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Abstract

An (n, k)-bit-fixing source is a distribution on n bit strings, that is fixed on n − k
of the coordinates, and jointly uniform on the remaining k bits. Explicit constructions
of bit-fixing extractors by Gabizon, Raz and Shaltiel [SICOMP 2006] and Rao [CCC
2009], extract (1 − o(1)) · k bits for k = poly log n, almost matching the probabilistic
argument. Intriguingly, unlike other well-studied sources of randomness, a result of
Kamp and Zuckerman [SICOMP 2006] shows that, for any k, some small portion of
the entropy in an (n, k)-bit-fixing source can be extracted. Although the extractor
does not extract all the entropy, it does extract (1/2− o(1)) · log(k) bits.

In this paper we prove that when the entropy k is small enough compared to n,
this exponential entropy-loss is unavoidable. More precisely, one cannot extract more
than log(k)/2 + O(1) bits from (n, k)-bit-fixing sources. The remaining entropy is
inaccessible, information theoretically. By the Kamp-Zuckerman construction, this
negative result is tight.

Our impossibility result also holds for what we call zero-fixing sources. These are
bit-fixing sources where the fixed bits are set to 0. We complement our negative result,
by giving an explicit construction of an (n, k)-zero-fixing extractor, that outputs Ω(k)
bits, even for k = poly log log n. Furthermore, we give a construction of an (n, k)-bit-
fixing extractor, that outputs k −O(1) bits, for entropy k = (1 + o(1)) · log logn, with
running-time nO((log logn)2).
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1 Introduction

Randomness is an invaluable resource in many areas of theoretical computer science, such
as algorithm design, data structures and cryptography. For many computational tasks, the
best known algorithms assume that random bits are to their disposal. In cryptography and
in distributed computing, randomness is, provably, a necessity. Nevertheless, truly random
bits are not always available. A source of randomness might be defective, producing random
bits that are biased and correlated. Even a sample from an ideal source of randomness can
suffer such defects due to information leakage. Motivated by this problem, the notion of
randomness extractors was introduced.

Broadly speaking, a randomness extractor is a function that extracts almost truly ran-
dom bits given a sample from a defective source of randomness. Well-known instantia-
tions are seeded extractors [NZ96, Tre01, RRV99, TSZS01, SU01, GUV09, DKSS09, TSU12],
two-source extractors [CG88, Raz05, Bou05, BSZ11], and more generally multi-source ex-
tractors [BIW06, Raz05, Rao09a, Li11a, Li13], and affine extractors [Bou07, GR08, DG10,
Yeh11, Li11b]. Randomness extractors are central objects in pseudorandomness, with many
applications beyond their original motivation. Over the last 30 years, a significant research
effort was directed towards the construction of randomness extractors in different settings.
We refer the reader to Shaltiel’s introductory survey on randomness extractors [Sha11] for
more information.

Bit-fixing extractors

A well-studied defective source of randomness is a bit-fixing source. An (n, k)-bit-fixing
source is a distribution X over {0, 1}n, where some n− k of the bits of X are fixed, and the
joint distribution of the remaining k bits is uniform. The problem of extracting randomness
from bit-fixing sources was initiated in the works of [Vaz85, BBR85, CGH+85], motivated by
applications to fault-tolerance, cryptography and communication complexity. More recently,
bit-fixing extractors have found applications to formulae lower bounds [KRT13], and for
compression algorithms for “easy” Boolean functions [CKK+13].

The early works on bit-fixing extractors were concentrated on positive and negative results
for extracting a truly uniform string. In [CGH+85], it was observed that one can efficiently
extract a uniform bit even from (n, 1)-bit-fixing sources, simply by XOR-ing all the input
bits. In a sharp contrast, it was shown that extracting two jointly uniform bits cannot
be done even from (n, n/3 − 1)-bit-fixing sources. Given this state of affairs, early works
dealt with what we call “the high-entropy regime”. Using a relation to error correcting codes,
Chor et al. [CGH+85] showed how to efficiently extract roughly n−t · log2(n/t) truly uniform
output bits from (n, n− t)-bit-fixing sources, with t = o(n). The authors complemented this
result by an almost matching upper bound of n − (t/2) · log2(n/t) on the number of truly
uniform output bits one can extract. In the same paper, some results were obtained also for
(n, k)-bit-fixing sources, where k is slightly below n/2. Further lower bounds for this regime
of parameters were obtained by Friedman [Fri92].

These negative results naturally led to study the relaxation, where the output of the
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extractor is only required to be close to uniform, in statistical distance.1 A simple proba-
bilistic argument can be used to show that, computational aspects aside, one can extract
m = k− 2 log(1/ε)−O(1) bits that are ε-close to uniform, from any (n, k)-bit-fixing source,
as long as k ≥ log(n) + 2 log(1/ε) +O(1). For simplicity, in the rest of this section we think
of ε as a small constant. Thus, in particular, by allowing for some small constant error ε > 0,
one can extract almost all the entropy k from any (n, k)-bit-fixing source, even for k as low
as log(n) +O(1). We call the range log n ≤ k ≤ o(n), “the low-entropy regime”.

The probabilistic argument mentioned above only yields an existential proof, whereas
efficiently computable extractors are far more desired. Kamp and Zuckerman [KZ06] gave
the first explicit construction of an (n, k)-bit-fixing extractor, with k = o(n). More precisely,
for any constant γ > 0, an explicit (n, n1/2 +γ)-bit-fixing extractor was given, with Ω(n2γ)
output bits. In a subsequent work, Gabizon, Raz and Shaltiel [GRS06] obtained an explicit
(n, logc n)-bit-fixing extractor, where c > 1 is some universal constant. Moreover, the latter
extractor outputs (1 − o(1))-fraction of the entropy, thus getting very close to the parame-
ters of the non-explicit construction obtained by the probabilistic method. Using different
techniques, Rao [Rao09b] obtained a bit-fixing extractor with improved dependency on the
error ε.

For a vast majority of randomness extraction problems, such as the problem of con-
structing two-source extractors and affine extractors, a näıve probabilistic argument yields
(non-explicit) extractors with essentially optimal parameters. Interestingly, this is not the
case for bit-fixing extractors. The first evidence for that comes from the observation men-
tioned above. Namely, the XOR function is an extractor for (n, 1)-bit-fixing sources. A result
of Kamp and Zuckerman [KZ06] shows that this is not an isolated incident, and in fact, for
any k ≥ 1 there is an (explicit and simple) extractor for (n, k)-bit-fixing sources, that out-
puts 0.5 · log2(k)−O(log log k) random bits that are close to uniform. On the other hand, one
can show that, with high probability, a random function with a single output bit is constant
on some bit-fixing source with entropy, say, log(n)/10. Thus, in this setting, structured func-
tions outperform random functions, in the sense that the former can extract a logarithmic
amount of the entropy from bit-fixing sources with arbitrarily low entropy, whereas the latter
are constant, with high probability, on some (n, log(n)/10)-bit-fixing source.

1.1 Our contribution

The state of affairs discussed above leads us to the study of (n, k)-bit-fixing extractors in
the “very low entropy regime”, namely, for k = o(log n). More concretely, in this paper we
study the following question:

What is the number of output bits that can be extracted from (n, k)-bit-fixing
sources, in terms of the dependency of k in n?

1Friedman [Fri92] studied other notions of closeness. Although different measures are of interest, when
analyzing extractors, the gold standard measure of closeness between distributions is statistical distance. In
this paper we follow the convention, and measure the error of an extractor by the statistical distance of its
output to the uniform distribution.
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We consider this problem both in the information-theoretic and in the computational set-
tings. By the discussion above we see that, computational aspects aside, when k > log(n) +
O(1) one can extract k−O(1) random bits that are close to uniform, whereas for any k, one
can extract Ω(log k) bits. Is it possible to extract Ω(k) bits from (n, k)-bit-fixing sources for
any k? Or perhaps extracting all the randomness from very low entropy bit-fixing sources
is impossible information-theoretically?

We further consider the problem of extracting randomness from what we call (n, k)-zero-
fixing sources. A random variable X is an (n, k)-zero-fixing source, if it is an (n, k)-bit-fixing
source, where all the fixed bits are set to zero. Clearly, extracting randomness from (n, k)-
zero-fixing sources is an easier (or at least not harder) task than extracting randomness
from (n, k)-bit-fixing sources. Thus, proving impossibility results for this model is more
challenging.

Our first result states that when the entropy k is small enough compared to n, one cannot
extract more than 0.5 · log2(k) + O(1) bits from an (n, k)-zero-fixing source. This negative
result is tight up to an additive factor of O(log log k), as implied by the construction of
Kamp and Zuckerman [KZ06]. In fact, the latter construction is optimal also for zero-fixing
sources, when k is small enough compare to n. To state the result, we introduce the following
notation. The function Tower : N→ N is defined as follows: Tower(0) = 1, and for an integer
n ≥ 1, Tower(n) = 2Tower(n−1).

Theorem 1.1. For any integers n, k such that Tower(k3/2) < n, the following holds. Let
Ext : {0, 1}n → {0, 1}m be an (n, k)-zero-fixing extractor with error ε. If m > 0.5 · log2(k) +
O(1), then ε ≥ 0.99.

Since the impossibility result stated in Theorem 1.1 holds for zero-fixing sources, it
is natural to try and complement it with feasibility results. Using a näıve probabilis-
tic argument, one can prove the existence of an (n, k)-zero-fixing extractor, for any k ≥
log log n+ log log log n+O(1), with m = k−O(1) output bits, where we treat the error ε as
constant, for simplicity. Our second result is an almost matching explicit construction.

Theorem 1.2. For any constant µ > 0, and n, k ∈ N, such that k ≥ (log log n)2+µ, there
exists an efficiently computable function

ZeroBFExt : {0, 1}n → {0, 1}m,

where m = Ω(k), with the following property. For any (n, k)-zero-fixing source X, it holds

that ZeroBFExt(X) is (2−k
Ω(1)

+ (k log n)−Ω(1))-close to uniform.

We remark that the techniques used in [GRS06, Rao09b] for the constructions of bit-
fixing extractors seem to work only for k ≥ poly log n, even for zero-fixing sources, and new
ideas are required so to exploit the extra structure of zero-fixing sources in order to extract
Ω(k) bits from such sources with sub-logarithmic entropy.

Can one extract Ω(k) random bits, that are close to uniform, even from (n, k)-bit-fixing
sources with k = o(log n)? We show that the answer to this question is positive. Although
we do not know how to construct such an extractor efficiently, the following theorem gives a
semi-explicit construction. For simplicity, we state here the theorem for a constant error ε.
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Theorem 1.3. For any integers n, k, and constant ε > 0, such that k > log log n +
2 log log log n+Oε(1), there exists a function

QuasiBFExt : {0, 1}n → {0, 1}m,

where m = k − Oε(1), with the following property. Let X be an (n, k)-bit-fixing source.
Then, QuasiBFExt(X) is ε-close to uniform. The running-time of evaluating QuasiBFExt is
nOε((log logn)2).

On top of the semi-explicit construction in Theorem 1.3, we give a simpler existential
proof for an extractor QuasiBFExt, with parameters as in Theorem 1.3, based on the Lóvasz
local lemma. See Section 5 for more details.

1.2 Proofs overview

In this section we give an overview for the proofs of Theorem 1.1 and Theorem 1.2. For the
sake of clarity, in this section we allow ourselves to be informal and somewhat imprecise.

Proof overview for Theorem 1.1

To give an overview for the proof of Theorem 1.1, we start by considering a related problem.
Instead of proving an upper bound on the number of output bits of an (n, k)-zero-fixing ex-
tractor, we prove an upper bound for zero-error dispersers. Generally speaking, a zero-error
disperser for a class of sources is a function that obtains all outputs, even when restricted
to any source in the class. More concretely, an (n, k)-zero-fixing zero-error disperser is a
function ZeroErrDisp : {0, 1}n → {0, 1}m, such that for any (n, k)-zero-fixing source X, it
holds that supp(ZeroErrDisp(X)) = {0, 1}m. We show that for any such zero-error disperser,
if k is small enough compared to n, then m ≤ log2(k + 1). More specifically, we prove that
for any integers n, k such that Tower(k2) < n and m = blog2(k + 1)c + 1, for any function
f : {0, 1}n → {0, 1}m, there exists an (n, k)-zero-fixing source, restricted to which f is a
symmetric function, i.e., f depends only on the input’s weight. In particular, f does not
obtain all possible outputs.2 This implies that if f : {0, 1}n → {0, 1}m is a (n, k)-zero-fixing
zero-error dispersers and Tower(k2) < n, then m ≤ log2(k + 1).

Given f : {0, 1}n → {0, 1}m, we construct the required sourceX in a level-by-level fashion,
as follows. Trivially, f is symmetric on any (n, 1)-zero-fixing source, regardless of the value
of m. Next, we find an (n, 2)-zero-fixing source on which f is symmetric. By the pigeonhole
principle, there exists a set of indices I1 ⊆ [n], with size |I1| ≥ n/2m, such that f(ei) = f(ej)
for all i, j ∈ I1. Here, for an index i ∈ [n], we denote by ei the unit vector with 1 at the
ith coordinate. If n > 2m, then |I1| ≥ 2, and so there exist two distinct i, j ∈ I1. Thus, f
restricted to the (n, 2)-zero-fixing source {0, ei, ej, ei + ej} is symmetric.

We take a further step, and find an (n, 3)-zero-fixing source on which f is symmetric.
We restrict ourselves to the index set I1 above, and consider the complete graph with vertex

2 If m > blog2(k + 1)c + 1, then the same result can be obtained by restricting the output to the first
blog2(k + 1)c+ 1 output bits.
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set I1, where for every two distinct vertices i, j ∈ I1, the edge connecting them is colored by
the color f(ei + ej), where we think of {0, 1}m as representing 2m colors. By the multi-color
variant of Ramsey theorem, there exists a set I2 ⊆ I1, of size

|I2| ≥ log(|I1|)/poly(2m),

such that the complete graph induced by I2 is monochromatic. Therefore, if n > 22O(m)
=

2poly(k), then |I2| ≥ 3, and so there exist distinct i1, i2, i3 ∈ I2 such that

f(ei1) = f(ei2) = f(ei3),

f(ei1+ei2) = f(ei1 + ei3) = f(ei2 + ei3).

Thus, f is symmetric on the (n, 3)-zero-fixing source spanned by {ei1 , ei2 , ei3}.
To construct an (n, 4)-zero-fixing source on which f is symmetric, we consider the com-

plete 3-uniform hypergraph on vertex set I2 as above, where an edge {i1, i2, i3} is colored by
f(ei1 + ei2 + ei3). Applying the multi-color Ramsey theorem for hypergraphs, we obtain a
subset of the vertices I3 ⊆ I2, with size

|I3| ≥ log log(|I2|)/poly(2m),

such that the induced complete hypergraph by the vertex set I3 is monochromatic. Therefore,
if log log log n ≥ poly(k), then |I3| ≥ 4, and thus there are distinct coordinates i1, i2, i3, i4 ∈ I3

such that f is symmetric on the (n, 4)-zero-fixing source spanned by {ei1 , ei2 , ei3 , ei4}.
We continue this way, and find an (n, k)-zero-fixing source on which f is symmetric,

by applying similar Ramsey-type arguments on r-uniform complete hypergraphs, with 2m

colors, for r = 4, 5, . . . , k − 1. A calculation shows that as long as Tower(k2) < n, such a
source can be found.

To obtain the negative result for (n, k)-bit-fixing extractors, we follow a similar argument.
The only difference is that in this case, it is enough to find an (n, k)-bit-fixing source X,
such that f is symmetric restricted only to the O(

√
k) middle levels of X. Since most of the

weight of X sits in these levels, an (n, k)-bit-fixing extractor cannot be symmetric restricted
to these middle levels, regardless of the values obtained by the extractor in the remaining
points of X.

Proof overview for Theorem 1.2

Informally speaking, the advantage one should exploit when given a sample from an (n, k)-
zero-fixing source X, as apposed to a sample from a more general bit-fixing source, is that
“1 hits randomness”. More formally, if Xi = 1, then we can be certain that i ∈ S, where
S ⊂ [n] is the set of indices for which X|S is uniform. How should we exploit this advantage?

A natural attempt would be the following. Consider all (random) indices 1 ≤ i1 < i2 <
· · · < iW ≤ n, such that Xi1 = · · · = XiW = 1. Note that W , the Hamming weight of the
sample, is a random variable concentrated around k/2. Let M = iW/2 be the median of these
random indices. One can show that, with high probability with respect to the value of M ,
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both the prefix (X1, X2, . . . , XM) and the suffix (XM+1, XM+2, . . . , Xn) have entropy roughly
k/2. Intuitively, this is because the “hidden” random bits, namely bits in coordinates i ∈ S
such that Xi = 0, must be somewhat intertwined with the “observed” random bits – bits in
coordinates i ∈ S for which Xi = 1. In particular, except with probability 2−Ω(k) over the
value of M , both the prefix and the suffix have entropy at least 0.49k. Thus, by appending
these prefix and suffix with zeros, one can get two n bit sources Xleft, Xright, each having
entropy at least 0.49k.

We observe that conditioned on the value of the median M , the random variables Xleft and
Xright preserve the zero-fixing structure. Unfortunately, however, Xleft, Xright are dependent.
In this proof overview, we rather continue with the description of the zero-fixing extractor
as if Xleft, Xright were independent, and deal with the dependencies later on.

After obtaining Xleft and Xright, we apply the lossless-condenser of Rao [Rao09b] on
each of these random variables. This is an efficiently computable function Cond : {0, 1}n →
{0, 1}k logn, that is one-to-one when restricted to any (n, k)-bit-fixing source. We compute
Yleft = Cond(Xleft) and Yright = Cond(Xright) to obtain two (k log n, 0.49k)-weak sources. Note
that the one-to-one guarantee implies that no entropy is lost during the condensing, and so
the entropy of Yleft, Yright equals the entropy of Xleft, Xright, respectively.

At this point, for simplicity, assume we have an explicit optimal two-source extractor

TwoSourceExt : {0, 1}k logn × {0, 1}k logn → {0, 1}m

to our disposal. The output of our zero-fixing extractor is then TwoSourceExt(Yleft, Yright).
Working out the parameters, one can see that an optimal two-source extractor would yield
an (n, k)-zero-fixing extractor for k > log log n + O(log log log n), error 2−Ω(k) and output
length, say, 0.9k.

Constructing two-source extractors for even sub-linear entropy, let alone for logarithmic
entropy, as used in the last step, is a major open problem in pseudorandomness. Even for
our short input length k log n = Õ(log n), no poly(n)-time construction is known. In this
proof overview however, we choose to rely on such an assumption for the sake of clarity. In
the real construction, we apply the split-in-the-median process above, recursively, to obtain
c weak-sources, for any desired constant c. In a recent breakthrough, Li [Li13] gave an
explicit construction of a multi-source extractor, that extracts a constant fraction of the
entropy, from a constant number of weak-sources with poly-logarithmic entropy. In the
actual construction, instead of using a two-source extractor, we use the extractor of Li with
the appropriate constant c.

Working around the dependencies. So far we ignored the dependencies between Xleft

and Xright, even though their condensed images are given as inputs to a two-source extractor,
and the latter expects its inputs to be independent. As we now explain, the dependencies
between Xleft and Xright can be worked around.

The crucial observation is the following: conditioned on the fixing of the Hamming weight
W of the sample X, and conditioned on any fixing of the median M , the random variables
Xleft, Xright are independent! To see this, fix W = w. Then, conditioned on the event
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M = m, the value of the prefix X1, . . . , Xm gives no information whatsoever about the suffix.
More precisely, conditioned on any fixing of the prefix X1, . . . , Xm, the suffix is distributed
uniformly at random over all n−m bit strings, with zeros outside S ∩ {m + 1, . . . , n}, and
exactly w/2 ones in S ∩ {m+ 1, . . . , n}.

This observation motivates the following definition. We say that a random variable X is
an (n, k, w)-fixed-weight source, if there exists S ⊆ [n], with size |S| = k, such that a sample
x ∼ X is obtained as follows. First, one samples a string x′ ∈ {0, 1}k of weight w, uniformly
at random from all

(
k
w

)
such strings, and then sets X|S = x′, and Xi = 0 for all i 6∈ S. It

is easy to see that any (n, k)-zero-fixing source is 2−Ω(k)-close to a convex combination of
(n, k, w)-fixed-weight sources, with w ranges over k/3, . . . , 2k/3. Therefore, any extractor for
(n, k, w)-fixed-weight sources, for such values of w, is also an extractor for (n, k)-zero-fixing
sources.

We now reanalyze the algorithm described above. Since an (n, k)-zero-fixing source is
2−Ω(k)-close to a convex combination of (n, k, w)-fixed-weight sources, with k/3 ≤ w ≤ 2k/3,
we may assume, for the analysis sake, that the input is sampled from an (n, k, w)-fixed-weight
source for some fixed k/3 ≤ w ≤ 2k/3. Fix also the median M to some value m ∈ [n]. Note
that Xleft is an (n, kleft(m), w/2)-fixed-weight source3, and Xright is an (n, kright(m), w/2)-
fixed-weight source, with kleft(m) and kright(m) being deterministic functions of m, satisfying
kleft(m) + kright(m) = k. Moreover, by the discussion above, we have that conditioned on the
fixing M = m, the two random variables Xleft, Xright are independent.

To summarize, conditioned on any fixingM = m, the two random variablesXleft, Xright are
independent and preserve their fixed-weight structure. We further note that, with probability
1− 2−Ω(k) over the value of M , it holds that kleft, kright ≥ 0.49k.

Recall that at this point we apply Rao’s lossless-condenser on both Xleft and Xright, to
obtain shorter random variables Yleft, Yright. Rao’s condenser is one-to-one when restricted
to bit-fixing sources. Since Xleft and Xright are fixed-weight sources, they are in particular
contained in some (n, k)-bit-fixing sources, and so the random variables Yleft, Yright have the
same entropy as Xleft, Xright, respectively.

It is worth mentioning that Rao’s condenser Cond is linear, and as a result, if Xleft were
a bit-fixing source, then the resulting Yleft = Cond(Xleft) would have been an affine source.
This property was crucial for Rao’s construction of bit-fixing extractors. Since we wanted to
maintain independence between Xleft, Xright, in our case these random variables are no longer
bit-fixing sources, but rather fixed-weight sources. Thus, the resulting Yleft, Yright are not
affine sources, but only weak sources, with min-entropy log2(

(
0.49k
w/2

)
) = Ω(k). This is good

enough for our needs, as in the next step we use a two-source extractor, and do not rely on
the affine-ness.

Lastly, we apply a two-source extractor on the condensed random variables Yleft, Yright,
which is a valid application, as these sources are independent, and with probability 1−2−Ω(k),
both have entropy Ω(k).

3To be more precise, Xleft is not an (n, kleft(m), w/2)-fixed-weight source per se, as its mth bit is constantly
1. Ignoring this bit would make Xleft a fixed-weight source.
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2 Preliminaries

Throughout the paper we denote by log the logarithm to the base 2. For n ∈ N, we denote
the set {1, 2, . . . , n} by [n]. For n, r ∈ N, we let log(r)(n) be the composition of the log
function with itself r times, applied to n. Formally, log(0)(n) = n, and for r ≥ 1, we define
log(r)(n) = log(log(r−1)(n)). For an integer h ∈ N, we let Tower(h) be a height h tower of
exponents of 2. More formally, Tower(0) = 1, and for h ≥ 1, Tower(h) = 2Tower(h−1).

Sources of randomness

In this paper we use the following sources of randomness.

Definition 2.1 (Bit-fixing sources). Let n, k be integers such that n ≥ k. A random variable
X on n bits is called an (n, k)-bit-fixing source, if there exists S ⊆ [n] with size |S| = k,
such that X|S is uniformly distributed, and each Xi with i 6∈ S is fixed.

Definition 2.2 (Affine sources). Let n, k be integers, with n ≥ k. A random variable X on
n bits is called an (n, k)-affine source, if X is uniformly distributed on some affine subspace
U ⊆ Fn2 of dimension k.

Definition 2.3 (Weak sources). Let n, k be integers such that n ≥ k. A random variable X
on n bits is called an (n, k)-weak source, if for any x ∈ supp(X), it holds that Pr[X = x] ≥
2−k.

Note that any (n, k)-bit-fixing source is an (n, k)-affine source, and any (n, k)-affine source
is an (n, k)-weak source. We introduce the following two sources of randomness.

Definition 2.4 (Zero-fixing sources). Let n, k be integers such that n ≥ k. A random
variable X on n bits is called an (n, k)-zero-fixing source, if there exists S ⊆ [n] with size
|S| = k, such that X|S is uniformly distributed, and each Xi with i 6∈ S is fixed to zero.

Definition 2.5 (Fixed-weight sources). Let n, k, w be integers, with n ≥ k ≥ w. A random
variable X ⊆ {0, 1}n is called an (n, k, w)-fixed-weight source, if there exists S ⊆ [n], with
size |S| = k, such that a sample from x ∼ X is obtained as follows. First, one samples
a string x′ ∈ {0, 1}k of weight w, uniformly at random from all

(
k
w

)
such strings. Then,

x|S = x′, and xi = 0 for all i 6∈ S.

Clearly, any (n, k)-zero-fixing source is an (n, k)-bit-fixing source. For a relation between
zero-fixing sources and fixed-weight sources, see Claim 4.3. We will need the following
extractor and condenser.

Theorem 2.1 ([Li13]). For every constant µ > 0 and all integers n, k with k ≥ log2+µ n,
there exists an explicit function Li : ({0, 1}n)c → {0, 1}m, with m = Ω(k) and c = O(1/µ),
such that the following holds. If X1, . . . , Xc are independent (n, k)-weak sources, then

Li(X1, . . . , Xc) ≈ε Um,

where ε = n−Ω(1) + 2−k
Ω(1)

.
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Theorem 2.2 ([Rao09b]). For all integers n, k, there exists an efficiently computable linear
transformation Cond : {0, 1}n → {0, 1}k logn, such that for any (n, k)-bit-fixing source X it
holds that Cond restricted to X is one-to-one.

We further use of the following well-known fact.

Fact 2.6. For any integer n, and 0 < α < 1/2, it holds that

bαnc∑
k=0

(
n

k

)
≤ 2H(α)·n,

where H(p) = −p log2(p)− (1− p) log2(1− p) is the binary entropy function.

3 An Impossibility Result

For the proof of Theorem 1.1 we use the following notation. Let n be an integer and let
I ⊆ [n]. We denote by {0, 1}I the set of binary strings of length |I| indexed by the elements
of I. Using this notation for a string x ∈ {0, 1}I , we let xI ∈ {0, 1}n be the n bit string y
such that y|I = x, and yi = 0 for all i 6∈ I, i.e., xI is the extension of x to an n bit string
with zeros outside the coordinate set I. Also, for a function f : {0, 1}n → {0, 1}m and a
subset I ⊆ [n], we define the function fI : {0, 1}I → {0, 1}m as the restriction of f obtained
by fixing the coordinates outside I to zeros. That is fI is defined as fI(x) = f(xI)

We will need the following classical result of Erdős and Rado [ER52] on Ramsey numbers
of multicolored hypergraphs .

Theorem 3.1 ([ER52], Theorem 1). Let G be the complete r-uniform hypergraph with vertex
set [n]. Assume that each edge in G is colored by some color from [c]. Then, there exists a
subset I ⊆ [n] of size |I| ≥ c−O(1) · log(r−1)(n), such that the induced complete hypergraph by
I is monochromatic.4

The following corollary readily follows by Theorem 3.1. Indeed, the corollary is simply a
rephrasing of the theorem in a slightly different language.

Corollary 3.1. For any function f : {0, 1}n → {0, 1}m and integer r ∈ [n], there exists a
set of indices I ⊆ [n], with size |I| ≥ 2−O(m) · log(r−1)(n), such that fI is constant on the rth

level of {0, 1}I , i.e., fI(x) = fI(y) for all x, y ∈ {0, 1}I with |x| = |y| = r.

Proof. Consider the complete r-uniform hypergraph on vertex set [n], where each hyperedge
S ⊆ [n] of size |S| = r is colored with f(1S), where 1S is the characteristic function of the

4 We remark that Theorem 1 in [ER52] is stated somewhat differently. The theorem, as stated in the
original paper, asserts that any large enough complete r-uniform hypergraph, with hyperedges colored by c
colors, contains a monochromatic complete r-uniform hypergraph on N vertices. By large enough we mean
that the number of vertices is some (tower) function that depends on r, c and N . For our purposes, however,
it will be more convenient to apply the theorem as we state it.
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set S, i.e., (1S)i = 1 if and only if i ∈ S. By Theorem 3.1, there exists a subset of the
vertices I ⊆ [n], of size 2−O(m) · log(r−1)(n), such that the complete hypergraph induced by
the vertex set I is monochromatic. By construction, this implies that for any x, y ∈ {0, 1}I
with |x| = |y| = r, it holds that f(xI) = f(yI). Therefore, the function fI : {0, 1}I → {0, 1}m
is as desired.

Before proving Theorem 1.1, we prove an analogous theorem for zero-error dispersers. We
do so as the proof is slightly cleaner. Moreover, we consider this to be a natural impossibility
result by itself.

Theorem 3.2. Let ZeroErrDisp : {0, 1}n → {0, 1}m be an (n, k)-zero-fixing zero-error dis-
perser. If n > Tower(k2), then m ≤ log(k + 1).

Proof. Clearly, it is enough to prove that if m = blog(k + 1)c+ 1 then there exists an (n, k)-
zero-fixing source on which ZeroErrDisp obtains at most k+ 1 distinct values, and thus reach
a contradiction. (If m is larger, then we will obtain a contradiction by restricting the output
to the first m = dlog(k + 1)e+ 1 bits.)

We define a sequence [n] = I0 ⊇ I1 ⊇ I2 ⊇ . . . ⊇ Ik, such that for each i = 1, . . . , k the
restricted function fIi is symmetric on the levels 0, . . . , i of the restricted hypercube {0, 1}Ii .
Then, we shall claim that if n > Tower(k2) then |Ik| ≥ k. By taking I ⊆ Ik to be any
subset of size k we obtain a zero-fixing source spanned by the coordinates of I, such that the
restriction of f to this zero-fixing source is a symmetric function, and in particular obtains
at most k + 1 values. By the argument above, this implies that m ≤ log(k + 1).

We define the subsets Ii iteratively by applying Corollary 3.1 for each i = 1, . . . , k with
the function fi−1 : {0, 1}Ii−1 → {0, 1}m and with r = i. Letting ni−1 = |Ii−1|, by Corollary 3.1
we obtain a subset Ii ⊆ Ii−1 of size ni = |Ii| ≥ 2−O(m) · log(i−1)(ni−1). One can show, e.g., by
induction on i = 1, . . . , k−1, that ni ≥ 2−O(m) ·log(si)(n), where si =

∑i
j=1(j−1) = i(i−1)/2.

In particular, this implies that nk ≥ 2−O(m) · log(k2/2)(n), and so if n > Tower(k2) then
|Ik| = nk ≥ k. This completes the proof of the theorem.

We now turn to prove Theorem 1.1.

Proof of Theorem 1.1. The proof outline is similar to the proof of Theorem 3.2, The only
difference, when considering extractors rather than zero-error dispersers, is that it is enough
to find an (n, k)-zero-fixing source such that f restricted to this source is symmetric only
in the middle O(

√
k) levels, and not on all points of X. More precisely, let bottom =

k/2− c ·
√
k · log(1/δ) and top = k/2 + c ·

√
k · log(1/δ), where c is a universal constant such

that
top∑

i=bottom

(
k

i

)
≥
(

1− δ

2

)
· 2k.

One can show that such a constant c exists using a Chernoff bound. Let Ibottom−1 = [n]
and define a sequence Ibottom−1 ⊇ Ibottom ⊇ Ibottom+1 ⊇ . . . ⊇ Itop, such that for each
i = bottom, . . . , top, the function fIi is symmetric on the levels bottom, . . . , i of the restricted
hypercube {0, 1}Ii . For each i = bottom, . . . , top, given Ii−1 we apply Corollary 3.1 with
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f = fIi−1
and r = i to obtain Ii ⊆ Ii−1, such that the restriction fIi of fIi−1

is symmetric on
level i, as well as on levels bottom, . . . , i− 1, as fIi is a restriction of fIi−1

.
By construction, it follows that if ntop ≥ k, then there exists an (n, k)-zero-fixing source

X, such that f is symmetric restricted to the levels bottom, . . . , top of X. By our choice of
bottom and top, with probability 1 − δ/2 over a uniformly random x ∼ X, it holds that x
has Hamming weight in [bottom, top]. Let C be the set of outputs obtained by f restricted
to these levels of X. Note that |C| ≤ |top − bottom + 1| = O(

√
k · log(1/δ)). Thus, by

considering the event f(X) ∈ C, we see that the statistical distance between the output of
f on X, and the uniform distribution on m bits, is at least 1 − δ/2 − |C|/2m, which is at
least 1− δ, whenever m ≥ 0.5 log2(k) +O(log(1/δ)).

By Corollary 3.1, for every i = bottom, . . . , top, we have that |Ii| ≥ 2−O(m) · log(i−1)(|Ii−1|)
which is larger than 2−O(m) · log(k)(|Ii−1|). Therefore, if n > Tower(O(k3/2 ·

√
log(1/δ))), then

|Itop| ≥ k, as required.

4 Explicit Zero-Fixing Extractors for Double-Logarithmic

Entropy

In this section we prove Theorem 1.2. We repeat the statement of the theorem here for the
readers convenience.

Theorem 4.1. For any constant µ > 0, and n, k ∈ N, such that k ≥ (log log n)2+µ, there
exists an efficiently computable function

ZeroBFExt : {0, 1}n → {0, 1}m,

where m = Ω(k), with the following property. For any (n, k)-zero-fixing source X, it holds

that ZeroBFExt(X) is (2−k
Ω(1)

+ (k log n)−Ω(1))-close to uniform.

We start by proving the following lemma that, informally speaking, shows how to effi-
ciently split one fixed-weight source to two independent fixed-weight sources, each with half
the weight and roughly half the entropy of the original source.

Lemma 4.1. For every integer n, there exists an O(n)-time computable function

SplitInMedian : {0, 1}n → ({0, 1}n)2 ,

with the following property. Let X be an (n, k, w)-fixed-weight source, with k/10 ≤ w ≤
9k/10. Denote the two n bit outputs of SplitInMedian(X) by Xleft and Xright. Then, there ex-
ists a random variable M , and deterministic functions kleft, kright of M , such that conditioned
on any fixing M = m, the following holds:

• The random variables Xleft, Xright are independent.

• Xleft is an (n, kleft, w/2− 1)-fixed-weight source.

11



• Xright is an (n, kright, w/2)-fixed-weight source, where kleft + kright + 1 = k.

Furthermore, for any ε > 0, it holds that

Pr
m∼M

[∣∣∣∣kleftk − 1

2

∣∣∣∣ ≥ ε

]
≤ 2−Ω(ε2·k) .

Proof. We first describe the algorithm for computing SplitInMedian(X), and then turn to the
analysis. Let 1 ≤ i1 < i2 < · · · < iw ≤ n be the (random) indices such that Xi1 = Xi2 =
· · · = Xiw = 1, and set M = iw/2 to be the median coordinate. We define the n bit strings
Xleft and Xright as follows:

(Xleft)i =

{
Xi, 1 ≤ i < M ;
0, M ≤ i ≤ n.

(Xright)i =

{
0, 1 ≤ i ≤M ;
Xi, M < i ≤ n.

The output of SplitInMedian(X) is then (Xleft, Xright). Clearly, the running-time of the algo-
rithm is O(n), as computing M and constructing Xleft, Xright can be carried out in linear-time.

Let S ⊆ [n], with |S| = k, be the set of indices associated with X. That is, Xi = 0
for all i 6∈ S, and X|S is uniformly distributed over all k bit strings with Hamming weight
w. Conditioned on the event M = m, it holds that conditioned on any fixing of the prefix
X1, . . . , Xm, the suffix Xm+1, . . . , Xn is sampled uniformly at random from all n − m bit
strings, with Hamming weight w/2, and zeros outside S∩{m+1, . . . , n}. Since Xleft and Xright

are deterministic functions of these prefix and suffix, respectively, we have that conditioned
on any fixing of M , the random variables Xleft and Xright are independent.

As for the second and third items, we note that, for any value m, conditioned on the
event M = m, the prefix X1, . . . , Xm−1 is a fixed-weight source. Indeed, X1, . . . , Xm−1 has
the same distribution as sampling a vector X ′ ∈ {0, 1}kleft , where kleft = |S ∩ [m − 1]|,
uniformly at random out of all such vectors with Hamming weight w/2 − 1, and setting
X|S∩[m−1] = X ′, and Xi = 0 for all i ∈ [m− 1] \ S. Since Xleft is obtained by concatenating
zeros to the prefix X1, . . . , Xm−1, we have that Xleft is an (n, kleft, w/2 − 1)-fixed-weight
source. A similar argument shows that Xright is an (n, kright, w/2)-fixed-weight source, where
kright = |S ∩ {m+ 1, . . . , n}|. In particular, it holds that kleft + kright + 1 = k.

For the furthermore part of the lemma, we want to bound the probability that kleft
deviates from k/2, where the probability is taken with respect to the random variable M .
Recall that kleft is a deterministic function of M , given by kleft = |S ∩ [M − 1]|. Thus,

Pr
m∼M

[
kleft ≤

(
1

2
− ε
)
· k
]

= Pr
m∼M

[
|S ∩ [m− 1]| ≤

(
1

2
− ε
)
· |S|

]
=

(
k

w

)−1

·
(1/2−ε)·k∑
t=w/2

(
t

w/2

)(
k − t
w/2

)
≤ 2−Ω(ε2·k),
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where the last inequality follows by applying Stirling’s approximation (or alternatively, by
approximating the binomial distribution by a uniform distribution, and applying a Chernoff
bound), and our assumption that k/10 ≤ w ≤ 9k/10. By symmetry, the same upper bound
holds for Pr

[
kleft ≥

(
1
2

+ ε
)
· k
]
, which concludes the proof.

For the proof of Theorem 4.1, we need to split the source to more than 2 independent
sources. The following corollary accomplishes that, based on Lemma 4.1, and a recursive
argument.

Corollary 4.2. For any integers n, c, where c is a power of 2, there exists an O(cn)-time
computable function

Splitter : {0, 1}n → ({0, 1}n)c ,

with the following property. Let X be an (n, k, w)-fixed-weight source, with k/3 ≤ w ≤
2k/3. Let (Y1, . . . , Yc) = Splitter(X), with Yi ∈ {0, 1}n for all i ∈ [c]. Then, there exist
random variables M1, . . . ,Mc−1, and deterministic functions k1, . . . , kc−1 of them, such that
conditioned on any fixing (M1, . . . ,Mc−1) = (m1, . . . ,mc−1), the following holds:

• The random variables Y1, . . . , Yc are independent.

• For every i ∈ [c], the random variable Yi is an (n, ki, wi)-fixed-weight source, with
wi ∈ [w/c− 1, w/c], and k1 + · · ·+ kc = k − c+ 1.

Furthermore, except with probability c · 2−Ω(k/(c·log2 c)) over the fixings of (M1, . . . ,Mc−1), it
holds that for all i ∈ [c], ki ≥ 0.9k/c.

Proof. Let d = log2 c. Consider a depth d binary tree T with c leaves. With each node v
of T , we associate a random variable Xv, defined recursively with respect to the depth, as
follows. Let r be the root of T . We define Xr = X. Let v be a node in T , that is not a
leaf, for which Xv was already defined. Denote by leftChild(v), rightChild(v) the left and right
children of v in T , respectively. Let ((Xv)left, (Xv)right) = SplitInMedian(Xv). We associate
the random variable (Xv)left with the vertex leftChild(v), and the random variable (Xv)right
with the vertex rightChild(v). Namely, XleftChild(v) = (Xv)left and XrightChild(v) = (Xv)right. Let
Mv be the random variable M , in the notation of Lemma 4.1, with respect to the application
of SplitInMedian to Xv. Let `1, . . . , `c be the c leaves of T . The output of Splitter on input
X is defined by

Splitter(X) = (X`1 , . . . , X`c) .

We now turn to the analysis. First, clearly, Splitter is computable in time O(cn), as it involves
c−1 applications of SplitInMedian. Let h ∈ {0, 1, . . . , d−1}, and let Vh be the set of nodes of
T with depth h. Let ε = 1/(20d). We prove the following, by induction on h. Conditioned
on any fixing of the random variables {Mv | v ∈ V0 ∪ V1 ∪ · · · ∪ Vh−1}, the following holds:

• The random variables {Xv | v ∈ Vh} are independent.
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• For any v ∈ Vh, the random variable Xv is an (n, kv, wv)-fixed-weight source, with
wv ∈ [w/2h, w/2h−1], and where kv is a deterministic function of the random variables
{Mu}u∈Pv , where Pv is the nodes on the path from the root r to v in T , not including
v. Moreover,

∑
v∈Vh kv = k − h.

Furthermore, except with probability δh = 2h · 2−Ω(k/(c·log2 c)) over the fixings of {Mv | v ∈
V0 ∪ V1 ∪ · · · ∪ Vh−1}, it holds

∀v ∈ Vh
(

1

2
− ε
)h
≤ kv

k
≤
(

1

2
+ ε

)h
.

These claims clearly hold for h = 0. We now prove that the claims hold for h ≥ 1, assuming
they hold for 1, . . . , h− 1. By the induction hypothesis, conditioned on any fixings of {Mv |
v ∈ V0 ∪ V1 ∪ · · · ∪ Vh−2}, the random variables {Xv | v ∈ Vh−1} are independent. Since
{Xv | v ∈ Vh} = {XleftChild(v), XrightChild(v) | v ∈ Vh−1}, the independence of the random
variables {Xv | v ∈ Vh}, conditioned on the further fixings of {Mv | v ∈ Vh−1}, follows by
Lemma 4.1. The second item readily follows by the induction hypothesis and Lemma 4.1.

As for the furthermore part, by the induction hypothesis, except with probability δh−1

over the fixings of {Mv | v ∈ V0 ∪ V1 ∪ · · · ∪ Vh−2}, it holds that

∀v ∈ Vh−1

(
1

2
− ε
)h−1

≤ kv
k
≤
(

1

2
+ ε

)h−1

.

One can easily verify that conditioned on this event, by our choice of ε, the hypothesis of
Lemma 4.1 is met when computing SplitInMedian(Xv), namely,

kv
10
≤ wv ≤

9kv
10

.

Thus, by the union bound, except with probability

δh−1 +
∑

v∈Vh−1

2−Ω(ε2·kv) , (1)

it holds that for all v ∈ Vh
kv
k

=
kv

kparent(v)

·
kparent(v)

k
≤
(

1

2
+ ε

)
·
(

1

2
+ ε

)h−1

=

(
1

2
+ ε

)h
,

where parent(v) is the parent of v in the tree T . Similarly,

kv
k

=
kv

kparent(v)

·
kparent(v)

k
≥
(

1

2
− ε
)
·
(

1

2
− ε
)h−1

=

(
1

2
− ε
)h

.

Since |Vh−1| = 2h−1, ε = 1/(20d) = O(1/ log c) and kv = Ω(k/2h) ≥ Ω(k/c), the error
expression in Equation (1) is bounded above by

δh−1 + 2h−1 · 2−Ω(k/(c·log2 c)) ≤ δh.

This concludes the inductive proof. The proof of the corollary follows by plugging h = d.
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For the proof of Theorem 4.1 we also need the following claim, which states that an
(n, k)-zero-fixing source is close to a convex combination of fixed-weight sources, with weight
roughly k/2.

Claim 4.3. Let X be an (n, k)-zero-fixing source. Then, X is 2−Ω(k)-close to a convex
combination of (n, k, w)-fixed-weight sources, with k/3 ≤ w ≤ 2k/3.

Proof. We first note that X can be written as the convex combination

X =
k∑

w=0

λwXw,

where λw =
(
k
w

)
· 2−k, and Xw is an (n, k, w)-fixed-weight source. To see this, let S ⊆

[n], |S| = k, be the set that is associated with the source X. Namely, X|S is uniformly
distributed, whereas X|Sc is fixed to 0. Sampling x ∼ X can be done in two steps. In the
first step, one samples a weight W according to a binomial distribution Bin(k, 1/2). Namely,
for any 0 ≤ w ≤ k, Pr[W = w] =

(
k
w

)
· 2−k. In the second step, one samples a string

x′ ∈ {0, 1}k uniformly at random among all strings with Hamming weight w. Lastly, we set
X|S = x′, and xi = 0 for all i 6∈ S. It is easy to verify that this two-steps procedure yields the
same distribution as sampling from the (n, k)-zero-fixing source X. Note that the sampling
done in the second step, conditioned on the event W = w, is from an (n, k, w)-fixed-weight
source, which we denote by Xw.

By Fact 2.6, we have that

2k/3∑
w=k/3

λw ≥ 1− 2 · 2(H(1/3)−1)·k = 1− 2−Ω(k).

This concludes the proof, as it shows that X is 2−Ω(k)-close to the convex combination

X =

2k/3∑
w=k/3

λwXw.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. We first describe the construction of ZeroBFExt and then turn to the
analysis. For the construction of ZeroBFExt we need the following building blocks:

• Let Li :
(
{0, 1}k logn

)c → {0, 1}` be the multi-source extractor from Theorem 2.1,
set to extract ` = Ω(k) bits from c independent (k log n, k)-weak-sources, with k ≥
O(log2+µ(k log n)). By Theorem 2.1, it suffices to take c = O(1/µ).

• With c as above, let Splitter : {0, 1}n → ({0, 1}n)c be the function from Corollary 4.2.
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• Let Cond : {0, 1}n → {0, 1}k logn be the lossless-condenser of Rao from Theorem 2.2.

With these building blocks, we compute ZeroBFExt(X) as follows. We first compute (Y1, . . . , Yc) =
Splitter(X). Secondly, for each i ∈ [c], we compute Zi = Cond(Yi). The output is then
ZeroBFExt(X) = Li(Z1, . . . , Zc).

We now turn to the analysis. By Claim 4.3, X is 2−Ω(k)-close to a convex combination of
(n, k, w)-weight-fixing sources {Xw}2k/3

w=k/3. Therefore, Splitter(X) is 2−Ω(k)-close to a convex

combination of the random variables {Splitter(Xw)}2k/3
w=k/3. We denote ((Yw)1, . . . , (Yw)c) =

Splitter(Xw). Fix such w. By Corollary 4.2, conditioned on some carefully chosen ran-
dom variables, (Yw)1, . . . , (Yw)c are independent random variables. Moreover, except with
probability 2−Ω(k) with respect to the conditioning, it holds that for all i ∈ [c], (Yw)i is an
(n, k′, w/c)-weight-fixing source, with k′ ≥ 0.9k/c. Since(

k′

w/c

)
≥
(
k′

w/c

)w/c
≥
(

0.9k

w

)w/c
≥
(

0.9

2/3

)w/c
= 2Ω(k),

we have that H∞((Yw)i) = Ω(k) for all i ∈ [c], except with probability 2−Ω(k).
Recall that Zi = Cond(Yi). With the notation above, we have that Zi is 2−Ω(k)-close

to a convex combination of (Zw)i = Cond((Yw)i), where k/3 ≤ w ≤ 2k/3. Since (Yw)i is
contained in some (n, k)-bit-fixing source, Theorem 2.2 guarantees that Cond restricted to
the support of (Yw)i is one-to-one, and so H∞((Zw)i) = H∞((Yw)i) = Ω(k). Thus, except
with probability 2−Ω(k), we have that for all i ∈ [c], (Zw)i is a (k log n,Ω(k))-weak source.

This implies that ZeroBFExt(Xw) = Li((Zw)1, . . . , (Zw)c) is (2−k
Ω(1)

+ (k log n)−Ω(1))-close
to uniform, which completes the proof of the theorem as Li(X) is 2−Ω(k)-close to a convex

combination of {Li(Xw)}2k/3
w=k/3.

As for the running-time. Computing Y1, . . . , Yc by applying Splitter to X is done in
time O(n). Applying Rao’s condenser to each Yi can be done in poly(n)-time. Finally, Li’s
extractor runs in time poly(k log n) = o(n).

A comment regarding the error. As stated, the extractor ZeroBFExt in Theorem 1.2
has an error of 2−k

Ω(1)
+ (k log n)−Ω(1). This error is induced by the error of Li’s multi-source

extractor. Indeed, the error contributed by the other parts of the construction of ZeroBFExt
is only 2−Ω(k). The error of Li’s extractor, when applied to (n, k)-weak sources, is stated

to be n−Ω(1) + 2−k
Ω(1)

. However, by inspection, one can see that Li’s extractor has an error
of (δn)O(1) + 2−k

Ω(1)
, for any desired parameter δ > 0. The running-time of the extractor

is poly(n/δ). Clearly, when one is interested in poly(n) running-time, then one must take
δ ≥ 1/poly(n). However, in our case, the inputs to Li’s extractor have length O(k log n).
Thus, we can set ε to be such that the total error in our application of Li’s extractor is
2−k

Ω(1)
, and the running-time of that application would then be poly(2k · log n), which is

o(n) for the parameters of interest, namely for k = o(log n). To summarize, the error in

Theorem 4.1 can be reduced to 2−k
Ω(1)

. We choose to state Theorem 1.2 as we did so to be
able to use Li’s extractor in a black-box fashion.
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5 Bit-Fixing Extractors for Double-Logarithmic En-

tropy

In this section we prove Theorem 1.3. We restate the theorem here, allowing also for non-
constant error ε.

Theorem 5.1. For any integers n, k, and ε > 0, such that

k > log(log(n)/ε2) + 2 log log(log(n)/ε) +O(1),

there exists a function
QuasiBFExt : {0, 1}n → {0, 1}m,

where m = k − 2 log(1/ε) − O(1), with the following property. Let X be an (n, k)-bit-
fixing source. Then, QuasiBFExt(X) is ε-close to uniform. The running time of evaluating

QuasiBFExt is nO(log2( log n
ε

)).

Before proving Theorem 1.3, we sketch two proofs for the existence of (n, k)-bit-fixing
extractors, with double-logarithmic entropy. Our first proof relies on the Lóvasz local lemma.

Lemma 5.1 (Lóvasz local lemma [EL75, Spe77]). Let E1, . . . , Ek be events in a probability
space, such that each event occurs with probability at most p, and such that each event is
independent of all but at most d events. If ep(d+ 1) ≤ 1, 5 then

Pr

[
k⋂
i=1

Ēi

]
> 0.

Existential proof-sketch based on the Lóvasz Local Lemma. Let f : {0, 1}n →
{0, 1}m be a random function. For any (n, k)-bit-fixing source X, let EX be the event
SD(f(X), Um) > ε (here the randomness is taken over f). Fix an (n, k)-bit-fixing source X.
By taking the union bound over all 22m test functions, Chernoff bound implies that

Pr
f

[EX ] ≤ 22m · 2−Ω(2k·ε2) = p.

Consider any two bit-fixing sources X, Y . We note that if there exists a coordinate i ∈ [n],
in which both X and Y are fixed, then in order for X and Y to be dependent, it must hold
that Xi = Yi. Indeed, if Xi 6= Yi then X ∩ Y = ∅. Thus, for any (n, k)-bit-fixing source X,
there are at most d =

(
n
k

)
· 2k bit-fixing sources Y such that EX depends on EY . One can

easily verify that by taking

k = log log(n) + 2 log(1/ε) + log(log log(n) + 2 log(1/ε)) +O(1),

m = k − 2 log(1/ε)−O(1),

the hypothesis of Lemma 5.1 is met. Thus, even for k as above, there exists an (n, k)-bit-
fixing extractor, with error ε, that outputs m = k − 2 log(1/ε)−O(1).

5Here e is the base of the natural logarithm.
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Existential proof-sketch based on Rao’s linear lossless-condenser. Theorem 2.2
states that there exists a linear function Cond : {0, 1}n → {0, 1}k logn, such that for any
(n, k)-bit-fixing source X, the mapping Cond, restricted to X, is one-to-one. Since Cond is
linear, this implies that Cond(X) is a (k log n, k)-affine source. At this point, one can use a
simple probabilistic argument to show the existence of (n, k)-affine extractors, with error ε,
that outputs m = k − 2 log(1/ε)− O(1) bits, as long as k ≥ log(n) + 2 log(1/ε) + O(1). By
applying the latter (implicit) extractor to the affine source Cond(X), we obtain (n, k)-bit-
fixing extractors with parameters as in the proof-sketch based on the Lóvasz local lemma.

We note that by iterating over all (2M)2N functions f : {0, 1}N → {0, 1}M , and checking

each of them against any of the possible
(

2N

K+1

)
·22M pairs of an (N,K)-affine source and a test

function, one can find an (N,K)-affine extractor, with K = log(N) + log log(N) +O(1) and
M = K − O(1) output bits, in time 2O(2N ·logN). After the application of Cond in the proof-
sketch above, we only need (k log n, k)-affine extractors, with k = log log n + log log log n +
O(1). Namely, we can set N = k log n, K = k and M = m. Thus, the proof-sketch
above, together with this brute-force search for affine extractors, yields a construction of an
(n, k)-bit-fixing extractors, in time 2n

O(log log n)
.

The proof of Theorem 1.3 follows the same argument as the second proof-sketch. The
improvement in running-time, from the 2n

O(log log n)
-time algorithm described above to the

stated nO((log logn)2), is obtained by using a more efficient construction of essentially-optimal
affine extractors, as capture by the following lemma.

Lemma 5.2. For every integer n and ε > 0, there exists an affine extractor

QuasiAffExt : {0, 1}n → {0, 1}m,

for (n, k)-affine sources, with k = log(n/ε2) + log log(n/ε2) + O(1), and any m ≤ k −
2 log(1/ε) − O(1). The running-time of evaluating QuasiAffExt at a given point x ∈ {0, 1}n
is 22m · 2O(n·log(n/ε)).

The proof of Lemma 5.2 makes use of sample spaces that are almost k-wise independent,
introduced by Naor and Naor [NN93].

Definition 5.3 (Almost k-wise independence). Let n, k be integers such that k ≤n, and let
δ > 0. A random variable X over n bit strings is called (n, k, δ)-independent, if for any
S ⊆ [n], with |S| ≤ k, the marginal distribution X|S is δ-close to uniform, in statistical
distance.

We use the following explicit construction of Alon et al. [AGHP92].

Theorem 5.2 ([AGHP92]). For all δ > 0 and integers n, k, there exists an explicit con-
struction of an (n, k, δ)-independent sample space, with size (k log(n)/ε)2+o(1).

Proof of Lemma 5.2. For an integer k and δ > 0 which will be determined later, let Z ∈
{0, 1}2n·m be a sample from a (2n·m, 2k·m, δ)-independent sample space. We index a bit of the
sample Z by a pair composed of x ∈ {0, 1}n and i ∈ [m], and denote the respective random bit
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by Zx,i. Define the (random) function QuasiAffExt : {0, 1}n → {0, 1}m by QuasiAffExt(x) =
(Zx,1, . . . , Zx,m).

Let U ⊆ {0, 1}n be an affine subspace of dimension k, and let f : {0, 1}m → {0, 1} be
an arbitrary function, which we think of as a “test” function, or a distinguisher. Since
QuasiAffExt restricted to U is a function of 2k ·m bits of Z, it holds that {QuasiAffExt(u)}u∈U
are 2k random variables over {0, 1}m that are δ-close to uniform. Thus, the random variable
(with randomness coming from Z)

E
u∼U

[f(QuasiAffExt(u))] = E
u∼U

[f(Zu,1, . . . , Zu,m)]

is δ-close, in statistical distance, to the random variable Eu∼U [f(Ru,1, . . . , Ru,m)], where
{Ru,i}u∈U,i∈[m] are 2k ·m uniformly distributed and independent random bits. Now, by the
Chernoff bound,

Pr
R

[∣∣∣∣ E
u∼U

[f(Ru,1, . . . , Ru,m)]− E
x∼{0,1}m

[f(x)]

∣∣∣∣ > ε

]
≤ 2−Ω(ε2·2k).

Thus,

Pr
Z

[∣∣∣∣ E
u∼U

[f(QuasiAffExt(u))]− E
x∼{0,1}m

[f(x)]

∣∣∣∣ > ε

]
≤ 2−Ω(ε2·2k) + δ .

By the union bound taken over all affine subspaces U of dimension k and functions f : {0, 1}m →
{0, 1}, we get that as long as(

2n

k + 1

)
· 22m ·

(
2−Ω(ε2·2k) + δ

)
< 1,

there exists a point in the sample space for Z that induces an (n, k)-affine extractor QuasiAffExt
with error ε. By taking δ = 2−Ω(ε2·2k), one can verify that the equation above holds as long
as

k ≥ log(n/ε2) + log log(n/ε2) +O(1),

m ≤ k − 2 log(1/ε)−O(1).

We use the construction of a (2n ·m, 2k ·m, δ)-independent sample space from Theorem 5.2.
One can verify that the sample space size is 2O(n·log(n/ε)). One can then go over each point
in the sample space and check whether the point induces an (n, k)-affine extractor with
error ε. By the choice of parameters, such a point exists. Each point from the sample
space should be compared against

(
2n

k+1

)
· 22m pairs of an affine subspace and a test function

f : {0, 1}m → {0, 1}. Checking each fixed point in the sample space can be done in time
22m · 2O(n·log(n/ε)). Hence, the total running-time is 22m · 2O(n·log(n/ε)), as stated.

Proof of Theorem 5.1. The construction of QuasiBFExt is very simple, and is defined by

QuasiBFExt(x) = QuasiAffExt(Cond(x)),
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for all x ∈ {0, 1}n, where Cond is Rao’s linear lossless-condenser from Theorem 2.2. As
for the analysis, let X be an (n, k)-bit-fixing source. By Theorem 2.2, Y = Cond(X) is
a (k log n, k)-affine source. Therefore, Lemma 5.2 implies that QuasiAffExt(Y ) is ε-close to
uniform. It is straightforward to verify that the running-time and number of output bits of
QuasiBFExt is as claimed.

6 Conclusion and Open Problems

The number of extractable bits in terms of the dependency of k in n

In this paper we study the intriguing behavior of the number of output bits one can extract
from zero-fixing sources (and bit-fixing sources) in terms of the dependency of k in n. Theo-
rem 1.2 and Theorem 1.3 imply that when k > (1+o(1))·log log n, one can extract essentially
all the entropy of the source, whereas when Tower(k3/2) < n, one cannot extract more than
a logarithmic amount of the entropy. The remaining entropy is inaccessible, information
theoretically.

Is there a threshold phenomena behind this problem? Namely, is there some function
τ : N→ N, such that when k > τ(n), one can extract Ω(k) bits, whereas when k < o(τ(n)),
one can extract only O(log k) bits? Or perhaps the number of extractable bits in terms
of the dependency of k in n is more gradual? Are there different behaviors for zero-fixing
and bit-fixing sources? Theorem 1.3 shows that if there is such a threshold τ(n), then the
function τ(n) is asymptotically not larger than log log n.

Explicit bit-fixing extractors for sub-logarithmic entropy

Theorem 1.3 gives a bit-fixing extractor QuasiBFExt that outputs essentially all the entropy
of the source, even when the entropy is double-logarithmic in the input length. Although
the running-time of evaluating QuasiBFExt is not polynomial in n, it is not very high, and
we feel that constructing a polynomial-time bit-fixing extractor for sub-logarithmic, or even
double-logarithmic entropy, should be attainable. We suspect that such a construction would
require new ideas, as the ideas used in [GRS06, Rao09b] inherently require the entropy to
be at least logarithmic in the input length. Furthermore, the split-in-the-median idea used
in the proof of Theorem 1.2, is based on the “1 hits randomness” property that is unique to
zero-fixing sources, and does not seem to be helpful for general bit-fixing sources.
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