transcript. (2) If j is an even
index (and so Alice speaks in round j+1) and xA(i1, . . . , i j) = 0 (so the partial transcript i1, . . . , i j is not
reachable given Alice’s strategy), then we must have xA(i1, . . . , i j,0) = xA(i1, . . . , i j,1) = 0 (no extension
is reachable either). If xA(i1, . . . , i j) = 1 then exactly one of the extensions must be reachable (based
on Alice’s message at this stage) and so again we have xA(i1, . . . , i j) = xA(i1, . . . , i j,0)+ xA(i1, . . . , i j,1).
(3) If j is odd and it is Bob’s turn to speak, then again if xA(i1. . . . , i j) = 0 we have xA(i1, . . . , i j,0) =
xA(i1, . . . , i j,1) = 0. On the other hand if xA(i1, . . . , i j) = 1 then for each extension there exists a strategy
of Bob that permits this extension and so we have xA(i1, . . . , i j,0) = xA(i1, . . . , i j,1) = 1 satisfying the
condition for odd j. The above three conditions verify membership in K̄A and since x̄ is a 0/1 vector, we
also have x̄ ∈ S̄A. The vector x = x̄∗ v gives the corresponding vector in SA.

For the converse, the main steps are to show that a vector x ∈ SA corresponds to a unique vector
x̄ ∈ S̄A and the quantities x̄A(i1, . . . , i j) are also in {0,1} where the latter is shown by induction. For the
former, note that if x̄ ∈ K̄A and k is even then x̄(i1, . . . , ik−1,0) = x̄(i1, . . . , ik−1,1) = x(i1, . . . , ik−1,1) and
this defines the unique x̄ ∈ K̄A corresponding to x ∈ SA. On the other hand if k is odd, we first compute
xA(i1, . . . , i j) for every j ∈ {0, . . . ,k} (in decreasing order of j). We then use these counts as lower bounds
on x̄A(i1, . . . , i j) and assign x̄A(i1, . . . , i j) starting with j = 0 as follows. We set x̄A() = 1. For all larger
values of j, if x̄A(i1, . . . , i j−1) = 0 or j is even set x̄A(i1, . . . , i j−1,0) = x̄A(i1, . . . , i j−1,1)=x̄A(i1, . . . , i j−1).
If j is odd and x̄A(i1, . . . , i j−1) = 1 then if xA(i1, . . . , i j−1,1)> 0 then we set x̄A(i1, . . . , i j−1, i j) = i j else
we set x̄A(i1, . . . , i j−1, i j) = 1− i j. It can be verified that this assignment leads to a x̄ ∈ S̄A (and this is
essentially unique except in settings where Alice rejects all paths in some subtree.)

For the latter property, we first note that for x̄A(ii, . . . , i j) the “averaging” steps ( j odd) are actually
just equalities. i.e., if j is odd, then membership in K̄A implies that x̄A(i1, . . . , i j,0) = x̄A(i1, . . . , i j,1)
and so x̄A(i1, . . . , i j) = x̄A(i1, . . . , i j,0) = x̄A(i1, . . . , i j,1). Thus by induction on j = k down to 0, we get
x̄A(i1, . . . , i j) ∈ {0,1}. Using this the strategy fA can be derived naturally: For any j, f 2 j

A (i1, . . . , i2 j) = i
for the unique i such that xA(i1, . . . , i2 j, i) = 1.

More significantly for us, the above equivalence also holds for probabilistic communication (i.e.,
with private randomness). Here the fact that the set of strategies forms a convex space is important to us.

Proposition 5.3. KA and KB are closed convex sets that correspond to the set of probabilistic communi-
cation (and decision) strategies with k bits. More precisely, for every probabilistic strategy fA of Alice
there exists a vector x̄ ∈ K̄A and x ∈ KA and for every strategy fB of Bob there exists a vector ȳ ∈ K̄B and
y ∈ KB such that x̄(`) · ȳ(`) is the probability that ` ∈ {0,1}k is the transcript of the interaction between
Alice and Bob under strategies fA and fB and 〈x,y〉 is the acceptance probability of the interaction.
Conversely every vector x ∈ KA corresponds to a probabilistic strategy fA for Alice (and similarly for
Bob, with 〈x,y〉 being the acceptance probability of the protocol).

Proof. The fact that KA and KB are closed and convex sets is straightforward from their definition.
The conversion of fA and fB into vectors is similar to the conversion in the proof of Proposition 5.2.

In particular to get x̄ ∈ K̄A from fA we let x̄(i1, . . . , ik) be the maximum probability of arriving at the
transcript i1, . . . , ik over strategies of Bob. (We omit the analysis which repeats steps of the proof of
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Proposition 5.2.) It can also be verified (by induction on the length of partial transcripts) that for this
conversion, for any pair of strategies that convert to x̄ for Alice and ȳ for Bob and for any transcript ` the
probability of generating the transcript ` is exactly x̄(`) · ȳ(`). It follows that the acceptance probability
equals ∑` x̄(`) · ȳ(`) · v(`) = 〈x,y〉.

In the reverse direction, given x ∈ KA, we first construct x̄ ∈ K̄A as in the proof of Proposi-
tion 5.2. Then from x̄ we construct the auxiliary variables x̄A(i1, . . . , i j) for all i1, . . . , i j. Finally
we let f 2 j

A (i1, . . . , i2 j) = x̄A(i1, . . . , i2 j,1)/x̄A(i1, . . . , i2 j). Similarly we convert y ∈ KB into a strategy fB

for Bob. It can be verified that this conversion again satisfies the condition for every accepting leaf `,
and x ∈ KA and y ∈ KB, the resulting strategies reach the leaf ` with probability x(`) · y(`) and so indeed
〈x,y〉 is the accepting probability of the resulting strategies.

5.2 Upper bound on ISR in terms of PSR

In this section we prove Theorem 2.8. Our first step is to prove that the GAPINNERPRODUCT problem
(with the right parameters) is hard for all problems with communication complexity k. But first we
define what it means for a promise problem to be hard for some class of communication problems.

Recall that a promise problem P = (Pn)n is given by a collection of yes-instances Pyes
n ⊆ {0,1}n×

{0,1}n and no-instances Pno
n ⊆ {0,1}n×{0,1}n with Pyes

n ∩Pno
n = /0. We define below what it means

for a promise problem P to reduce to a promise problem Q.

Definition 5.4. For promise problems P = (Pn)n and Q = (Qn)n we say that P reduces to Q if there exist
functions ` : Z+→ Z+ and fn,gn : {0,1}n→ {0,1}`(n) such that if (x,y) ∈ Pyes

n then ( fn(x),gn(y)) ∈
Qyes
`(n) and if (x,y) ∈ Pno

n then ( fn(x),gn(y)) ∈ Qno
`(n). We say Q is hard for a class C if for every P ∈ C

we have that P reduces to Q.

In other words Alice can apply fn to her input, and Bob can apply gn to his input and get a new pair
that is an instance of the Q-problem. In particular if Q has communication complexity k, then so does
P. This can be extended to functions k(n) also: if Q has communication complexity k(n), then P has
complexity k(`(n)).

Since we are mostly interested in k being an absolute constant, we do not strictly care about the length
stretching function `. However, we note that in the following proposition we only need a polynomial
blowup (so ` is a polynomial).

Proposition 5.5. For every positive integer k, GAPINNERPRODUCT(2/3)2−k,(1/3)2−k is hard for PSR-CC(k).

Proof. Specifically we show that for any problem P with inputs of length n and psr-cc(P) ≤ k, there
exist N = poly(n) and transformations fn and gn such that (x,y) is a yes-instance of P if and only if
( fn(x),gn(y)) is a yes-instance of GAPINNERPRODUCTN

(2/3)2−k,(1/3)2−k .

Given x ∈ {0,1}n and random string R, let XR ∈ S(k)A describe the communication strategy of Alice
with input x and randomness R. Similarly let YR denote the strategy of Bob. Recall that 〈XR,YR〉= 1 if
the interaction accepts on randomness R and 〈XR,YR〉= 0 otherwise. Let fn(x) = X be the concatenation
of the strings {XR}R and let gn(y) = Y be the concatenation of {YR}R. By Newman’s Theorem we
have that the number of random strings R that we need to consider is some polynomial N′ = poly(n).
Letting N = 2k ·N′, we get that X ,Y ∈ {0,1}N and 〈X ,Y 〉 ≥ (2/3)N′ = (2/3) · 2−k ·N if (x,y) is a
yes-instance of P and 〈X ,Y 〉 ≤ (1/3)N′ = (1/3) ·2−k ·N if (x,y) is a no-instance of P. This gives the
desired reduction.
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Next we give an upper bound on isr-cc(GAPINNERPRODUCT). In fact we give an upper bound on
isr-ccow(GAPINNERPRODUCT).

Lemma 5.6. For all 0≤ s < c≤ 1 and ρ > 0, isr-ccow
ρ (GAPINNERPRODUCT)= O(1/ρ2(c− s)2).

Proof. Let X ∈ {0,1}n and Y ∈ {0,1}n be the inputs to Alice and Bob. Recall that Alice and Bob want
to distinguish the case 〈X ,Y 〉 ≥ c ·n from the case 〈X ,Y 〉 ≤ s ·n.

We shall suppose without loss of generality that Alice and Bob have access to a source of ρ-correlated
random spherical Gaussian vectors g,g′ ∈ Rn. We can enforce this in the limit by sampling several ρ-
correlated random bit vectors ri,r′i ∈ {0,1}n for i∈ [N] and setting g = ∑

N
i=1 ri/

√
N and g′ = ∑

N
i=1 r′i/

√
N.

We leave out the details for this technical calculation (involving an appropriate use of the central limit
theorem) here.

Let t be a parameter to be chosen later and let (g1,g′1),(g2,g′2), . . . ,(gt ,g′t) be t independent ρ-
correlated spherical Gaussian vectors chosen from the source as above. By the rotational invariance of
the Gaussian distribution, we can assume without loss of generality that g′i = ρgi +

√
1−ρ2g′′i , where

the g′′i ’s are independent spherical Gaussian vectors.
As g1, . . . ,gt are independent spherical Gaussians, by standard tail bounds (e.g., see Ledoux and

Talagrand [11]), with probability at least 1−1/6,

max
i∈[t]
〈X ,gi〉= (α

√
log t±O(1)) ·

√
〈X ,X〉

for some universal constant α .
The protocol then proceeds as follows:

• Alice computes `= argmaxi∈[t] 〈X ,gi〉 and m such that 〈X ,X〉 ∈ ((m−1) · (c−s)
100 n,m · (c−s)

100 n] and
sends (`,m) to Bob (note that this implies m = O(1/(c− s))).

• Bob accepts if m≥ 100c
c−s and 〈Y,g′`〉 ≥ αρ

√
log t · (c+s)n

2
√

m(c−s)(n/100)
and rejects otherwise.

Now, write Y = aX +bX⊥ for some vector X⊥ with a〈X ,X〉= 〈X ,Y 〉 and
〈
X ,X⊥

〉
= 0. Then,〈

Y,g′`
〉
= aρ 〈X ,g`〉+bρ

〈
X⊥,g`

〉
+
√

1−ρ2
〈
Y,g′′`

〉
.

As 〈X ,g`〉 is independent of
〈
X⊥,g`

〉
and 〈Y,g′′` 〉, it follows from a simple tail bound for univariate

Gaussians that with probability at least 1−1/6,
∣∣〈X⊥,g`〉∣∣, |〈Y,g′′` 〉|= O(

√
n). By combining the above

inequalities, we get that with probability at least 2/3,〈
Y,g′`

〉
= αρ

√
log t 〈X ,Y 〉/

√
〈X ,X〉±O(

√
n).

To finish the proof observe that for yes-instances, 〈X ,X〉≥ cn (so that m≥ 100c
c−s ) and 〈X ,Y 〉/

√
〈X ,X〉≥

β1 , c · n/
√

m(c− s)(n/100); while for no-instances, 〈X ,Y 〉 ≤ β2 , s · n/
√

(m−1)(c− s)(n/100).
Hence, the protocol works correctly if αρ

√
log t(β1−β2)� O(

√
n).

It follows from the settings of parameters that this indeed happens for some log t =Θ(1/(ρ2(c−s)2)).
In particular, we have

β1−β2 =
cn− sn√

m(c− s)(n/100)
− sn√

(c− s)(n/100)

(
1√

m−1
− 1√

m

)
.
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By the condition m≥ 100c
c−s we have 1√

m−1
− 1√

m ≤
c−s
2s and thus

β1−β2 ≥
1
2

cn− sn√
m(c− s)(n/100)

=

√
25(c− s)n√

m
.

And so when log t� 1/Ω(1/(α2ρ2(c− s)2)) we find αρ
√

log t(β1−β2)� O(
√

n) as required.

The above lemma along with the hardness of GAPINNERPRODUCT gives us Theorem 2.8.

Proof of Theorem 2.8. By Proposition 5.5, for every promise problem P such that psr-cc(P) ≤ k, P
reduces to GAPINNERPRODUCTc,s with c = (2/3)2−k and s = (1/3)2−k. By Lemma 5.6 we get that
the reduced instance of GAPINNERPRODUCTc,s has a one-way isr communication protocol of with
Oρ(1/(c− s)2) = Oρ(22k) bits of communication. The theorem follows.

5.3 ISR lower bound for SPARSEGAPINNERPRODUCT

In this section, we consider the promise problem SPARSEGAPINNERPRODUCTn
.99q,.9q−1,.6q−1 and show

that it has a one-way psr protocol with O(logq) bits of communication, and then give a two-way isr
lower bound of qΩ(1) for this problem. Together this proves Theorem 2.9.

Proposition 5.7. ∀c > s and ∀q,n, we have

psr-ccow(SPARSEGAPINNERPRODUCTn
q,c,s)≤O

(
1

q2(c− s)2

(
log

1
c
+ log

1
q(c− s)

+ log log
c

c− s

))
.

Proof (Sketch). We first show that there exists an atomic one-way communication protocol for the
problem SPARSEGAPINNERPRODUCTn

q,c,s with the following features (where γ = Θ((c− s)/c)):

1. the length of communication is O(log1/c+ log1/(q(c− s))+ log log1/γ).

2. yes-instances are accepted with probability at least (1−γ) · c
c−s · p and no-instances with probability

at most s
c−s ·

100
m−1 for some m = Ω(c/(c− s)) known by both parties. In particular, the difference

between completeness and soundness is Ω(1/m).

The atomic protocol lets the shared randomness determine a sequence of t def
= −log(1/γ)/log(1− c)

indices i1, i2, . . . , it in [n]. Alice first computes m = O(1/(c− s)) such that ‖x‖2
2 ∈ ((m−1) · (c−s)

100 n,m ·
(c−s)
100 n], and picks the smallest index ` such that xi` 6= 0. Then she sends (`,m) to Bob, or (0,0) if no

such index was found. (Note that by sparsity of x, we have m = O(1/(q(c− s)))). Bob outputs 0 if he
received (0,0) or if m < 100c

c−s , and yi` otherwise.

The completeness follows from the fact that, for yes-instances, ‖x‖2
2 ≥ cn (implying m≥ 100c

c−s ) and
one expects an index ` such that xi` 6= 0 among the first roughly 1/c choices of `; conditioned on this,
yi` is 1 with probability at least cn

‖x‖2
2
≥ c

c−s
100
m . As for the soundness, observe that a no-instance for

which Alice does not send 0 to Bob will have yi` = 1 with probability at most sn
‖x‖2

2
< s

c−s ·
100
m−1 . Now,

since m≥ 100c
c−s , 100s

c−s

( 1
m−1 −

1
m

)
≤ 100

3m ; and by choice of γ ≤ c/3(c− s) we also have c
c−s

100
m ≤

100
3m . This

implies the difference in acceptance probability between completeness and soundness is at least 100
3m .

Repeating this protocol O(m2) = O(1/(q2(c− s)2)) times and thresholding yields the final result.

We now state our main lower bound theorem.
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Theorem 5.8. There exists ε > 0 such that ∀q and for every sufficiently large n, we have

isr-cc(SPARSEGAPINNERPRODUCTn
.99q,.9q−1,.6q−1)≥ qε .

(Furthermore, one can take ε = 1/2.)

We prove Theorem 5.8 in Section 6, but we now note that Theorem 2.9 follows immediately from
Proposition 5.7 and Theorem 5.8.

Proof of Theorem 2.9. The promise problem is P = SPARSEGAPINNERPRODUCT.99·2k,.9·2−k,.6·2−k . By
Proposition 5.7 we have psr-ccow(P)≤ O(k) and by Theorem 5.8 we have isr-cc(P)≥ 2Ω(k).

6 Proof of Theorem 5.8

Our goal for this section is to prove, modulo some technical theorems, that SPARSEGAPINNERPRODUCT

has high communication complexity in the imperfect shared randomness setting. Before jumping into
the proof we give some overview first.

6.1 Proof setup

To prove Theorem 5.8, we will show that for every “strategy” of Alice and Bob, there is a pair of
distributions Y and N supported (mostly) on yes and no instances, respectively, such that the strategies
do not have much “success” in distinguishing them. We note that in contrast to typical lower bounds
for perfectly shared randomness, we cannot hope to fix a distribution that works against every strategy.
Indeed for every pair of distributions, by virtue of the protocol given in Proposition 5.7 and the Yao
min-max principle we have even a deterministic strategy (let alone randomized strategy with imperfect
sharing) that succeeds in distinguishing them with high probability. So instead we have to fix the
strategies first and then give a pair of distributions that does not work for that strategy. We define the
notion of strategy and success more formally below, and then work towards the proof of Theorem 5.8.

Strategy: We now use Section 5.1 to formalize what it would mean to have a k-bit communication
protocol for any communication problem. For aesthetic reasons we view Alice and Bob’s strategies
as probabilistic ones. Recall, by Proposition 5.3, that k-bit probabilistic communication strategies for
Alice can be described by elements of K(k)

A ∈ [0,1]2
k

and similarly by elements of K(k)
B ∈ [0,1]2

k
for

Bob. So, on randomness r we have that Alice’s communication strategy can be described by a function
f (r) : {0,1}n→ K(k)

A . Similarly for randomness s, Bob’s communication strategy can be described by a
function g(s) : {0,1}n→ K(k)

B .
Thus, a strategy for a game is a pair of sets of functions F = ( f (r))r,G = (g(s))s, where

f (r) : {0,1}n→ K(k)
A

and g(s) : {0,1}n→ K(k)
B .

We consider a pair of distributions D = (Y ,N ) to be valid if Y is mostly (say with probability .9)
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supported on yes-instances and N mostly on no-instances. For valid D, we define

succD( f ,g) def
= E(x,y)∼Y [〈 f (x),g(y)〉]−E(x,y)∼N [〈 f (x),g(y)〉]

succD,ρ(F ,G )
def
=
∣∣∣E(r,s)∼ρρ

[
succD( f (r),g(s))

]∣∣∣
succρ(F ,G )

def
= min

valid D
succD,ρ(F ,G )

We note that any strategy that distinguishes yes-instances of SPARSEGAPINNERPRODUCT from
no-instances with probability ε must have success ε− .1 on every valid distribution as well (with the
difference of .1 coming up due to the fact that valid distributions are not entirely supported on the right
instances). In what follows we will explain why strategies (with small k) do not have sufficiently positive
success.

6.2 Overview of proof of Theorem 5.8.

To prove Theorem 5.8 we need to show that if a pair of strategies (F ,G ) achieves succρ(F ,G )> .01
then k must be large. Roughly our strategy for showing this is as follows: We first define two simple
distributions Y and N (independent of the strategy (F ,G )) and show that any fixed pair of functions
( f ,g) that are successful in distinguishing Y from N must have a few influential variables and
furthermore at least one of these variables must be common to both f and g (see Theorem 6.8). Our
proof of this theorem, is based on the “invariance principle” [12] and Theorem 6.8 is a variant of it
which is particular suited for use in communication complexity. The proof of this theorem is deferred to
Section 7.

We use this theorem to design agreement distillation strategies for two new players Charlie and
Dana as follows: Given shared random pair (r,s), Charlie picks a random influential variable xi of the
function f (r) used by Alice on random string r and outputs the index i ∈ [n]. Dana similarly picks a
random influential variable y j of the function g(s) used by Bob and outputs j. Theorem 6.8 assures us
that with non-trivial probability i = j and this gives an agreement protocol.

If we could argue that i = j has high min-entropy, then we would be done (using Lemma 4.1 which
asserts that it is not possible to distill agreement with high-entropy and high probability). But this step
is not immediate (and should not be since we have not crafted a distribution specific to (F ,G )). To
show that this strategy produces indices of high min-entropy, we consider the distribution of indices
that is produced by Charlie as we vary r and let BADC denote the indices that are produced with
too high a probability. Similarly we let BADD denote the indices that are produced with too high
a probability by Dana. We now consider a new distribution Y ′ supported on yes-instances of the
SPARSEGAPINNERPRODUCT problem. In Y ′ the (x,y) pairs are chosen so that when restricted to
coordinates in BADC∪BADD they look like they come from N while when restricted to coordinates
outside BADC ∪ BADD they look like they come from Y (see Definition 6.13 below for a precise
description). Since BADC ∪ BADD is small, the distribution Y ′ remains supported mostly on yes-
instances, but strategies that depend mainly on coordinates from BADC ∪BADD would not have much
success in distinguishing Y ′ from N ′ (which remains the original N ).

We use this intuition to argue formally in Lemma 6.14 that a slightly modified sampling protocol of
Charlie and Dana, where they discard i, j from BADC ∪BADD, leads to agreement with noticeably high
probability on a high-entropy random variable, yielding the desired contradiction.

In the rest of this section we first present the main definitions needed to state Theorem 6.8. We
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then prove Theorem 5.8 assuming Theorem 6.8. We prove the latter in Section 7, along with the main
technical ingredient it relies on, the invariance principle of Theorem 7.1.

6.3 Background on influence of variables

We now turn to defining the notion of influential variables for functions and related background material
for functions defined on product probability spaces.

Recall that a finite probability space is given by a pair (Ω,µ) where Ω is a finite set and µ is a
probability measure on Ω. We will begin with the natural probabilistic definition of influence of a
variable on functions defined on product spaces, and then relate it to a more algebraic definition which is
needed for the notion of low-degree influence.

Definition 6.1 (Influence and variance). Let (Ω,µ) be a finite probability space, and let h : Ωn→ R be
a function on product probability space. The variance of h, denoted Var(h), is defined as the variance of
the random variable h(x) for x ∈Ωn ∼ µ⊗n, i.e., Var(h) = Ex[h(x)2]− (Ex[h(x)])

2.
For i ∈ [n], the i-th influence of h is defined as

Inf i(h) = Ex(−i)∼µ⊗(n−1)

[
Varxi∼µ [h(x)]

]
where x(−i) denotes all coordinates of x except the i’th coordinate.

To define the notion of low-degree influence, we need to work with a multilinear representation of
functions h : Ωn→ R. Let b = |Ω| and B = {χ0,χ1, . . . ,χb−1} be a basis of real-valued functions over
Ω. Then, every function h : Ωn→ R has a unique multilinear expansion of the form

h(x) = ∑
σ=(σ1,...,σn)∈{0,1,...,b−1}n

ĥσ χσ (x) (1)

for some real coefficients ĥσ , where χσ is given by χσ (x)
def
= ∏i∈[n] χσi(xi).

When the ensemble B is a collection of orthonormal random variables, namely χ0 = 1 and
Ea∼µ [χ j1(a)χ j2(a)] = δ j1 j2 , it is easy to check that Var(h) = ∑σ 6=0 ĥ2

σ and also that

Inf i(h) = ∑
σ :σi 6=0

ĥ2
σ .

One can also take the above as the algebraic definition of influence, noting that it is independent of the
choice of the orthonormal basis B and thus well-defined. The degree of a multi-index σ is defined as
|σ |= |{ i : σi 6= 0 }|, and this leads to the definition of low-degree influence.

Definition 6.2 (Low-degree influence). For a function h : Ωn→ R with multilinear expansion as in (1)
with respect to any orthonormal basis, the i-th degree d influence of h is the influence of the truncated
multilinear expansion of h at degree d, that is

Infd
i (h)

def
= ∑

σ :σi 6=0
|σ |≤d

ĥ2
σ .

Remark 6.3 (Functions over size 2 domain). When |Ω| = 2, and {1,χ} is an orthonormal basis
of real-valued functions over Ω, the expansion (1) becomes the familiar Fourier expansion h(x) =

∑S⊆[n] ĥ(S)∏i∈S χ(xi), and we have Inf i(h)
def
= ∑S3i ĥ(S)2 and Infd

i (h)
def
= ∑ S3i

|S|≤d
ĥ(S)2.
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We will make use of the following simple upper bound on the number of low-degree influential
coordinates (which follows immediately, for instance, from [12, Proposition 3.8])

Proposition 6.4. For every τ > 0 and d ∈ Z+ there exists t = t(τ,d) such that for all n and all functions
h : Ωn→ [−1,1], we have

∣∣∣{ i ∈ [n] : Infd
i (h)> τ

}∣∣∣≤ t. (Furthermore, one can take t = d/τ).

For the invariance principle, we will understand the behavior of a function when its domain is
replaced by a different probability space with matching second moments. For this purpose, we will view
functions as multilinear polynomials as follows.

Definition 6.5 (Functions on product spaces as multilinear polynomials). The multilinear polynomial
associated with a function h : Ωn→ R with respect to a basis B = {χ0,χ1, . . . ,χb−1} of real-valued
functions over Ω is a polynomial in indeterminates z =

{
zi, j : i ∈ [n], j ∈ {0,1, . . . ,b−1}

}
given by

H(z) = ∑
σ∈{0,1,...,m−1}n

ĥσ zσ ,

zσ stands for the monomial ∏
n
i=1 zi,σi and the coefficients ĥσ are given by the multilinear expansion (1)

of f w.r.t. B.

Above, we saw how a function can be viewed as a multilinear polynomial w.r.t. a basis of random
variables. Conversely, one can view multilinear polynomials as functions by substituting random
variables for its indeterminates.

Definition 6.6 (Multilinear polynomials as random variables on product spaces). Given a collection
of random variables X = {χ0, . . . ,χm−1} over a probability space (Ω,µ), one can view a multilinear
polynomial P in indeterminates z =

{
zi, j : i ∈ [n], j ∈ {0,1, . . . ,m−1}

}
given by

P(z) = ∑
σ∈{0,1,...,m−1}n

P̂σ zσ ,

where zσ stands for the monomial ∏
n
i=1 zi,σi , as a random variable P(X n) over the probability space

(Ωn,µ⊗n) mapping x = (x1, . . . ,xn) to

∑
σ∈{0,1,...,m−1}n

P̂σ

n

∏
i=1

χσi(xi) . (2)

6.4 Proof of Theorem 5.8

We start by introducing a few definitions, in particular of the central distributions and the extraction
strategy. We begin with the description of the basic distributions Y and N .

Definition 6.7 (Y , N ). We define two distributions BN and BY on {0,1}×{0,1} below. The distribu-
tions Y and N will be product distributions on ({0,1}×{0,1})n, given by Y = B⊗n

Y and N = B⊗n
N .

• A pair (x,y) is drawn from BN by setting x∼Bern(1/q) and y∈ {0,1} uniformly at random. Note
that x,y are independent, and E[xy] = 1

2q .
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• A pair (x,y) is drawn from BY by setting

(x,y) =


(0,1) w.p. 1

2

(
1− 1.95

q

)
(0,0) w.p. 1

2

(
1− 0.05

q

)
(1,1) w.p. 1.95

2q

(1,0) w.p. .05
2q

so that the marginals of x, y in BY match those of BN , and E[xy] = 1.95
2q .

A straightforward application of tail inequalities for independent, identically distributed (i.i.d.) ran-
dom variables tells us that Y is mostly supported on yes-instances of SPARSEGAPINNERPRODUCTn

.99q,0.9q,0.6q
with high probability for sufficiently large n. Similarly N is mostly supported on no-instances.

Our main technical result is the following theorem showing any fixed pair of vector-valued functions
( f ,g) (corresponding to strategies for Alice and Bob) that succeed in distinguishing Y from N must
share an influential variable (with non-trivially high influence of non-trivially low-degree).

Theorem 6.8. There exist functions k0 ≥Ωε(
√

q), d(q,ε)< ∞, and τ(q,ε)> 0, defined for q ∈ Z+,and
ε > 0, such that the following holds: For every ε > 0 and k,q ∈ Z+ and every sufficiently large n, if
k < k0(q,ε) and f : {0,1}n→ K(k)

A and g : {0,1}n→ K(k)
B are functions such that succ(Y ,N )( f ,g)≥ ε ,

then there exists i ∈ [n] such that

min
{

max
j∈[2k]

Infd(q,ε)
i ( f j), max

j∈[2k]
Infd(q,ε)

i (g j)

}
≥ τ(q,ε).

(Here, the influence of f j is w.r.t. to the Bern(1/q) distribution on {0,1}, and that of g j is w.r.t. the
uniform distribution on {0,1}.)

This theorem is proved in Section 7. Building on this theorem, we can try to build agreement
distillation protocols (ExtC,ExtD) that exploit the success of the strategies (F ,G ) to distill common
randomness. We start by first identifying coordinates that may be influential for too many pairs (r,s)
(and thus may be produced with too high a probability by a naive distillation protocol).

For the rest of the section we fix q ∈ Z+ and ε > 0 and let d = d(q,ε) and τ = τ(q,ε) where d(·, ·)
and τ(·, ·) are the functions from Theorem 6.8.

Definition 6.9 (BADC, BADD). Let δ = 1/(100 · 2k0t) where t = t(τ,d) as given by Proposition 6.4,
and k0 = k0(q,ε) is given by Theorem 6.8. Define

BADC
def
=

{
i ∈ [n] : Pr

r

[
max
j∈[2k]

Infd
i ( f (r)j )> τ

]
>

1
δn

}
and

BADD
def
=

{
i ∈ [n] : Pr

s

[
max
j∈[2k]

Infd
i (g

(s)
j )> τ

]
>

1
δn

}
,

where r,s denote the randomness available to Alice and Bob, f (r)j denotes the j’th component function

for Alice’s strategy on randomness r, and similarly for g(s)j .

Directly from this definition, we get
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Proposition 6.10. |BADC|, |BADD| ≤ 2k · t ·δ ·n≤ n/100.

Next, we define the extraction distillation protocols for Charlie and Dana:

Definition 6.11 ((ExtC,ExtD)). For r ∈ {0,1}∗, let

Sr
def
=

{
i ∈ [n]\BADC : max

j∈[2k]
Infd

i ( f (r)j )> τ

}
and Ts

def
=

{
i ∈ [n]\BADD : max

j∈[2k]
Infd

i (g
(s)
j )> τ

}
.

Then, ExtC(r) is defined as follows:

if Sr = /0 output i∼U[n]; otherwise output i∼USr .

ExtD(s) is defined similarly:

if Ts = /0 output j ∼U[n]; otherwise output j ∼UTs .

Proposition 6.12. H∞(ExtC(r))≥ logn− log(1+1/δ ).

Proof. Fix i ∈ [n]\ (BADC ∪BADD). We have

Pr[ i is output ]≤ Pr[ i ∈ Sr and i is output ]+Pr[ i is output | Sr = /0 ]≤ 1/(δn)+1/n.

The proposition follows.

Finally we turn to proving that ExtC and ExtD do agree with non-trivial probability. To do so we
need to consider a new distribution on yes-instances, defined next:

Definition 6.13 (Y ′). The distribution Y ′ is a product distribution on ({0,1}×{0,1})n, where (xi,yi)∼
BN if i ∈ BADC ∪BADD and (xi,yi)∼ BY otherwise.

Using Proposition 6.10 above we have that Ei,x,y[xiyi]≥ .93/q and so by standard tail inequalities
we still have that Y ′ is mostly supported on yes-instances. Our main lemma for this section is that if
(F ,G ) are successful in distinguishing Y ′ and N and k is small, then ExtC and ExtD are likely to
agree with noticeable probability (which would contradict Lemma 4.1).

Lemma 6.14. Let k0 = k0(q,ε), d = d(q,ε) and τ = τ(q,ε) be as given in Theorem 6.8, and let
t = t(τ,d) as given by Proposition 6.10. If succ(Y ′,N ),ρ(F ,G )≥ 2ε , and k < k0 then

Pr
(r,s)∼ρρ

[ExtC(r) = ExtD(s)]≥ ε/(2t2) .

Proof. Expanding the definition of succ(·, ·), we have

E(r,s)

[
E(x,y)∼Y ′

[〈
f (r)(x),g(s)(y)

〉]
−E(x,y)∼N [〈 fr(x),gs(y)〉]

]
≥ 2ε.

Say that a pair (r,s) is GOOD if

E(x,y)∼Y ′

[〈
f (r)(x),g(s)(y)

〉]
−E(x,y)∼N

[〈
f (r)(x),g(s)(y)

〉]
≥ ε.
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By a Markov argument we thus have

Pr
(r,s)

[ (r,s) is GOOD ]≥ ε.

For any fixed GOOD (r,s) we now prove that there exists i ∈ (Sr ∩Ts) \ (BADC ∪BADD). Note that
once we have such an i, we have that Pr[ExtC(r) = ExtC(r′) = i] with probability at least 1/t(τ,d)2.
Combining this with the probability that (r,s) is good, we have Pr(r,s)[ExtC(r) = ExtD(s)]≥ ε/t(τ,d)2

which yields the lemma. So we turn to this claim.
To simplify notation, assume without loss of generality that BADC∪BADD = {m+1, . . . ,n}. Define

functions f1 : {0,1}m→ K(k)
A and g1 : {0,1}m→ K(k)

B by letting

f1(x) = Ez∼Bernn−m(1/q)[ f
(r)(x · z)] and g1(y) = Ew∼U ({0,1}n−m)[g

(s)(y ·w)] .

Note that the success of ( fr,gs) in distinguishing Y ′ from N turns into the success of ( f1,g1) in
distinguishing Ym from Nm (where Ym = B⊗m

Y and Nm = B⊗m
N ) — this is immediate since (x · z,y ·w)∼

Y ′ if (x,y)∼ Ym and (x · z,y ·w)∼N if (x,y)∼Nm.
So we have succ(Ym,Nm)( f1,g1)≥ ε . Since k < k0 we have that there must exist a variable i ∈ [m]

and indices j, j′ ∈ [2k] with Infd
i ( f1, j)> τ and Infd

i (g1, j′)> τ . (Here f1, j is the j’th component function
of f1, and similarly for g1, j′ .) But Infd

i ( f (r)j )≥ Infd
i ( f1, j) and Infd

i (g
(r′)
j′ )≥ Infd

i (g1, j′). To see this, note

that f̂1, j(S) = f̂ (r)j (S) for S⊆ [m] and so

Infd
i ( f (r)j ) = ∑

i∈S⊆[n],|S|≤d
f̂ (r)j (S)2

≥ ∑
i∈S⊆[m],|S|≤d

f̂ (r)j (S)2

= ∑
i∈S⊆[m],|S|≤d

f̂1, j(S)2

= Infd
i ( f1, j).

We thus conclude that i ∈ Sr ∩Ts∩ [m] and this concludes the claim, and thus the lemma.

Proof of Theorem 5.8. The proof follows easily from Lemma 4.1 and Lemma 6.14. Assume for con-
tradiction that there is a protocol for SPARSEGAPINNERPRODUCTn

.99q,.9q,.6q with communication com-
plexity less than k0(.05,q) = Ω

(√
q
)

that on access to r ∼ρ s accepts yes-instances with probability
at least 2/3 and no-instances with probability at most 1/3. This implies that there exist strategies
(F = { f (r)}r,G = {g(s)}s) such that for every pair of distributions (Y ,N ) supported mostly (i.e., with
probability .9) on yes and no instances respectively, we have succ(Y ,N ),ρ(F ,G )> .1. In particular, this
holds for the distribution Y ′ as defined in Definition 6.13 and N as defined in Definition 6.7.

Let ExtC, ExtD be strategies for AGREEMENT-DISTILLATION as defined in Definition 6.11. By
Proposition 6.12 we get that H∞(ExtC(r)),H∞(ExtD(s))≥ logn−O(1). By Lemma 6.14 we also have
Prr∼ρ s[ExtC(r) = ExtD(s)]≥Ωq(1). But this contradicts Lemma 4.1 which asserts (in particular) that
protocols extracting ωn(1) bits can agree with probability on(1).
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7 Low-influence communication strategies

The following theorem states that the expected inner product between two multidimensional Boolean
functions without common low-degree influential variables when applied to correlated random strings, is
well approximated by the expected inner product of two related functions, this time applied to similarly
correlated Gaussians. As, per Section 5.1, the former quantity captures the behavior of communication
protocols, this invariance principle enables one to transfer the study to the (more manageable) Gaussian
setting. (For convenience, in this section we switch to the equivalent view of Boolean functions as being
defined on {+1,−1}n).

We denote by Np1,p2,θ the distribution on {+1,−1}×{+1,−1} such that the marginals of (x,y)∼
Np1,p2,θ have expectations respectively p1 and p2, and correlation θ (see Definition A.1 for an explicit
definition).

Theorem 7.1. Fix any two parameters p1, p2 ∈ (−1,1). For all ε ∈ (0,1], `∈Z+, θ0 ∈ [0,1) and closed
convex sets K1,K2 ⊆ [0,1]`, there exist n0 ∈ Z+, d ∈ Z+ and τ ∈ (0,1) such that the following holds.
For all n≥ n0, there exist mappings

T1 : { f : {+1,−1}n→ K1}→ {F : Rn→ K1}
T2 : {g : {+1,−1}n→ K2}→ {G : Rn→ K2}

such that for all θ ∈ [−θ0,θ0], if f ,g satisfy

max
i∈[n]

min
(

max
j∈[`]

Infd
i ( f j),max

j∈[`]
Infd

i (g j)

)
≤ τ (3)

then, for F = T1( f ) and G = T2(g), we have∣∣E(x,y)∼N⊗n [〈 f (x),g(y)〉]−E(X ,Y )∼G⊗n [〈F(X),G(Y )〉]
∣∣≤ ε. (4)

where N =Np1,p2,θ and G is the Gaussian distribution which matches the first and second-order moments
of N, i.e. E[xi] = E[Xi], E

[
x2

i
]
= E

[
X2

i
]

and E[xiyi] = E[XiYi].

The theorem follows in a straightforward manner from Lemma 7.2 and Theorem 7.3:

Proof of Theorem 7.1. For ε ∈ (0,1], ` ∈ Z+ and θ0 ∈ (0,1) as above, let τ1
def
= τ(ε/2, `,θ0) as in

Theorem 7.3. Define the operators T1,T2 as

T1 = T (2)
1 ◦T (1)

1 , T2 = T (2)
2 ◦T (1)

2

where T (1)
1 , T (2)

1 are the operators from Lemma 7.2 (for ε/2, `, θ0 and τ1 as above, which yield the
values of τ , d and n0) and T (2)

1 , T (2)
2 are the (non-linear) ones from Theorem 7.3 (with parameters `, θ0

and ε/2). The result follows.

The first step towards proving the theorem is to convert the expected inner product of Boolean
functions with no shared low-degree influential variables into expected inner product of Boolean
functions with no influential variables at all.
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Lemma 7.2. Fix any two parameters p1, p2 ∈ (−1,1). For all ε ∈ (0,1], ` ∈ Z+, τ ∈ (0,1), θ0 ∈ [0,1)
and convex sets K1,K2 ⊆ [0,1]`, there exist n0 ∈ Z+, d ∈ Z+ and τ ′ ∈ (0,1) such that the following
holds. For all n≥ n0 there exist operators

T (1)
1 : { f : {+1,−1}n→ K1}→ { f̃ : {+1,−1}n→ K1}

T (1)
2 : {g : {+1,−1}n→ K2}→ {g̃ : {+1,−1}n→ K2}

such that for all θ ∈ [−θ0,θ0], if f ,g satisfy

max
i∈[n]

min
(

max
j∈[`]

Infd
i ( f j),max

j∈[`]
Infd

i (g j)

)
≤ τ

′ (5)

then, for f̃ = T (1)
1 f and g̃ = T (1)

2 g,

max
i∈[n]

max
(

max
j∈[`]

Inf i( f̃ j),max
j∈[`]

Inf i(g̃ j)

)
≤ τ (6)

and ∣∣E(x,y)∼N⊗n 〈 f (x),g(y)〉−E(x,y)∼N⊗n
〈

f̃ (x), g̃(y)
〉∣∣≤ ε. (7)

where N = Np1,p2,θ .

Proof. The proof uses Lemmas 6.1 and 6.7 in [12] applied to each pair of functions ( fi,gi), for i ∈ [`]
applied with parameter θ0 and ε/`; using when applying the first lemma the fact that the correlation of
these Np1,p2,θ is bounded away from 1. The operators given in Lemmas 6.1 and 6.7 in [12] are simple
averaging operators (averaging the value of f over some neighborhood of x to get its new value at x) and
by the convexity of K1 we have that the averaged value remains in K1. Similarly for g and K2. We omit
the details.

The last ingredient needed is the actual invariance principle, which will take us from the Boolean,
low-influence setting to the Gaussian one.

Theorem 7.3. Fix any two parameters p1, p2 ∈ (−1,1). For all ε ∈ (0,1], ` ∈ Z+, θ0 ∈ [0,1), and
closed convex sets K1,K2 ⊆ [0,1]` there exist τ > 0 and mappings

T (2)
1 : { f : {+1,−1}n→ K1}→ {F : Rn→ K1}

T (2)
2 : {g : {+1,−1}n→ K2}→ {G : Rn→ K2}

such that for all θ ∈ [−θ0,θ0], if f : {+1,−1}n→ K1 and g : {+1,−1}n→ K2 satisfy

max
i∈[n]

max
(

max
j∈[`]

Inf i( f j),max
j∈[`]

Inf i(g j)

)
≤ τ

then for F = T (2)
1 ( f ) : Rn→ K1 and G = T (2)

2 (g) : Rn→ K2∣∣E(x,y)∼N⊗n [〈 f (x),g(y)〉]−E(X ,Y )∼G⊗n [〈F(X),G(Y )〉]
∣∣≤ ε ,

where N =Np1,p2,θ and G is the Gaussian distribution which matches the first and second-order moments
of N.

Proof. Deferred to Appendix A.
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7.1 Lower bound for Gaussian Inner Product

We now deduce a lower bound on k, the communication complexity of the strategies captured by the
range of f and g, needed to achieve sizeable advantage in distinguishing between ξ -correlated and
uncorrelated Gaussian inputs. Hereafter, Gρ denotes the bivariate normal Gaussian distribution with
correlation ρ .

Lemma 7.4. Let ξ ∈ (0,1/2),γ > 0. There exists a function k1(ξ ,γ)≥Ωγ(1/ξ ) such that for every n
the following holds: if there are functions F : Rn→ K(k)

A and G : Rn→ K(k)
B such that

|E(x,y)∼G⊗n
ξ

[〈F(x),G(y)〉]−E(x,y)∼G⊗n
0
[〈F(x),G(y)〉]| ≥ γ ,

then k ≥ k1(ξ ,γ).

We will prove the above theorem by translating the above question to a communication lower bound
question.
GAUSSIANCORRELATIONξ ,n: In this (promise) communication game, Alice holds x ∈ Rn and Bob
holds y ∈ Rn from one of two distributions:

• µyes: each (xi,yi) is an independent pair of ξ -correlated standard normal variables.

• µno: each (xi,yi) is an independent copy of uncorrelated standard normal variables.

The goal is for Alice and Bob to communicate with each other, with shared randomness, and distinguish
between the two cases with good advantage.

Note that if (X ,Y ) denotes the random variable each pair (xi,yi), estimating E[XY ] within accuracy
< ξ/2 suffices to solve the above problem. If Alice sends the values of xi (suitably discretized) for
the first O(1/ξ 2) choices of i, then by standard Chebyshev tail bounds Bob can estimate E[XY ] to the
desired accuracy, and so this problem can be solved with O(1/ξ 2) bits of (one-way) communication.
We now show that Ω(1/ξ ) is a lower bound.

Lemma 7.5. Let ξ ∈ (0,1/2) and n be sufficiently large. Suppose there is a k-bit communication
protocol for GAUSSIANCORRELATION (ξ ,n) that distinguishes between µyes and µno with advantage
γ > 0. Then k ≥Ωγ(1/ξ ).

Before we prove the result, note that Lemma 7.4 follows immediately with k1(ξ ,γ) = Ωγ(1/ξ ),
since by Proposition 5.3 the functions F : Rn→ K(k)

A and G : Rn→ K(k)
B simply correspond to strategies

for an k-bit two-way communication protocol with acceptance probability given by EX ,Y [〈F(X),G(Y )〉].

Proof of Lemma 7.5. The lower bound is proved by reducing the DISJOINTNESS problem (in particular
a promise version of it) to the GAUSSIANCORRELATION problem.

Specifically we consider the promise DISJOINTNESS problem with parameter m, where Alice gets a
vector u ∈ {0,1}m and Bob gets v ∈ {0,1}m. The yes-instances satisfy 〈u,v〉= 1 while the no-instances
satisfy 〈u,v〉= 0, where the inner product is over the reals. Kalyanasundaram and Schnitger [9] show
that distinguishing yes-instances from no-instances requires Ω(m) bits of communication, even with
shared randomness.

We reduce DISJOINTNESSm to GAUSSIANCORRELATION with ξ = 1/m as follows: Alice and Bob
share mn independent standard Gaussians

{
Gi j : i ∈ [n], j ∈ [m]

}
. Alice generates x = (x1, . . . ,xn)
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by letting xi =
1√
m ∑

m
j=1 u j ·Gi j and Bob generates y = (y1, . . . ,yn) by letting yi =

1√
m ∑

m
j=1 v j ·Gi j. It

can be verified that xi and yi are standard Gaussians with E[xiyi] =
1
m 〈u,v〉. Thus yes-instances of

DISJOINTNESS map to yes-instances of GAUSSIANCORRELATION drawn according to µyes with ξ =
1/m, and no-instances map to no-instances drawn according to µno. The communication lower bound of
Ω(m) for DISJOINTNESS thus translates to a lower bound of Ω(1/ξ ) for GAUSSIANCORRELATION.

7.2 Putting things together and proof of Theorem 6.8

We now combine the results from the previous two sections to prove Theorem 6.8.

Proof of Theorem 6.8. Postponing the precise setting of parameters for now, the main idea behind the
proof is the following. Suppose the conclusion of the theorem does not hold and f ,g do not have a
common influential variable so that

max
i∈[n]

min
{

Infd
i ( f ), Infd

i (g)
}
≤ τ (8)

for parameters d,τ that can be picked with an arbitrary dependence on q,ε .
We now associate the domains of f and g with {+1,−1}n in the natural way by mapping x∈{0,1}→

2x−1 ∈ {+1,−1}. This defines us functions f ′ : {+1,−1}n→ K(k)
A and g′ : {+1,−1}n→ K(k)

B which
satisfy the same conditions on influence as f . Further, under this mapping, the distribution BY is mapped
to NY ≡ N2/q−1,0,1.9/q and BN is mapped to NN ≡ N2/q−1,0,0 (for Np1,p2,θ as defined in Theorem 7.1).
Let GY and GN denote bivariate Gaussian distributions whose first two moments match those of NY

and NN respectively.
Since the ranges of f ′,g′ are closed and convex (from Proposition 5.3) we get, by applying Theo-

rem 7.1 to functions f ′,g′ and distributions NY ,GY and NN ,GN respectively, that there exist functions
F : Rn→ K(k)

A and G : Rn→ K(k)
B such that∣∣∣E(x,y)∼N⊗n

Y
[
〈

f ′(x),g′(y)
〉
]−E(X ,Y )∼GY

⊗n [〈F(X),G(Y )〉]
∣∣∣≤ ε

3
(9)∣∣∣E(x,y)∼N⊗n

N
[
〈

f ′(x),g′(y)
〉
]−E(X ,Y )∼GN

⊗n [〈F(X),G(Y )〉]
∣∣∣≤ ε

3
.

Combining the above equations with the hypothesis that succ(Y ,N )( f ,g)≥ ε , we get∣∣∣E(X ,Y )∼GY
⊗n [〈F(X),G(Y )〉]−E(X ,Y )∼GN

⊗n [〈F(X),G(Y )〉]
∣∣∣≥ ε

3
.

To finish the argument, we shall appeal to Lemma 7.4. Let p = 1/q and θ = .95p/
√

p− p2 = Θ
(
1/
√

q
)
.

Let φ : R→ R be defined by φ(z) = 2
√

p− p2 · z+(2p−1). It is easy to check that for (z,w) ∼ Gθ ,
(φ(z),w) ∼ GY and for (z,w) ∼ G0, (φ(z),w) ∼ GN . Therefore, if we define f ′ : Rn → ∆([`]) by
f ′(X) = F(φ(X1), . . . ,φ(Xn)), then the above equation is equivalent to∣∣∣E(X ,Y )∼Gθ

⊗n [
〈

f ′(X),G(Y )
〉
]−E(X ,Y )∼G⊗n

0
[
〈

f ′(X),G(Y )
〉
]
∣∣∣≥ ε

3
.

We can now conclude from Lemma 7.4 that k ≥Ωε(1/θ) = Ωε(
√

q). To complete the proof of theorem
by a contradiction we set the parameters as follows: choose d,τ in Equation 8 so as to deduce Equation 9
from Theorem 7.1 (with ε/3 playing role of ε) and set k0 = k1(θ ,ε/3) for k1 as given by Lemma 7.4.
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8 Conclusions

In this paper we carried out an investigation of the power of imperfectly shared randomness in the
context of communication complexity. There are two important aspects to the perspective that motivated
our work: First, the notion that in many forms of natural communication, the communicating parties
understand each other (or “know” things about each other) fairly well, but never perfectly. This
imperfection in knowledge/understanding creates an obstacle to many of the known solutions and new
solutions have to be devised, or new techniques need to be developed to understand whether the obstacles
are barriers. Indeed for the positive results described in this paper, classical solutions do not work and
the solutions that ended up working are even “provably” different from classical solutions. (In particular
they work hard to preserve “low influence”).

However, we also wish to stress a second aspect that makes the problems here interesting in our
view, which is an aspect of scale. Often in communication complexity our main motivation is to
compute functions with sublinear communication, or prove linear lower bounds. Our work, and natural
communication in general, stresses the setting where inputs are enormous, and the communication
complexity one is considering is tiny. This models many aspects of natural communication where there
is a huge context to any conversation which is implicit. If this context were known exactly to sender
and receiver, then it would play no significant mathematical role. However in natural communication
this context is not exactly known, and resolving this imperfection of knowledge before communicating
the relevant message would be impossibly hard. Such a setting naturally motivates the need to study
problems of input length n, but where any dependence on n in the communication complexity would be
impracticable.

We note that we are not at the end of the road regarding questions of this form: Indeed a natural
extension to communication complexity might be where Alice wishes to compute fA(x,y) and Bob
wishes to compute fB(x,y) but Alice does not know fB and Bob does not know fA (or have only
approximate knowledge of these functions). If x and y are n-bits strings, fA and fB might require 2n

bits to describe and this might be the real input size. There is still a trivial upper bound of 2n bits for
solving any such communication problem, but it would be interesting to study when, and what form of,
approximate knowledge of fA and fB helps improve over this trivial bound.

Turning to the specific questions studied in this paper a fair number of natural questions arise
that we have not been able to address in this work. For instance, we stuck to a specific and simple
form of correlation in the randomness shared by Alice and Bob. One could ask what general forms of
randomness (r,r′) are equally powerful. In particular if the distribution of (r,r′) is known to both Alice
and Bob, can they convert their randomness to some form of correlation in the sense used in this paper
(in product form with marginals being uniform)?

In Section 4 we considered the AGREEMENT-DISTILLATION problem where the goal was for Alice
and Bob to agree perfectly on some random string. What if their goal is only to generate more correlated
bits than they start with? What is possible here and what are the limits?

In the study of perfectly shared randomness, Newman’s Theorem [15] is a simple but powerful
tool, showing that O(logn) bits of randomness suffice to deal with problems on n bit inputs. When
randomness is shared imperfectly, such a randomness reduction is not obvious. Indeed for the problem
of equality testing, the protocol of [1] uses 2n bits of randomness, and our Gaussian protocol (which
can solve this with one-way communication) uses poly(n) bits. Do O(logn) bits of imperfectly shared
randomness suffice for this problem? How about for general problems?

Finally almost all protocols we give for imperfectly shared randomness lead to two-sided error. This
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appears to be an inherent limitation (with some philosophical implications) but we do not have a proof.
It would be nice to show that one-sided error with imperfectly shared randomness cannot lead to any
benefits beyond that offered by private randomness.
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A Proofs from Section 7

Our goal in this section is to prove the needed invariance principle, as stated in Theorem 7.3, that allows
us to pass from a correlated distribution on {+1,−1}2 to a two-dimensional Gaussian distribution with
matching moments. We first formally define the discrete distribution of interest to us.

Definition A.1. For parameters p1, p2,θ ∈ [−1,1], let the distribution Np1,p2,θ on {+1,−1}×{+1,−1}
be defined as follows:3

(x,y) =


(+1,+1) with probability 1+θ

4 + p1+p2
4

(+1,−1) with probability 1−θ

4 + p1−p2
4

(−1,+1) with probability 1−θ

4 −
p1−p2

4

(−1,−1) with probability 1+θ

4 −
p1+p2

4

so that E[x] = p1, E[y] = p2 and E[xy] = θ .
3We assume that the parameters p1, p2,θ are such that each of the probabilities is in [0,1].
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The proof of Theorem 7.3 relies on two general ingredients. The first is that replacing f and g by
their smoothened versions T1−η f and T1−ηg (obtained by applying the Bonami–Beckner noise operator,
defined below) does not change the inner product 〈 f (x),g(y)〉 much, due to the fact that the components
(x j,y j) are sampled independently from a bounded correlation space (namely Np1,p2,θ for θ < 1). The
second is a multi-dimensional invariance principle asserting that these smoothened functions behave
similarly on Gaussian inputs that have matching moments, with respect to Lipschitz test functions. We
then apply this to the Lipschitz function which is the inner product of appropriately rounded versions of
inputs, thereby yielding ∆([`]) and [0,1]` valued functions in the Gaussian domain with inner product
close to 〈 f (x),g(y)〉.

Definition A.2 (Bonami–Beckner T1−η operator). Let (Ω,µ) be a finite probability space, and η ∈ (0,1).
For a function h : Ωn→R, the function T1−ηh is defined as T1−ηh(x) = Ey[h(y)], where each coordinate
yi is sampled independently as follows:

• with probability (1−η) set yi = xi; and

• with probability η , pick yi ∈Ω as a fresh sample according to µ .

For a vector-valued function, T1−η acts component-wise, i.e., if f = ( f1, . . . , f`) : Ωn→ R`, we define
T1−η f = (T1−η f1, . . . ,T1−η f`).

A useful property of the T1−η operator for us is that if h has convex range K ⊆ [0,1]` then so does
T1−ηh. As stated below, the action of T1−η has a particularly nice form when a function is expanded in
an orthonormal basis, but this will not be important for us.

Fact A.3. If a function h : Ωn → R has multilinear expansion h(x) = ∑σ ĥσ ∏
n
i=1 χσi(xi) w.r.t. an

orthonormal ensemble L = (χ0, . . . ,χb−1) of random variables over Ω, then the multilinear expansion
of T1−ηh is given by ∑σ ĥσ (1−η)|σ |∏n

i=1 χσi(xi).

We next state the multi-dimensional invariance principle that we rely on. A version similar to the
following is stated formally in [4, Theorem 10.1] (we have renamed some variables to avoid conflict
with other uses in this paper) and it follows from Theorem 3.6 in the work of Isaksson and Mossel [6].

Theorem A.4. Let (Ω,µ) be a finite probability space with the least non-zero probability of an atom
being at least α ≤ 1/2. Let b = |Ω| and let L = {χ0 = 1,χ1,χ2, . . . ,χb−1} be a basis for random
variables over Ω. Let ϒ = {ξ0 = 1,ξ1, . . . ,ξb−1} be an ensemble of real-valued Gaussian random
variables with first and second moments matching those of the χi’s; specifically:

E[χi] = E[ξi] E[χ2
i ] = E[ξ 2

i ] E[χiχ j] = E[ξiξ j] ∀i, j ∈ {1, . . . ,b−1}

Let h = (h1,h2, . . . ,ht) : Ωn→ Rt be a vector-valued function such that Inf i(h`) ≤ τ and Var(h`) ≤ 1
for all i ∈ [n] and ` ∈ [t]. For η ∈ (0,1), let H`, `= 1,2, . . . , t, be the multilinear polynomial associated
with T1−ηh` with respect to the basis L , as per Definition 6.5.

If Ψ : Rt → R is a Lipschitz-continuous function with Lipschitz constant Λ (with respect to the
L2-norm), then∣∣∣∣E[Ψ(H1(L

n), · · · ,Ht(L
n)
)]
−E
[
Ψ
(
H1(ϒ

n), · · · ,Ht(ϒ
n)
)]∣∣∣∣≤C(t) ·Λ ·τ(η/18) log(1/α) = oτ(1) (10)

for some constant C(t) depending on t, where H`(L
n) and H`(ϒ

n), ` ∈ [t], denote random variables as
in Definition 6.6.
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Armed with the above invariance principle, we now turn to the proof of Theorem 7.3, restated below.

Theorem 7.3. Fix any two parameters p1, p2 ∈ (−1,1). For all ε ∈ (0,1], ` ∈ Z+, θ0 ∈ [0,1), and
closed convex sets K1,K2 ⊆ [0,1]` there exist τ > 0 and mappings

T (2)
1 : { f : {+1,−1}n→ K1}→ {F : Rn→ K1}

T (2)
2 : {g : {+1,−1}n→ K2}→ {G : Rn→ K2}

such that for all θ ∈ [−θ0,θ0], if f : {+1,−1}n→ K1 and g : {+1,−1}n→ K2 satisfy

max
i∈[n]

max
(

max
j∈[`]

Inf i( f j),max
j∈[`]

Inf i(g j)

)
≤ τ

then for F = T (2)
1 ( f ) : Rn→ K1 and G = T (2)

2 (g) : Rn→ K2∣∣E(x,y)∼N⊗n [〈 f (x),g(y)〉]−E(X ,Y )∼G⊗n [〈F(X),G(Y )〉]
∣∣≤ ε ,

where N =Np1,p2,θ and G is the Gaussian distribution which matches the first and second-order moments
of N.

Proof of Theorem 7.3. Let Ω = {+1,−1}×{+1,−1} with the measure N := Np1,p2,θ . Define the basis
L = {χ0,χ1,χ2,χ3} of functions on Ω as:

• χ0 = 1,

• χ1((w1,w2)) = w1 (where w1,w2 ∈ {+1,−1}),
• χ2((w1,w2)) = w2, and

• χ3((w1,w2)) = w1w2.

We will apply the above invariance principle Theorem A.4 with t = 2`, h j = f j and h`+ j = g j for
j ∈ [`]. We note that while f j, j ∈ [`] are functions on {+1,−1}n, we can view then as functions on
Ωn by simply ignoring the second coordinate. (Thus, for (x,y)∼Ωn, f j(x,y) = f j(x).) The multilinear
expansion of f j w.r.t. L will only involve χ0 and χ1. Similarly, the functions h j’s only depend on
the second coordinate of Ω and have a multilinear expansion depending only on χ0,χ2. The function
Ψ : R2`→ R is defined as

Ψ(a,b) = 〈RoundK1(a),RoundK2(b)〉

for a,b ∈ R`, where for a closed convex set K ⊂ R`, RoundK : R`→ R` maps a point to its (unique)
closest point (in Euclidean distance) in K – in particular, it is the identity map on K. It is easy to see
that by the convexity of K, RoundK is a 1-Lipschitz function,4 and it follows that the function Ψ is
O(
√
`)-Lipschitz. Also, since T1−η f is K1-valued and T1−ηg is K2-valued on {+1,−1}n, the Round

functions act as the identity on their images, and hence

E
[
Ψ
(
H1(L

n), · · · ,Ht(L
n)
)]

= E(x,y)

[
〈T1−η f (x),T1−ηg(y)〉

]
, (11)

where (x,y) is distributed according to N⊗n
p1,p2,θ

.

4 To see why, let a,b be two arbitrary points and a′ = RoundK(a), b′ = RoundK(b). Without loss of generality, we can
change the coordinates so that a′ = (0, . . . ,0) and b′ = (c,0, . . . ,0) for some c > 0: by convexity, the segment [a′b′] lies within
K. Now, by virtue of a′ (resp. b′) being the closest point to a (resp. b), this implies the first coordinate of a must be non-positive
and the first coordinate of b must be at least c; but this in turn means the distance between a and b is at least c.
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For j ∈ [`], define real-valued functions F̃j =H j(ϒ
n) and G̃ j =H`+ j(ϒ

n). Note that as the multilinear
expansion of T1−η f j (resp. T1−ηh j) only involves χ0,χ1 (resp. χ0,χ2), the multilinear expansion of F̃j

(resp. G̃ j) only involves ξ0,ξ1 (resp. ξ0,ξ2). As ξ0 = 1, the functions F̃j (resp. G̃ j) are defined on Rn

under a product measure with coordinates distributed as Gaussians with mean p1 (resp. mean p2) and
second moment 1.

Let F̃ = (F̃1, . . . , F̃̀ ) and G̃ = (G̃1, . . . , G̃`), and finally let F : Rn→ K1 be F(X) = RoundK1(F̃(X))
and G : Rn→ K2 be G(Y ) = RoundK2(G̃(Y )). Note that F (resp. G) depends only on f = ( f1, . . . , f`)
(resp. g = (g1, . . . ,g`)) as required in the statement of Theorem 7.3. By construction, it is clear that

E
[
Ψ
(
H1(ϒ

n), · · · ,Ht(ϒ
n)
)]

= E(X ,Y )

[
〈F(X),G(Y )〉

]
, (12)

for (X ,Y )∼ (ξ1,ξ2)
⊗n = G ⊗n where G is the Gaussian distribution which matches the first and second

moments of N = Np1,p2,θ .
Combining (11) and (12) with the guarantee (10) of Theorem A.4, we get that∣∣E(x,y)∼N⊗n

[
〈T1−η f (x),T1−ηg(y)〉

]
−E(X ,Y )∼G⊗n

[
〈F(X),G(Y )〉

]∣∣≤ ε/2 (13)

for τ > 0 chosen small enough (as a function of ε, `, p1, p2,θ0 and η). We are almost done, except that
we would like to be close to the inner product 〈 f (x),g(y)〉 of the original functions, and we have the
noised versions in (13) above. However, as the correlation of the space Np1,p2,θ is bounded away from 1,
applying Lemma 6.1 of [12] implies that for small enough η > 0 (as a function of ε, `, p1, p2,θ0),∣∣E(x,y)∼N⊗n

[
〈T1−η f (x),T1−ηg(y)〉

]
−E(x,y)∼N⊗n

[
〈 f (x),g(y)〉

]∣∣≤ ε/2 .

Combining this with (13), the proof of Theorem 7.3 is complete.
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