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Abstract

We achieve essentially the largest possible separation between quantum and classical query
complexities. We do so using a property-testing problem called Forrelation, where one
needs to decide whether one Boolean function is highly correlated with the Fourier transform
of a second function. This problem can be solved using 1 quantum query, yet we show that
any randomized algorithm needs Ω(

√
N/ logN) queries (improving an Ω(N1/4) lower bound of

Aaronson). Conversely, we show that this 1 versus Ω̃(
√
N) separation is optimal: indeed, any

t-query quantum algorithm whatsoever can be simulated by an O
(
N1−1/2t

)
-query randomized

algorithm. Thus, resolving an open question of Buhrman et al. from 2002, there is no partial
Boolean function whose quantum query complexity is constant and whose randomized query
complexity is linear. We conjecture that a natural generalization of Forrelation achieves the
optimal t versus Ω

(
N1−1/2t

)
separation for all t. As a bonus, we show that this generalization

is BQP-complete. This yields what’s arguably the simplest BQP-complete problem yet known,
and gives a second sense in which Forrelation “captures the maximum power of quantum
computation.”

1 Introduction

Since the work of Simon [23] and Shor [22] two decades ago, we have had powerful evidence that
quantum computers can achieve exponential speedups over classical computers. Of course, for
problems like Factoring, these speedups are conjectural at present: we cannot rule out that a
fast classical factoring algorithm might exist. But in the black-box model, which captures most
known quantum algorithms, exponential and even larger speedups can be proved. We know, for
example, that Period-Finding (a natural abstraction of the problem solved by Shor’s algorithm)
is solvable with only O (1) quantum queries, but requires NΩ(1) classical randomized queries, where
N is the number of input elements [12, 10, 17]. We also know that Simon’s Problem is solvable
with O (logN) quantum queries, but requires Ω(

√
N) classical queries; and that a similar separation

holds for the Glued-Trees problem introduced by Childs et al. [11, 16].1

To us, these results raise an extremely interesting question:

∗Email: aaronson@csail.mit.edu. Supported by an NSF Waterman Award.
†The research leading to these results has received funding from the European Union Seventh Framework Pro-

gramme (FP7/2007-2013) under grant agreement n◦ 600700 (QALGO) and ERC Advanced Grant MQC.
1However, in all these cases the queries are non-Boolean. If we insist on Boolean queries, then the quantum query

complexities get multiplied by an O(logN) factor.
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• “The Speedup Question.” Within the black-box model, just how large of a quantum
speedup is possible? For example, could there be a function of N bits with a quantum query
complexity of 1, but a classical randomized query complexity of Ω (N)?

One may object: once we know that exponential and even larger quantum speedups are possible
in the black-box model, who cares about the exact limit? In our view, the central reason to study
the Speedup Question is that doing so can help us better understand the nature of quantum
speedups themselves. For example, can all exponential quantum speedups be seen as originating
from a common cause? Is there a single problem or technique that captures the advantages of
quantum over classical query complexity, in much the same way that random sampling could be
said to capture the advantages of randomized over deterministic query complexity?

As far as we know, the Speedup Question was first posed by Buhrman et al. [8] around 2002, in
their study of quantum property-testing. Specifically, Buhrman et al. asked whether there is any
property of N -bit strings that exhibits a “maximal” separation: that is, one that requires Ω(N)
queries to test classically, but only O (1) quantumly. The best separation they could find, based
on Simon’s problem, was “deficient” on both ends: it required Ω(

√
N) queries to test classically,

and O(logN log logN) quantumly.
Since then, there has been only sporadic progress on the Speedup Question. In 2009, Aaronson

[1] introduced the Forrelation problem—a problem that we will revisit in this paper—and showed
that it was solvable with only 1 quantum query, but required Ω(N1/4) classical randomized queries.
In 2010, Chakraborty et al. [10] argued that Period-Finding gives a different example of an
O(1) versus Ω̃(N1/4) quantum/classical gap; there, however, we only get an O(1)-query quantum
algorithm if we allow non-Boolean queries.

Earlier, in 2001, de Beaudrap, Cleve, and Watrous [6] had given what they described as a black-
box problem that was solvable with 1 quantum query, but that required Ω(N1/4) or Ω(

√
N) classical

randomized queries (depending on how one defines the “input size” N). However, de Beaudrap et
al. were not working within the usual model of quantum query complexity. Normally, one provides
“black-box access” to a function f , meaning that the quantum algorithm can apply a unitary
transformation that maps basis states of the form |x, y〉 to basis states of the form |x, y ⊕ f(x)〉 (or
|x〉 to (−1)f(x) |x〉, if f is Boolean). By contrast, for their separation, de Beaudrap et al. had to
assume the ability to map basis states of the form |x, y〉 to basis states of the form |x, π(y + sx)〉,
for some unknown permutation π and hidden shift s.

1.1 Our Results

This paper has two main contributions—the largest quantum black-box speedup yet known, and a
proof that that speedup is essentially optimal—as well as many smaller related contributions.

1.1.1 Maximal Quantum/Classical Separation

In Section 4, we undertake a detailed study of the Forrelation problem, which Aaronson [1]
introduced for a different purpose than the one that concerns us here (he was interested in an
oracle separation between BQP and the polynomial hierarchy).2 In Forrelation, we are given
access to two Boolean functions f, g : {0, 1}n → {−1, 1}. We want to estimate the amount of

2Also, in [1], the problem was called “Fourier Checking.”
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correlation between f and the Fourier transform of g—that is, the quantity

Φf,g :=
1

23n/2

∑

x,y∈{0,1}n
f (x) (−1)x·y g (y) .

It is not hard to see that |Φf,g| ≤ 1 for all f, g. The problem is to decide, say, whether |Φf,g| ≤ 1
100

or Φf,g ≥ 3
5 , promised that one of these is the case.3 Here and throughout this paper, the “input

size” is taken to be N := 2n.
One can give (see Section 3) a quantum algorithm that solves Forrelation, with bounded

probability of error, using only 1 quantum query. Intuitively, however, the property of f and g
being “forrelated” (that is, having large Φf,g value) is an extremely global property, which should
not be apparent to a classical algorithm until it has queried a significant fraction of the entire truth
tables of f and g. And indeed, improving an Ω

(
N1/4

)
lower bound of Aaronson [1], in Section 4

we show the following:

Theorem 1 Any classical randomized algorithm for Forrelation must make Ω(
√
N

logN ) queries.

Theorem 1 yields the largest quantum versus classical separation yet known in the black-box
model. As we will show in Appendix 10, Theorem 1 also implies the largest property-testing
separation yet known—for with some work, one can recast Forrelation (or rather, its negation)

as a property that is testable with only 1 query quantumly, but that requires Ω(
√
N

logN ) queries to
test classically.

We deduce Theorem 1 as a consequence of a more general result: namely, a lower bound on
the classical query complexity of a problem called Gaussian Distinguishing. Here we are given
oracle access to a collection of N (0, 1) real Gaussian random variables, x1, . . . , xM . We are asked
to decide whether the variables are all independent, or alternatively, whether they lie in a known
low-dimensional subspace of RM : one that induces a covariance of at most ε between each pair of
variables, while keeping each variable an N (0, 1) Gaussian individually. We show the following:

Theorem 2 Gaussian Distinguishing requires Ω
(

1/ε
log(M/ε)

)
classical randomized queries.

Theorem 1 is then simply a (discretized) special case of Theorem 2, with M = 2N and ε =
1/
√
N . Beyond that, it seems to us that Theorem 2 could have independent applications in

statistics and machine learning.

1.1.2 Proof of Optimality

In Section 5, we show that the quantum/classical query complexity separation achieved by the
Forrelation problem is close to the best possible. More generally:

3The reason for the asymmetry—i.e., for promising that Φf,g is positive if its absolute value is large, but not if its
absolute value is small—is a bit technical. On the one hand, we want the “unforrelated” case to encompass almost
all randomly-chosen functions f, g. On the other hand, we also want Forrelation to be solvable using only 1
quantum query. If we had promised |Φf,g | ≥ 3

5
, rather than Φf,g ≥ 3

5
, then we would only know a 2-query quantum

algorithm. In any case, none of these choices make a big difference to our results.
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Theorem 3 Let Q be any quantum algorithm that makes t = O (1) queries to an N -bit string
X ∈ {0, 1}N . Then we can estimate Pr [Q accepts X], to constant additive error and with high
probability, by making only O(N1−1/2t) classical randomized queries to X.4 Moreover, the ran-
domized queries are nonadaptive.

So for example, every 1-query quantum algorithm can be simulated by an O(
√
N)-query classical

randomized algorithm, every 2-query quantum algorithm can be simulated by an O(N3/4)-query
randomized algorithm, and so on. Theorem 3 resolves the open problem of Buhrman et al. [8]
in the negative: it shows that there is no problem (property-testing or otherwise) with a constant
versus linear quantum/classical query complexity gap. Theorem 3 does not rule out the possibility
of an O (logN) versus Ω̃ (N) gap, and indeed, we conjecture that such a gap is possible.

Once again, we deduce Theorem 3 as a consequence of a more general result, which might have
independent applications to classical sublinear algorithms. Namely:

Theorem 4 Every degree-k real polynomial p : {−1, 1}N → R that is

(i) bounded in [−1, 1] at every Boolean point, and

(ii) “block-multilinear” (that is, the variables can be partitioned into k blocks, such that every
monomial is the product of one variable from each block),

can be approximated to within ±ε, with high probability, by nonadaptively querying only O(
(
N/ε2

)1−1/k
)

of the variables.

In the statement of Theorem 4, we strongly conjecture that condition (ii) can be removed.
If so, then we would obtain a sublinear algorithm to estimate any bounded, constant-degree real
polynomial. In Appendix 8, we show that condition (ii) can indeed be removed in the special case
k = 2.

1.1.3 k-fold Forrelation

In Section 6, we study a natural generalization of Forrelation. In k-fold Forrelation, we
are given access to k Boolean functions f1, . . . , fk : {0, 1}n → {−1, 1}. We want to estimate the
“twisted sum”

Φf1,...,fk :=
1

2(k+1)n/2

∑

x1,...,xk∈{0,1}n
f1 (x1) (−1)x1·x2 f2 (x2) (−1)x2·x3 · · · (−1)xk−1·xk fk (xk) .

It is not hard to show that |Φf1,...,fk | ≤ 1 for all f1, . . . , fk. The problem is to decide, say, whether
|Φf1,...,fk | ≤ 1

100 or Φf1,...,fk ≥ 3
5 , promised that one of these is the case.

One can give (see Section 3) a quantum algorithm that solves k-fold Forrelation, with
bounded error probability, using only ⌈k/2⌉ quantum queries. In Section 6, we show, conversely,
that k-fold Forrelation “captures the full power of quantum computation”:

Theorem 5 If f1, . . . , fk are described explicitly (say, by circuits to compute them), and k =
poly (n), then k-fold Forrelation is a BQP-complete promise problem.

4The reason for the condition t = O (1) is that, in the bound O(N1−1/2t), the big-O hides a multiplicative factor
of exp (t). Thus, we can obtain a nontrivial upper bound on query complexity as long as t = o(

√
logN).
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We do not know of any complete problem for quantum computation that is more self-contained
than this. Not only can one state the k-fold Forrelation problem without any notions from
quantum mechanics, one does not need any nontrivial mathematical notions, like the condition
number of a matrix or the Jones polynomial of a knot.

We conjecture, moreover, that k-fold Forrelation achieves the optimal k/2 versus Ω̃(N1−1/k)
quantum/classical query complexity separation for all even k. If so, then there are two senses in
which k-fold Forrelation captures the power of quantum computation.

1.1.4 Other Results

The paper also includes several other results.
In Appendix 7, we study the largest possible quantum/classical separations that are achiev-

able for approximate sampling and relation problems. We show that there exists a sampling
problem—namely, Fourier Sampling of a Boolean function—that is solvable with 1 quantum
query, but requires Ω(N/ logN) classical queries. By our previous results, this exceeds the largest
quantum/classical gap that is possible for decision problems.

In Appendix 8, we generalize our result that every 1-query quantum algorithm can be sim-
ulated using O(

√
N) randomized queries, to show that every bounded degree-2 real polynomial

p : {−1, 1}N → [−1, 1] can be estimated using O(
√
N) randomized queries. We conjecture that

this can be generalized, to show that every bounded degree-k real polynomial can be estimated
using O(N1−1/k) randomized queries.

In Appendix 9, we extend our Ω(
√
N

logN ) randomized lower bound for the Forrelation problem,

to show a Ω(
√
N

log7/2 N
) lower bound for k-fold Forrelation for any k ≥ 2. We conjecture that the

right lower bound is Ω̃(N1−1/k), but even generalizing our Ω̃(
√
N) lower bound to the k-fold case

is nontrivial.

1.2 Techniques

1.2.1 Randomized Lower Bound

Proving that any randomized algorithm for Forrelation requires Ω(
√
N

logN ) queries is surprisingly
involved. As we mentioned in Section 1.1.1, the first step, following the work of Aaronson [1], is
to convert Forrelation into an analogous problem involving real Gaussian variables. In Real

Forrelation, we are given oracle access to two real functions f, g : {0, 1}n → R, and are promised
either that (i) every f (x) and g (y) value is an independent N (0, 1) Gaussian, or else (ii) every
f (x) value is an independentN (0, 1) Gaussian, while every g (y) value equals f̂ (y) (i.e., the Fourier
transform of f evaluated at y). The problem is to decide which holds. Using a rounding reduction,
we show that any query complexity lower bound for Real Forrelation implies the same lower
bound for Forrelation itself.

Making the problem continuous allows us to adopt a geometric perspective. In this perspective,
we are given oracle access to a real vector v ∈ R2N , whose 2N coordinates consist of all values
f (x) and all values g (y) (recall that N = 2n). We are trying to distinguish the case where v is
simply an N (0, 1)2N Gaussian, from the case where v is confined to an N -dimensional subspace
of R2N—namely, the subspace defined by g = f̂ . Now, suppose that values f (x1) , . . . , f (xt) and
g (y1) , . . . , g (yu) have already been queried. Then we can straightforwardly calculate the Bayesian
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posterior probabilities for being in case (i) or case (ii). For case (i), the probability turns out to
depend solely on the squared 2-norm of the vector of empirical data seen so far:

Pr [case (i)] ∝ exp

(
−∆i

2

)
,

where
∆i = f (x1)

2 + · · ·+ f (xt)
2 + g (y1)

2 + · · ·+ g (yu)
2 .

For case (ii), by contrast, the probability is proportional to exp(−∆ii/2), where ∆ii is the minimum
squared 2-norm of any point f ∈ RN compatible with all the data seen so far, as well as with the

linear constraint g = f̂ . Let V =
{
|1〉 , . . . , |N〉 , |1̂〉, . . . , |N̂ 〉

}
be the set of 2N unit vectors in RN

that consists of all N elements of the standard basis, together with all N elements of the Fourier
basis. Then ∆ii, in turn, can be calculated using a process of Gram-Schmidt orthogonalization,
on the vectors in V corresponding to the f -values and g-values that have been queried so far.

Our goal is to show that, with high probability, ∆i and ∆ii remain close to each other, even
after a large number of queries have been made—meaning that the algorithm has not yet succeeded
in distinguishing case (i) from case (ii) with non-negligible bias. To show this, the central fact
we rely on is that the vectors in V are nearly-orthogonal : that is, for all |v〉 , |w〉 ∈ V, we have
|〈v|w〉| ≤ 1√

N
. Intuitively, this means that, if we restrict attention to any small subset S of f -

values and g-values, then while correlations exist among those values, the correlations are weak :
“to a first approximation,” we have simply asked for the projections of a Gaussian vector onto |S|
orthogonal directions, and have therefore received |S| uncorrelated answers.

From this perspective, the key question is: how many values can we query until the “orthogonal
approximation” breaks down (meaning that we notice the correlations)? In his previous work,
Aaronson [1] showed that the approximation holds until Ω

(
N1/4

)
queries are made. Indeed, he

proved a stronger statement: even if the x’s and y’s are chosen nondeterministically, still Ω
(
N1/4

)

values must be revealed until we have a certificate showing that we are in case (i) or case (ii) with
high probability.

To improve the lower bound from Ω
(
N1/4

)
to the optimal Ω̃(

√
N), there are several hurdles to

overcome.
Aaronson had assumed, conservatively, that the deviations from orthogonality all “pull in the

same direction.” As a first step, we notice instead that the deviations follow an unbiased random
walk, with some positive and others negative—the martingale property arising from the fact that the
algorithm can control which x’s and y’s to query, but not the values of f (x) and g (y). We then use
a Gaussian generalization of Azuma’s inequality to upper-bound the sum of the deviations. Doing
this improves the lower bound from Ω

(
N1/4

)
to Ω̃

(
N1/3

)
, but we then hit an apparent barrier.

In this work, we explain the Ω
(
N1/3

)
barrier, by exhibiting a “model problem” that is extremely

similar to Real Forrelation (in particular, has exactly the same near-orthogonality property),
yet is solvable with only O

(
N1/3

)
queries, by exploiting adaptivity. However, we then break the

barrier, by using the fact that, for Real Forrelation (but not for the model problem), the total
number of vectors in V is only NO(1). This fact lets us use the Gaussian Azuma’s inequality a
second time, to upper-bound not only the sum of all the deviations from orthogonality, but the
individual deviations themselves. Implementing this yields a lower bound of Ω̃

(
N2/5

)
: better

than Ω̃
(
N1/3

)
, but still not all the way up to Ω̃(

√
N). However, we then notice that we can

apply Azuma’s inequality recursively—once for each layer of the Gram-Schmidt orthogonalization
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process—to get better and better upper bounds on the deviations from orthogonality. Doing so
gives us a sequence of lower bounds Ω̃

(
N3/7

)
, Ω̃
(
N4/9

)
, Ω̃
(
N5/11

)
, etc., with the ultimate limit of

the process being Ω(
√
N

logN ).

1.2.2 Randomized Upper Bound

Why did we have to work so hard to prove a Ω̃(
√
N) lower bound on the randomized query

complexity of Forrelation? Our other main result provides one possible explanation: namely,
we are here scraping up against the “ceiling” of the possible separations between randomized and
quantum query complexity. In particular, any quantum algorithm that makes 1 query to a Boolean
input X ∈ {0, 1}N , can be simulated by a randomized algorithm (in fact, a nonadaptive randomized
algorithm) that makes O(

√
N) queries to X. More generally, any quantum algorithm that makes

t = O (1) queries to X, can be simulated by a nonadaptive randomized algorithm that makes
O(N1−1/2t) queries to X.

The proof of this result consists of three steps. The first involves the simulation of quantum
algorithms by low-degree polynomials. In 1998, Beals et al. [5] famously observed that, if a
quantum algorithm makes t queries to a Boolean input X ∈ {−1, 1}N , then p (X), the probability
that the algorithm accepts X, can be written as a multilinear polynomial in X of degree at most 2t.
We extend this result of Beals et al., in a way that might be of independent interest for quantum
lower bounds. Namely, we observe that every t-query quantum algorithm gives rise, not merely
to a multilinear polynomial, but to a block-multilinear polynomial. By this, we mean a degree-2t
polynomial q that takes as input 2t blocks of N variables each, and whose every monomial contains
exactly one variable from each block. If we repeat the input X ∈ {−1, 1}N across all 2t blocks,
then q (X, . . . ,X) represents the quantum algorithm’s acceptance probability on X. However, the
key point is that q (Y ) is bounded in [−1, 1] for any Boolean input Y ∈ {−1, 1}2tN .

This leads to a new complexity measure for Boolean functions f : the block-multilinear approx-

imate degree b̃mdeg (f), which lower-bounds the quantum query complexity Q (f) just as d̃eg (f)
does, but which might provide a tighter lower bound in some cases. (Indeed, we do not even know

whether there is any asymptotic separation between Q (f) and b̃mdeg (f), whereas Ambainis [4]

showed an asymptotic separation between Q (f) and d̃eg (f).)
Once we have our quantum algorithm’s acceptance probability in the form of a block-multilinear

polynomial q, the second step is to preprocess q, to make it easier to estimate using random
sampling. The basic problem is that q might be highly “unbalanced”: certain variables might
be hugely influential. Such variables are essential to query, but examining the form of q does not
make it obvious which variables these are. To deal with this, we repeatedly perform an operation
called “variable-splitting,” which consists of identifying an influential variable xi, then replacing
every occurrence of xi in q by 1

m (xi,1 + · · · + xi,m), where xi,1, . . . , xi,m are newly-created variables
set equal to xi. The point of doing this is that each xi,j will be less influential in q than xi itself
was, thereby yielding a more balanced polynomial. We show that variable-splitting can achieve
the desired balance by introducing at most exp (t) · O (N) new variables, which is linear in N for
constant t.

Once we have a balanced polynomial q, the last step is to give a query-efficient randomized
algorithm to estimate its value. Our algorithm is the simplest one imaginable: we simply choose
O(N1−1/2t) variables uniformly at random, query them, then form an estimate q̃ of q by summing
only those monomials all of whose variables were queried. The hard part is to prove that this
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estimator works—i.e., that its variance is bounded. The proof of this makes heavy use of the
balancedness property that was ensured by the preprocessing step.

Examining our estimation algorithm, an obvious question is whether it was essential that q be
block-multilinear, or whether the algorithm could be extended to all bounded low-degree polynomi-
als. In Appendix 8, we take a first step toward answering that question, by giving an O(

√
N)-query

randomized algorithm to estimate any bounded degree-2 polynomial in N Boolean variables. Once
we drop block-multilinearity, our variable-splitting procedure no longer works, so we rely instead
on Fourier-analytic results of Dinur et al. [14] to identify influential variables which we then split.

1.2.3 Other Results

BQP-Completeness. The proof that the k-fold Forrelation problem is PromiseBQP-complete
is simple, once one has the main idea. The sum that defines k-fold Forrelation is, itself, an
output amplitude for a particular kind of quantum circuit, which consists entirely of Hadamard
and f -phase gates (i.e., gates that map |x〉 to (−1)f(x) |x〉 for some Boolean function f). Since
the Hadamard and CCPHASE gates (corresponding to f (x, y, z) = xyz) are known to be universal
for quantum computation, one might think that our work is done. The difficulty is that the
quantum circuit for k-fold Forrelation contains a Hadamard gate on every qubit, between every
pair of f -phase gates, whether we wanted Hadamards there or not. Thus, if we want to encode
an arbitrary quantum circuit, then we need some way of canceling unwanted Hadamards, while
leaving the wanted ones. We achieve this via a gadget construction.

Separation for Sampling Problems. To achieve a 1 versus Ω(N/ logN) quantum/classical
query complexity separation for a sampling problem, we consider Fourier Sampling: the problem,
given oracle access to a Boolean function f : {0, 1}n → {−1, 1}, of outputting a string y ∈ {0, 1}n
with probability approximately equal to f̂ (y)2. This problem is trivially solvable with 1 quantum
query, but proving a Ω(N/ logN) classical lower bound takes a few pages of work. The basic idea is
to concentrate on the probability of a single string—say, y = 0n—being output. Using a binomial
calculation, we show that this probability cannot depend on f ’s truth table in the appropriate way
unless Ω(N/ logN) function values are queried.

Lower Bound for k-Fold Forrelation. Once we have a Ω(
√
N

logN ) randomized lower bound
for Forrelation, one might think it would be trivial to prove the same lower bound for k-fold
Forrelation: just reduce one to the other! However, Forrelation does not embed in any
clear way as a subproblem of k-fold Forrelation. On the other hand, given an instance of k-
fold Forrelation, suppose we “give away for free” the complete truth tables of all but two of the
functions. In that case, we show that the induced subproblem on the remaining two functions is an
instance of Gaussian Distinguishing to which, with high probability, our lower bound techniques

can be applied. Pursuing this idea leads to our Ω(
√
N

log7/2 N
) lower bound on the randomized query

complexity of k-fold Forrelation, for all k ≥ 2.
Property-Testing Separation. To turn our quantum versus classical separation for the

Forrelation problem into a property-testing separation, we need to prove two interesting state-
ments. The first is that function pairs 〈f, g〉 that are far in Hamming distance from the set of all
pairs with low forrelation, actually have high forrelation. The second is that “generic” function
pairs 〈f, g〉 and 〈f ′, g′〉 that have small Hamming distance from one another, are close in their
forrelation values as well. In fact, we will prove both of these statements for the general case of
k-fold Forrelation.
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1.3 Discussion

To summarize, this paper proves the largest separation between classical and quantum query com-
plexities yet known, and it also proves that that separation is in some sense optimal. These results
put us in a position to pose an intriguing open question:

Among all the problems that admit a superpolynomial quantum speedup, is there any
whose classical randomized query complexity is ≫

√
N?

Strikingly, if we look at the known problems with superpolynomial quantum speedups, for every
one of them the classical randomized lower bound seems to hit a “ceiling” at

√
N . Thus, Simon’s

Problem has quantum query complexity O (logN) and randomized query complexity Θ̃(
√
N);

the Glued-Trees problem of Childs et al. [11] has quantum query complexity logO(1)(N) and
randomized query complexity Θ̃(

√
N);5 and Forrelation has quantum query complexity 1 and

randomized query complexity Θ̃(
√
N).

If we insist on making the randomized query complexity Ω(N1/2+c), for some c > 0, and then
try to minimize the quantum query complexity, then the best thing we know how to do is to take
the OR of N2c independent instances of Forrelation, each of size N1−2c. This gives us a problem
whose quantum query complexity is Θ(N c),6 and whose classical randomized query complexity is
Θ̃(N1/2+c).7 Of course, this is not an exponential separation.

In this paper, we gave a candidate for a problem that breaks the “
√
N barrier”: namely, k-fold

Forrelation. Indeed, we conjecture that k-fold Forrelation achieves the optimal separation
for all k = O (1), requiring Ω̃

(
N1−1/k

)
classical randomized queries but only ⌈k/2⌉ quantum

queries.8 Proving this conjecture is an enticing problem. Unfortunately, k-fold Forrelation

becomes extremely hard to analyze when k > 2, because we can no longer view the functions
f1, . . . , fk as confined to a low-dimensional subspace: now we have to view them as confined to
a low-dimensional manifold, which is defined by degree-(k − 1) polynomials. As such, we can
no longer compute posterior probabilities by simply appealing to the rotational invariance of the
Gaussian measure, which made our lives easier in the k = 2 case. Instead we need to calculate
integrals over a nonlinear manifold.

Short of proving our conjecture about k-fold Forrelation, it would of course be nice to find
any partial Boolean function whose quantum query complexity is polylogN , and whose randomized
query complexity is N1/2+Ω(1).

5The randomized lower bound for Glued-Trees proved by Childs et al. [11] was only Ω(N1/6). However,
Fenner and Zhang [16] improved the lower bound to Ω(N1/3); and if we allow a success probability that is
merely (say) 1/3, rather than exponentially small, then their bound can be improved further, to Ω(

√
N). In

the other direction, we are indebted to Shalev Ben-David for proving that Glued-Trees can be solved determin-
istically using only O(

√
N logN) queries (or O(

√
N log2 N), if the queries are required to be Boolean). For his

proof, see http://cstheory.stackexchange.com/questions/25279/the-randomized-query-complexity-of-the-conjoined-
trees-problem

6Here the upper bound comes from combining Grover’s algorithm with the Forrelation algorithm: the “näıve”
way of doing this would produce an additional logN factor for error reduction, but it is well-known that that log
factor can be eliminated [19]. Meanwhile, the lower bound comes from the optimality of Grover’s algorithm.

7Here the upper bound comes from simply taking the best randomized Forrelation algorithm, which uses
O(

√
N1−2c) queries, and running it N2c times, with an additional logN factor for error reduction. Meanwhile, the

lower bound comes from combining this paper’s Ω(
√
N/ logN) lower bound for Forrelation, with a general result

stating that the randomized query complexity of OR (f, . . . , f), the OR of k disjoint copies of a function f , is Ω (k)
times the query complexity of a single copy. This result can be proved by adapting ideas from a direct product
theorem for randomized query complexity given by Drucker [15] (we thank A. Drucker, personal communication).

8And perhaps k-fold Forrelation continues to give optimal separations, all the way up to k = O (logN).
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Another problem we leave is to generalize our O
(
N1−1/k

)
randomized estimation algorithm

from block-multilinear polynomials to arbitrary bounded polynomials of degree k. As we said,
Appendix 8 achieves this in the special case k = 2. Achieving it for arbitrary k seems likely to
require generalizing the machinery of Dinur et al. [14].

A third problem concerns the notion of block-multilinear approximate degree, b̃mdeg (f), that

we introduced to prove Theorem 4. Is there any asymptotic separation between b̃mdeg (f) and

ordinary approximate degree? What about a separation between b̃mdeg (f) and quantum query
complexity?

A fourth, more open-ended problem is whether there are any applications of Forrelation,
in the same sense that factoring and discrete log provide “applications” of Shor’s period-finding
problem. Concretely, are there any situations where one has two efficiently-computable Boolean
functions f, g : {0, 1}n → {−1, 1} (described, for example, by circuits), one wants to estimate how
forrelated they are, and the structure of f and g does not provide a fast classical way to do this?

Here are five other open problems:

(1) Can we tighten the lower bound on the randomized query complexity of Forrelation from

Ω(
√
N

logN ) to Ω(
√
N), or give an O(

√
N

logN ) upper bound?

(2) Can we generalize our results from Boolean to non-Boolean functions?

(3) What are the largest possible quantum versus classical query complexity separations for
sampling problems? Is an O (1) versus Ω(N) separation possible in this case? Also, what
separations are possible for search or relation problems? (For our results on these questions,
see Appendix 7.)

(4) While there exists a 1-query quantum algorithm that solves Forrelation with bounded
error probability, the error probability we are able to achieve is about 0.4—more than the
customary 1/3. If we want (say) a 1 versus NΩ(1) quantum versus classical query complexity
separation, then how small can the quantum algorithm’s error be?

(5) While we show in Appendix 10 that being “unforrelated”—that is, having Φf,g ≤ 1
100—

behaves nicely as a property-testing problem, it would be interesting to show the same for
being forrelated.
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3 Preliminaries

We assume familiarity with basic concepts of quantum computing, as covered (for example) in
Nielsen and Chuang [18]. We also assume some familiarity with the model of query or decision-
tree complexity; see Buhrman and de Wolf [9] for a good survey. In this section, we first give a brief
recap of query complexity (in Section 3.1), then observe some properties of the k-fold Forrelation

problem (in Section 3.2), and finally collect some lemmas about Gram-Schmidt orthogonalization
(in Section 3.3) and Gaussian martingales (in Section 3.4) that will be important for our randomized
lower bound in Section 4.

3.1 Query Complexity

Briefly, by the query complexity of an algorithm A, we mean the number of queries that A makes to
its input z = (z1, . . . , zN ), maximized over all valid inputs z.9 The query complexity of a function F
is then the minimum query complexity of any algorithm A (of a specified type—classical, quantum,
etc.) that outputs F (z), with bounded probability of error, given any valid input z.

One slightly unconventional choice that we make is to define “bounded probability of error” to
mean “error probability at most 1/2−ε, for some constant ε > 0” rather than “error probability at
most 1/3.” The reason is that we will be able to design a 1-query quantum algorithm that solves the
Forrelation problem with error probability 2/5, but not one that solves it with error probability
1/3. Of course, one can make the error probability as small as one likes using amplification, but
doing so increases the query complexity by a constant factor.

We assume throughout this paper that the input z ∈ {−1, 1}N is Boolean, and we typically
work in the {−1, 1} basis for convenience. In the classical setting, each query returns a single bit
zi, for some index i ∈ [N ] specified by A. In the quantum setting, each query performs a diagonal
unitary transformation

|i, w〉 → zi |i, w〉 ,
where w represents “workspace qubits” that do not participate in the query.10 Between two queries,
A can apply any unitary transformation it likes that does not depend on z.

9If we are talking about a partial Boolean function, then a “valid” input is simply any input that satisfies the
promise.

10For Boolean inputs z, this is well-known to be exactly equivalent to a different definition of a quantum query,
wherein each basis state |i, a, w〉 gets mapped to |i, a⊕ zi, w〉. Here a represents a 1-qubit “answer register.”
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Figure 1: A quantum circuit that can be taken to define the k-fold Forrelation problem. The
circuit consists of k query transformations Uf1 , . . . , Ufk , which map each basis state |x〉 to fi (x) |x〉,
sandwiched between rounds of Hadamard gates.

In this paper, the input z = (z1, . . . , zN ) will typically consist of the truth tables of one or
more Boolean functions: for example, f, g : {0, 1}n → {−1, 1}, or f1, . . . , fk : {0, 1}n → {−1, 1}.
Throughout, we use n for the number of input bits that these Boolean functions take (which roughly
corresponds to the number of qubits in a quantum algorithm), and we use N = 2n for the number
of bits being queried in superposition. (Strictly speaking, we should set N = k · 2n, where k is the
number of Boolean functions. But this constant-factor difference will not matter for us.) Thus,
for the purposes of query complexity, N is the “input size,” in terms of which we state our upper
and lower bounds.

3.2 Forrelation

The Forrelation and k-fold Forrelation problems were defined in Sections 1.1.1 and 1.1.3
respectively. Informally, though, one could define k-fold Forrelation simply as the problem of
simulating the quantum circuit shown in Figure 1—and in particular, of estimating the amplitude,
call it α0···0, with which this circuit returns |0〉⊗n as its output. Observe that α0···0 is precisely the
quantity

Φf1,...,fk :=
1

2(k+1)n/2

∑

x1,...,xk∈{0,1}n
f1 (x1) (−1)x1·x2 f2 (x2) (−1)x2·x3 · · · (−1)xk−1·xk fk (xk)

defined in Section 1.1.3. From this, it follows that we can decide whether |Φf1,...,fk | ≤ 1
100 or

Φf1,...,fk ≥ 3
5 with bounded probability of error, and thereby solve the k-fold Forrelation problem,

by making only k quantum queries to f1, . . . , fk.
Slightly more interesting is that we can improve the quantum query complexity further, to

⌈k/2⌉:

Proposition 6 The k-fold Forrelation problem is solvable, with error probability 0.4, using
⌈k/2⌉ quantum queries to the functions f1, . . . , fk : {0, 1}n → {−1, 1}, as well as O (nk) quantum
gates.

Proof. Let H be the Hadamard gate, and let Ufi be the query transformation that maps each
computational basis state |x〉 to fi (x) |x〉. Then to improve from k to ⌈k/2⌉ queries, we modify
the circuit of Figure 1 in the following way.

In addition to the initial state |0〉⊗n, we prepare a control qubit in the state |+〉 = |0〉+|1〉√
2

.

Then, conditioned on the control qubit being |0〉, we apply the following sequence of operations to
the initial state:

H⊗n → Uf1 → H⊗n → Uf2 → · · · → H⊗n → Uf⌈k/2⌉ → H⊗n .
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Meanwhile, conditioned on the control qubit being |1〉, we apply the following sequence of opera-
tions:

H⊗n → Ufk → H⊗n → Ufk−1
→ · · · → H⊗n → Uf⌈k/2⌉+1

.

Finally, we measure the control qubit in the {|+〉 , |−〉} basis, and “accept” (i.e., say that Φf1,...,fk

is large) if and only if we find it in the state |+〉.
It is not hard to see that the probability that this circuit accepts is exactly

1 + Φf1,...,fk

2
.

Thus, consider an algorithm A that rejects with probability 1/4, and runs the circuit with proba-
bility 3/4. We have

Pr [A accepts] =
3

4

(
1 + Φf1,...,fk

2

)
.

If |Φf1,...,fk | ≤ 1
100 then the above is less than 0.4, while if Φf1,...,fk ≥ 3

5 then it is at least 0.6.
Purely from the unitarity of the quantum algorithm to compute Φf1,...,fk , we can derive some

interesting facts about Φf1,...,fk itself. Most obviously, we have |Φf1,...,fk | ≤ 1. But beyond that,

let f
(x)
k (xk) := fk (xk) (−1)xk·x. Then

∑

x∈{0,1}n
Φ2

f1,...,fk−1,f
(x)
k

= 1; (1)

this is just saying that the sum of the squares of the final amplitudes in the Forrelation algorithm
must be 1. Since there is nothing “special” about the outcome |0 · · · 0〉, it follows by symmetry
that

E
[
Φ2
f1,...,fk

]
=

1

N

if f1, . . . , fk are chosen are uniformly at random.

3.3 Gram-Schmidt Orthogonalization

Given an arbitrary collection of linearly-independent unit vectors |v1〉 , |v2〉 . . ., the Gram-Schmidt
process produces orthonormal vectors by recursively projecting each |vi〉 onto the orthogonal com-
plement of the subspace spanned by |v1〉 , . . . , |vi−1〉, and then normalizing the result. That is:

|zi〉 = |vi〉 −
i−1∑

j=1

〈vi|wj〉 |wj〉 ,

|wi〉 = βi |zi〉

where βi =
1√

〈zi|zi〉
is a normalizing constant. Note that 〈zi|zi〉 ≤ 1 (since |zi〉 is the projection of

a unit vector onto a subspace), and hence βi ≥ 1.
We will be interested in the behavior of this process when the |vi〉’s are already very close to

orthogonal. We can control that behavior with the help of the following lemma.
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Lemma 7 (Gram-Schmidt Lemma) Let |v1〉 , . . . , |vt〉 be unit vectors with |〈vi|vj〉| ≤ ε for all
i 6= j, and suppose t ≤ 0.1/ε (so in particular, ε ≤ 0.1). Let |wi〉 and βi be as above. Then for all
i > j, we have

|〈vi|wj〉| ≤ ε+ 2jε2,

βi ≤ 1 + 2iε2.

So in particular, under the stated hypothesis, |〈vi|wj〉| ≤ 1.2ε and βi ≤ 1 + 0.2ε.

Proof. We will do an induction on ordered pairs (i, j), in the order (2, 1) , (3, 1) , (3, 2) , (4, 1) , . . .,
with two induction hypotheses. Here are the hypotheses: for all i > j,

|〈vi|wj〉| ≤ ε+Ajε2,

1− 〈zi|zi〉 ≤ Biε2.

for some constants A,B to be determined later.
For the base case (i = 2 and j = 1), we have |〈v2|w1〉| = |〈v2|v1〉| ≤ ε and

〈z2|z2〉 = (〈v2| − 〈v1|v2〉 〈v1|) (|v2〉 − 〈v1|v2〉 |v1〉)
= 1− 〈v1|v2〉2

≥ 1− ε2.

For the induction step: first,

〈vi|wj〉 = 〈vi| βj
(
|vj〉 −

j−1∑

k=1

〈vj|wk〉 |wk〉
)

=
1√

〈zj |zj〉

(
〈vi|vj〉+

j−1∑

k=1

〈vi|wk〉 〈vj |wk〉
)
.

So

|〈vi|wj〉| ≤
1√

1−Bjε2

(
ε+

j−1∑

k=1

(
ε+Akε2

)2
)

≤ 1

1−Bjε2

(
ε+ jε2 +Aj2ε3 +

A2j3ε4

3

)

≤
(
1 +

B

1− 0.01B
jε2
)(

ε+

(
1 + 0.1A+

0.01A2

3

)
jε2
)

≤ ε+

[(
1 + 0.1A +

0.01A2

3

)(
1 +

0.01B

1− 0.01B

)
+

0.1B

1− 0.01B

]
jε2,

where we repeatedly made the substitutions ε ≤ 0.1 and jε ≤ 0.1 to produce multiples of jε2 in
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the numerator, and get rid of j and ε in the denominator. Second,

〈zi|zi〉 =


〈vi| −

i−1∑

j=1

〈vi|wj〉 〈wj|




|vi〉 −

i−1∑

j=1

〈vi|wj〉 |wj〉




= 〈vi|vi〉 −
i−1∑

j=1

〈vi|wj〉2 +
∑

j 6=k∈[i−1]

〈vi|wj〉 〈vi|wk〉 〈wj|wk〉

= 1−
i−1∑

j=1

〈vi|wj〉2

where we used the fact that 〈wj |wk〉 = 0. So

1− 〈zi|zi〉 ≤
i−1∑

j=1

(
ε+Ajε2

)2

≤ iε2 +Ai2ε3 +
A2i3ε4

3

≤
(
1 + 0.1A+

0.01A2

3

)
iε2.

If we now make the choice (say) A = 2 and B = 1.5, we find that both parts of the induction are
satisfied:

|〈vi|wj〉| ≤ ε+ 1.39jε2 ≤ ε+Ajε2,

1− 〈zi|zi〉 ≤ 1.22iε2 ≤ Biε2.

Furthermore, we now have the lemma, since

βi =
1√

〈zi|zi〉
≤ 1

〈zi|zi〉
= 1 +

1− 〈zi|zi〉
〈zi|zi〉

≤ 1 +
Biε2

1−Biε2
≤ 1 +

Biε2

1− 0.01B
≤ 1 + 2iε2.

3.4 Gaussian Azuma’s Inequality

Azuma’s inequality is a well-known generalization of the Chernoff/Hoeffing tail bound to the case
of martingales with bounded differences. We will need a generalization of Azuma’s inequality
to martingale difference sequences in which each term is Gaussian (and therefore, unbounded).
Fortunately, Shamir [20, Theorem 2] recently proved a useful such generalization. We now state
Shamir’s bound, in a slightly different form than in [20] (but easily seen to be equivalent).

Lemma 8 (Gaussian Azuma’s Inequality [20]) Suppose x1, x2, . . . form a martingale differ-
ence sequence, in the sense that E [xi|x1, . . . , xi−1] = 0. Suppose further that, conditioned on its
predecessors, xi is always “dominated by an N

(
0, σ2

)
Gaussian,” in the sense that Pr [|xi| > σB] <

exp
(
−B2/2

)
for all B. Then

Pr
[
|x1 + · · ·+ xt| > cσ

√
t
]
< 2 exp

(
− c2

56

)
.
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Note, in particular, that if the xi’s themselves are N
(
0, τ2i

)
Gaussians for some (possibly-

differing) variances τi < σ, then the xi’s are dominated by N
(
0, σ2

)
Gaussians, so Lemma 8 can

be applied.

4 Maximal Quantum/Classical Query Complexity Gap

In this section, we prove that the randomized query complexity of Forrelation is Ω(
√
N

logN ).

Previously, Aaronson [1] proved an Ω(N1/4) randomized lower bound for this problem. We will
need a further idea to improve the lower bound to Ω̃(N1/3), a still further idea to improve it to
Ω̃(N2/5), and then yet another idea to get all the way up to Ω̃(

√
N).

Following [1], the first step is to replace Forrelation by a “continuous relaxation” of the
problem: a version that is strictly easier (and thus, for which proving a lower bound is harder),
but which has rotational symmetry that will be extremely convenient for us. Thus, in Real

Forrelation, we are given oracle access to two real functions f, g : {0, 1}n → R. As usual, the
“input size” is N = 2n. We are promised that the pair 〈f, g〉 was drawn from one of two probability
measures:

(i) In the uniform measure U , every f (x) and g (y) value is an independent N (0, 1) Gaussian.

(ii) In the forrelated measure F , every f (x) value is an independent N (0, 1) Gaussian, while
every g (y) value is fixed to

f̂ (y) =
1√
N

∑

x∈{0,1}n
(−1)x·y f (x) .

The problem is to decide, with constant bias, whether (i) or (ii) holds (i.e., whether 〈f, g〉 was
drawn from U or from F).

We will often treat (the truth tables of) f and g as vectors in RN . Then another way to think
about Real Forrelation is this: in case (i), f and g are drawn independently from N (0, 1)N .
In case (ii), f and g are also both distributed according to N (0, 1)N , by the rotational symmetry
of the Gaussian measure and the unitarity of the Hadamard transform. But they are no longer
independent: they are related by g = Hf , where H is the N × N Hadamard matrix, given by
Hx,y = (−1)x·y /

√
N . The problem is to detect whether this correlation is present.

An algorithm for Real Forrelation proceeds by querying f (x) and g (y) values one at a
time, deciding which x or y to query next based on the values seen so far. We are interested in
the expected number of queries needed by the best algorithm.

4.1 Discrete Versus Continuous

As a first step, we need to show that a lower bound for Real Forrelation really does imply the
same lower bound for the original, Boolean Forrelation problem. The key to doing so is the
following result, which calculates the expected value of ΦF,G, for Boolean Forrelation instances
〈F,G〉 that are produced by “rounding” real instances 〈f, g〉 in a natural way.
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Theorem 9 Suppose 〈f, g〉 are drawn from the forrelated measure F . Define Boolean functions
F,G : {0, 1}n → {−1, 1} by F (x) := sgn (f (x)) and G (y) := sgn (g (y)). Then

Ef,g∼F [ΦF,G] =
2

π
±O

(
logN

N

)
.

Proof. By linearity of expectation, it suffices to calculate E [F (x) (−1)x·yG (y)] for some specific
x, y pair. Let v ∈ RN be a vector of independent N (0, 1) Gaussians, and let H be the N × N
Hadamard matrix (without normalization), with entries Hx,y = (−1)x·y. Then we can consider
〈F,G〉 to have been generated as follows:

F (x) = sgn (vx) ,

G (y) = sgn((Hv)y).

Now, (Hv)y can be expressed as the sum of Hx,yvx with the independent Gaussian random variable

Z :=
∑

x′ 6=x

Hx′,yvx′ .

Let G′ (y) := sgn (Z). Then

E
[
F (x) (−1)x·yG′ (y)

]
= E [sgn (vx) (−1)x·y sgn (Z)] = 0,

since vx and Z are independent Gaussians both with mean 0. Note that adding Hx,yvx back to Z
can only flip Z to having the same sign as sgn (vx) (−1)x·y, not the opposite sign—and hence can
only increase F (x) (−1)x·yG (y). It follows that

E [F (x) (−1)x·yG (y)] = 2Pr
[
G (y) 6= G′ (y)

]
.

The event G (y) 6= G′ (y) occurs if and only if the following two events both occur:

|Hx,yvx| > |Z| ,
sgn (Hx,yvx) 6= sgn (Z) .

Since Hx,y ∈ {−1, 1} and the distribution of vx is symmetric about 0, we can assume without loss
of generality that Hx,y = 1.

Let Z (t) be the probability density function of Z. Then

Pr [|Hx,yvx| > |Z| and sgn (Hx,yvx) 6= sgn (Z)] = 2

∫ ∞

t=0
Z (t) Pr [Hx,yvx > t] dt

= 2

∫ ∞

t=0
Z (t) Pr [vx > t] dt.

(Here the factor of 2 appears because we are restricting to the case Z > 0, and there is an equal
probability coming from the Z < 0 case.)
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As a linear combination of N − 1 independent N (0, 1) Gaussians, with ±1 coefficients, Z has
the N (0, N − 1) Gaussian distribution. Therefore

2

∫ ∞

t=0
Z (t) Pr [vx > t] dt =

2√
2π (N − 1)

∫ ∞

t=0
exp

(
− t2

2 (N − 1)

)
Pr [vx > t] dt

≤ 2√
2π (N − 1)

∫ ∞

t=0
Pr [vx > t] dt

=
2√

2π (N − 1)
E [|vx|]

=
2

π
√
N − 1

≤ 2

π
√
N

+O

(
1

N3/2

)
.

Here the fourth line follows from E [|X|] =
√

2/π when X is an N (0, 1) Gaussian. In the other
direction, for all C > 0 we have

2

∫ ∞

t=0
Z (t) Pr [vx > t] dt =

2√
2π (N − 1)

∫ ∞

t=0
exp

(
− t2

2 (N − 1)

)
Pr [vx > t] dt

≥ 2√
2πN

∫ C

t=0
exp

(
− t2

2 (N − 1)

)
Pr [vx > t] dt

≥ 2√
2πN

exp

(
− C2

2 (N − 1)

)∫ C

t=0
Pr [vx > t] dt

=
2√
2πN

exp

(
− C2

2 (N − 1)

)(
E [|vx|]−

1√
2π

∫ ∞

t=C
te−t2/2dt

)

=
2√
2πN

exp

(
− C2

2 (N − 1)

)(√
2

π
− e−C2/2

√
2π

)
.

If we set C :=
√
logN , then the above is

2√
2πN

(
1−O

(
logN

N

))(√
2

π
− 1√

2πN

)
≥ 2

π
√
N

−O

(
logN

N3/2

)
.

Therefore

E [ΦF,G] =
1

23n/2

∑

x,y∈{0,1}n
E [F (x) (−1)x·yG (y)]

=
N2

N3/2
·
(

2

π
√
N

±O

(
logN

N3/2

))

=
2

π
±O

(
logN

N

)
.
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Earlier, Aaronson [1, Theorem 9] proved a variant of Theorem 9, but with a badly suboptimal
constant: he was only able to show that

E [ΦF,G] ≥ cos

(
2 arccos

√
2

π

)
− o (1) ≈ 0.273,

compared to the exact value of 2/π ≈ 0.637 that we get here. As a result, if we used [1], we
would only be able to show hardness for distinguishing ΦF,G ≈ 0 from (say) ΦF,G ≥ 1

4 , rather than
ΦF,G ≈ 0 from ΦF,G ≥ 3

5 .
We now use Theorem 9 to give the desired reduction from Real Forrelation to Forrela-

tion.

Corollary 10 Suppose there exists a T -query algorithm that solves Forrelation with bounded
error. Then there also exists an O (T )-query algorithm that solves Real Forrelation with
bounded error.

Proof. Let 〈f, g〉 be an instance of Real Forrelation. Then we will produce an instance 〈F,G〉
of Boolean Forrelation exactly as in Theorem 9: that is, we set F (x) := sgn (f (x)) for all x and

G (y) := sgn (g (y)) for all y. If 〈f, g〉 was drawn from the uniform measure U , then E
[
Φ2
F,G

]
= 1

N

by symmetry. So by Markov’s inequality,

Pr

[
|ΦF,G| >

1

100

]
<

10000

N
.

By contrast, if 〈f, g〉 was drawn from the forrelated measure F , then

E [ΦF,G] ≥
2

π
− o (1)

by Theorem 9. By Markov’s inequality (and the fact that ΦF,G ≤ 1), it follows that for all constants
ε ∈ (0, 1/2),

Pr

[
ΦF,G ≥ 2

π
− ε

]
> ε.

So in particular,

Pr

[
ΦF,G ≥ 3

5

]
>

1

30
.

Using a constant amount of amplification, we can clearly produce an O (T )-query algorithm for
Forrelation that errs with probability at most (say) 1

100 on all 〈F,G〉. By the union bound,
such an algorithm distinguishes the case that 〈f, g〉 was drawn from U from the case that 〈f, g〉 was
drawn from F with bias at least

1

30
− 10000

N
− 2

(
1

100

)
= Ω(1) .

Because of Corollary 10, we see that, to prove a lower bound for Forrelation, it suffices
to prove the same lower bound for Real Forrelation. Furthermore, because the Real For-

relation problem is to distinguish two probability distributions, we can assume without loss of
generality that any algorithm for the latter is deterministic.
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4.2 Lower Bound for Real Forrelation

We now proceed to a lower bound on the query complexity of Real Forrelation. As a first
step, let us recast our problem more abstractly. For convenience, we will use ket notation (|v〉,
|w〉, etc.) for vectors in RN , even if the vectors do not represent quantum states and are not even
normalized. Let |1〉 , . . . , |N〉 be an orthonormal basis for RN , and let |̂ı〉 = H |i〉 be the Hadamard
transform of |i〉 (so that |1̂〉, . . . , |N̂ 〉 is also an orthonormal basis).

Then consider the following generalization of Real Forrelation, which we call Gaussian

Distinguishing. We are given a finite set V of unit vectors in RN , called “test vectors.” (In our

case, V happens to equal
{
|1〉 , . . . , |N〉 , |1̂〉, . . . , |N̂ 〉

}
.) In each step, we are allowed to pick any

test vector |v〉 ∈ V that hasn’t been picked in previous steps. We then “query” |v〉, getting back a
real-valued response av ∈ R. The problem is to distinguish the following two cases, with constant
bias:

(i) Each av is drawn independently from N (0, 1).

(ii) Each av equals 〈Ψ|v〉, where |Ψ〉 ∈ RN is a vector drawn from N (0, 1)N that is fixed through-
out the algorithm.

We will actually prove a general lower bound for Gaussian Distinguishing, which works
whenever |V| is not too large, and every pair of vectors in V is sufficiently close to orthogonal.
Here is our general result:

Theorem 11 Suppose |V| ≤ M , and |〈v|w〉| ≤ ε for all distinct vectors |v〉 , |w〉 ∈ V. Then any

classical algorithm for Gaussian Distinguishing must make Ω
(

1/ε
log(M/ε)

)
queries.

In our case (Real Forrelation), we have M = 2N and ε = 1/
√
N , so the lower bound we

get is Ω
( √

N
logN

)
. As a remark, the example of Real Forrelation shows that Theorem 11 is

tight in its dependence on 1/ε. One can also construct an example to show that the theorem’s
dependence on M is in some sense needed (if possibly not tight). That is, one does not have a

Ω̃ (1/ε) lower bound on query complexity for arbitrarily large M , but at best a Ω((1/ε)2/3) lower
bound.11 In the context of Real Forrelation, this means that, if the only thing we knew about
V was that |〈v|w〉| ≤ 1/

√
N for all distinct |v〉 , |w〉 ∈ V (so in particular, we had no upper bound

on V’s cardinality), then we could not hope to prove any lower bound better than Ω(N1/3).12

11Here is the example that shows this: let |1〉 , . . . , |n〉 be orthogonal unit vectors. Then for all 2n strings z =
z1 · · · zn ∈ {−1, 1}n, let |wz〉 be a vector such that 〈wz|i〉 = zi/n

3/2 for all i ∈ [n], and also such that the projections of
the |wz〉’s onto the orthogonal complement of |1〉 , . . . , |n〉 are all orthogonal to one another. Let V = {|1〉 , . . . , |n〉}∪
{|wz〉}z∈{−1,1}n . Then the inner product between any two distinct vectors in V is upper-bounded by ε = 1/n3/2 in

absolute value (the inner product between any two |wz〉’s is at most n/(n3/2)2 = 1/n2). On the other hand, here
is an algorithm that solves Gaussian Distinguishing using only O (n) ≪ 1/ε queries: first query |1〉 , . . . , |n〉 to
obtain a1, . . . , an. Let |ϕ〉 := a1 |1〉 + · · ·+ an |n〉. Next, find n distinct vectors |wz〉 that each have inner product

Θ
(
n/n3/2

)
= Θ(1/

√
n) with |ϕ〉 (such vectors can always be found, so long as |ai| = Ω(1) for Ω (n) values of i), and

query all of them, letting b1, . . . , bn be the results. In case (i), we have E [b1 + · · ·+ bn] and Var [b1 + · · ·+ bn] = n.
But in case (ii), we have E [b1 + · · ·+ bn] = Θ (

√
n) and Var [b1 + · · ·+ bn] = O (n), allowing the two cases to be

distinguished with constant bias.
12In fact one can prove a Ω̃(N1/3) lower bound even under this restriction—and more generally, in the statement

of Theorem 11, one can replace the lower bound Ω
(

1/ε
log(M/ε)

)
by Ω

(
(1/ε)2/3

(log 1/ε)1/3

)
, independent of M . We will briefly

remark on how to do this at the relevant point in our proof.
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For the remainder of the proof, we will fix ε = 1/
√
N for concreteness; but will leave M unfixed.

Note that N will only enter into the proof through its relation with ε; the fact that N is also the
dimensionality of the vectors will be irrelevant for us.13

The first question we need to answer is this: suppose an algorithm has queried test vectors
|v1〉 , . . . , |vt〉 ∈ V, and has gotten back responses a1, . . . , at ∈ R. Let D = {(|vi〉 , ai)}i represent
the data that the algorithm has seen. Then conditioned on D, how likely are we to be in case (i)
or case (ii)? How much probability measure do U and F respectively assign to D?

For case (i), the question is easy to answer: the probability measure that U assigns to D is just
the Gaussian one,

µU (D) =
e−∆U (D)/2

(2π)t/2
,

where
∆U (D) := a21 + · · · + a2t

is the squared 2-norm of the vector of responses seen so far. For case (ii), by contrast, we start
with |Ψ〉 drawn from N (0, 1)N ; then each data point restricts |Ψ〉 to the affine subspace Si defined
by 〈Ψ|vi〉 = ai. Let S (D) = S1 ∩ · · · ∩ St be the intersection of all these affine subspaces. Then
the probability measure that F assigns to D is simply the measure that N (0, 1)N assigns to S (D),
which in turn (by rotational symmetry) is just the minimum squared 2-norm of any point in S (D),
scaled by a dimension factor. That is,

µF (D) =
e−∆F (D)/2

(2π)t/2
,

where
∆F (D) := min

|Φ〉∈S(D)
〈Φ|Φ〉 .

Putting the two things together, we have

µF (D)

µU (D)
= exp

(
∆U (D)−∆F (D)

2

)
.

Thus, let
∆ (D) := ∆U (D)−∆F (D) .

Then if we can just show that |∆(D)| remains o (1) after t queries, we will have shown that the
algorithm cannot have distinguished case (i) from case (ii) with constant bias after t queries. Thus,
upper-bounding |∆(D)| will be our focus for the rest of the proof.

13By slightly modifying the example from footnote 11—to make the projections of the |wz〉’s onto the orthogonal
complement of |1〉 , . . . , |n〉 not exactly orthogonal to each other, but merely approximately orthogonal—one can

produce an instance of Gaussian Distinguishing whose classical query complexity is only O((1/ε)2/3), and which

also satisfies N = O
(
n4

)
= O((1/ε)8/3). This is an exponential improvement in the dimensionality N compared to

footnote 11. It would be interesting to know whether enforcing, say, N = O((1/ε)2) rules out such examples.
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4.3 Upper-Bounding |∆(D)|
As a first observation, we cannot hope to show that |∆(D)| remains small with certainty. Indeed,
even after just 2 queries, |∆(D)| could be unboundedly large, if the responses a1 and a2 were far
out in the tails of N (0, 1). Thus, our only hope is to show that, after few enough queries, |∆(D)|
remains small with high probability. But do we mean high probability with respect to U or F?
Crucially, we claim that the answer doesn’t matter. To see this, suppose (for example) that we
have |∆(D)| = o (1) with probability 1 − o (1) over data D drawn according to U . Then with
probability 1− o (1) over U , we have

µF (D)

µU (D)
= exp

(
∆(D)

2

)
= exp (±o (1)) = 1± o (1) .

It follows that we also have |∆(D)| = o (1) with probability 1− o (1) over data D drawn according
to F . So for simplicity, we will assume the data to be drawn according to U .

Let us look more closely at the difference ∆ (D) = ∆U (D)−∆F (D). The ∆U (D) component
is easy to compute, since it is just a21+ · · ·+a2t . For the ∆F (D) component, on the other hand, we
need to solve the linear-algebra problem of finding the distance between the affine subspace S (D)
and the origin. We can do this using Gram-Schmidt orthogonalization (see Section 3.3). That is,
for each i ∈ [t], we define |wi〉 recursively as the normalized projection of |vi〉 onto the orthogonal
complement of the subspace spanned by |w1〉 , . . . , |wi−1〉. We can express |wi〉 recursively as

|wi〉 = βi


|vi〉 −

i−1∑

j=1

〈vi|wj〉 |wj〉


 ,

where βi is a normalizing constant. Let us also define

bi = 〈Ψ|wi〉

= βi


〈Ψ|vi〉 −

i−1∑

j=1

〈vi|wj〉 〈Ψ|wj〉




= βi


ai −

i−1∑

j=1

〈vi|wj〉 bj


 .

Then we have:

∆F (D) = min
|Φ〉∈S(D)

〈Φ|Φ〉

= min
|Φ〉∈S(D)

t∑

i=1

〈Φ|wi〉2

=

t∑

i=1

〈Ψ|wi〉2

= b21 + · · · + b2t

where the third line used the orthogonality of the |wi〉’s.
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To simplify matters, let us define a variant of bi where we omit all the normalization factors βi:

ci := ai −
i−1∑

j=1

〈vi|wj〉 cj . (2)

Also, call the data D well-behaved if |ai| ≤
√
2 ln 100t for all i ∈ [t].

Proposition 12 D is well-behaved with probability at least 0.99 over U .

Proof. Follows from the union bound, together with the fact that each ai is an independentN (0, 1)
Gaussian, so

Pr
[
|ai| >

√
2 ln 100t

]
<

1

100t
.

Then we have the following useful lemma.

Lemma 13 Let t ≤
√
N/10, and suppose D is well-behaved. Then |ci − bi| = O

(
i
√
logN
N

)
for all

i ∈ [t].

Proof. If |ai| ≤
√
2 ln 100t for all i ∈ [t], then certainly |bi| = O(

√
log t) = O(

√
logN) for all i ∈ [t]

as well, since

|bi| ≤ βi


|ai|+

i−1∑

j=1

|〈vi|wj〉| |bj |




≤
(
1 +

0.2√
N

)
|ai|+

0.2√
N

i−1∑

j=1

|bj|




= O

(
max
j∈[i]

|aj |
)
,

where the second line used Lemma 7 and the third used i ≤ t ≤
√
N/10, together with induction

on j. Now,

ci − bi = ai −
i−1∑

j=1

〈vi|wj〉 cj − βi


ai −

i−1∑

j=1

〈vi|wj〉 bj




= (1− βi) ai −
i−1∑

j=1

〈vi|wj〉 (cj − βibj) .
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So

|ci − bi| ≤ (βi − 1) |ai|+
i−1∑

j=1

|〈vi|wj〉| (|cj − bj|+ (βi − 1) |bj |)

≤ 2i |ai|
N

+
0.2√
N

i−1∑

j=1

(
2i |bj |
N

+ |cj − bj|
)

= O

(
i
√
logN

N
+
i2
√
logN

N3/2

)
+

1√
N

i−1∑

j=1

|cj − bj |

= O

(
i
√
logN

N

)
+

1√
N

i−1∑

j=1

|cj − bj |

where the second line used Lemma 7 and the last used i ≤ t ≤
√
N/10. So, letting εi be an upper

bound on |cj − bj| for all j ≤ i, we have

εi = O

(
i
√
logN

N

)
+

i√
N
εi−1

= O

(
i
√
logN

N

)
+

i√
N
εi.

Rearranging, we have

0.9εi = O

(
i
√
logN

N

)

and are done.
As a first consequence of Lemma 13, if D is well-behaved, then

|ci| = O

(√
log t+ i

√
logN

N

)
= O(

√
log t)

for all i ∈ [t]. As a more important consequence, let

∆′
F (D) := c21 + · · ·+ c2t ,

and let
∆′ (D) := ∆U (D)−∆′

F (D) .

Then we can restrict our attention to upper-bounding |∆′ (D)|, rather than the more complicated
|∆(D)|. For by Lemma 13, if D is well-behaved, then

∣∣∆F (D)−∆′
F (D)

∣∣ =
∣∣∣∣∣

t∑

i=1

(
b2i − c2i

)
∣∣∣∣∣

≤
t∑

i=1

(|bi|+ |ci|) |ci − bi|

=
t∑

i=1

O

(√
logN · i

√
logN

N

)

= O

(
t2
logN

N

)
.
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So if |∆′ (D)| = o (1) and t = o
(√

N
logN

)
, then by the triangle inequality,

|∆(D)| ≤
∣∣∆′ (D)

∣∣+
∣∣∆F (D)−∆′

F (D)
∣∣

is o (1) as well. Thus, from now on our goal is to upper-bound |∆′ (D)|.
Let

ri := ai − ci =
i−1∑

j=1

〈vi|wj〉 cj . (3)

Notice that, if we unravel the recursive definition of cj , we find that ri is a linear combination
of a1, . . . , ai−1, with no dependence on ai. Though we will not need this for the proof, ri has an
interesting interpretation, as the expected value of ai after a1, . . . , ai−1 have been queried but before
ai has been queried, assuming the data were drawn from the forrelated distribution F . Now,

∆′ (D) = ∆U (D)−∆′
F (D)

=
t∑

i=1

(
a2i − c2i

)

=
t∑

i=1

ri (2ai − ri) . (4)

As we show in the next lemma, the above means that our problem can in turn be reduced to
upper-bounding the ri’s.

Lemma 14 Suppose |ri| ≤ 1
1750

√
t
for all i ∈ [t]. Then

∣∣∣∣∣

t∑

i=1

riai

∣∣∣∣∣ ≤ 0.01

with probability at least 0.99 over the data D.

Proof. Notice that each riai has an expectation of 0, even after conditioning on a1, . . . , ai−1. This
is because, according to the measure U , each ai is a “fresh” N (0, 1) Gaussian, uncorrelated with
a1, . . . , ai−1, whereas ri is a linear combination of a1, . . . , ai−1 that does not depend on ai. Thus,
r1a1, . . . , rtat forms a martingale difference sequence, in which, conditioned on its predecessors,
each riai is an N

(
0, r2i

)
Gaussian, for some |ri| ≤ 1

1750
√
t
. Set ǫ := 1/1750. Then by Lemma 8,

Pr

[∣∣∣∣∣

t∑

i=1

riai

∣∣∣∣∣ > 0.01

]
≤ Pr

[∣∣∣∣∣

t∑

i=1

riai

∣∣∣∣∣ >
√
56 ln 200

ǫ√
t

√
t

]

< 2 exp

(
−(

√
56 ln 200)2

56

)

= 0.01.
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Thus, suppose |ri| ≤ 1
1750

√
t
for all i ∈ [t]. Then by Lemma 14 and equation (4), we have

∣∣∆′ (D)
∣∣ =

∣∣∣∣∣

t∑

i=1

ri (2ai − ri)

∣∣∣∣∣

≤ 2

∣∣∣∣∣

t∑

i=1

riai

∣∣∣∣∣+
t∑

i=1

r2i

≤ 0.02 +
1

17502

with probability at least 0.99 over D. This implies that the algorithm has not yet succeeded at
distinguishing F from U with bias (say) 1/2. So in summary, if we can show that with high
probability, |ri| = O(1/

√
t) for all i ∈ [t], then we have shown that the algorithm must make Ω (t)

queries.

4.4 Upper-Bounding |ri|
We now turn to the problem of upper-bounding |ri| (with high probability over D), for all i ∈ [t].
The better the upper bound on |ri| we can achieve, the better will be our lower bound on t. To
illustrate, it is easy to prove the following crude bound:

Proposition 15 If D is well-behaved and t <
√
N/10, then |ri| = O

(
i
√

logN
N

)
for all i ∈ [t].

Proof. We noted before that if D is well-behaved then |ci| = O(
√
log t) = O(

√
logN) for all i. So

by Lemma 7,

|ri| ≤
i−1∑

j=1

|〈vi|wj〉| |cj |

≤ i · 2√
N

·O(
√

logN).

Setting t
√

logN
N = 1/

√
t and solving, Proposition 15 yields a lower bound of t = Ω

((
N

logN

)1/3)

queries.14

With some more work, one can prove a bound of |ri| = O

(√
i logMt

N + i2

N

)
, which yields a lower

bound of t = Ω
(
N2/5

)
queries whenever M ≤ exp

(
O
(
N1/5

))
. In this section, however, we will

go for the bound |ri| = O

(√
i logMt

N

)
, which yields a lower bound of t = Ω

( √
N

logMN

)
queries. For

Real Forrelation, of course, we have M = 2N , and therefore t = Ω
( √

N
logN

)
as desired.

Our strategy will be to make repeated use of the following lemma.

14Furthermore, notice that Proposition 15 has no dependence on the number of test vectors M . This is why it

implies a Ω
(

(1/ε)2/3

(log 1/ε)1/3

)
lower bound for Gaussian Distinguishing, independent of M .
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Lemma 16 (Central Martingale Lemma) Suppose 200 ≤ t <
√
N/10. Then with probability

at least 0.99 over data D drawn from U , we have

∣∣∣∣∣∣

i−1∑

j=1

〈v|wj〉 aj

∣∣∣∣∣∣
≤ 30

√
i lnMt

N

for all i ∈ [t] and for all test vectors |v〉 ∈ V.

Proof. Fix any |v〉 ∈ V. By Lemma 7, we have |〈v|wj〉| ≤ 2/
√
N for all |v〉 and |wj〉. Also,

recall that each aj is a “fresh” N (0, 1) Gaussian, and that 〈v|wj〉 does not depend on aj. Thus,
〈v|w1〉 a1, . . . , 〈v|wi−1〉 ai−1 forms a martingale difference sequence, in which, conditioned on its
predecessors, each 〈v|wj〉 aj is an N (0, 〈v|wj〉2) Gaussian. So by Lemma 8,

Pr



∣∣∣∣∣∣

i−1∑

j=1

〈v|wj〉 aj

∣∣∣∣∣∣
> 30

√
i lnMt

N


 < Pr



∣∣∣∣∣∣

i−1∑

j=1

〈v|wj〉 aj

∣∣∣∣∣∣
>
√
56 ln(200Mt)

2√
N

√
i




< 2 exp

(
−(
√

56 ln(200Mt))2

56

)

=
1

100Mt
.

The result now follows by taking the union bound over all |v〉 ∈ V and i ∈ [t].
We can now prove the desired upper bound on |ri|.

Lemma 17 Suppose t <
√
N/10. Then with probability at least 0.99 over D, we have |ri| =

O

(√
i logMt

N

)
for all i ∈ [t].

Proof. Taking the equation for ri (equation (3)), and unraveling the recursive definition of cj
(equation (2)), we get

ri =
i−1∑

j=1

〈vi|wj〉 cj

=
i−1∑

j=1

〈vi|wj〉
(
aj −

j−1∑

k=1

〈vj |wk〉 ck
)

=

i−1∑

j=1

〈vi|wj〉
(
aj −

j−1∑

k=1

〈vj |wk〉
(
ak −

k−1∑

ℓ=1

〈vk|wℓ〉 cℓ
))

...
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Thus,

|ri| ≤

∣∣∣∣∣∣

i−1∑

j=1

〈vi|wj〉 aj

∣∣∣∣∣∣
+

i−1∑

j=1

|〈vi|wj〉|
∣∣∣∣∣

j−1∑

k=1

〈vj |wk〉 ak
∣∣∣∣∣+

i−1∑

j=1

|〈vi|wj〉|
j−1∑

k=1

|〈vj|wk〉|
∣∣∣∣∣

k−1∑

ℓ=1

〈vk|wℓ〉 aℓ
∣∣∣∣∣+ · · ·

≤ 30

√
i lnMt

N
+

i−1∑

j=1

2√
N

30

√
j lnMt

N
+

i−1∑

j=1

j−1∑

k=1

(
2√
N

)2

30

√
k lnMt

N
+ · · ·

≤ 30

√
lnMt

N

[
√
i+

2√
N
i3/2 +

(
2√
N

)2

i5/2 + · · ·
]

= 30

√
i lnMt

N

[
1 +

2i√
N

+

(
2i√
N

)2

+ · · ·
]

= O

(√
i logMt

N

)

where the second line used Lemmas 7 and 16.

5 Simulation of t-Query Quantum Algorithms

Let A be a quantum algorithm that makes t = O (1) queries to a Boolean input x ∈ {−1, 1}N , and
then either accepts or rejects. In this section, we show how to estimate A’s acceptance probability,
on all inputs x, by a classical, nonadaptive randomized algorithm that makes only O(N1−1/2t)
queries to x.

So for example, we can simulate any 1-query quantum algorithm usingO(
√
N) classical queries—

thereby showing that the 1 versus Ω(
√
N

logN ) separation of Section 4 is nearly tight. More generally,
resolving an open problem of Buhrman et al. [8], we find that there is no partial Boolean function
whose quantum query complexity is constant but whose randomized query complexity is linear.

We obtain our simulation of quantum algorithms as a consequence of a much more general
result: namely, that any bounded, degree-k polynomial p : {−1, 1}N → R, which satisfies a technical
condition called “block-multilinearity,” can be estimated by querying only O(N1−1/k) of its variables.
This result makes no direct reference to quantum computing, and seems likely to have independent
applications—for example, to the design of classical sublinear algorithms. We strongly conjecture
that the block-multilinearity condition can be removed, which would further heighten the non-
quantum interest of this result. In Appendix 8, we prove that conjecture in the special case
k = 2.

More formally, let p : RN → R be a real polynomial of degree k. Since we will only care
about p’s behavior on the Boolean hypercube {−1, 1}N , we can assume without loss of generality
that p is multilinear (that is, that no variable is raised to a higher power than 1). We call p
bounded if p (x) ∈ [−1, 1] for all x ∈ {−1, 1}N .15 Now, we call p block-multilinear if its N variables
x1, . . . , xN can be partitioned into k blocks, R1, . . . , Rk, so that every monomial of p contains

15In quantum query complexity, normally we would call a polynomial p “bounded” if p (x) ∈ [0, 1] for all x ∈
{−1, 1}N—in other words, if p represents a probability. As we will see, however, we need to consider polynomials
that can represent arbitrary inner products between vectors of norm at most 1, and can therefore only assume
p (x) ∈ [−1, 1].
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exactly one variable from each block. Note that block-multilinearity implies, in particular, that p
is homogeneous. Also, by introducing at most O (N) dummy variables, we can assume without
loss of generality that every block has the same size, |R1| = · · · = |Rk| = n = N/k.

We can now state the main result of this section.

Theorem 18 Let p : {−1, 1}N → [−1, 1] be any bounded block-multilinear polynomial of degree
k. Then there exists a classical randomized algorithm that, on input x ∈ {−1, 1}N , nonadaptively

queries O(
(
N/ε2

)1−1/k
) bits of x, and then outputs an estimate p̃ such that with high probability,

|p̃− p(x1, . . . , xN )| ≤ ε.

(Here the big-O hides a multiplicative constant that is exponential in k.)

Before plunging into the proof of Theorem 18, let us explain why it implies the desired conclusion
about quantum algorithms. The key observation relating quantum query complexity to low-degree
polynomials was made by Beals et al. [5] in 1998:

Lemma 19 (Beals et al. [5]) Given any quantum algorithm A that makes t queries to a Boolean
input x ∈ {−1, 1}N , the probability that A accepts can be expressed as a real multilinear polynomial
p (x), of degree at most 2t. (Thus, in particular, p (x) ∈ [0, 1] for all x ∈ {−1, 1}N .)

Note that, if Theorem 18 worked for arbitrary polynomials (rather than only block-multilinear
ones), then combining it with Lemma 19 would immediately give the simulation of quantum algo-
rithms that we want.

Fortunately, one can strengthen Lemma 19, to show that a t-query quantum algorithm gives
rise, not just to any bounded degree-2t polynomial, but to a block-multilinear one.

Lemma 20 Let A be a quantum algorithm that makes t queries to a Boolean input x ∈ {−1, 1}N .
Then there exists a degree-2t block-multilinear polynomial p : R2tN → R, with 2t blocks of N
variables each, such that

(i) the probability that A accepts x equals p (x, . . . , x) (with x repeated 2t times), and

(ii) p (z) ∈ [−1, 1] for all z ∈ {−1, 1}2tN .

Proof. Assume for simplicity (and without loss of generality) that A involves real amplitudes only.
For all j ∈ [t] and i ∈ [N ], let xj,i be the value of xi that A’s oracle returns in response to its jth

query. Of course, in any “normal” run of A, we will have xj,i = xj′,i for all j, j
′: that is, the value

of xi will be consistent across all t queries. But it is perfectly legitimate to ask what happens if x
changes from one query to the next. In any case, A will have some normalized final state, of the
form ∑

i,w

αi,w (x1,1, . . . , xt,N ) |i, w〉 .

Furthermore, following Beals et al. [5], it is easy to see that each amplitude αi,w can be written
as a degree-t block-multilinear polynomial in the tN variables x1,1, . . . , xt,N , with one block of N
variables, Rj = {xj,1, . . . , xj,N}, corresponding to each of the t queries. (If A has basis states
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that do not participate in queries, then we can deal with that by introducing dummy variables,
x1,0, . . . , xt,0, which are set to 1 in any “normal” run of A.)

Next, for all j ∈ [t] and i ∈ [N ], we create a second variable xt+j,i, which just like xj,i, represents
the value of xi that A’s oracle returns in response to its jth query. Let Acc be the set of all accepting
basis states, and consider the polynomial

p (x1,1, . . . , x2t,N ) :=
∑

(i,w)∈Acc

αi,w (x1,1, . . . , xt,N )αi,w (xt+1,1, . . . , x2t,N ) .

By construction, p is a degree-2t block-multilinear polynomial in the 2tN variables x1,1, . . . , x2t,N ,
with one block of N variables, Rj = {xj,1, . . . , xj,N}, for each j ∈ [2t]. Furthermore, if we repeat

the same input x ∈ {−1, 1}N across all 2t blocks, then

p (x, . . . , x) =
∑

(i,w)∈Acc

α2
i,w (x, . . . , x)

is simply the probability that A accepts x. Finally, even if x1,1, . . . , x2t,N ∈ {−1, 1}2tN is completely
arbitrary, p (x1,1, . . . , x2t,N ) still represents an inner product between two vectors,

∑

(i,w)∈Acc

αi,w (x1,1, . . . , xt,N ) |i, w〉 and
∑

(i,w)∈Acc

αi,w (xt+1,1, . . . , x2t,N ) |i, w〉 .

Since both of these vectors have norm at most 1, their inner product is bounded in [−1, 1].
As a side note, given any Boolean function f : {−1, 1}N → {0, 1}, one can consider the minimum

degree of any block-multilinear polynomial p that approximates f . More formally, let the block-

multilinear approximate degree of f , or b̃mdeg (f), be the minimum degree of any block-multilinear
polynomial p : RkN → R, with k blocks of N variables each, such that

(i) |p (x, . . . , x)− f (x)| ≤ 1
3 for all x ∈ {−1, 1}N (or alternatively, for all x satisfying some

promise), and

(ii) p (x1,1, . . . , xk,N ) ∈ [−1, 1] for all x1,1, . . . , xk,N ∈ {−1, 1}kN .

Recall that d̃eg (f), the “ordinary” approximate degree of f , is the minimum degree of any
polynomial p : RN → R such that |p (x)− f (x)| ≤ 1

3 for all x. Lemma 19 of Beals et al. [5] implies

that d̃eg (f) ≤ 2Q (f) for all f , where Q (f) is the bounded-error quantum query complexity of f .

Clearly d̃eg (f) ≤ b̃mdeg (f) for all f , by identifying variables across the k blocks. Also, Lemma

20 implies that b̃mdeg (f) ≤ 2Q (f). Putting these facts together, we find that b̃mdeg (f) is a

lower bound on quantum query complexity that is at least as good as d̃eg (f), and might sometimes

be better. We do not currently know whether there is any asymptotic separation between d̃eg (f)

and b̃mdeg (f), nor do we know whether there is an asymptotic separation between b̃mdeg (f) and

Q (f). Note that Ambainis [4] exhibited a Boolean function f such that d̃eg (f) = O
(
Q(f)0.76

)
.

By contrast, we do not know any techniques for upper-bounding b̃mdeg (f), that do not also
upper-bound Q (f).
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5.1 Preprocessing the Polynomial

We are now ready to prove Theorem 18. Thus, suppose

p (x1,1, . . . , xk,N) =
∑

i1,...,ik∈[N ]

ai1,...,ikx1,i1 · · · xk,ik

is a bounded block-multilinear polynomial of degree k. Then in our estimation procedure, the
first step is to preprocess p, in order to “balance” it, and get rid of any variables that are “too
influential.” More formally, set δ := ε2/N . Then we wish to achieve the following requirement:
for every nonempty set S ⊆ [k],

ΛS :=
∑

(ij)j∈S


 ∑

(ij)j /∈S

ai1,...,ik




2

≤ δ. (5)

The basic operation that we use to achieve this requirement is variable-splitting. The opera-
tion consists of taking a variable xj,l and replacing it by m variables, in the following way. We
introduce m new variables xj,l1 , . . . , xj,lm, and define p′ as the polynomial obtained by substituting
xj,l1

+···+xj,lm

m in the polynomial p instead of xj,l. We refer to this as splitting xj,l into m variables.
Observe that variable-splitting preserves the property that p is bounded in [−1, 1] at all Boolean
points—for, regardless of how we set xj,l1 , . . . , xj,lm, the value of p′ will simply equal the value of p

with xj,l set to
xj,l1

+···+xj,lm

m , which in turn is a convex combination of p with xj,l set to −1 and p
with xj,l set to 1.

Lemma 21 Let S ⊆ [k] be nonempty. Then there is a sequence of variable-splittings that intro-
duces at most 1/δ new variables, and that produces a polynomial p′ that satisfies ΛS ≤ δ.

Proof. We start with the case S = [k]. Then we have to ensure

∑

i1,...,ik∈[N ]

a2i1,...,ik ≤ δ, (6)

where a2i1,...,ik is the coefficient of x1,i1 . . . xk,ik . Let

Vi :=
∑

i2,...,ik∈[N ]

a2i1,i2,...,ik .

We now randomly set each xj,ij for j ≥ 2, to be 1 or −1 with independent probability 1/2. Let

Xi :=
∑

i2,...,ik∈[N ]

ai1,i2...,ikx2,i2 · · · xk,ik .

Then E[X2
i ] = Vi. By the concavity of the square root function, this means E[|Xi|] ≥

√
Vi. Hence

E[|X1|+ · · ·+ |XN |] ≥
√
V1 + · · ·+

√
VN .
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If we set x1,i = 1 whenever Xi ≥ 0 and x1,i = −1 otherwise, we get

p(x1,1, . . . , xk,N ) =

N∑

i=1

x1,iXi =

N∑

i=1

|Xi| .

Since p(x1,1, . . . , xk,N ) is bounded in [−1, 1] at all Boolean points, this means that

√
V1 + · · ·+

√
VN ≤ 1.

We now perform a sequence of variable-splittings. For each i ∈ [N ], let mi :=
⌊√
Vi/δ

⌋
, so that

δmi ≤
√
Vi < δ (mi + 1) .

Then we split x1,i into mi + 1 variables. This replaces each term ai1,...,ikx1,i1 · · · xk,ik with mi + 1
terms that each equal 1

mi+1ai1,...,ikx1,i1 · · · xk,ik . Therefore, this variable-splitting reduces Vi to
Vi/ (mi + 1), and decreases the sum (6) by mi

mi+1Vi.
After we have performed such variable-splittings for each i, the sum (6) becomes

N∑

i=1

Vi
mi + 1

≤
N∑

i=1

Vi√
Vi/δ

= δ
(√

V1 + · · ·+
√
VN

)

≤ δ.

The number of new variables that get introduced equals

N∑

i=1

mi ≤
N∑

i=1

√
Vi
δ

≤ 1

δ
.

The case S ⊂ [k] reduces to the case S = [k] in the following way. For typographical con-
venience, assume that S = [ℓ] for some ℓ. Then substituting xi,j = 1 for i > ℓ transforms the
polynomial p(x1,1, . . . , xk,N) into the polynomial

p′(x1,1, . . . , xℓ,N ) =
∑

i1,...,iℓ∈[N ]

āi1,...,iℓx1,i1 · · · xℓ,iℓ

where
āi1,...,iℓ :=

∑

iℓ+1,...,ik∈[N ]

ai1,...,ik .

The statement of Lemma 21 now becomes

∑

i1,...,iℓ∈[N ]

ā2i1,...,iℓ ≤ δ

which can be achieved similarly to the previous case.
Lemma 21 has the following consequence.
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Corollary 22 There is a sequence of variable-splittings that introduces at most 2k/δ new variables,
and that produces a polynomial p′ that satisfies ΛS ≤ δ for every nonempty subset S ⊆ [k].

Proof. We simply apply the procedure of Lemma 21 once for each nonempty S ⊆ [k], in any order.
Since there are 2k−1 possible choices for S, and since each iteration adds at most 1/δ variables, the
total number of added variables is at most 2k/δ. Furthermore, we claim that later iterations can
never “undo” the effects of previous iterations. This is because, if we consider how the quantity

ΛS =
∑

(ij)j∈S


 ∑

(ij)j /∈S

ai1,...,ik




2

is affected by variable-splittings applied to the variables in Rj, there are only two possibilities: if
j ∈ S then ΛS can decrease, while if j /∈ S then ΛS remains unchanged.

We now apply Corollary 22 with the choice δ = ε2/N . This introduces at most 2kN/ε2 =
O
(
N/ε2

)
new variables, and achieves ΛS ≤ ε2/N for every S.

From now on, we will use n to denote the “new” number of variables per block, which is a
constant factor greater than the “old” number N .

5.2 The Estimator

Let
bi1,...,ik := ai1,...,ikx1,i1 · · · xk,ik .

Then
p(x1,1, . . . , xk,n) =

∑

i1,...,ik

bi1,...,ik .

We can estimate this sum in the following way. For each i, ji independently, let yi,ji be a {0, 1}-
valued random variable with Pr[yi,ji = 1] = 1

n1/k . We then take

P := bi1,...,iky1,i1 · · · yk,ik
as our estimator.

Clearly, this is an unbiased estimator of p(x1,1, . . . , xk,n), with expectation

E[P ] =
p(x1, . . . , xn)

n
.

The result we would like to prove is that Var[P ] = O(δ/n). If this is true, then performing O (1)
repetitions of P allows us to estimate p(x1,1, . . . , xk,n) with precision

√
δn =

√
(ε2/n) · n = ε.

This estimation can be carried out with O(n1−1/k) queries because, to calculate P , we only need
the values of xi,j with yi,j = 1, and the number of such variables is O(n1−1/k), with a very high
probability. Note that

O(n1−1/k) = O

((
N

δ

)1−1/k
)

= O

((
N

ε2

)1−1/k
)
,

in terms of the number of variables N of our original polynomial. Here the big-O hides a factor of
exp (k).
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5.3 Warmup

As a warmup, consider the following simpler estimator. For each i1, . . . , ik independently, let
yi1,...,ik be a {0, 1}-valued random variable with

Pr[yi1,...,ik = 1] =
1

n
.

Then let
P ′ :=

∑

i1,...,ik∈[n]
bi1,...,ikyi1,...,ik .

Once again, P ′ is clearly an unbiased estimator for p, with expectation E[P ′] = p/n.
Let us start by proving that Var[P ′] = O(δ/n). Let

B =
∑

i1,...,ik∈[n]
b2i1,...,ik .

Then

Var[P ′] =
∑

i1,...,ik∈[n]
b2i1,...,ik Var[yi1,...,ik ]

=
∑

i1,...,ik∈[n]
b2i1,...,ik

(
1

n
− 1

n2

)

≤ 1

n

∑

i1,...,ik∈[n]
b2i1,...,ik

=
B

n
.

Taking S = [k] in equation (5) implies that B ≤ δ and hence Var[P ′] ≤ δ/n.

5.4 Second Estimator

The variance of the original estimator P is

Var[P ] =
∑

i1,...,ik∈[n]
b2i1,...,ik Var [y1,i1 · · · yk,ik ]

+
∑

(i1,...,ik)6=(i′1,...,i
′
k)

bi1,...,ikbi′1,...,i′k Cov
[
y1,i1 · · · yk,ik , y1,i′1 · · · yk,i′k

]

= Var[P ′] +
∑

(i1,...,ik)6=(i′1,...,i
′
k)

bi1,...,ikbi′1,...,i′k Cov
[
y1,i1 · · · yk,ik , y1,i′1 · · · yk,i′k

]
.
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If ij 6= i′j for all j, then
∏

j yj,ij and
∏

j yj,i′j are independent random variables and the covariance

between them is zero. If ij = i′j for ℓ values of j, then

Cov


∏

j

yj,ij ,
∏

j

yj,i′j


 = Pr


∏

j

yj,ij =
∏

j

yj,i′j = 1


− Pr


∏

j

yj,ij = 1


Pr


∏

j

yj,i′j = 1




=
1

(
n1/k

)2k−ℓ
−
(

1
(
n1/k

)k

)2

=
1

n2−ℓ/k
− 1

n2
.

Let Sℓ consist of all pairs (i1, . . . , ik), (i
′
1, . . . , i

′
k) such that ij = i′j for exactly ℓ values of j. Let Tℓ

be the multiset consisting of the elements of Sℓ, . . . , Sk−1, with each element of Sℓ′ occurring
(ℓ′
ℓ

)

times. Then by inclusion-exclusion, we have

Sℓ = Tℓ −
(
ℓ+ 1

ℓ

)
Tℓ+1 +

(
ℓ+ 2

ℓ

)
Tℓ+2 − · · ·

where
(ℓ′
ℓ

)
Tℓ′ denotes the union of ℓ′ copies of Tℓ′ . Hence,

Var[P ] = Var[P ′] +
k−1∑

ℓ=1

(
1

n2−ℓ/k
− 1

n2

) ∑

(i1,...,ik),(i
′
1,...,i

′
k)∈Sℓ

bi1,...,ikbi′1,...,i′k

= Var[P ′] +
k−1∑

ℓ=1

pℓ
∑

(i1,...,ik),(i
′
1,...,i

′
k)∈Tℓ

bi1,...,ikbi′1,...,i′k (7)

where

pℓ :=

ℓ∑

j=1

(−1)ℓ−j

(
ℓ

j

)(
1

n2−j/k
− 1

n2

)
.

For large n, we have pℓ = (1± o(1)) 1
n2−ℓ/k . To complete the proof, we just need one more lemma.

Lemma 23 ∑

(i1,...,ik),(i
′
1,...,i

′
k)∈Tℓ

bi1,...,ikbi′1,...,i′k ≤ δ

(
k

ℓ

)
.

Proof. Let S ⊆ [k] with |S| = ℓ. We define TS as the set consisting of all pairs (i1, . . . , ik), (i
′
1, . . . , i

′
k)

such that ij = i′j for all j ∈ S and (i1, . . . , ik) 6= (i′1, . . . , i
′
k). Then

Tℓ =
∑

S : |S|=ℓ

TS ,

and ∑

((i1,...,ik),(i′1,...,i′k))∈Tℓ

bi1,...,ikbi′1,...,i′k =
∑

S : |S|=ℓ

∑

((i1,...,ik),(i′1,...,i′k))∈TS

bi1,...,ikbi′1,...,i′k .
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The lemma now follows by showing that, for each S, the inner sum is at most δ. To show that, we
first add all pairs ((i1, . . . , ik), (i1, . . . , ik)) to TS . This may only increase the sum because a2i1,...,ik
is always at least 0. Then, we group together all terms with the same values of ij = i′j for j ∈ S.
The sum of those is equal to

∑

(ij ,i′j)j /∈S

bi1,...,ikbi′1,...,i′k =


 ∑

(ij)j /∈S

bi1,...,ik




2

.

Because of (5), the sum of all such squares, over all ij , j ∈ S is at most δ.
Combining Lemma 23 with (7), we obtain

Var[P ] = Var[P ′] +
k−1∑

ℓ=1

pℓ ·O (δ)

= Var[P ′] +
k−1∑

ℓ=1

O

(
δ

n2−ℓ/k

)

= Var[P ′] +O

(
δ

n1+1/k

)

= O

(
δ

n

)
.

6 BQP-Completeness

In this section, we prove that (an explicit version of) the k-fold Forrelation problem, with
k = poly (n), is complete for the complexity class PromiseBQP. More generally, for any k, we will
show how explicit k-fold Forrelation captures the power of quantum circuits of depth O (k).

Recall that, in explicit k-fold Forrelation, we are given as input k Boolean circuits C1, . . . , Ck,
which compute the Boolean functions f1, . . . , fk : {0, 1}n → {−1, 1} respectively. The problem is
to decide whether the “twisted sum”

Φf1,...,fk :=
1

2(k+1)n/2

∑

x1,...,xk∈{0,1}n
f1 (x1) (−1)x1·x2 f2 (x2) (−1)x2·x3 · · · (−1)xk−1·xk fk (xk)

satisfies |Φf1,...,fk | ≤ 1
100 or Φf1,...,fk ≥ 3

5 , promised that one of those is the case. As we observed
in Proposition 6, this problem is clearly in PromiseBQP, so our task reduces to showing that it’s
PromiseBQP-hard—i.e., that any quantum circuit can be encoded into it.

For this task, it will suffice to consider an extremely restricted version of k-fold Forrelation,
in which each function fi depends on at most 3 of its input bits.

We will appeal to a well-known result of Shi [21], who showed that the gate set {H,Toffoli} is
already universal for quantum computation. Recall here that

H =
1√
2

(
1 1
1 −1

)

is the Hadamard gate, while the Toffoli gate is the 3-qubit gate that maps each basis vector |x, y, z〉
to |x, y, z ⊕ xy〉. The Toffoli gate is equivalent, under conjugating the third qubit by Hadamards,
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to the controlled-controlled-sign or CCSIGN gate, which maps each |x, y, z〉 to (−1)xyz |x, y, z〉.
Thus, we deduce that the set {H,CCSIGN} is also universal for quantum computation.

In a bit more detail, given a quantum circuit Q composed of Hadamard and CCSIGN gates,
acting on n qubits, define

AQ := 〈0|⊗nQ |0〉⊗n ,

so that A2
Q is the probability that Q returns the all-0 state to itself. Then let QSim be the problem

of deciding whether |AQ| ≤ 1
100 or AQ ≥ 3

5 , promised that one of those is the case.

Lemma 24 (follows from Shi [21]) QSim is PromiseBQP-complete.

Proof. Besides what was said above, together with standard amplification, we just need two
further observations. First, by using uncomputing, we can modify any quantum circuit so that it
“accepts” by returning all its qubits to the initial state, |0〉⊗n, and “rejects” by ending in any state
orthogonal to |0〉⊗n. Second, we can handle the case that AQ is negative by running both Q and
−Q (i.e., Q with a −1 global phase), and checking whether our QSim oracle returns AQ ≥ 3

5 for
either of them.

Now, the outline of a reduction from QSim to k-fold Forrelation suggests itself almost
immediately. Given an n-qubit quantum circuit Q over the basis {H,CCSIGN}, we want to
construct Boolean functions f1, . . . , fk with the property that Φf1,...,fk = AQ. To do so, we
should exploit the fact that, as we have seen, Φf1,...,fk is a transition amplitude for a particular
kind of quantum circuit: namely, a circuit that consists of rounds of Hadamards applied to all n
qubits, interleaved with diagonal matrices Ufi that map each basis state |x〉 to fi (x) |x〉. Thus, we
should use suitably-placed fi’s to simulate each of the CCSIGN gates in Q (exploiting the fact that
CCSIGN is diagonal in the computational basis), while using the (−1)xi·xi+1 terms in the expression
for Φf1,...,fk to simulate the Hadamard gates in Q.

However, there is a technical problem in implementing the above plan. Namely, while Φf1,...,fk

will equal the transition amplitude 〈0|⊗nQ′ |0〉⊗n, for some quantum circuit Q′ that consists of
Hadamard and CCSIGN gates, the circuit Q′ will contain n Hadamard gates between every CCSIGN
gate and the succeeding one, whether we want Hadamards there or not. This suggests that, in
order to encode an arbitrary sequence of Hadamard and CCSIGN gates, we need some gadget that
“cancels” unwanted Hadamard gates against each other, leaving only the Hadamard gates that
actually appear in the original circuit Q. Of course, we can exploit the fact that H2 is the identity.
So for example, if we wanted to remove the n Hadamard gates that “automatically appear” between
Ufi−1

and Ufi , then we could simply set fi to be the constant 1 function, so that Ufi was the identity.
Then every H between Ufi−1

and Ufi would cancel with a corresponding H between Ufi and Ufi+1
.

Alas, this still doesn’t tell us how to cancel some H’s: that is, how to Hadamard certain desired
qubits, but not other qubits. We do this in the following theorem.

Theorem 25 Explicit k-fold Forrelation, for k = poly (n), is PromiseBQP-hard. (Moreover,

the functions f1, . . . , fk produced by the reduction all have the form fi (x) = (−1)C(x), where C is
a product of at most 3 input bits.)

Proof. Given what we said above, the only additional ingredient we need is a gadget that lets us
Hadamard some desired subset of the qubits, S ⊂ [n], and not the qubits outside S.

For simplicity, suppose that |S| = 2, and let a and b be S’s elements. Our gadget, shown
in Figure 2, consists of three CSIGN gates (i.e., gates that map |x, y〉 to (−1)xy |x, y〉) on a and
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Figure 2: A 2-qubit gadget for converting an even number of layers of Hadamard gates into an odd
number.

b, sandwiched between Hadamard gates. Note that we can implement a CSIGN on a and b as
Ufi , where fi (z1, . . . , zn) := (−1)zazb . Meanwhile, the Hadamard gates are just those that are
automatically applied between each Ufi and Ufi+1

in a quantum circuit for Forrelation.
To see why the gadget works, consider the following identity:



1

2




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1







3

=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

In particular, if we let C stand for CSIGN, H⊗2 for Hadamards on two qubits, and S for the 2-qubit
SWAP gate, then

H⊗2 CH⊗2CH⊗2 CH⊗2 = SH⊗2 .

Contrast this with what happens if we apply the 2-qubit identity, I, rather than C, in the inner
layers:

H⊗2 I H⊗2 I H⊗2 I H⊗2 = I .

Thus, Hadamards get applied if C is chosen for the inner layers, but not if I is chosen. So this
gadget has the effect of Hadamarding a and b, while not Hadamarding the other qubits in the
circuit. Now, the gadget also has the unintended side effect of swapping a and b. But since we
know this is going to happen, we can keep track of it by simply swapping the labels of a and b
whenever the gadget is applied.

To generalize to arbitrary subsets S ⊂ [n]: if |S| > 2 is even, then we simply partition S into
pairs, and apply the 2-qubit Hadamard gadget once in succession to each pair. If |S| is odd, then
the odd qubit in S can be paired with a “dummy qubit,” which is introduced into the circuit for
this sole purpose.

Notice that each CSIGN gate is simulated by a single fi, while each pair of Hadamards is
simulated by three fi’s together with the Hadamards that sandwich them. Thus, we can place
a pair of Hadamards after a CSIGN gate, or vice versa, with no difficulty. To place one CSIGN
gate after another, or one pair of Hadamards after another, we insert an fi = 1 (i.e., a constant 1
function) in between them, in order to cancel the unwanted Hadamards.

Given a quantum circuit Q on n qubits, consisting of m Hadamard and CCSIGN gates, the
end result of our reduction will be a list of Boolean functions f1, . . . , fk : {0, 1}n+1 → {−1, 1}, with
k = O (m), such that Φf1,...,fk = AQ. (The n + 1 comes from the addition of the dummy qubit.)
Furthermore, each fi (z1, . . . , zn) in the list will have the form 1 or (−1)zazb or (−1)zazbzc , so will
be easy to specify using a Boolean circuit.

As a side note, suppose we required the functions f1, . . . , fk to depend on at most 2 input bits,
rather than 3 bits. In that case, we claim that k-fold Forrelation would be in P. The reason
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is just that in this case, our quantum circuit for Forrelation would be a stabilizer circuit, so the
Gottesman-Knill Theorem would apply.16

Examining the proof of Theorem 25, we can derive a stronger consequence. Define a depth-d
quantum circuit as one where the gates are organized into d sequential layers, with the gates within
each layer all commuting with one another.17 Now, given a depth-d quantum circuit Q over the
basis {H,CCSIGN}, let QSimd be the problem of deciding whether AQ := 〈0|⊗nQ |0〉⊗n satisfies
AQ ≥ 1

4 or |AQ| ≤ 1
100 , promised that one of those is the case. Then we have the following:

Theorem 26 QSimd is polynomial-time reducible to explicit (2d+ 1)-fold Forrelation. (More-

over, the functions f1, . . . , f2d+1 produced by the reduction all have the form fi (x) = (−1)p(x), where
p is a degree-3 polynomial in the input bits.)

Proof. The only change we need to make to the proof of Theorem 25 is to be a bit more frugal
with fi’s—using at most two fi’s for each layer of Q, rather than separate fi’s for each gate.

In more detail, a given layer L of Q consists of Hadamard gates on some subset of qubits S ⊆ [n],
as well as CCSIGN gates (which might overlap each other) on some other subset of qubits T ⊆ [n]
satisfying S ∩ T = ∅. Suppose we want to simulate L using the three functions fi, fi+1, fi+2,
together with the Hadamards that sandwich them. Then we build up the functions as follows:
initially fi = fi+1 = fi+2 = 1. For each CCSIGN gate, acting on qubits a, b, c ∈ T , we multiply
fi+1 by (−1)zazbzc , leaving fi and fi+2 unchanged. For each pair of Hadamard gates, acting on
qubits a, b ∈ S, we multiply fi, fi+1, and fi+2 by (−1)zazb . One can check that the end result is

H⊗n Ufi+2
H⊗n Ufi+1

H⊗n Ufi H
⊗n = σL,

where σ represents a SWAP gate applied to each pair a, b ∈ S (something that, as before, we can
easily keep track of).

To separate two successive layers of the circuit, we could simply insert a constant function,
fi = 1. This would yield a 4d-fold Forrelation instance, d being the number of layers. If we want
to decrease the number of fi’s from 4d to 2d+ 1, then we can eliminate each constant fi, together
with the Hadamard layers surrounding it (which simply cancel each other out), and then merge fi−1

and fi+1 into a single fi by multiplying them: fi (x) = fi−1 (x) fi+1 (x), or fi (x) = (−1)p(x)+q(x) if

fi−1 (x) = (−1)p(x) and fi+1 (x) = (−1)q(x).
Note that, at the end, each fi is a degree-3 polynomial in its input bits, and we again have

Φf1,...,fk = AQ.
So for example, we find that explicit log n-fold Forrelation is a complete promise problem

for PromiseBQNC1: the class of problems that captures what can be done using log-depth quantum
circuits (and which already contains Factoring, by a result of Cleve and Watrous [13]).

7 Appendix: Separations for Sampling and Relation Problems

Let Fourier Sampling be the following problem. Given oracle access to a Boolean function f :
{0, 1}n → {−1, 1}, the task is to sample from a distribution D over {0, 1}n such that ‖D−Df‖ ≤ ε,

16Indeed, by a result of Aaronson and Gottesman [3], k-fold Forrelation with this restriction is ⊕L-complete.
17Often, one further requires that the gates within each layer act on disjoint sets of qubits. But it will be convenient

for us to drop that requirement.
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where Df is the distribution defined by

Pr
Df

[y] = f̂ (y)2 =


 1

2n

∑

x∈{0,1}n
f (x) (−1)x·y




2

.

It is clear that Fourier Sampling is solvable—indeed, with ε = 0—by a quantum algorithm that
makes just a single query to f . The algorithm consists of a round of Hadamard gates, then a query
to f , then another round of Hadamard gates, then a measurement in the computational basis.

By contrast, we show in this appendix that any classical randomized algorithm for Fourier

Sampling requires Ω (N/ logN) queries, where N = 2n is the size of f ’s truth table. In other
words, a much larger quantum versus classical separation can be achieved for sampling problems
than for decision problems.

Theorem 27 Fix (say) ε = 0.01. Then the randomized query complexity of Fourier Sampling

is Ω (N/ logN).

Proof. Let A be a classical algorithm, and let Ef = {pf,y}y∈{0,1}n be the probability distribution
output by A when given f as an oracle. The success condition is that, for all f ,

1

2

∑

y∈{0,1}n

∣∣∣pf,y − f̂ (y)2
∣∣∣ ≤ ε.

By an averaging argument, this implies that there exists a y∗ ∈ {0, 1}n such that

E
f

[∣∣∣pf,y∗ − f̂ (y∗)2
∣∣∣
]
≤ 2ε

N
.

So by Markov’s inequality, ∣∣∣pf,y∗ − f̂ (y∗)2
∣∣∣ ≤ 20ε

N

for at least a 9/10 fraction of f ’s. Now assume by symmetry, and without loss of generality,

that y∗ = 0n. Let zi := 1+f(xi)
2 (where x1, . . . , xN is a lexicographic ordering of inputs), let

Z := (z1, . . . , zN ), and let
|Z| := z1 + · · ·+ zN .

Then f̂ (0n) = (2 |Z| −N) /N . The question before us is how many zi’s the algorithm A needs to
query, in order to output 0n (or, as we’ll say, “accept”) with a probability pZ := pf,0n that satisfies

∣∣∣∣∣pZ −
(
2 |Z|
N

− 1

)2
∣∣∣∣∣ ≤

20ε

N
(8)

with probability at least 9/10 over Z ∈ {0, 1}N .
Observe that, without loss of generality, A just nonadaptively queries t randomly-chosen inputs

zi1 , . . . , zit , and then accepts with a probability qk that depends solely on k := zi1 + · · ·+ zit . For,
if A did anything other than this, then by averaging over all N ! possible permutations of Z, we
would obtain an algorithm of this restricted form that made the same number of queries and that
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was just as likely to satisfy (8). In particular, this means that the probability p|Z| = pZ that A
accepts Z depends only on |Z|. Explicitly,

pw =
t∑

k=0

qkrk,w, (9)

where

rk,w =
1

2N

(
t

k

)(
N − t

w − k

)

is the probability that zi1 + · · ·+ zit = k conditioned on |Z| = w.
Let

U :=

{
Z :

∣∣∣∣|Z| −
N

2

∣∣∣∣ ≤
√
N

4

}
,

V :=

{
Z :

∣∣∣∣|Z| −
N

2

∣∣∣∣ ∈
[√

N

2
, 2
√
N

]}
.

Then note that for sufficiently large N ,

Pr
Z
[Z ∈ U ] ≥ erf

(
1

2
√
2

)
− o (1) > 0.38,

Pr
Z
[Z ∈ V ] ≥ erf

(
2
√
2
)
− erf

(
1√
2

)
− o (1) > 0.31.

This implies that, conditioned on Z ∈ U , we must have

pZ ≤
(
2 |Z|
N

− 1

)2

+
20ε

N

≤
(
2
√
N/4

N

)2

+
20ε

N

=
0.25 + 20ε

N

=
0.45

N

with probability at least 1− 0.1
0.38 > 2/3 over Z. Likewise, conditioned on Z ∈ V , we must have

pZ ≥
(
2 |Z|
N

− 1

)2

− 20ε

N

≥ 1− 20ε

N

=
0.8

N

with probability at least 1− 0.1
0.31 > 2/3 over Z.
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Thus, it suffices to prove a lower bound for the following restricted problem: for at least 2/3 of
strings Z ∈ U , accept with some probability pZ ≤ 0.45/N , while for at least 2/3 of strings Z ∈ V ,
accept with some probability pZ ≥ 0.8/N . Indeed, let us assume without loss of generality that
if Z is drawn from U then |Z| = N/2 exactly, while if Z is drawn from V then |Z| = N/2 + 2

√
N

exactly. This can only make the distinguishing task easier, and therefore the lower bound stronger.
Note that, because p|Z| = pZ depends only on |Z|, any algorithm that achieves pZ ≤ 0.45/N for
at least a 2/3 fraction of |Z| = N/2 actually achieves that for all |Z| = N/2, while any algorithm
that achieves pZ ≥ 0.8/N for at least a 2/3 fraction of |Z| = N/2 + 2

√
N achieves that for all

|Z| = N/2 + 2
√
N .

Recall from (9) that p|Z| = pZ is a linear combination of rk,|Z|’s, which are the probabilities
for various numbers k of ‘1’ bits to be observed among the t bits queried, conditioned on |Z|
having the value that it does. Moreover, the coefficients qk in this linear combination are all
in [0, 1]. We want to show that, if t = o (N/ logN), then either pN/2+2

√
N = o (1/N) or else

pN/2+2
√
N − pN/2 = o (1/N)—either of which suffices to show A’s failure.

We deduce this from two probabilistic claims. First, by a Chernoff bound,

t∑

k=t/2+c
√
t

rk,N/2+2
√
N = Pr

[
zi1 + · · ·+ zit ≥

t

2
+ c

√
t : |Z| = N

2
+ 2

√
N

]

≤ exp




−1

3

(
t
2 + c

√
t−

(
t
2 + 2t√

N

))2

t
2 + 2t√

N





≤ exp

{
− 1

3t

(
c2t− 4ct3/2√

N
+

4t2

N

)}

≤ exp

{
−c

2

3
+

4c

3

√
t

N

}

≤ exp
{
−Ω

(
c2
)}

for large c. So in particular, if c = ω(
√
logN), then all the events involving observing k ‘1’

bits, for k ≥ t/2 + c
√
t, have total probability o (1/N). This means that, if A worked, then

we could set qk = 0 for all k ≥ t/2 + c
√
t without affecting A’s success: we would still have

pN/2+2
√
N − pN/2 = Ω(1/N) and pN/2 = O(1/N).

Thus, let us concentrate next on rk,N/2+2
√
N and rk,N/2 for k ≤ t/2 + O(

√
t logN). Here, we
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look at their ratio:

rk,N/2+2
√
N

rk,N/2
=

( N−t
N/2+2

√
N−k

)
( N−t
N/2−k

)

=

(
N/2 − t+ k − 2

√
N + 1

)
· · · (N/2− t+ k)

(N/2 − k + 1) · · ·
(
N/2 − k + 2

√
N
)

≤
(
1 +

2k − t− 2
√
N

N/2− k + 1

)2
√
N

≤
(
1 +

2k − t

N/4

)2
√
N

≤
(
1 +O

(√
t logN

N

))2
√
N

= exp

{
O

(√
t logN

N

)}
.

Notice that, if t = o (N/ logN), then the above ratio is 1 + o (1). This means that taking a
nonnegative linear combination of rk,|Z|’s cannot possibly suffice to achieve pN/2 = O(1/N) and
pN/2+2

√
N − pN/2 = Ω(1/N) at the same time.

We conjecture that Theorem 27 is tight: that is, that there exists a randomized algorithm
for Fourier Sampling making O (N/ logN) queries. More generally, we conjecture that any
approximate sampling problem solvable with 1 quantum query is also solvable with O (N/ logN)
classical randomized queries. Still more generally, we conjecture that any approximate sam-
pling problem solvable with k = O (1) quantum queries is also solvable with O(N/ (logN)1/k)
classical randomized queries; and that this is tight, being achieved by a k-fold generalization of
Fourier Sampling. In the k-fold generalization, we are given oracle access to k Boolean func-
tions f1, . . . , fk : {0, 1}n → {−1, 1}. The task is to sample from a distribution D over {0, 1}n such
that ‖D−Df1,...,fk‖ ≤ ε, where Df1,...,fk is the distribution defined by

Pr
Df1,...,fk

[y] =


 1

2n(k+1)/2

∑

x1,...,xk∈{0,1}n
f1 (x1) (−1)x1·x2 f2 (x2) (−1)x2·x3 · · · fk (xk) (−1)xk·y




2

.

So far, we have discussed separations for approximate sampling problems. But it is also possible
to modify Fourier Sampling to produce a relation problem—that is, a problem of outputting
any element of a set S of “valid solutions”—with a large quantum/classical separation. One way
to do this would be to use the construction of Aaronson [2], which, given any approximate sampling
problem, uses Kolmogorov complexity to produce a relation problem of roughly equivalent difficulty.
Unfortunately, that construction will blow up the quantum query complexity from 1 to O (logN),
weakening the result. A more direct approach would be to consider the following relation problem:
given oracle access to a Boolean function f : {0, 1}n → {−1, 1}, output any string y ∈ {0, 1}n such

that
∣∣∣f̂ (y)

∣∣∣ ≥ c. If we use the obvious Fourier sampling algorithm, this problem is solvable with 1
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quantum query, with success probability asymptotically equal to

2√
2π

∫ ∞

c
e−x2/2x2dx.

On the other hand, it is a plausible conjecture that any classical randomized algorithm that makes
o (N/ logN) queries to f , can solve the relation problem with probability at most about

2√
2π

∫ ∞

c
e−x2/2dx.

If (say) c = 1, this would give us an 0.8 versus 0.317 gap in success probabilities. That gap
could be boosted further using amplification (which, however, would increase the quantum query
complexity, from 1 to some larger constant).

8 Appendix: Estimator for Arbitrary Bounded Quadratics

Assume that we have an arbitrary degree-k polynomial

p (x1, . . . , xN ) =
∑

I⊆[N ]:|I|≤k

aI
∏

i∈I
xi,

with p (x) ∈ [−1, 1] whenever x ∈ {−1, 1}N . We would like to show that p (x) can be estimated
by a randomized algorithm that makes O

(
N1−1/k

)
queries, using a sampling procedure similar to

what we used in Section 5 for the special case of block-multilinear polynomials. For our previous
proof to work, we need there to exist a sequence of variable-splittings that introduces O(N) new
variables, and that transforms p(x1, . . . , xN ) into a polynomial

q(x1, . . . , xM ) =
∑

I⊆[M ]:|I|≤k

bI
∏

i∈I
xi

that satisfies the following two requirements:

(i)
∑

I b
2
I = O( 1

N );

(ii) for all l ∈ [k − 1], we have

∑

I,J :,I 6=J,|I∩J |=l

bIbJ = O

(
1

N l/k

)
. (10)

Requirement (i) is for the bound on the variance of the “warmup estimator,” in Section 5.3.
Requirement (ii) is for the “real estimator,” in Section 5.4. Below, we will be able to prove
requirement (i) for any k, and requirement (ii) in the special case k = 2.

45



8.1 Fourier Basics

Given a real polynomial p : {−1, 1}N → R, we consider the following notions:

Var [p] := E
[
(p (x)− E [p (x)])2

]
,

Infi [p] := E
[(
p
(
xi
)
− p (x)

)2]
,

‖p‖∞ := max
x∈{−1,1}N

|p (x)|

(where xi means x with the ith bit flipped). Also, let p̂ (S) be the Fourier coefficient corresponding
to the subset S ⊆ [N ]—or equivalently, the coefficient in p of the monomial

∏
i∈S xi.

Note that, since
∑

I b
2
I = Var[q], requirement (i) is equivalent to Var[q] = O( 1

N ).
From elementary Fourier analysis, we have the following useful lemma.

Lemma 28 If p : {−1, 1}N → R is a real polynomial of degree k, then

∑

i∈[N ]

Inf i [p] ≤ kVar [p] .

Proof. We have
Infi [p] =

∑

S∋i
p̂ (S)2 ,

and hence ∑

i∈[N ]

Infi [p] =
∑

|S|≤k

|S| p̂ (S)2 ≤ k
∑

|S|≤k

p̂ (S)2 = kVar [p] .

8.2 Requirement (i)

Our goal is to find variables xi in p with large influences (that is, large values of Infi [p]). To do
so, we will use the following result of Dinur et al. [14, Theorem 3].

Theorem 29 ([14], Theorem 3) There exists a constant C for which the following holds. Sup-
pose p : {−1, 1}N → R is a real polynomial of degree k, which satisfies Var[p] = 1 and Infi [p] ≤
t2C−k for all i ∈ [N ]. Then

Pr
x∈{−1,1}N

[|p (x)| ≥ t] ≥ exp(−Ct2k2 log k).

Theorem 29 means, in particular, that if Var [p] = 1 and Infi [p] ≤ t−2C−k for all i ∈ [N ], then
‖p‖∞ ≥ t: in other words, there exists an x ∈ {−1, 1}N such that |p (x)| ≥ t. By rescaling, we can
turn this into the following.

Corollary 30 There exists a constant C for which the following holds. Suppose p : {−1, 1}N → R

is a real polynomial of degree k, which satisfies ‖p‖∞ ≤ 1 and Var [p] ≥ C
N . Then there exists an

i ∈ [N ] such that Infi [p] ≥ 1
Ck Var [p]

2.
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Proof. We can reword Theorem 29 as follows: if ‖p‖∞ ≤ t and Var [p] = 1, then there exists

an i ∈ [N ] such that Infi[p] ≥ t2

Ck . Now suppose ‖p‖∞ ≤ 1. Then define a new polynomial

q := p√
Var[p]

. We have Var[q] = 1 and ‖q‖∞ ≤ 1√
Var[p]

, which implies that there exists an i ∈ [N ]

such that Infi [q] ≥ Var[p]
Ck , or equivalently Inf i [p] ≥ Var[p]2

Ck .
We now consider the following algorithm for variable-splitting. We start with p0 := p. We

then repeat the following, for j ∈ {0, 1, 2, . . .}:

(1) If Var [pj ] <
C
N , then halt and output pj.

(2) Otherwise, choose some variable xi such that Inf i [p] ≥ 1
Ck Var [p]

2 (which is guaranteed to
exist by Corollary 30). Let pj+1 be the polynomial obtained from pj by splitting xi into two
variables. (In other words, by defining new variables xi,1 and xi,2, and then replacing every

occurrence of xi in pj by
xi,1+xi,2

2 .)

When the algorithm halts (say at step J), we must have Var [pJ ] <
C
N . Furthermore, observe

that for every j,

Var[pj+1] = Var[pj ]−
Infi [pj]

2

≤ Var [pj]−
Var [pj]

2

2Ck
.

Solving this recurrence (together with the initial condition Var [p0] ≤ 1) implies that the algorithm
can continue for at most O (N) steps until Var [pJ ] = O(1/N). Therefore, the algorithm introduces
at most O (N) new variables.

8.3 Requirement (ii)

We now show how to satisfy requirement (ii) in the special case k = 2. To do so, we will need
another result from Dinur et al. [14].

Lemma 31 ([14], Lemma 1.3) There exists a constant C such that the following holds. Let
p : {−1, 1}N → R be a polynomial of degree k, and suppose that

∑

i∈[N ]

p̂ ({i})2 ≥ 1

whereas |p̂ ({i})| ≤ 1
Ckt for all i ∈ [N ]. Then

Pr
x∈{−1,1}N

[|p (x)| ≥ t] ≥ exp(−Ct2k2).

By rescaling p (similarly to Corollary 30), we can transform Lemma 31 into the following.

Corollary 32 There exists a constant C such that the following holds. For any bounded real
polynomial p : {−1, 1}N → [−1, 1] of degree k that satisfies

∑

i∈[N ]

p̂ ({i})2 = v,

there exists an i ∈ [N ] such that |p̂ ({i})| ≥ v
Ck .
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Proof. Let us define a new polynomial q (x) := p(x)√
v
. Then q (x) ∈

[
− 1√

v
, 1√

v

]
for all x ∈ {−1, 1}N ,

and ∑

i∈[N ]

q̂ ({i})2 = 1.

So by Lemma 31, there must exist an index i ∈ [N ] such that

|q̂ ({i})| >
√
v

Ck

and hence
|p̂ ({i})| > v

Ck
.

We now specialize to the case k = 2. Observe that, given a bounded quadratic polynomial
p : {−1, 1}N → [−1, 1] that we are trying to estimate, we can assume without loss of generality
that p is homogeneous: in other words, is a quadratic form. First of all, if p contains a degree-0
term (i.e., an additive constant) c, then we can replace it by the degree-2 term cx21. Next, suppose
we decompose p as a sum of its quadratic part p2 and its linear part p1:

p (x) = p2 (x) + p1 (x) .

Then
p (−x) = p2 (x)− p1 (x)

is also bounded in [−1, 1] for all x ∈ {−1, 1}N . So

p1 (x) =
p (x)− p (−x)

2
∈ [−1, 1] ,

and likewise p2 (x) ∈ [−1, 1], for all x ∈ {−1, 1}N . Hence we can simply estimate p2 (x) and p1 (x)
separately and then sum them. Furthermore, p1 has the form

p1 (x) = a1x1 + · · ·+ anxn

for some coefficients satisfying |a1| + · · · + |an| ≤ 1. By standard tail bounds, such a linear form
is easy to estimate to within ±ε by querying only O (1) variables xi.

So our problem reduces to estimating the bounded quadratic form p2 (x). To do this, the first
step is to apply the variable-splitting algorithm described in Section 8.2. This produces a new
bounded quadratic form, which we denote P :

P (x1, . . . , xN ) =
∑

i,j∈[N ]

ai,jxixj .

(Abusing notation, we continue to call the number of variables N , even though O (N) new variables
have been introduced.) We have Var[P ] = O( 1

N ). Now, our goal is to perform another sequence
of variable-splittings, which should introduce O(N) new variables and achieve requirement (ii).

Observe that, to achieve requirement (ii), it suffices to ensure

∑

i∈[N ]


∑

i 6=j

aij




2

= O

(
1√
N

)
. (11)
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For if we achieve (11), then we can obtain the original requirement (ii) by removing all squares a2ij
from the left hand side (which only decreases it) and dividing it by 2.

Let

Ii [P ] :=


∑

i 6=j

aij




2

,

V [P ] :=
∑

i∈[N ]

Ii [P ] .

We show the following counterpart of Corollary 30.

Lemma 33 There exists a constant C for which the following holds. If V [P ] ≥ C logN
N , then there

exists an i ∈ [N ] such that Ii [P ] = Ω(V [P ]2).

Proof. We take P (x1, . . . , xN ) and, for each i ∈ [N ], substitute xi = 1 with probability 1/2 (with
choices for different i made independently). Let q be the resulting polynomial.

The key claim is the following: let xi be a variable for which we do not substitute xi = 1. Then
∣∣∣∣∣∣
q̂ ({i})− 1

2

∑

i 6=j

aij

∣∣∣∣∣∣
= O

(√
Infi[P ] log

1

ǫ

)
(12)

with probability at least 1− ǫ.
To prove the claim: since each term xixj is transformed into xi with probability 1/2 by substi-

tuting xi = 1, the expectation of q̂ ({i}) is equal to 1
2

∑
j 6=i aij. Since the decision to substitute or

not substitute xi = 1 changes the value of q̂ ({i}) by the amount aij , Azuma’s inequality implies

Pr



∣∣∣∣∣∣
q̂ ({i})− 1

2

∑

i 6=j

aij

∣∣∣∣∣∣
≥ t


 ≤ exp

(
− t2

2
∑

j∈[N ] a
2
ij

)
.

Using Infi[P ] =
∑

j∈[N ] a
2
ij and taking t =

√
2 Infi[P ] log

1
ǫ completes the proof.

We now show how the claim implies the lemma. Let ǫ = 1
2N . Then we can make the

substitutions so that (12) holds for all i ∈ [N ]. By substituting ǫ = 1
2N into (12), we have

|q̂ ({i})| ∈
[√

Ii [P ]

2
−O

(√
Infi [P ] logN

)
,

√
Ii [P ]

2
+O

(√
Inf i [P ] logN

)]
(13)

By squaring (13) and summing over all i ∈ [N ], we obtain
∣∣∣∣∣∣

∑

i∈[N ]

q̂ ({i})2 − 1

4

∑

i∈[N ]

Ii [P ]

∣∣∣∣∣∣
= O

(√
logN

) ∑

i∈[N ]

√
Ii [P ] Infi [P ] +O (logN)

∑

i∈[N ]

Infi [P ]

≤ O
(√

logN
)√∑

i∈[N ]

Ii [P ] ·
∑

i∈[N ]

Infi [P ] +O (logN)
∑

i∈[N ]

Infi [P ]

≤ O
(√

logN
)√

V [P ] · 2Var [P ] +O (logN) · 2Var [P ]

= O

(√
V [P ]

logN

N
+

logN

N

)
,
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where the second line used Cauchy-Schwarz and the third used Lemma 28.
Now, if V [P ] ≥ C logN

N for a sufficiently large constant C, then the above implies that

∑

i∈[N ]

q̂ ({i})2 ≥ 1

4
V [P ]−O

(√
V [P ]

logN

N
+

logN

N

)

= Ω(V [P ]) .

By Corollary 32, this means that there exists an index i ∈ [N ] such that |q̂ ({i})| = Ω(V [P ]). From
equation (13), we get that

√
Ii [P ] = Ω(V [P ]) and Ii [P ] = Ω(V [P ]2).

Given Lemma 33, we can use the same algorithm as in the previous section. That is, we
repeatedly choose a variable i ∈ [N ] that maximizes Ii [P ] and split the variable xi. Let p0, p1, . . .
be the resulting sequence of polynomials. Initially, we have

V [p0] =
∑

i


∑

j 6=i

aij




2

≤ N
∑

i

∑

j

a2ij = O(1),

with the last equality following from Var[P ] = O( 1
N ), which was achieved by the previous sequence

of variable-splittings. We also have

V[pj+1] ≤ V[pj]− Ω(V[pj ]
2),

as long as V[pj] ≥ C logN
N . This means that after O(N/ logN) variable-splittings, we achieve

V[pj ] <
C logN

N , which is substantially stronger than the requirement (11) that we needed.

9 Appendix: Lower Bound for k-fold Forrelation

In this appendix, we use the machinery developed in Section 4 to prove a Ω̃(
√
N) lower bound on

the randomized query complexity of k-fold Forrelation, for all k ≥ 2. Ideally, of course, we
would like to prove a lower bound that gets better as k gets larger, but even proving the same kind
of lower bound that we had in the k = 2 case will take some work.

In k-fold Forrelation, recall that we are given oracle access to Boolean functions f1, . . . , fk :
{0, 1}n → {−1, 1}, and are interested in the quantity

Φf1,...,fk :=
1

2(k+1)n/2

∑

x1,...,xk∈{0,1}n
f1 (x1) (−1)x1·x2 f2 (x2) (−1)x2·x3 · · · (−1)xk−1·xk fk (xk) .

The problem is to decide whether |Φf1,...,fk | ≤ 1
100 or Φf1,...,fk ≥ 3

5 , promised that one of these is
the case.

We will prove a lower bound for k-fold Forrelation by reducing the Gaussian Distinguish-

ing problem to it, and then applying Theorem 11—thereby illustrating the usefulness of formulating
a general lower bound for Gaussian Distinguishing.
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9.1 Concentration Inequalities

The first step is to prove some concentration inequalities for k-fold Forrelation. In what follows,

recall that f
(x)
ℓ (xℓ) is defined as fℓ (xℓ) (−1)xℓ·x, for all ℓ ∈ [k] and xℓ, x ∈ {0, 1}n.

Lemma 34 Suppose f1, . . . , fk : {0, 1}n → {−1, 1} are chosen uniformly at random. Then

Pr
f1,...,fk

[
|Φf1,...,fk | ≥

t√
N

]
= O

(
1

tt

)
.

Proof. Imagine that f1, . . . , fk−1 are fixed, so that we are considering Φf1,...,fk solely as a function
of fk. We have

Φf1,...,fk =
1√
N

∑

x∈{0,1}n
αxfk (x)

where

αx = Φ
f1,...,fk−2,f

(x)
k−1

=
1

2kn/2

∑

x1,...,xk−1∈{0,1}n
f1 (x1) (−1)x1·x2 · · · (−1)xk−2·xk−1 fk−1 (xk−1) (−1)xk−1·x .

Thus, by equation (1), ∑

x∈{0,1}n
α2
x =

∑

x∈{0,1}n
Φ2

f1,...,fk−2,f
(x)
k−1

= 1.

So in particular, |αx| ≤ 1 for all x. We now appeal to Bennett’s inequality, which tells us that

Pr
fk:{0,1}n→{−1,1}



∣∣∣∣∣∣

∑

x∈{0,1}n
αxfk (x)

∣∣∣∣∣∣
≥ t


 ≤ 2 exp (−h (t))

where
h (t) := (1 + t) ln (1 + t)− t.

The following is also useful.

Lemma 35 Suppose f1, . . . , fk : {0, 1}n → {−1, 1} are chosen uniformly at random. Then with
probability 1−O (1/N), we have

∣∣∣∣∣∣

∑

z : z·y=0

Φ2

f1,...,fk−1,f
(z)
k

− 1

2

∣∣∣∣∣∣
≤ log5/2N√

N

for all y ∈ {0, 1}n.

Proof. By symmetry, we can assume without loss of generality that y = 10 · · · 0, so that the sum
is over all z that start with 0.

As in the proof of Lemma 34, imagine that f1, . . . , fk−1 are fixed, so that we are considering

Φ
f1,...,fk−1,f

(z)
k

=
1√
N

∑

x∈{0,1}n
αxfk (x) (−1)x·z
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solely as a function of fk. Then it is not hard to see that
∑

z : z·y=0

Φ2

f1,...,fk−1,f
(z)
k

is just the probability of measuring an output string that starts with 0 when the Forrelation

algorithm is run on f1, . . . , fk, which also equals

∑

x∈{0,1}n−1

(
α0xfk (0x) + α1xfk (1x)√

2

)2

=
1

2

∑

x∈{0,1}n−1

(α0xfk (0x) + α1xfk (1x))
2

=
1

2

∑

x∈{0,1}n−1

(
α2
0x + α2

1x + 2α0xα1xfk (0x) fk (1x)
)

=
1

2
+

∑

x∈{0,1}n−1

α0xα1xfk (0x) fk (1x) .

Now, each fk (0x) fk (1x) is an independent, uniform {−1, 1} random variable. Furthermore, by
Lemma 34, with 1− o (1/N) probability we have |αx| ≤ logN√

N
for all x ∈ {0, 1}n, in which case

|α0xα1x| ≤
log2N

N

for all x ∈ {0, 1}n−1. By Hoeffding’s inequality, it follows that

Pr



∣∣∣∣∣∣

∑

z : z·y=0

Φ2

f1,...,fk−1,f
(z)
k

− 1

2

∣∣∣∣∣∣
≥ t√

N


 ≤ 2 exp


− 2(t/

√
N)2

(N/2)
(
2 log2 N

N

)2




= 2exp

(
− t2

4 log4N

)
.

Setting t = C log5/2N for some constant C, this probability is at most 1/N2. So by the union
bound, the probability is at most 1/N when summed over all y.

9.2 Continuous/Discrete Hybrid

Just like we did in the k = 2 case, it is convenient to define a continuous analogue of the k-
fold Forrelation problem—though in this case, the problem will be a hybrid of continuous and
discrete. In k-fold Real Forrelation, we are given oracle access to functions f1, . . . , fk−2 :
{0, 1}n → {−1, 1} as well as fk−1, fk : {0, 1}n → R. We are promised that each fi (xi) (for
i ∈ [k − 2]) is chosen uniformly and independently from {−1, 1}, and also that one of the following
holds:

(i) Uniform measure U : Each fk−1 (xk−1) and fk (xk) is an independent N (0, 1) Gaussian.

(ii) Forrelated measure F : Each fk−1 (xk−1) is an independentN (0, 1) Gaussian, and each fk (xk)
is set equal to

1

2(k−1)n/2

∑

x1,...,xk−1∈{0,1}n
f1 (x1) (−1)x1·x2 · · · (−1)xk−2·xk−1 fk−1 (xk−1) (−1)xk−1·xk .
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The problem is to decide whether (i) or (ii) holds.
Here is another way to think about k-fold Real Forrelation: let

f (xk−1) := cxk−1
fk−1 (xk−1) , g (xk) := fk (xk) ,

where

cxk−1
=

√
NΦ

f1,...,fk−3,f
(xk−1)
k−2

=
1

2(k−2)n/2

∑

x1,...,xk−2∈{0,1}n
f1 (x1) (−1)x1·x2 · · · f1 (xk−2) (−1)xk−2·xk−1 .

Then

Φf1,...,fk = Φf,g =
1

23n/2

∑

x,y∈{0,1}n
f (x) (−1)x·y g (y) .

In other words, we can think of k-fold Real Forrelation as equivalent to ordinary, 2-fold Real

Forrelation on the functions fk−1 (x) and fk (y), except that each fk−1 (x) is “twisted” by a
multiplicative factor cx depending on f1, . . . , fk−2. We have the following useful fact.

Proposition 36 With 1 − o (1/N) probability over f1, . . . , fk−2, we have |cx| ≤ logN for all x ∈
{0, 1}n.

Proof. By Lemma 34,

Pr
f1,...,fk−2

[|cx| ≥ logN ] = O

(
1

(logN)logN

)
= o

(
1

N2

)
.

The proposition now follows from the union bound.
Note also that ∑

x∈{0,1}n
c2x = N.

Next, we prove a k-fold analogue of Theorem 9, showing that k-fold Real Forrelation can be
reduced to Boolean k-fold Forrelation.

Theorem 37 Fix f1, . . . , fk−2 (or equivalently, the multipliers cx). Suppose 〈f, g〉 = 〈fk−1, fk〉
are drawn from the forrelated measure F . Define Boolean functions F,G : {0, 1}n → {−1, 1} by
F (x) := sgn (f (x)) and G (y) := sgn (g (y)). Then

E [ΦF,G] =
2

π
±O

(
log3N

N

)
.

Proof. By Proposition 36, we can assume without loss of generality that |cx| ≤ logN for all
x ∈ {0, 1}n (the times when this assumption fails can only change E [ΦF,G] by o (1/N)).
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By linearity of expectation, it suffices to calculate E [cxF (x) (−1)x·yG (y)] for some specific x, y
pair. Let v ∈ RN be a vector of independent N (0, 1) Gaussians. Then we can consider 〈F,G〉 to
have been generated as follows:

F (x) = sgn (vx) ,

G (y) = sgn


 ∑

x∈{0,1}n
cxvx (−1)x·y


 .

Let
Z :=

∑

x′ 6=x

cx′vx′ (−1)x
′·y ,

and let G′ (y) := sgn (Z). Then

E
[
cxF (x) (−1)x·yG′ (y)

]
= E [cx sgn (vx) (−1)x·y sgn (Z)] = 0,

since vx and Z are independent Gaussians both with mean 0. Note that adding cxvx (−1)x·y back
to Z can only flip Z to having the same sign as cx sgn (vx) (−1)x·y, not the opposite sign, and hence
can only increase cxF (x) (−1)x·yG (y). It follows that

E [cxF (x) (−1)x·yG (y)] = 2Pr
[
G (y) 6= G′ (y)

]
.

The event G (y) 6= G′ (y) occurs if and only if the following two events both occur:

|cxvx| > |Z| ,
sgn (cxvx (−1)x·y) 6= sgn (Z) .

Since the distribution of vx is symmetric about 0, we can assume without loss of generality that
cx (−1)x·y = 1.

Let Z (t) be the probability density function of Z. Then

Pr [|cxvx| > |Z| and sgn (vx) 6= sgn (Z)] = 2

∫ ∞

t=0
Z (t) Pr [cxvx > t] dt.

Now, Z is a linear combination of N − 1 independent N (0, 1) Gaussians, with coefficients
{cx′}x′ 6=x. This means that Z has the N

(
0, N − c2x

)
Gaussian distribution. Therefore

2

∫ ∞

t=0
Z (t) Pr [cxvx > t] dt =

2√
2π (N − c2x)

∫ ∞

t=0
exp

(
− t2

2 (N − c2x)

)
Pr [cxvx > t] dt

≤ 2√
2π (N − c2x)

∫ ∞

t=0
Pr [cxvx > t] dt

=
2√

2π (N − c2x)
E [|cxvx|]

=
2 |cx|

π
√
N − c2x

≤ 2 |cx|
π
√
N

+O

(
|cx|3
N3/2

)
.
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In the other direction, for all C > 0 we have

2

∫ ∞

t=0
Z (t) Pr [cxvx > t] dt =

2√
2π (N − c2x)

∫ ∞

t=0
exp

(
− t2

2 (N − c2x)

)
Pr [cxvx > t] dt

≥ 2√
2πN

∫ C

t=0
exp

(
− t2

2 (N − c2x)

)
Pr [cxvx > t] dt

≥ 2√
2πN

exp

(
− C2

2 (N − c2x)

)∫ C

t=0
Pr [cxvx > t] dt

=
2√
2πN

exp

(
− C2

2 (N − c2x)

)(
E [|cxvx|]−

1

cx
√
2π

∫ ∞

t=C
te−t2/(2c2x)dt

)

=
2√
2πN

exp

(
− C2

2 (N − c2x)

)
|cx|

(√
2

π
− e−C2/2

√
2π

)
.

If we set C :=
√
logN , then using |cx| ≤ logN , the above is

2 |cx|√
2πN

(
1−O

(
logN

N

))(√
2

π
− 1√

2πN

)
≥ 2 |cx|
π
√
N

−O

(
logN

N3/2

)
.

Therefore

E [ΦF,G] =
1

23n/2

∑

x,y∈{0,1}n
E [cxF (x) (−1)x·yG (y)]

=
1

N3/2

∑

x,y∈{0,1}n

(
2 |cx|
π
√
N

+O

(
|cx|3
N3/2

)
−O

(
logN

N3/2

))

=
2

π
+

1

N2

∑

x∈{0,1}n
|cx|3 −O

(
logN

N

)
\

=
2

π
±O

(
log3N

N

)
.

By direct analogy to Corollary 10, Theorem 37 implies that there exists a reduction from k-fold
Real Forrelation to k-fold Forrelation.

Corollary 38 Suppose there exists a T -query algorithm that solves k-fold Forrelation with
bounded error. Then there also exists an O (T )-query algorithm that solves k-fold Real For-

relation with bounded error.

9.3 Lower Bound

Finally, we apply our lower bound for Gaussian Distinguishing to obtain a lower bound on
the randomized query complexity of k-fold Real Forrelation, which almost matches what we
obtained for the 2-fold case.

Theorem 39 k-fold Real Forrelation requires Ω(
√
N/ log7/2N) randomized queries.
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Proof. The strategy is the following: we will give the values f1 (x1) , . . . , fk−2 (xk−2), for all
x1, . . . , xk−2 ∈ {0, 1}n, away to the algorithm “free of charge.” This can only make our lower
bound stronger.

As we saw above, after we do this, k-fold Real Forrelation becomes equivalent to ordinary 2-
fold Real Forrelation on the functions f (x) = cxfk−1 (x) and g (y) = fk (y), where the cx’s are
known multipliers. This, in turn, can be expressed as an instance of Gaussian Distinguishing,
in which our set V of test vectors consists of |1〉 , . . . , |N〉 along with the vectors {|ψy〉}y∈{0,1}n
defined as follows:

|ψy〉 :=
1√
N

∑

x∈{0,1}n
cx (−1)x·y |x〉 .

Note that the |ψy〉’s are unit vectors, since
∑

x c
2
x = N . As for inner products, with 1− O (1/N)

probability we have

|〈x|ψy〉| =
|cx|√
N

≤ logN√
N

for all x, y by Proposition 36, and

|〈ψy|ψz〉| =
1

N

∣∣∣∣∣∣

∑

x∈{0,1}n
c2x (−1)x·(y⊕z)

∣∣∣∣∣∣
= O

(
log5/2N√

N

)

for all y, z by Lemma 35. So, in summary, we have |V| = 2N and |〈v|w〉| ≤ ε = O
(
log5/2 N√

N

)
for

all distinct |v〉 , |w〉 ∈ V. By Theorem 11, this implies that

Ω

(
1/ε

log(2N/ε)

)
= Ω

( √
N

log7/2N

)

queries are needed.

10 Appendix: Property Testing

In this appendix, we show that Forrelation can be recast as a property-testing problem: that is,
as a problem of deciding whether the functions f, g : {0, 1}n → {−1, 1} satisfy a certain property,
or are far in Hamming distance from any functions satisfying that property. (For a recent survey
of quantum property-testing, see Montanaro and de Wolf [17].)

In particular, we will obtain a property of N -bit strings that

(1) can be quantumly ε-tested (with bounded error) using only O (1/ε) queries, but

(2) requires Ω(
√
N

logN ) queries to ε-test classically, provided ε is a sufficiently small constant.

This is the largest quantum versus classical property-testing separation yet known.
Since our analysis works for k-fold Forrelation just as easily as for 2-fold, we will use the

more general setting. Let Y be the set of all k-tuples of Boolean functions 〈f1, . . . , fk〉 such
that Φf1,...,fk ≤ 1

100 . Also, let Nε be the set of all k-tuples 〈g1, . . . , gk〉 that differ from every
〈f1, . . . , fk〉 ∈ Y on at least ε · k2n of the k2n positions. Then we will be interested in the problem
of deciding whether 〈f1, . . . , fk〉 ∈ Y or 〈f1, . . . , fk〉 ∈ Nε, promised that one of these is the case.
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Our goal is to show that both our quantum algorithm for Forrelation, and our randomized
lower bound for it, carry over to the property-testing variant. There are two difficulties here. First,
one could imagine an 〈f1, . . . , fk〉 that was far from Y in the Hamming distance sense, yet had an
Φf1,...,fk value only slightly greater than 1

100—in which case, we would need many repetitions of
our quantum algorithm to separate 〈f1, . . . , fk〉 from Y. Second, one could imagine an 〈f1, . . . , fk〉
that was close to Y in Hamming distance, yet had (say) Φf1,...,fk ≥ 3

5—in which case, the known
classical hardness of distinguishing |Φf1,...,fk | ≤ 1

100 from Φf1,...,fk ≥ 3
5 might not imply anything

about the hardness of distinguishing 〈f1, . . . , fk〉 ∈ Y from 〈f1, . . . , fk〉 ∈ Nε, causing the classical
lower bound to fail.18

Fortunately, we can deal with both difficulties. To start with the first:

Lemma 40 Let f1, . . . , fk : {0, 1}n → {−1, 1} be Boolean functions satisfying Φf1,...,fk ≥ 0. Then
for all ε > 0, there exist functions g1, . . . , gk such that each gi differs from fi on at most ε2n

coordinates, and Φg1,...,gk ≤ (1− ε)k Φf1,...,fk .

Proof. We form each gi by simply choosing a subset Si ⊂ {0, 1}n with |Si| = ε2n uniformly at
random, then picking gi (x) uniformly at random if x ∈ Si, or setting gi (x) := fi (x) if x /∈ Si. By
linearity of expectation,

E [Φg1,...,gk ] =
1

2(k+1)n/2

∑

x1,...,xk∈{0,1}n
E [g1 (x1) (−1)x1·x2 g2 (x2) (−1)x2·x3 · · · (−1)xk−1·xk gk (xk)] .

By symmetry, the expectation inside the sum is 0 if we condition on xi ∈ Si for any i. Conversely,
if we condition on xi /∈ Si for all i, then the expectation is

Λx1,...,xk
:= f1 (x1) (−1)x1·x2 f2 (x2) (−1)x2·x3 · · · (−1)xk−1·xk fk (xk) .

Overall, then, the expectation is

Λx1,...,xk
·
∏

i∈[k]
Pr
Si

[xi /∈ Si] = Λx1,...,xk
· (1− ε)k ,

which yields
E [Φg1,...,gk ] = (1− ε)k Φf1,...,fk .

Clearly, then, there exists at least one choice of g1, . . . , gk such that

Φg1,...,gk ≤ (1− ε)k Φf1,...,fk .

In contrapositive form, Lemma 40 implies that, if a k-tuple of functions 〈f1, . . . , fk〉 has Ham-
ming distance at least ε · k2n from every tuple 〈g1, . . . , gk〉 such that Φg1,...,gk ≤ c (for some c ≥ 0),
then we must have

Φf1,...,fk >
c

(1− ε)k
> c (1 + kε) .

18Furthermore, this worry is not farfetched: if k ≥ 3, then there really are cases where changing a single function
value can change Φf1,...,fk dramatically. For example, let f1, f2, and f3 each be the identically-1 function. Then
Φf1,f2,f3 = 1. But if we simply change f2 (0

n) from 1 to −1, then Φf1,f2,f3 = −1.

57



As a side note, we conjecture that Lemma 40 also holds “in the other direction”—that is, that if
〈f1, . . . , fk〉 has Hamming distance at least ε · k2n from every 〈g1, . . . , gk〉 such that Φg1,...,gk ≥ c
(for some c > 0), then Φf1,...,fk must be significantly smaller than c—but we do not currently have
a proof of that.

We now show how to deal with the second difficulty. Call a k-tuple of Boolean functions
f1, . . . , fk : {0, 1}n → {−1, 1} good if

∣∣∣Φ
f1,...,fi−1,f

(x)
i

∣∣∣ ≤ logN√
N

for every i ∈ [k] and x ∈ {0, 1}n; and moreover, there exists a constant Ck such that, for every
i ∈ [k] and t ∈ [logN ], the “partial sums” Φ

f1,...,fi−1,f
(x)
i

satisfy the following property:

Pr
x∈{0,1}n

[∣∣∣Φ
f1,...,fi−1,f

(x)
i

∣∣∣ ≥ t√
N

]
≤ Ck

tt/2
.

Then we have the following extension of Proposition 36:

Proposition 41 If 〈f1, . . . , fk〉 is chosen uniformly at random, then it is good with probability at
least 1− δk, where δk can be made arbitrarily small by increasing Ck.

Proof. By Lemma 34, for all i ∈ [k] and x ∈ {0, 1}n we have

Pr
f1,...,fi

[∣∣∣Φ
f1,...,fi−1,f

(x)
i

∣∣∣ ≥ t√
N

]
= O

(
1

tt

)
.

So by Markov’s inequality,

Pr
f1,...,fi

[
Pr
x

[∣∣∣Φ
f1,...,fi−1,f

(x)
i

∣∣∣ ≥ t√
N

]
>

Ck

tt/2

]
= O

(
1

Cktt/2

)
.

So by the union bound,

Pr
f1,...,fi

[
∃i, t : Pr

x

[∣∣∣Φ
f1,...,fi−1,f

(x)
i

∣∣∣ ≥ t√
N

]
>

Ck

tt/2

]
= O


 k

Ck

∑

t∈[logN ]

1

tt/2




= O

(
k

Ck

)
.

Furthermore, good k-tuples behave as we want for property-testing purposes.

Lemma 42 Let 〈f1, . . . , fk〉 be a good k-tuple. Then for all modifications g1, . . . , gk such that
Prx [fi (x) 6= gi (x)] ≤ ε for all i ∈ [k], we have

|Φf1,...,fk − Φg1,...,gk | = O

(
k
√
ε log

1

ε

)
.
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Proof. Recall the “standard” quantum algorithm for k-fold Forrelation (the one shown in
Figure 1). By direct analogy to the hybrid argument of Bennett, Bernstein, Brassard, and Vazirani
[7], we consider what happens if, in that algorithm, we replace the Ufi oracles by Ugi oracles one
by one—starting with Ufk , and working backwards towards Uf1 . Let

|ψi〉 =
∑

x∈{0,1}n
Φ
f1,...,fi−2,f

(x)
i−1

|x〉

be the state of the quantum algorithm immediately before the ith oracle call. Then by quantum-
mechanical linearity, the entire sequence of oracle replacements can change the final amplitude of
the all-0 state, α0···0, by at most

∑

i∈[k]
‖Ufi |ψi〉 − Ugi |ψi〉‖ =

∑

i∈[k]

√√√√
∑

x : fi(x)6=gi(x)

(
2Φ

f1,...,fi−2,f
(x)
i−1

)2

≤ 2
∑

i∈[k]

√√√√√εN

(
3 log 1/ε√

N

)2

+

logN∑

t=3 log 1/ε

Pr
x

[∣∣∣∣Φf1,...,fi−2,f
(x)
i−1

∣∣∣∣ ≥
t√
N

](
t+ 1√
N

)2

≤ 2
∑

i∈[k]

√√√√√9ε log2
1

ε
+

logN∑

t=3 log 1/ε

Ck

tt/2

(
t+ 1√
N

)2

≤ 2
∑

i∈[k]

√
9ε log2

1

ε
+ Ck ·O (ε)

= O

(
k
√
ε log

1

ε

)
.

But since α0···0 is precisely equal to Φf1,...,fk , this means that Φf1,...,fk can change by at most
O
(
k
√
ε log 1

ε

)
as well.

In contrapositive form, Lemma 42 implies that if Φg1,...,gk ≥ 3
5 , then for every good k-tuple

〈f1, . . . , fk〉 with |Φf1,...,fk | ≤ 1
100 , there must be an i ∈ [k] such that gi differs from fi on a

Ω
(

1
k2 log2 k

)
fraction of points.

We now put everything together. Recall the property-testing problem, of distinguishing Y (the
set of all 〈f1, . . . , fk〉 such that Φf1,...,fk ≤ 1

100 ) from Nε (the set of all 〈g1, . . . , gk〉 that are at least ε
away from Y in the Hamming distance sense). Lemma 40 implies that, just by taking the quantum
algorithm of Proposition 6 and amplifying it a suitable number of times, we can solve this problem,
with error probability at most (say) 1/3, using only O (1/ε) quantum queries.19 Furthermore, if
we only need to distinguish Y from Nε with Θ (ε) bias, then it suffices to make just 1 quantum
query.

On the other hand, suppose we set ε ≤ C
k3 log2 k

, for some suitably small constant C. Then

Lemma 42 implies that, if we had a randomized algorithm to distinguish Y from Nε with con-
stant bias, then we could also use that algorithm to distinguish the good tuples 〈f1, . . . , fk〉 with
|Φf1,...,fk | ≤ 1

100 from the tuples 〈g1, . . . , gk〉 with Φg1,...,gk ≥ 3
5 . But such an algorithm would solve

19Näıve repetition would give O
(
1/ε2

)
queries, but we can get down to O (1/ε) using amplitude amplification.
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the distributional version of k-fold Forrelation, and we already showed (in Theorems 1 and 39

respectively) that any such algorithm requires Ω(
√
N

logN ) queries for k = 2 or Ω(
√
N

log7/2 N
) queries for

k > 2.
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