
Deterministic Identity Testing for Sum of Read Once ABPs

Rohit Gurjar1, Arpita Korwar1, Nitin Saxena1 and Thomas Thierauf2

1Department of Computer Science and Engineering, IIT Kanpur
2Fakultät Elektronik und Informatik, Hochschule Aalen

Abstract

A read once ABP is an arithmetic branching program with each variable occurring
in at most one layer. We give the first polynomial time whitebox identity test for a
polynomial computed by a sum of constantly many ROABPs. We also give a cor-
responding blackbox algorithm with quasi-polynomial time complexity, i.e. nO(logn).
The motivating special case of this model is sum of constantly many set-multilinear
depth-3 circuits. The prior results for that model were only slightly better than brute-
force (i.e. exponential-time).

Our techniques are a new interplay of three concepts for ROABP: low evaluation
dimension, basis isolating weight assignment and low-support rank concentration.

1 Introduction

Polynomial Identity Testing (PIT) is the problem of testing whether a given n-variate
polynomial is identically zero or not. The input to the PIT problem may be in the form
of arithmetic circuits or arithmetic branching programs (ABP). They are the arithmetic
analogues of boolean circuits and boolean branching programs, respectively. The input
size of the problem is the size of the circuit (or ABP). It is usually assumed that the size
of the input is polynomial in the number of variables. In this paper we follow the same
convention. It is well known that PIT∈ RP e.g. [Sch80]. The algorithm is to just evaluate
the polynomial at a random point. They show that a nonzero polynomial evaluates to
a nonzero value, on a random point, with a good probability. Since all problems with
randomized polynomial-time solutions are conjectured to have deterministic polynomial-
time algorithms, we expect that such an algorithm exists for PIT. It is also known that
any sub-exponential time algorithm for PIT implies a lower bound [KI03, Agr05]. Other
general connections about PIT are available in the surveys [Sax09, Sax14, SY10].

An efficient deterministic solution for PIT is known only for very restricted input
models, for example, sparse polynomials [BOT88, KS01], constant fan-in depth-3 (ΣΠΣ)
circuits [DS07, KS07, KS09, KS11, SS11, SS12], set-multilinear circuits [RS05, FS12a,
ASS13], read once ABP [RS05, FS13, FSS14, AGKS14]. This lack of progress is not
surprising, as a recent result by Gupta et. al. [GKKS13] has shown, that a polynomial
time test for depth-3 circuits would imply a sub-exponential time test for general circuits.
For now, even a sub-exponential solution for depth-3 circuits remains elusive. However, an
efficient test for depth-3 multilinear circuits looks within reach as a lower bound against
this class of circuits is already known [RY09]. A circuit is called multilinear if all its
gates compute a multilinear polynomial, i.e. polynomials such that maximum degree of
any variable is 1.

A first step towards this goal would be to find an efficient test for the sum of two set-
multilinear polynomials. A depth-3 multilinear circuit is called set-multilinear if all the

rgurjar@iitk.ac.in, arpk@iitk.ac.in, nitin@iitk.ac.in, thomas.thierauf@htw-aalen.de

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 158 (2014)



product gates in it induce the same partition on the set of variables. It is easy to see that
a depth-3 multilinear circuit is a sum of polynomially many set-multilinear circuits. The
only non-trivial test known for sum of two set-multilinear circuits was a sub-exponential
whitebox1 algorithm by Agrawal et. al. [AGKS14]. Our results imply the first polynomial-
time whitebox algorithm, and the first quasi-polynomial-time blackbox algorithm, for the
sum of two set-multilinear circuits.

We actually deal with a more general problem: the sum of ROABPs. An ABP can be
seen as an iterated matrix product. The entries of each matrix are ‘simple’ polynomials,
e.g. the entries could be univariate polynomials or linear polynomials. The maximum
dimension of these matrices is called the width of the ABP. A read-once ABP (ROABP)
is an ABP with a variable occurring in at most one matrix. Without loss of generality, we
can assume that there is at most one variable in one matrix. (Using [AGKS14, Observation
12], one can write a multivariate matrix as a product of univariate matrices.) It is well-
known that ROABPs subsume set-multilinear circuits (see, for example [AGKS14, Lemma
14]).

There has been a long chain of work on identity testing for ROABP. In 2005, Raz
and Shpilka [RS05] gave a polynomial-time whitebox test for ROABP. Then, Forbes and
Shpilka [FS13] gave a nO(logn) blackbox algorithm for ROABP with known variable order.

This was followed by a complete blackbox test [FSS14] that took nO(d log2 n) steps, where
d is the syntactic degree bound of any variable. Their paper used the idea of rank-
concentration, introduced by Agrawal et.al. [ASS13], who gave a nO(logn) hitting set for
set-multilinear circuits. Later, [AGKS14] gave an improved test for ROABP that took
nO(logn) time. They removed the exponential dependence on the degree d. Their test
is based on the idea of basis isolating weight assignment. Given a polynomial over an
algebra, it assigns weights to the variables, and naturally extends it to monomials, such
that there is a unique minimum weight basis among the coefficients of the polynomial.

In this work, we give a polynomial time test for sum of constantly many ROABPs.
Since each matrix contains at most one variable, we get a natural variable order associated
with the ROABP. It is easy to see that a sum of two ROABPs with same variable order,
can be expressed as one single ROABP with the same variable order. Thus, the question
about a sum of c ROABPs makes sense only when they have different variable order. The
older ideas for a single ROABP would not work here in a straightforward manner, as it
can be shown that there is a polynomial P (x) computed by sum of two ROABPs (in fact,
sum of two set-multilinear circuits) such that any ROABP computing P (x) must be of
width 2Ω(

√
n) [NS]. Hence, at best, one can get a 2O(

√
n)-time test for sum of two ROABPs

using the already known techniques.

Theorem 1. Let A(x) be a n-variate polynomial computed by a sum of c width-w ROABPs,
with degree of each variable bounded by d. Then, there is (w2cnd)O(c)-time algorithm to
test if A = 0.

Our algorithm (Section 3) uses the well-known characterizing property of an ROABP,
i.e. evaluation-dimension or dimension of partial derivative polynomials is low (see subsec-
tion 2.3 for the definition of the dimension of a set of polynomials, see [FS12b, Section 6] for
the equivalence between these two notions of dimension). The dimension is actually equal
to the width of the ROABP. This notion of dimension was introduced by Nisan [Nis91] to
prove lower bounds against ROABPs. It has also been used by Klivans and Shpilka [KS06]

1A whitebox algorithm is the one which can look inside the given circuit; a blackbox algorithm is the

one which cannot see inside the given circuit, it can only evaluate the circuit.

2



for learning ROABPs. Like [KS06], we consider partial derivatives/evaluations only with
respect to those subsets, which correspond to a prefix of the variable sequence associated
with the ROABP, instead of arbitrary subsets.

We view identity testing for sum of two ROABPs as testing equivalence of two ROABPs.
Our idea is inspired from a similar result in the boolean world. Testing equivalence of two
read once ordered boolean branching programs (ROBP) is known [SW97]. ROBP too
have a similar property of small evaluation-dimension, except that the notion of linear
dependence becomes equality in the boolean setting.

For any ROABP A, there exists a set of key partial derivative polynomials for every
prefix set, whose linear dependence essentially specifies the ROABP A (Lemma 3). We
call these a characterizing set of dependencies. These sets of polynomials are small as the
partial derivative space has low dimension. The equivalence test of A and B, is essentially
taking the characterizing set of dependencies for A, and verifying them for the partial
derivative polynomials of B (Algorithm 1). As B is an ROABP, the verification of these
dependencies for B reduces to identity testing for a single ROABP (Lemma 5).

To generalize this test to sum of c ROABPs we take A as one ROABP and B as sum of
c−1 ROABPs. In this case, the verification of the dependencies for B becomes the question
of identity testing of sum of c− 1 ROABPs, which we solve recursively (Section 3.2).

The same idea can be applied to decide the equivalence of an ROBP with the XOR of
c− 1 ROBPs. We skip these details here as we are interested only in the arithmetic case.

We also give an identity test for a sum of ROABPs in the blackbox setting (Section 4).
To be clear, we are given blackbox access to a sum of ROABPs and not to the individual
ROABPs.

Theorem 2. Let A(x) be a n-variate polynomial computed by a sum of c width-w ROABPs,
with degree of each variable bounded by d. Then there is a (wnd)O(c·2c log(wnd))-time hitting
set for A(x).

Here, along with the low evaluation-dimension property, we also use the basis isolating
weight assignment given by [AGKS14]. Essentially, we show that the hitting set for a
width-w2c ROABP, given by [AGKS14], would also ‘work’ for a sum of c width-w ROABPs
(Lemma 13). This is surprising because, as mentioned above sum of c ROABPs is not
captured by an ROABP with polynomially bounded width [NS].

A novel part of our proof is that for a polynomial over an F-algebra Ak (k-dimensional),
a shift by a basis isolating weight assignment achieves low-support concentration (Sec-
tion 5, Lemma 19). To elaborate, let w : x → N be a basis isolating weight assignment
for a polynomial P (x) ∈ Ak[x] then P (x + tw) has O(log k)-concentration over F(t). ℓ-
Concentration in a polynomial P (x) means that all its coefficients are in the linear span of
its (< ℓ)-support coefficients. Our proof significantly differs from the older rank concentra-
tion proofs [ASS13, FSS14], which always assume distinct weights for all the monomials
(or coefficients). Here, we only require that weight of a coefficient is greater than the
basis coefficients, it linearly depends on. As Agrawal et. al. [AGKS14] gave a basis isolat-
ing weight assignment for ROABP, we can use it to get low-support concentration in an
ROABP.

Coming back to the equivalence test of two ROABPs A and B, let the variable order
of A be, wlg, (x1, x2, . . . , xn). We verify the characterizing set of dependencies of A, for
the corresponding partial derivatives of B, starting from the variable set {x1} and going
over all the prefix sets of (x1, x2, . . . , xn). There will be a point where the dependency
verification will fail (otherwise B has an ROABP in the same order). We claim that a
common ROABP R can be constructed for A and B up to this point (Lemma 7). This can

3



be done, as an ROABP is essentially defined by the characterizing set of dependencies.
We know that there is a dependency at the next level which holds for A but not for B.
We use a shift of variables to push this difference of A and B in low-support monomials.
This can be done as the dependency itself is computed by an ROABP and hence, it can
be concentrated using an appropriate shift. Further, we show that R has a full rank
coefficient space (Lemma 7) and shift this full rank to its low-support coefficients. Finally,
we argue that the coefficients involved in the dependency can be obtained by a linear
combination of low-support coefficients in R. All this implies that B has a low-support
coefficient which is different from A, after the appropriate shift (Lemma 11). The final
test is to check all the low-support coefficients (Lemma 14).

The generalization to sum of c ROABPs is analogous to the whitebox case where we
recursively use the test for c− 1 ROABPs (Lemma 13).

As a by-product, we design a shift that makes a sum of c ROABPs low-support rank-
concentrated over the matrix algebra (Corollary 15).

2 Preliminaries

2.1 Notation

Let x denote the tuple of variables (x1, x2 . . . , xn). For any a = (a1, a2, . . . , an) ∈ Zn
+, x

a

would denote the monomial
∏n

i=1 x
ai
i . For a polynomial P (x) and monomial xa, coeffP (x

a)
denotes the coefficient of the monomial xa in P . Support size of a monomial xa is given
by supp(a) = |{ai 6= 0 | i ∈ [n]}|.

For a matrix R, R(i, ·) and R(·, i) would denote the i-th row and the i-th column of
the matrix R, respectively.

For any a, b ∈ Fk, 〈a, b〉 would denote the usual dot product. By abusing this notation,
for any a ∈ Fw2

and a matrix R ∈ Fw×w, 〈a,R〉 would mean the same dot product, by
identifying Fw×w with Fw2

.
For any polynomial P (x) over a k-dimensional F-algebra Ak, the coefficient space of a

set of monomials M in P is spanF{coeffP (x
a) | a ∈ M}.

By A⊗B, we denote the tensor product of A and B.

2.2 Arithmetic Branching Programs (ABPs)

An ABP is a directed graph with n+1 layers of vertices (V0, V1, . . . , Vn) (Wlg, the length of
the ABP is n). The layers V0 and Vn, each have only one vertex, say v0 and vn respectively.
The edges are only going from the vertices in the layer Vi−1 to the vertices in the layer Vi,
for any i ∈ [d]. A width-w ABP has |Vi| ≤ w for all 1 ≤ i ≤ n− 1. Let the set of nodes in
Vi be {vi,j | j ∈ [w]}. All the edges in the graph have weights from F[x], for some field F.

For an edge e, let us denote its weight by W (e). For a path p from v0 to vn, its
weight W (p) is defined to be the product of weights of all the edges in it, i.e.

∏

e∈pW (e).
Consider the polynomial C(x) =

∑

p∈paths(v0,vn)W (p) which is the sum of the weights of
all the paths from v0 to vn. This polynomial C(x) is said to be computed by the ABP.

The branching program can also be represented by a matrix product
∏n

i=1Di, where
D1 ∈ F[x]1×w, Dn ∈ F[x]w×1 and Di ∈ F[x]w×w for 2 ≤ i ≤ n− 1 such that

D1(ℓ) = W (v0, v1,ℓ), for 1 ≤ ℓ ≤ w,

Di(k, ℓ) = W (vi−1,k, vi,ℓ), for 1 ≤ ℓ, k ≤ w and 2 ≤ i ≤ n− 1,

Dn(k) = W (vn−1,k, vn), for 1 ≤ k ≤ w.

4



ROABP: An ABP is called a read once oblivious ABP (ROABP) if the edge weights
in the different layers are univariate polynomials in distinct variables. Formally, the entries
in Di come from F[xπ(i)] for all i ∈ [n], where π is a permutation on the set [n]. The order
(xπ(1), xπ(2), . . . , xπ(n)) is said to be the variable order of the ROABP. We will often view
Di as a polynomial in the variable xπ(i), whose coefficients come from Fw×w. The read
once property of the ABP gives us the following useful observation.

Observation 1 (Easy coefficients). For a polynomial C(x) computed by an ROABP,
D1(xπ(1))D2(xπ(2)) · · ·Dn(xπ(n)), coeffC(x

a) =
∏n

i=1 coeffDi
(xai

π(i)).

2.3 Characterization of ROABP

The F-span of a set of polynomials {pi}i is defined as spanF{pi}i := {
∑

i αipi | αi ∈ F} . A
set of polynomials is said to be F-linearly dependent if there exists a set of field constants
{αi}i, αi ∈ F, not all αi are zero, such that,

∑

i αipi = 0. The dimension dimF P of a set
of polynomials P = {pi}i is the cardinality of the largest F-linearly independent subset of
P.

Consider a partition of the variables x into two parts, x = y ⊔ z with |y| = k. Any
polynomial C(x) can be viewed as a polynomial in variables y, where the coefficients
come from F[z]. I.e. C(x) can be written as

∑

a∈Nk C(y,a) · y
a, where C(y,a) ∈ F[z] is the

coefficient of the monomial ya. The coefficient C(y,a) is also sometimes expressed in the

literature as a partial derivative, ∂C
∂ya

evaluated at y = 0 (and multiplied by an appropriate
constant).

The well-known characterizing property of an ROABP is that the dimension of the set
of all “partial derivative polynomials” for a fixed y, is small, when y is chosen appropri-
ately, in spite of the fact that the number of these polynomials is large. The next lemma
describes it formally.

Lemma 2 ([Nis91]). Let C(x) be an individual degree d polynomial computed by a width-
w ROABP with variable order (x1, x2, . . . , xn). Consider a subset of variables y which
is a prefix of this variable sequence, say y = {x1, x2, . . . , xk} for any k ≤ n. Then,
dimF{C(y,a) | a ∈ {0, 1, . . . , d}k} ≤ w.

Proof. Let C = D1(x1)D2(x2) · · ·Dn(xn), where D1 ∈ F1×w[x1], Dn ∈ Fw×1[xn] and
Di ∈ Fw×w[xi], for all 2 ≤ i ≤ n− 1.

Let z = x \ y. Let P (y) ∈ F[y]1×w and Q(z) ∈ F[z]w×1 be defined as: P (y) =
D1D2 · · ·Dk and Q(z) = Dk+1Dk+2 · · ·Dn. Let P (y) = [P1(y) P2(y) . . . Pw(y)] and
Q = [Q1(z) Q2(z) . . . Qw(z)]

⊤, where Pi(y) ∈ F[y] and Qi(z) ∈ F[z] for all i. Clearly,
C =

∑w
i=1 Pi(y)Qi(z). For any a ∈ {0, 1, . . . , d}k, we can write C(y,a) =

∑w
i=1 coeffPi

(ya) ·
Qi(z). As each C(y,a) is in the F-span of the polynomials in {Qi}

w
i=1, the dimension of

{C(y,a)}a is bounded by w. (Lemma 2)

For a general polynomial, this dimension can be exponential in n. Now, we will show
that if this dimension is small for a polynomial then there exists a small width ROABP
for that polynomial. This construction differs from [FS12b, Section 6] in the sense that
we only take partial derivative with respect to a prefix set. And thus, the ROABP we
construct is in a specific order, not in any order.

Lemma 3 ([Nis91]). Let A(x) be a individual degree-d polynomial such that for any 1 ≤
k ≤ n,

dimF{A({x1,x2,...,xk},a) | a ∈ {0, 1, . . . , d}k} ≤ w.

5



Then there exists a width-w ROABP for A(x) in the variable order (x1, x2, . . . , xn).

Before proving this lemma, let us define a characterizing set of dependencies of a
polynomial A(x) with respect to a variable order {x1, x2, . . . , xn}. This set of dependencies
will essentially give us an ROABP for A in the variable order {x1, x2, . . . , xn}.
Characterizing set of dependencies: Let us define yk = {x1, x2, . . . , xk} and zk =
x \ yk. Let A(yk,∗) denote the set {A(yk,a) | a ∈ {0, 1, . . . , d}k}. Now, we define the

following two sets for all 0 ≤ k ≤ n: spank(A), dependk(A) ⊆ {0, 1, . . . , d}k, with their
sizes bounded by w and w(d + 1), respectively. They will be defined such that for any
b ∈ dependk(A), A(yk,b) will be in the span of {A(yk,a) | a ∈ spank(A)}. Let us first
define span0(A) := {ǫ} and depend0(A) = ∅. As a convention, y0 = ∅ and A(∅,ǫ) would
mean the polynomial A itself. Now, we define spank(A) and dependk(A) recursively, for
all 1 ≤ k ≤ n:

• Elements in dependk(A) are just all possible extensions of elements in spank−1(A),
i.e. dependk(A) := {(a, j) | a ∈ spank−1(A), 0 ≤ j ≤ d}.

• spank(A) is defined to be a subset of dependk(A), of size ≤ w, such that the set
{A(yk,a) | a ∈ spank(A)} spans {A(yk,a) | a ∈ dependk(A)}.

Note that there can be more than one candidates for spank(A). We fix one of them. If
A(yk,∗) has dimension bounded by w then the size of spank(A) is bounded by w. And thus,
the size of dependk+1(A) is bounded by w(d + 1). The dependencies of the polynomials
in {A(yk,a) | a ∈ dependk(A)} over {A(yk,a) | a ∈ spank(A)} are the characterizing set of
dependencies.

Now, we move on to construct an ROABP for A.

Proof of Lemma 3. We can assume |spann(A)| = 1, as {A(yn,a) | a ∈ {0, 1, . . . , d}n} is just
a set of constants. Let the set spank(A) be {ak,1,ak,2, . . . ,ak,wk

}, with wk ≤ w, for each
1 ≤ k ≤ n− 1. Here, wn = 1.

We will construct matrices Di ∈ F[xi]
wi−1×wi (w0 = wn = 1), for all 1 ≤ i ≤ n such

that for each 1 ≤ k ≤ n, A(x) = D1D2 · · ·Dk [A(yk,ak,1) A(yk,ak,2) · · · A(yk,ak,wk
)]
⊤. We

know that

A(x) =
d
∑

j=0

A(y1,j)x
j
1. (1)

Recall that depend1(A) = {0, 1, . . . , d}. As the set {A(y1,a) | a ∈ span1(A)} spans
{A(y1,a) | a ∈ depend1(A)}, we know there exists constants {γji}i,j such that for all
0 ≤ j ≤ d,

A(y1,j) =

w1
∑

i=1

γjiA(y1,a1,i). (2)

From Equations (1) and (2) we get, A(x) =
∑w1

i=1

(

∑d
j=0 γjix

j
1

)

A(y1,a1,i). Now, we can

define D1 = [D1,1 D1,2 . . . D1,w1 ], where D1,i =
∑d

j=0 γjix
j
1 for all i ∈ [w1]. Clearly,

A = D1[A(y1,a1,1) A(y1,a1,2) · · · A(y1,a1,w1 )
]⊤. (3)

Now, for any 1 ≤ k ≤ n− 1 we will construct Dk+1 ∈ F[xk+1]
wk×wk+1 such that

[A(yk,ak,1) A(yk,ak,2) · · ·A(yk,ak,wk
)]
⊤ = Dk+1[A(yk+1,ak+1,1) · · ·A(yk+1,ak+1,wk+1

)]
⊤. (4)

6



We know that for each 1 ≤ i ≤ wk,

A(yk,ak,i) =

d
∑

j=0

A(yk+1,(ak,i,j))x
j
k+1. (5)

Observe that (ak,i, j) is just an extension of ak,i and thus belongs to dependk+1(A), for
each 0 ≤ j ≤ d. Hence, we can say that there exists a set of constants {γijh}i,j,h such that
for all 0 ≤ j ≤ d,

A(yk+1,(ak,i,j)) =

wk+1
∑

h=1

γijhA(yk+1,ak+1,h). (6)

From Equations (5) and (6), A(yk,ak,i) =
∑wk+1

h=1

(

∑d
j=0 γijhx

j
k+1

)

A(yk+1,ak+1,h), for

each 1 ≤ i ≤ wk.
Now, we can define Dk+1(i, h) =

∑d
j=0 γijhx

j
k+1, for all i ∈ [wk] and h ∈ [wk+1].

Clearly, Dk+1 is the desired matrix in Equation 4.
Combining Equations (3) and (4),we get A = D1D2 . . . DnA(yn,an,1). One can absorb

the constant A(yn,an,1) in the last matrix to get an ROABP for A. (Lemma 3)

3 Whitebox identity testing

We will now use this characterization of ROABPs to design an algorithm to check if two
given ROABPs compute the same polynomial. If the two ROABPs have same variable or-
der then one can combine them to make a single ROABP which computes their difference.
And then one can apply the test for one ROABP (whitebox [RS05], blackbox [AGKS14]).
So, the problem is non-trivial only when the two ROABPs are in different variable order.
Wlg, A has order (x1, x2, . . . , xn).

3.1 Testing the equivalence of two ROABPs

Main Idea: Let us say A and B are two polynomials, computed by two explicitly given
ROABPs. The idea is to find out the characterizing set of dependencies among the partial
derivative polynomials of A, and verify that the same dependencies hold for the corre-
sponding partial derivative polynomials of B. We will see that if they indeed hold then B
is just a multiple of A. As, the dimension of the set of these partial derivative polynomials
is bounded by the width, the characterizing set of dependencies is polynomially bounded.

We will present the test in the following order. (i) We describe a procedure to find
these dependencies, i.e. how to find the sets {A(yk,a) | a ∈ spank(A)} and {A(yk,a) | a ∈
dependk(A)} and moreover, their dependencies. (ii) We show that it is easy to verify these
dependencies for B. (iii) We show that if B satisfies all these dependencies and moreover
they are equal on a particular evaluation point then A and B are the same polynomials.
We give an iterative construction, starting from span0(A) = {ǫ}.
Constructing dependk(A): By definition, dependk(A) is just all possible one-step exten-
sions of spank−1(A).
Constructing spank(A) from dependk(A): Let A(x) = D1(x1)D2(x2) · · ·Dn(xn). From
Observation 1, for any b = (b1, b2, . . . , bk) ∈ {0, 1, . . . , d}k,

A(yk,b) =

(

k
∏

i=1

coeffDi
(xbii )

)

Dk+1 · · ·Dn.

7



Here, coeffD1(x
b1
1 ) ∈ F1×w and coeffDi

(xbii ) ∈ Fw×w for all 2 ≤ i ≤ k. For any b,

let us define Rb ∈ F1×w to be the product
∏k

i=1 coeffDi
(xbii ). We would get A(yk,b) =

RbDk+1 · · ·Dn.
Now, consider the set {Rb | b ∈ dependk(A)}. Take spank(A) to be a subset (of size

≤ w) of dependk(A) such that the set {Rb | b ∈ spank(A)} spans {Rb | b ∈ dependk(A)}.
Clearly, the set {A(yk,b) | b ∈ spank(A)} will span {A(yk,b) | b ∈ dependk(A)}. Moreover,
for any b ∈ dependk(A), if Rb =

∑

a∈spank(A) γaRa then A(yk,b) =
∑

a∈spank(A) γaA(yk,a).
Thus, it is easy to find these dependencies.

Observe that for k = n, Rb is a 1 × 1 matrix. Thus, spann(A) will have only one
element, let it be an,1. We now describe the equivalence test in Algorithm 1.

Algorithm 1: Testing equivalence of an ROABP with another polynomial

input: A polynomial A computed by an ROABP with variable sequence
(x1, x2, . . . , xn) and a polynomial B.

1 foreach k ∈ [n] do
2 foreach b ∈ dependk(A) do
3 Find a set of constants {γa}a∈spank(A) such that

A(yk,b) =
∑

a∈spank(A) γaA(yk,a);

4 if B(yk,b) 6=
∑

a∈spank(A) γaB(yk,a) then

5 Output ‘A 6= B’

6 end

7 end

8 end

9 if B(yn,an,1) 6= A(yn,an,1) then

10 Output ‘A 6= B’.

11 end

12 Output ‘A = B’.

Note that the test actually works for any polynomial B for which we can verify a given
dependency of its partial derivatives (Line 4 in Algorithm 1). Here, we describe how to
verify these dependencies for polynomial B, when an ROABP computing B is given.
Verifying the dependencies for B: We show that it is easy to verify the dependencies
for B.

Lemma 4. If B has a width-w ROABP in some variable order then B(yk,a) also has a
width-w ROABP in the same variable order (ignoring the variables in yk), for any variable
set yk and any monomial ya

k .

Proof. Let E1(xπ(1))E2(xπ(2)) · · ·En(xπ(n)) be the ROABP computing the polynomial B,
where π is a permutation on [n]. It is easy to see that B(yk,a) is computed by E′

1E
′
2 · · ·E

′
n

where,

E′
i =

{

Ei(xπ(i)), if xπ(i) /∈ yk,

coeffEi
(x

aπ(i)

π(i) ), otherwise.

Hence, B(yk,a) has a width-w ROABP in the same variable order. (Lemma 4)

Now, we will show that the polynomial B(yk,b) −
∑

a∈spank(A) γaB(yk,a) (Algorithm 1,
Line 4) also has a small width ROABP.

8



Lemma 5. The polynomial B(yk,b) −
∑

a∈spank(A) γaB(yk,a) has an ROABP with width at
most w(w + 1).

Proof. The mentioned polynomial is a sum of (at most) w+1 polynomials (as |spank(A)| ≤
w), each computed by an ROABP with the variable order given by π. We can combine
these ROABPs to make it one ROABP: in the layered graph representation, put the graphs
in parallel and identify all the start nodes and all the end nodes. The width of the new
ROABP is (w+1) times the width of B, and hence, it has width w(w+1). (Lemma 5)

So, the question of verifying the dependency reduces to that of testing the zeroness of
a width-w(w + 1) ROABP. This can be done in poly(n,w, d) time [RS05].
B(yn,an,1) = A(yn,an,1): The last part of Algorithm 1 is to check this equality (Line 9).
B(yn,an,1) and A(yn,an,1) actually belong to the field F, hence it is easy to verify the equality.
Correctness of Algorithm 1: If A = B then clearly, all the characterizing dependencies
of A will hold for B. B(yn,a) = A(yn,a) will also hold for any a. Thus, the algorithm will
output ‘A = B’.

Now, we show the other direction.

Lemma 6. If all the characterizing dependencies of A also hold for B (Algorithm 1,
Line 4) then B is just a constant multiple of A.

Proof. By definition, span0(A) = span0(B). As, the characterizing set of dependencies
of A also hold for B, for each 1 ≤ k ≤ n, {B(yk,a) | a ∈ spank(A)} spans {B(yk,a) | a ∈
dependk(A)}. Recall, the construction of an ROABP from the given set of character-
izing dependencies (Lemma 3). The matrices D1, D2, . . . , Dn are constructed just using
spank(A), dependk(A) and the constants involved in the dependencies. Hence, using that
construction one can write, A = D1D2 . . . DnA(yn,an,1) and B = D1D2 . . . DnB(yn,an,1).

Thus, we have the lemma. (Lemma 6)

Moreover, if A(yn,an,1) = B(yn,an,1) then clearly A = B, implying the correctness of
Algorithm 1.

3.2 Sum of Constantly Many ROABPs

In this section, we describe a deterministic poly-time identity test for a sum of constantly
many ROABPs. Here again, the question is interesting only when the ROABPs have
different variable orders. Because, if some of them have the same variable order then
they can be combined to make a single ROABP, thus reducing the question to a smaller
number of ROABPs. Suppose A1(x), A2(x), . . . , Ac(x) are polynomials, each computed
by an ROABP of width w and individual variable degree d. The goal is to test whether
A1 +A2 + · · ·+Ac = 0.

Let us rephrase the question as testing equivalence of −A1 and A2 + A3 + · · · + Ac.
Recall that Algorithm 1 can test the equivalence of an ROABP A with any polynomial
B, as long as we can verify a set of given dependencies for partial derivative polyno-
mials of B. Here, we take A = −A1 and B = A2 + A3 + · · · + Ac. The only ques-
tion that remains is whether we can verify a given dependency for this particular B.
Recall the form of the dependency we need to verify in Algorithm 1 (Line 4). For
a b ∈ dependk(A), whether B(yk,b) =

∑

a∈spank(A) γaB(yk,a). Consider the polynomial
Q = B(yk,b) −

∑

a∈spank(A) γaB(yk,a). Substituting the value of B, we get

Q =
c
∑

i=2



Ai(yk,b) −
∑

a∈spank(A)

γaAi(yk,a)



 .

9



From Lemma 5, one can make a combined ROABP of width w(w + 1), which computes
Ai(yk,b) −

∑

a∈spank(A) γaAi(yk,a), for each i. Thus, Q can be written as a sum of c − 1
ROABPs each having width w(w + 1). To test the zeroness of Q, we recursively use the
same algorithm for sum of c− 1 ROABPs.
Time Complexity: Now, let us see how many such dependencies we need to ver-
ify. Algorithm 1 goes over all k ∈ [n] (Line 1) and all b ∈ dependk(A) (Line 2). As
|dependk(A)| ≤ w(d+1), total number of dependencies verified is nw(d+1). Thus, we get
the following recursive formula for T (c, w), time complexity for testing zeroness of sum of
c ROABPs, each having width w: T (c, w) = nw(d+1) ·T (c− 1, w(w+1))+ poly(n,w, d).
Solving this, we get T (c, w) = wO(2c)poly(nc, dc).

4 Blackbox Identity Testing

We move on to give a blackbox test for sum of constantly many ROABPs. To be precise,
we will construct a set of points in F′n (where F′ is an appropriate field extension) such
that any nonzero polynomial, which can be written as a sum of constantly many ROABPs,
will evaluate to a nonzero value at one of the points. As in the whitebox test, we make it
a question of testing the equivalence of an ROABP A with another polynomial B. Here
again, we use the characterization of an ROABP given in Lemmas 2 and 3.

Here, abusing the term ROABP, we say a polynomial R(x) ∈ F[x]r×r′ can be computed
by a width-w ROABP (r, r′ ≤ w), if there exists matrices D1 ∈ F[x1]

r×w, Dn ∈ F[xn]
w×r′

and Di ∈ F[xi]
w×w for all 2 ≤ i ≤ n− 1 such that R = D1D2 · · ·Dn.

Main Idea: Let A ∈ F[x] have a width-w ROABP in variable order (x1, x2, . . . , xn). We
try to build an ROABP for B ∈ F[x] in the same variable order as A. This is done by
checking whether the characterizing set of dependencies (Section 3.1) of A also hold for
B. Without loss of generality, we can assume that B does not have a width-w ROABP
in the variable order (x1, x2, . . . , xn), otherwise the question would reduce to the identity
testing of one ROABP, which is already solved [AGKS14]. Hence, by Lemma 6, not all
the characterizing dependencies of A will hold for B. Let 1 ≤ k ≤ n be the first index
such that a characterizing dependency amongst {A(yk,a) | a ∈ dependk(A)} does not hold
for the corresponding partial derivative polynomials of B. We show that we can make a
common ROABP for A and B up to this point.

To elaborate, we can write A = RP and B = RQ, where R ∈ F[yk]
1×w′

(w′ ≤ w(d+1))
is a polynomial which can be computed by a width-w′ ROABP and P,Q ∈ F[zk]

w′×1

consists of partial derivative polynomials of A and B respectively. The construction also
implies that coefficient space of R has full rank w′. Moreover, there exists a constant
vector Γ ∈ F1×w′

such that ΓP = 0 but ΓQ 6= 0. We want to extract out this difference
as a certificate for A 6= B.

For this we use the concept of low support rank concentration defined in [ASS13]. For a
polynomial over an algebra, we shift each variable to concentrate the rank of its coefficients
(or non-zeroness of the coefficients, in case of a polynomial over a field) to low support
coefficients. We construct this kind of a shift for an ROABP using the hitting set given by
[AGKS14]. We show that if B has an ROABP then so does ΓQ (of a higher width). Thus,
when appropriately shifted, ΓQ will have a low support nonzero coefficient, while ΓP has
all zero coefficients. But, how do we get Γ? As mentioned earlier, the coefficient space
of R is full rank, which can be concentrated in low support coefficients by the same shift.
Thus, Γ can be generated by a linear combination of low support coefficients of shifted R.
All this together implies that after the shift, A will have a low support coefficient different

10



from the corresponding coefficient in B. Checking all the low support coefficients will give
us the final test.

First, we see the construction of a partial ROABP common for both A and B.

Lemma 7 (Partial ROABP). There exists 1 ≤ k ≤ n such that we can construct a
polynomial R = [R1 R2 · · · Rw′ ] ∈ F[yk]

1×w′

(w′ ≤ w(d + 1)) computed by a width-w′

ROABP with the following properties:

1. A =
∑w′

i=1RiPi and B =
∑w′

i=1RiQi, where {Pi}i = {A(yk,a) | a ∈ dependk(A)} and
{Qi}i = {B(yk,a) | a ∈ dependk(A)}.

2. There exists a set of constants {γi}
w+1
i=1 such that

∑w+1
i=1 γiPi = 0 and

∑w+1
i=1 γiQi 6= 0.

3. The coefficient space of the polynomial R has full rank w′.

Proof. Recall the ROABP construction from Lemma 3. Here, we assume that the set
spank(A) was chosen with minimum possible number of elements, i.e. the polynomials in
the set {A(yk,a) | a ∈ spank(A)} are all linearly independent. This would mean that any
polynomial in {A(yk,a) | a ∈ dependk(A)} has a unique dependency over {A(yk,a) | a ∈
spank(A)}. The matrix Dk is constructed using just these dependencies.

Let 1 ≤ k ≤ n be the first index where a dependency for A is not followed by B.
Formally, for any 1 ≤ k′ < k and b ∈ dependk′(A), A(yk′ ,b)

=
∑

a∈spank′ (A) γaA(yk′ ,a)
=⇒

B(yk′ ,b)
=
∑

a∈spank′ (A) γaB(yk′ ,a)
, and there exists b ∈ dependk(A) such that

A(yk,b) =
∑

a∈spank(A)

γaA(yk,a), but B(yk,b) 6=
∑

a∈spank(A)

γaB(yk,a). (7)

From Lemma 3, we can construct a width-w ROABP D1D2 . . . Dk−1 such that

A(x) = D1D2 · · ·Dk−1[A(yk−1,ak−1,1) A(yk−1,ak−1,2) · · · A(yk−1,ak−1,wk−1
)]
⊤ (8)

B(x) = D1D2 · · ·Dk−1[B(yk−1,ak−1,1) B(yk−1,ak−1,2) · · · B(yk−1,ak−1,wk−1
)]
⊤ (9)

Here, {ak−1,i}
wk−1

i=1 is spank−1(A). Recall Equation (5) from Lemma 3. ∀ 1 ≤ i ≤ wk−1,

A(yk−1,ak−1,i) =

d
∑

j=0

A(yk,(ak−1,i,j))x
j
k and B(yk−1,ak−1,i) =

d
∑

j=0

B(yk,(ak−1,i,j))x
j
k. (10)

Let w′ = wk−1(d+ 1). Define a new matrix F[xk]
wk−1×w′

∋ Ek := Iwk−1
⊗
[

x0k x1k · · · xdk
]

.
Let P = [A(yk,(ak−1,1,0)) · · ·A(yk,(ak−1,1,d)) · · ·A(yk,(ak−1,wk−1

,0)) · · ·A(yk,(ak−1,wk−1
,d))]

⊤ be the

vector of coefficient polynomials of all the one-step extensions of spank−1(A). From
Equation (10) it is easy to see that [A(yk−1,ak−1,1) · · ·A(yk−1,ak−1,wk−1

)]
⊤ = EkP. Thus,

from Equation (8), we get A(x) = D1D2 · · ·Dk−1EkP. By the same arguments, B(x) =
D1D2 · · ·Dk−1EkQ, where Q = [B(yk,(ak−1,1,0)) · · ·B(yk,(ak−1,1,d)) · · ·B(yk,(ak−1,wk−1

,0)) · · ·

B(yk,(ak−1,wk−1
,d))]

⊤. Setting R := [R1 R2 · · · Rw′ ] = D1D2 · · ·Dk−1Ek, we get A = RP

and B = RQ. Clearly, R has a width-w′ ROABP. Moreover, the set of polynomials in P
and Q are exactly {A(yk,a) | a ∈ dependk(A)} and {B(yk,a) | a ∈ dependk(A)} respectively.
Hence, we get Statement 1 of the Lemma.

Let {Pi}
w′

i=1 := {A(yk,a) | a ∈ dependk(A)} and {Qi}
w′

i=1 := {B(yk,a) | a ∈ dependk(A)}.
From Equation (7) we get Statement 2 of the Lemma (after renumbering the indices).

Now, we want to show that the coefficient space of R has full rank. Recall that for
each 1 ≤ k ≤ n, spank(A) = {ak,1,ak,1, . . . ,ak,wk

}. Let Ak = D1D2 · · ·Dk ∈ F[yk]
1×wk .

We first prove the following.

11



Claim 8 (Basis monomials). For any 1 ≤ k ≤ n and 1 ≤ h ≤ wk, coeffAk
(y

ak,h

k ) = eh,
where eh ∈ F1×wk is such that it has 1 as the h-th entry and 0 at other places.

Proof. We prove it by induction on k.
Base Case: For k = 0, it is vacuously true (assuming D0 = 1).
Induction Hypothesis: The claim is true for k − 1.
Induction Step: Let ak,h = (a, j) where a ∈ {0, 1, . . . , d}k−1 and 0 ≤ j ≤ d. By

construction of spank(A), it is clear that a ∈ spank−1(A). Let a = ak−1,i for some

1 ≤ i ≤ wk−1. It is easy to see that coeffAk
(y

ak,h

k ) = coeffAk−1
(y

ak−1,i

k−1 ) coeffDk
(xjk). By

inductive hypothesis, coeffAk−1
(y

ak−1,i

k ) = ei. Now, we need to find ei coeffDk
(xjk), which

is nothing but coeffDk(i,·)(x
j
k).

Recall from Lemma 3, Equation (6), Dk(i, h
′) =

∑d
j′=0 γij′h′xj

′

k for all 1 ≤ h′ ≤ wk,
where {γij′h′}ij′h′ are such that A(yk,(ak−1,i,j

′)) =
∑w

h′=1 γij′h′A(yk,ak,h′ )
. Let us put j′ = j

in this equation. We know that (ak−1,i, j) = ak,h. If we look at the dependency of A(yk,ak,h)

over the set {A(yk,ak,h′ )
| 1 ≤ h′ ≤ wk}, it would be simply given by eh. Hence,

γijh′ =

{

1 if h′ = h

0 otherwise.

Now, observe that coeffDk(i,·)(x
j
k) = [γij1 γij2 · · · γijwk

] = eh. Hence, the claim is
proved. (Claim 8)

Recall that R = Ak−1Ek, and dependk(A) = {(ak−1,i, j) | 1 ≤ i ≤ wk−1, 0 ≤ j ≤ d}
with |dependk(A)| = w′ = wk−1(d+ 1).

Claim 9. For any 1 ≤ i ≤ wk−1 and 0 ≤ j ≤ d, coeffR(y
ak−1,i

k−1 xjk) = e(i−1)(d+1)+j+1,

where eh ∈ F1×w′

is such that it has 1 as the h-th entry and 0 at other places.

Proof. Observe that coeffR(y
ak−1,i

k−1 xjk) = coeffAk−1
(y

ak−1,i

k−1 ) coeffEk
(xjk). From Claim 8,

coeffAk−1
(ak−1,i) = ei. Now, we just need to find the i-th row of coeffEk

(xjk). From
the definition of Ek, it comes out to be e(i−1)(d+1)+j+1. (Claim 9)

Clearly, {e(i−1)(d+1)+j+1 | 1 ≤ i ≤ wk−1, 0 ≤ j ≤ d} has rank w′. Thus, coefficient
space of R has full rank. (Lemma 7)

Before going to the actual blackbox test let us describe low support concentration.
Support size of a monomial xa is given by supp(a) = |{ai 6= 0 | i ∈ [n]}|. M will denote
the set of all monomials in x with individual degree bound d i.e. M = {a ∈ Zn | 0 ≤ ai ≤
d ∀i ∈ [n]} (a monomial can be represented by an n-tuple, consisting of powers of xi’s in
the monomial).

A polynomial D(x) over an F-algebra A is called low-support concentrated if its low-
support coefficients span all its coefficients. Formally,

Definition 10 (ℓ-support concentration [ASS13]). A polynomial D(x) ∈ A[x] is said to
have an ℓ-support concentration if ∀ a ∈ M

coeffD(x
a) ∈ spanF{coeffD(x

b) | b ∈ M, supp(b) < ℓ}.

12



Thus, for a non-zero polynomial over a field, low-support concentration just means
that one of the low-support coefficients is nonzero. Although, a polynomial might not
already have a low-support concentration, for example D(x) = x1x2 . . . xn, Agrawal et al.
[ASS13] showed that it can be achieved through an appropriate shift. In the mentioned
example, if we shift every variable by 1, i.e. D(x + 1) = (x1 + 1)(x2 + 1) . . . (xn + 1),
then it will have 1-support concentration. In fact, it can be shown that a random shift
can achieve low-support concentration in an arbitrary polynomial over an algebra [ASS13,
FSS14, AGKS13]. In Section 5, we show an efficient shift which achieves concentration in
polynomials computed by ROABP. Note that as shift is an invertible process, it always
preserves the coefficient space of a polynomial. By shifting a polynomial A(x) by an
n-tuple f = (f1, f2, . . . , fn), we would mean A(x+ f) := A(x1 + f1, x2 + f2, . . . , xn + fn).

Let w(c) := (d + 1)(2w)2
c−1

and ℓw,c := log((w(c))2 + 1). Let fw,c(t) ∈ F[t]n be an
n-tuple such that for any individual degree d polynomial D(x), computed by an ROABP
of width ≤ w(c), D(x+ fw,c) is ℓw,c-concentrated. Corollary 27 and Lemma 28 (Section 5)

show that such an n-tuple can be constructed in time (nw2c−1
d)O(logn) and has degree

(nw2c−1
d)O(log n).

We claim that the shift by fw,c will also work for the sum of c width-w ROABPs. First,
let us see the case of sum of two ROABPs.

Lemma 11. Let A and B be two n-variate, width-w ROABPs. Then, the polynomial
(A+B)′ := (A+B)(x+ fw,2), is 2ℓw,2-concentrated.

Proof. We start from the construction of Lemma 7 with the added information that, now,
B is also computed by an ROABP of width w.

Consider the polynomial ΓQ :=
∑w+1

i=1 γiQi from Lemma 7. As each Qi is a partial
derivative of B, ΓQ has a width-(w+1)w ROABP (from Lemma 5). It is also known that
the vector polynomial R (from Lemma 7) is computed by a width (d+ 1)w ROABP.

As (w + 1)w ≤ w(2), the vector polynomial ΓQ′ = ΓQ(x + fw,2) is ℓw,2-concentrated.
Similarly, as (d+1)w < w(2), the vector polynomial R′ = R(x+ fw,2) is ℓw,2-concentrated.

Since ΓQ 6= 0 (Lemma 7), and ΓQ′ is ℓw,2-concentrated, there exists at least one
monomial b ∈ {0, 1, . . . , d}n−k with supp(b) < ℓw,2 in the variables zk such that

∑w+1
i=1 γi ·

coeffQ′

i
(zk

b) 6= 0. And
∑w+1

i=1 γi · coeffP ′

i
(zk

b) = 0, because
∑w+1

i=1 γi · Pi = 0. Hence,

w+1
∑

i=1

γi · coeff(P ′

i+Q′

i)
(zk

b) 6= 0. (11)

Let S ⊂ {0, 1, . . . , d}k be the set of all < ℓw,2-support monomials in yk.

Claim 12. Any arbitrary vector [γ1, γ2, . . . , γw′ ] ∈ Fw′

can be written as a linear combi-
nation of the coefficients of the S monomials in R′ .

Proof. Since rankF(t){coeffR(yk
a) | a ∈ {0, 1, . . . , d}k} = w′ and moreover, R′ is ℓw,2-

concentrated, rankF(t){coeffR′(yk
a) | a ∈ S} = w′. (Claim 12)

By Claim 12, let [γ1 γ2 . . . γw+1 0 0 . . . 0] =
∑

a∈S αa · coeffR′(yk
a). I.e. γi =

13



∑

a∈S αa · coeffR′

i
(yk

a). Thus, Equation (11) becomes

w′

∑

i=1

(

∑

a∈S
αa coeffR′

i
(yk

a)

)

· coeff(P ′

i+Q′

i)
(zk

b) 6= 0

=⇒
w′

∑

i=1

∑

a∈S
αa coeffR′

i(P
′

i+Q′

i)
(yk

azk
b) 6= 0

=⇒
∑

a∈S
αa coeff(A+B)′

(

x(a,b)
)

6= 0

supp((a,b)) = supp(a) + supp(b) < ℓw,2 + ℓw,2. Thus, there is a (< 2ℓw,2)-support
monomial that has a non-zero coefficient in the polynomial (A+B)′. (Lemma 11)

4.1 Sum of Constantly Many ROABPs

Like the white-box test, now the goal is to test whether an oracle computing A1 + A2 +
· · ·+Ac = 0 is identically zero.

Lemma 13. Let {Aj}
c
j=1 be c-many n-variate width-w ROABPs. Then, the polynomial

(A1 +A2 + · · ·+Ac)
′ := (A1 +A2 + · · ·+Ac)(x+ fw,c), is (cℓw,c)-concentrated.

Proof. The proof runs on similar lines as that of Lemma 11. We will actually prove the
following statement.

Claim: If f is an n-tuple such that for any individual degree-d polynomial D(x)
computed by a width-w(c′) ROABP, D(x+ f) has ℓw,c′-concentration then any sum of c′

ROABPs will have c′ℓw,c′-concentration after a shift by f .
The proof is by induction on the number of ROABPs, c.
Base Case: The case of c′ = 2 is given by Lemma 11.
Induction Hypothesis: Now, let us assume the claim is true for c′ = c− 1.
Induction Step: We prove the claim for c′ = c. By Lemma 7, we write A1 =

∑w′

i=1RiPi,

and
∑c

j=2Aj =
∑w′

i=1RiQi, with w′ ≤ (d + 1)w. Recall that ΓQ :=
∑w+1

i=1 γiQi =
∑w+1

i=1 γiB(yk,ai) for some {ai}i ⊆ dependk(A), and B :=
∑c

j=2Aj .

Hence, ΓQ =
∑w+1

i=1 γi
∑c

j=2Aj(yk,ai)
=
∑c

j=2

∑w+1
i=1 γiAj(yk,ai)

.

Thus, by Lemma 5, ΓQ can be computed by a sum of (c− 1) ROABPs, each of width
(w + 1)w ≤ 2w2 =: w1. I.e. there are c− 1-many, (≤ n)-variate width-w1 ROABPs.

As w(c) = w
(c−1)
1 , a shift by f will achieve (ℓw1,c−1)-concentration in any width-

w
(c−1)
1 ROABP. Thus, by the Induction Hypothesis, B′ := ΓQ(x + f) has (c − 1)ℓw1,c−1-

concentration, which is same as (c− 1)ℓw,c-concentration.
The rest of the argument is similar to that in Lemma 11: it can be shown that

∑c
j=1A

′
j = A′

1 +B′ is (ℓw,c + (c− 1)ℓw,c) ≤ cℓw,c-concentrated. (Lemma 13)

An easy identity test for a low-support concentrated polynomial was given in [ASS13].

Lemma 14 ([ASS13]). If A(x) ∈ F[x] is an n-variate, ℓ-concentrated polynomial with
highest individual degree d, then there is a (nd)O(ℓ)-time hitting-set for A(x).

Proof of Theorem 2. By combining Lemma 13, and Lemma 14 we get a hitting set
of size (nd)O(cℓw,c). Each evaluation of the shifted polynomial A(x + fw,c) is a poly-

nomial over F(t). Its degree would be (nw2c−1
d)O(log n). Thus, the identity test takes

(wnd)O(c·2c log(wnd)) steps. (Theorem 2)

14



4.2 Concentration in matrix polynomials

As a by-product, we show that low-support concentration can be achieved even when we
have a sum of matrix polynomials, each computed by an ROABP.

Corollary 15. Let D ⊆ Fw×w[x] be the family of matrix polynomials computed by sum
of c-many width w ROABPs. I.e. D ∋ D(x) = A1(x) + A2(x) + · · · + Ac(x), where
each Aj ∈ Fw×w[x] is a matrix polynomial computed by a width w ROABP. Then, ∀D ∈
D, D(x+ fw2,c) is (cℓw2,c)-concentrated.

Proof. Let F[x] ⊇ C := {〈α,D〉 | α ∈ Fw2
, D ∈ D}.

Hence, C =
{

〈α,A1〉+ 〈α,A2〉+ · · ·+ 〈α,Ac〉 | α ∈ Fw2
, Aj ∈ A

}

, where, A is the fam-

ily of all matrix polynomials computed by width w ROABPs.
By Lemma 17, each 〈α,Aj〉 is computed by a width w2 ROABP. Hence, ∀C ∈ C, C is

computed by a sum of c ROABPs, each of width w2.
Hence, by Lemma 13, ∀C ∈ C, C(x+ fw2,c) is (cℓw2,c)-concentrated.
Hence, by Lemma 16, ∀D ∈ D, D(x+fw2,c) is (cℓw2,c)-concentrated. (Corollary 15)

The following lemma is of independent interest.

Lemma 16. Let D be a family of n-variate polynomials over a k-dimensional F-algebra Ak.
Let C be a family of n-variate polynomials over F, defined by C :=

{

〈α,D〉 | α ∈ Fk, D ∈ D
}

.
Let f(t) be an n-tuple. Then, ∀C ∈ C, C(x+ f) is ℓ-concentrated, iff ∀D ∈ D, D(x+ f) is
ℓ-concentrated.

Proof. (⇐) is a special case of Lemma 28.
(⇒) Let D ∈ D be any polynomial such that spanF(t){coeffD′(xa) | supp(a) < ℓ} (

spanF(t){coeffD(x
a) | a ∈ M}, where D′ = D(x + f). Hence, there exists a monomial

b ∈ M such that coeffD(x
b) /∈ spanF(t){coeffD′(xa) | supp(a) < ℓ}. Hence, ∃α ∈ Fk :

C := 〈α,D〉 6= 0, but, ∀a with supp(a) < ℓ, 〈α, coeffD′(xa)〉 = 0. We thus found a C ∈ C
such that C 6= 0, but C(x+ f) is not ℓ-concentrated. (Lemma 16)

We now show how to compute the dot product of any vector in Fw×w with a matrix
polynomial computed by an ROABP.

Lemma 17. Let D ∈ Fw×w[x] be a matrix polynomial computed by a width w ROABP.
Then, ∀α ∈ Fw2

, 〈α,D〉, the dot product of α and D can be computed by an ROABP of
width w2.

Proof. Let C = 〈α,D〉. Take RD = (Iw ⊗ D)γ, with γ = [e⊤1 e⊤2 . . . e⊤w ]
⊤, where eis

are the elementary vectors of dimension w. Let D = D1(x1)D2(x2) · · ·Dn(xn). Thus,
RD = (Iw⊗D)γ = (Iw⊗D1)(Iw⊗D2) · · · (Iw⊗Dn)γ is computed by a width w2 ROABP.
Thus, C = 〈α,RD〉 has a width-w2 ROABP. (Lemma 17)

5 Fast Low-Support Concentration in ROABP

Recall that a polynomial D(x) over an F-algebra A is called low-support concentrated if
its low-support coefficients span all its coefficients. Here, we show an efficient shift which
achieves concentration in polynomials computed by ROABP. M will denote the set of all
monomials in x with individual degree bound d, i.e.M = {a ∈ Nn | 0 ≤ ai ≤ d, ∀i ∈ [n]} (a
monomial can be represented by an n-tuple, consisting of powers of xi’s in the monomial).

15



Recently, a quasi-polynomial (poly(n,w, d)logn) size hitting set was given by [AGKS14]
for ROABP. Their hitting set involves replacing xi with tw(i), where w is a weight function
on the variables, which does a basis isolation. We recall the definition of a basis isolating
weight assignment from [AGKS14]. A weight function w: [n] → N on the set of variables
x can be naturally extended to the set of monomials in variables x. Weight of a monomial
xa is defined to be w(a) =

∑n
i=1w(i)ai, for any a = (a1, a2, . . . , an) ∈ Nn.

Definition 18 (Basis Isolating Weight Assignment). A weight function w: [n] → N is
called a basis isolating weight assignment for a polynomial D(x) ∈ Ak[x] if there exists a
set of monomials S ⊆ M (k′ := |S| ≤ k) whose coefficients form a basis for the coefficient
space of D(x), such that

• for any a,b ∈ S, w(a) 6= w(b) and

• ∀ monomial a ∈ M \ S, coeffD(x
a) ∈ spanF{coeffD(x

b) | b ∈ S, w(b) < w(a)}.

Agrawal et al. [AGKS14, Lemma 8] gave a quasi-polynomial time construction of such
a weight assignment for ROABP. Now, we prove that if instead we shift the polynomial
by {tw(i)}ni=1, i.e. xi is replaced with xi+ tw(i) then the polynomial will have a low support
concentration. Note that here the dependence of the higher support coefficients on the
lower support coefficients will be over the function field F(t). Let D′(x) denote the shifted
polynomial, i.e. D(x + tw) := D(x1 + tw(1), x2 + tw(2), . . . , xn + tw(n)). It is easy to see
that coefficients of D′ are linear combinations of coefficients of D, and are given by the
following equation:

coeffD′(xa) =
∑

b∈M

(

b

a

)

tw(b−a) · coeffD(x
b). (12)

Here,
(

b
a

)

:=
∏n

i=1

(

bi
ai

)

for any a,b ∈ Nn. And
(

b
a

)

= 0, if b < a for any a, b ∈ N.

Lemma 19 (Isolation to concentration). Let D(x) be a polynomial over a k-dimensional
algebra Ak. Let w be basis isolating weight assignment for D. Then, D(x + tw) has
ℓ-concentration, where ℓ := ⌈log(k + 1)⌉.

Proof. Let D′(x) = D(x + tw). The relation between the coefficients of D and D′ can
be seen as a linear transformation. Let B and B′ be M × [k] matrices containing the
coefficients of the polynomials D and D′ respectively (a-th row contains the coefficient of
xa, for any a ∈ M). Then we can write, B′ := D−1T DB, where T is a M×M transfer
matrix given by T (a,b) =

(

b
a

)

and D is a diagonal matrix given by D(a,a) = tw(a). As
shifting is an invertible operation, the matrices T and D are invertible and rank(B′) =
rank(B).

Let Mℓ be the set of monomials with support (< ℓ), i.e. Mℓ = {a ∈ M | supp(a) < ℓ}.
Let B′

ℓ be a Mℓ × [k] matrix containing the (< ℓ)-support coefficients of the polynomial
D′. To show ℓ-concentration in D′ we need to prove that rank(B′

ℓ) = rank(B).
B′

ℓ can be written as follows: B′
ℓ = D−1

ℓ TℓDB, where Tℓ is a Mℓ×M submatrix of the
matrix T , containing the rows indexed by the monomials in Mℓ and Dℓ is a Mℓ × Mℓ

submatrix of D containing the rows and columns indexed by the monomials in Mℓ.
As D−1

ℓ is an invertible matrix, it suffices to show that rank(TℓDB) = rank(B). A row
of matrix B indexed by a monomial a ∈ M, denoted by B(a, ·), is said to have weight
w(a). First, let us arrange the rows in B in a monotonically increasing order according to
the weight function w. The rows with the same weight can be arranged in an arbitrary

16



order. Accordingly, the columns of Tℓ and the rows and columns of D are also permuted.
The matrix D remains a diagonal matrix.

Now, recall that as w is a basis isolating weight assignment, there exists a set S ⊆ M
of monomials such that for any a ∈ S := M\ S,

B(a, ·) ∈ span{B(b, ·) | b ∈ S, w(b) < w(a)}. (13)

Let the set S be {s1, s2, . . . , sk′} (k′ ≤ k). Consider a matrix B0 ∈ Fk′×k such that its
i-th row is B(si, ·). Then, the matrix B can be written as the product CB0, where C is

an M× [k′] matrix with its a-th row being (γ1, γ2, . . . , γk′), if B(a, ·) =
∑k′

j=1 γjB(sj , ·),
for all a ∈ M.

Observe that the si-th row of C is simply ei, i.e. 1 in the i-th column and 0 in others.
Further, from Equation 13,

Observation 20. For any a ∈ S, C(a, j) 6= 0 only when w(sj) < w(a).

We will actually show that the matrix TℓDC is a full rank matrix. This would imme-
diately imply that rank(TℓDCB0) = rank(B0) = rank(B).

Observation 21. The first index, where the i-th column of the matrix C has a nonzero
entry, is si.

Proof. As the rows of C are arranged in an increasing order according to the weight func-
tion w, from Observation 20, it is clear that this index has to be si. (Observation 21)

Let R ∈ F|Mℓ|×k′ denote the matrix product TℓDC. Let us view its j-th column R(·, j),
as a polynomial over vectors, i.e. as an element in F|Mℓ|[t]. Let lc(R(·, j)) ∈ F|Mℓ| denote
the coefficient of the lowest degree term in the polynomial R(·, j). Let us define a new
Mℓ × [k′] matrix R0 whose j-th column is given by lc(R(·, j)).

Claim 22. If the matrix R0 is a full rank matrix then so is R.

Proof. If R0 is full rank then there exists a set of k′ rows, such that its restriction to these
rows, say R′

0, has a nonzero determinant. Let R′ denote the restriction of R to the same
set of rows. It is easy to see that lc(det(R′)) = det(R′

0). Hence, det(R′) 6= 0 and R is a
full rank matrix. (Claim 22)

Now, we show that the matrix R0 is full rank. The j-th column of R can be written
as R(·, j) =

∑

a∈M Tℓ(·,a)C(a, j)tw(a). By Observation 21, the first nonzero entry in the
column C(·, j) is C(sj , j) = 1. Moreover, by Observation 20, if C(a, j) 6= 0, for any a 6= sj
then w(a) > w(sj). Hence, we can see that lc(R(·, j)) = Tℓ(·, sj). Thus, the j-th column
of R0 is given by Tℓ(·, sj). By Lemma 23, the columns of matrix Tℓ, indexed by the set S,
are linearly independent. So, we get that all columns of R0 are linearly independent. By
Claim 22, R = TℓDC is full rank. This proves the Lemma. (Lemma 19)

Now, the only remaining thing is to show that the columns of matrix Tℓ, indexed by
the set S, are linearly independent. In fact, we will show that any 2ℓ − 1 columns of Tℓ
are independent.

Lemma 23 (Transfer Matrix Property). Consider the transfer matrix Tℓ described in
Lemma 19. Any 2ℓ − 1 columns of Tℓ are linearly independent.

17



Proof. Recall that Tℓ is Mℓ × M matrix with Tℓ(a,b) =
(

b
a

)

. Now, consider a set of
monomials S ⊆ M of size k := 2ℓ − 1. Let Tℓs be a Mℓ × S submatrix of Tℓ consisting of
columns indexed by the monomials in the set S. The following claim will suffice to prove
the lemma.

Claim 24. For any v ∈ F|S|, Tℓsv 6= 0.

The matrix Tℓs represents a shift by 1, i.e. every variable is shifted by 1. To see
this, consider a polynomial V (x) ∈ F[x] given by V (x) =

∑

a∈S vax
a. Now, observe that

Tℓsv actually gives the (< ℓ)-support coefficients of the polynomial V ′(x) := V (x + 1).
Formally, for any a ∈ Mℓ, coeffV ′(a) = Tℓs(a, ·)v. So, essentially we need to show that
there exists a (< ℓ)-support coefficient in V ′(x) which is nonzero. Our next claim proves
this.

Claim 25 (Concentration in sparse polynomials). Let V (x) ∈ F[x] be an n-variate poly-
nomial with sparsity bounded by 2ℓ − 1, where ℓ > 0. Then, V ′(x) = V (x + 1) has a
nonzero (< ℓ)-support coefficient.

Proof. We prove it by induction on the number of variables, n.
Base Case: (n = 1) The only nontrivial case is ℓ = 1. Then V (x) is a univariate

polynomial with sparsity 1. Clearly, V (x+ 1) has a nonzero constant part.
Induction Hypothesis: The claim is true for n = m− 1 and for all ℓ ∈ Z>0.
Induction Step: n = m. Let xm−1 denote the set of first m− 1 variables. Let us write

polynomial V (x) as
∑d

i=0 Uix
i
m, where Ui ∈ F[xm−1], for every 0 ≤ i ≤ d. Let U ′

i(xm−1)
denote the shifted polynomial Ui(xm−1+1), for every 0 ≤ i ≤ d. Now there are two cases:

Case 1: There is exactly one index in [0, d], let us say i, for which Ui 6= 0. Then Ui has
sparsity ≤ 2ℓ− 1. As Ui is an (m− 1)-variate polynomial, by inductive hypothesis, U ′

i has
a nonzero (< ℓ)-support coefficient.

Thus, V ′(x) = (xm + 1)iU ′
i also has a nonzero (< ℓ)-support coefficient.

Case 2: There are at least two Ui’s which are nonzero. Then there is at least one index
in [0, d], let us say i, such that Ui has sparsity 2ℓ−1 − 1. And hence, by the inductive
hypothesis, U ′

i has a nonzero (< ℓ − 1)-support coefficient. Consider the highest index j
such that U ′

j has a nonzero (< ℓ− 1)-support coefficient. Let the corresponding monomial

be xa
m−1. Now, as V

′(x) =
∑d

i=0(xm + 1)iU ′
i , we can see that

coeffV ′(xa
m−1x

j
m) =

d
∑

r=j

(

r

j

)

coeffU ′
r
(xa

m−1).

We know that coeffU ′

j
(xa

m−1) 6= 0 and for any r > j, coeffU ′
r
(xa

m−1) = 0. Hence,

coeffV ′(xa
m−1x

j
m) 6= 0. The monomial xa

m−1x
j
m has support < ℓ, which proves our

claim. (Claim 25)

As mentioned before this proves the Lemma. (Lemma 23)

Now, we use Lemma 19 to achieve concentration in a polynomial computed by an
ROABP. [AGKS14, Lemma 8] gives a family of n-tuples {f1, f2, . . . , fN} such that for any
given ROABP of width w, at least one of them is basis isolating weight assignment and
hence, provides log(w2 + 1)-concentration (the underlying matrix algebra has dimension

18



w2). Their construction has N := (nwd)O(logn) and W := maxi≤N, j≤n{deg(fi,j)} =
(nwd)O(logn). This family can be generated in time (nwd)O(logn).

We now show how to combine this family of n-tuples to construct one single shift, which
works for every ROABP. Let F := {f1, f2, . . . , fN} be a family of n-tuples. Let L(y, t) ∈
F[y, t]n be the Lagrange interpolation of F . I.e. Lj =

∑

i∈[N ] fi,j
∏

i′∈[N ],i′ 6=i
y−αi′

αi−αi′
for all

j ∈ [n], where, αi is an arbitrary unique field element associated with i, ∀i 2. Note that
Lj |(y=αi)= fi,j . Thus, L |(y=αi)= fi. Also, degy(Lj) = N − 1 and degt(Lj) = W .

Lemma 26 (Single shift). Let D(x) be a family of polynomials over a k-dimensional F-
algebra Ak and F be a family of n-tuples. Suppose for every polynomial D(x) ∈ D(x), there
exists an n-tuple fi in F , such that D′(x, t) := D(x+fi) ∈ Ak[x, t] is ℓ-concentrated. Then,
D′′(x, y, t) := D(x+L) ∈ Ak[x, y, t] is ℓ-concentrated, for every polynomial D(x) ∈ D(x).

Proof. Take one polynomial D(x) ∈ D(x). Let rankF{coeffD(x
a) | a ∈ M} = k′, (k′ ≤ k).

We need to show that there exists a set S′ of (< ℓ)-support monomials in D′′, such
that rankF(y,t) {coeffD′′(xa) | a ∈ S′} = k′.

Since D′(x) := D(x + fi) is ℓ-concentrated, there exists a set S of (< ℓ)-support
monomials in D′, such that rankF(t) {coeffD′(xa) | a ∈ S} = k′. Also, D′(x) is an eval-
uation of D′′ at y = αi; D′(x, t) = D′′(x, i, t). Thus, for all monomials a ∈ M,
coeffD′(xa) = coeffD′′(xa) |(y=αi).

Let M ∈ F[t]k×|S| be the ([k]× S) matrix obtained by taking the coefficients of the S
monomials in D′. And let M ′ ∈ F[y, t]k×|S| be the ([k]×S) matrix obtained by taking the
D′′ coefficients of the monomials in S. Then, M = M ′ |(y=αi).

Since, M has rank k′, there are k′ rows, indexed by R inM such thatM(R, ·), such that
det(M(R, ·)) 6= 0. det(M(R, ·)) = det(M ′(R, ·)) |(y=αi). Thus, det(M ′(R, ·)) 6= 0. Hence,
for the monomials in S in D′′, rankF(y,t) {coeffD′′(xa) | a ∈ S} = k′. (Lemma 26)

Using this interpolation, we can construct a single shift, which works for all width-
(≤ w) ROABPs.

Corollary 27. A univariate n-tuple f(t) of degree (nwd)O(logn) can be found in time
(nwd)O(logn), such that when shifted by f(t), any n-variate, individual degree d ROABP
of width w0 ≤ w becomes log(w2

0 + 1)-concentrated.

Proof. By Lemma 26, the Lagrange interpolation L(y, t), of {f1, f2, . . . , fN} obtained from
[AGKS14][Lemma 8] has y- and t-degrees = (nwd)O(logn). After shifting an n-variate,
degree-d polynomial with L(y, t), its coefficients will be polynomials in y and t, with
degree dn · (nwd)O(log n) =: d′. Thus, replacing y with td

′+1 will not affect the non-
zeroness of any coefficient. We take f = L(td

′+1, t), an n-tuple of univariate polynomials
in t. (Corollary 27)

In fact, the same shift works for any polynomial P (x) ∈ F[x]r×r′ computed by a
width-w ROABP (r, r′ ≤ w).

Lemma 28. Let f be an n-tuple such that for any n-variate, individual degree d polynomial
D over w×w matrices, D′ := D(x+ f) is ℓ-concentrated. Let the polynomial P ∈ F[x]r×r′

be computed by a width w ROABP of the form P := MDN , where M ∈ Fr×w, D ∈
F[x]w×w and N ∈ Fw×r′.

Then, P ′ := P (x+ f) is ℓ-concentrated.

2{αi}i∈[N ] are N distinct field elements. They would exist only in a field extension of F which has size

≥ N . In this paper, wlg, we assume that F is already large enough.

19



Proof. Since D′ = D(x+ f) is ℓ-concentrated,
spanF(t){coeffD(x

a) | a ∈ M} = spanF(t){coeffD′(xa) | supp(a) < ℓ}.

Hence, T
(

spanF(t){coeffD(x
a) | a ∈ M}

)

= T

(

spanF(t){coeffD′(xa) | supp(a) < ℓ}
)

,

where T is the linear transformation given by pre-multiplying withM and post-multiplying
with N . (Lemma 28)

6 Discussion

The first question is whether one can make the time complexity proportional to wO(c)

instead of wO(2c). This blow up happens because, when we want to combine (w+1)-many
partial derivative polynomials of a width-w ROABP, it becomes a width-O(w2) ROABP.
There are examples where this bound seems tight. So, a new property of sum of ROABPs
needs to be discovered.

It also needs to be investigated if these ideas can be generalized to work for sum of
more than constantly many ROABPs, or depth-3 multilinear circuits?

As mentioned in the introduction, the idea for equivalence of two ROABPs was inspired
from the equivalence of two read once boolean branching programs (ROBP). It would be
interesting to know if there are concrete connections between arithmetic and boolean
branching programs. In particular, can ideas from identity testing of an ROABP be
applied to construct pseudorandomness for ROBP.

E.g. the less investigated model, XOR of constantly many ROBPs can be checked for
unsatisfiability by modifying our techniques.

7 Acknowledgements

We thank Manindra Agrawal, Chandan Saha and Vineet Nair for very useful discussions
and encouragement. RG thanks TCS PhD research fellowship for support. NS thanks
DST-SERB for the funding support. TT thanks DFG-DST for the generous travel support.

References

[AGKS13] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-
sets for low-distance multilinear depth-3. Electronic Colloquium on Computa-
tional Complexity (ECCC), 20:174, 2013.

[AGKS14] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-
sets for ROABP and sum of set-multilinear circuits. Electronic Colloquium on
Computational Complexity (ECCC), 21:85, 2014.

[Agr05] Manindra Agrawal. Proving lower bounds via pseudo-random generators. In
FSTTCS, volume 3821 of Lecture Notes in Computer Science, pages 92–105,
2005.

[ASS13] Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial
hitting-set for set-depth- formulas. In STOC, pages 321–330, 2013.

[BOT88] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse
multivariate polynomial interpolation. In Proceedings of the Twentieth Annual

20



ACM Symposium on Theory of Computing, STOC ’88, pages 301–309, New
York, NY, USA, 1988. ACM.

[DS07] Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and
polynomial identity testing for depth 3 circuits. SIAM J. Comput., 36(5):1404–
1434, 2007.

[FS12a] Michael A. Forbes and Amir Shpilka. On identity testing of tensors, low-rank
recovery and compressed sensing. In STOC, pages 163–172, 2012.

[FS12b] Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing
of non-commutative and read-once oblivious algebraic branching programs.
CoRR, abs/1209.2408, 2012.

[FS13] Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing
of non-commutative and read-once oblivious algebraic branching programs. In
FOCS, pages 243–252, 2013.

[FSS14] Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for
multilinear read-once algebraic branching programs, in any order. In Sympo-
sium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 -
June 03, 2014, pages 867–875, 2014.

[GKKS13] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi.
Arithmetic circuits: A chasm at depth three. FOCS, pages 578–587, 2013.

[KI03] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial iden-
tity tests means proving circuit lower bounds. STOC, pages 355–364, 2003.

[KS01] Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing
of multivariate polynomials. In STOC, pages 216–223, 2001.

[KS06] Adam Klivans and Amir Shpilka. Learning restricted models of arithmetic
circuits. Theory of computing, 2(10):185–206, 2006.

[KS07] Neeraj Kayal and Nitin Saxena. Polynomial identity testing for depth 3 cir-
cuits. Computational Complexity, 16(2):115–138, 2007.

[KS09] Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for
depth 3 circuits. In FOCS, pages 198–207, 2009.

[KS11] Zohar Shay Karnin and Amir Shpilka. Black box polynomial identity testing
of generalized depth-3 arithmetic circuits with bounded top fan-in. Combina-
torica, 31(3):333–364, 2011.

[Nis91] Noam Nisan. Lower bounds for non-commutative computation (extended ab-
stract). In Proceedings of the 23rd ACM Symposium on Theory of Computing,
ACM Press, pages 410–418, 1991.

[NS] Vineet Nair and Chandan Saha. Personal communication, 2014.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-
commutative models. Computational Complexity, 14(1):1–19, 2005.

21



[RY09] Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant
depth multilinear circuits. Computational Complexity, 18(2):171–207, 2009.

[Sax09] Nitin Saxena. Progress on polynomial identity testing. Bulletin of the EATCS,
99:49–79, 2009.

[Sax14] Nitin Saxena. Progress on polynomial identity testing - 2. CoRR,
abs/1401.0976, 2014.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701–717, October 1980.

[SS11] Nitin Saxena and Comandur Seshadhri. An almost optimal rank bound for
depth-3 identities. SIAM J. Comput., 40(1):200–224, 2011.

[SS12] Nitin Saxena and Comandur Seshadhri. Blackbox identity testing for bounded
top-fanin depth-3 circuits: The field doesn’t matter. SIAM J. Comput.,
41(5):1285–1298, 2012.

[SW97] Petr Savický and Ingo Wegener. Efficient algorithms for the transformation be-
tween different types of binary decision diagrams. Acta Informatica, 34(4):245–
256, 1997.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent
results and open questions. Foundations and Trends in Theoretical Computer
Science, 5(3-4):207–388, 2010.

22

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


