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Abstract

An emerging theory of “linear-algebraic pseudorandomness” aims to understand the linear-algebraic
analogs of fundamental Boolean pseudorandom objects where the rank of subspaces plays the role of
the size of subsets. In this work, we study and highlight the interrelationships between several such
algebraic objects such as subspace designs, dimension expanders, seeded rank condensers, two-source
rank condensers, and rank-metric codes. In particular, with the recent construction of near-optimal
subspace designs by Guruswami and Kopparty [GK13] as a starting point, we construct good (seeded)
rank condensers (both lossless and lossy versions), which are a small collection of linear maps Fn→ Ft

for t� n such that for every subset of Fn of small rank, its rank is preserved (up to a constant factor in
the lossy case) by at least one of the maps.

We then compose a tensoring operation with our lossy rank condenser to construct constant-degree
dimension expanders over polynomially large fields. That is, we give O(1) explicit linear maps Ai : Fn→
Fn such that for any subspace V ⊆ Fn of dimension at most n/2, dim

(
∑i Ai(V )

)
> (1+Ω(1))dim(V ).

Previous constructions of such constant-degree dimension expanders were based on Kazhdan’s property
T (for the case when F has characteristic zero) or monotone expanders (for every field F); in either case
the construction was harder than that of usual vertex expanders. Our construction, on the other hand, is
simpler.

For two-source rank condensers, we observe that the lossless variant (where the output rank is the
product of the ranks of the two sources) is equivalent to the notion of a linear rank-metric code. For the
lossy case, using our seeded rank condensers, we give a reduction of the general problem to the case when
the sources have high (nΩ(1)) rank. When the sources have O(1) rank, combining this with an “inner
condenser” found by brute-force leads to a two-source rank condenser with output length nearly matching
the probabilistic constructions.
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1 Introduction

The broad area of pseudorandomness deals with efficiently generating objects that exhibit the desirable
properties of “random-like” objects despite being constructed either explicitly or with limited randomness.
Pseudorandomness is a central and influential theme in many areas such as complexity theory, derandom-
ization, coding theory, cryptography, high-dimensional geometry, graph theory, and additive combinatorics.
The topic has witnessed much progress over the years and continues to be intensively studied. We now have
non-trivial constructions of various pseudorandom objects such as expander graphs, randomness extractors
and condensers, Ramsey graphs, list-decodable codes, compressed sensing matrices, Euclidean sections,
and pseudorandom generators for various concrete models. Despite the seemingly different definitions and
contexts of these objects, insights in pseudorandomness have uncovered intimate connections between them,
and this has led to a rich theory of “Boolean pseudorandomness” drawing a common pool of broadly useful
techniques (see for instance the recent survey by Vadhan [Vad12].)

Recently, there is an emerging theory of “algebraic pseudorandomness” aimed at understanding the
linear-algebraic analogs of fundamental Boolean pseudorandom objects where the dimension of subspaces
plays the role analogous to min-entropy. Examples of such algebraic objects include dimension expanders,
subspace-evasive sets, subspace designs, rank-preserving condensers, etc. In addition to their intrinsic interest,
these notions also have surprising applications; for instance, subspace-evasive sets to the construction of
Ramsey graphs [PR04] and list-decodable codes [GW13, GX12], subspace designs to list decoding both
in the Hamming metric and the rank metric [GX13, GW14], and rank-preserving condensers to affine
extractors [GR08a] and polynomial identity testing [KS11, FS12].

In this work, we study several interesting pseudorandom objects in the linear-algebraic world, such as
subspace evasive sets, subspace designs, dimension expanders, seeded rank condensers, and two-source rank
condensers. The last two notions are also introduced in this work, though closely related concepts were studied
earlier in the literature. We briefly and informally define these notions now, with more precise statements
appearing in later sections. A subspace evasive set is a (large) subset of Fn that has small intersection with
every low-dimensional subspace of Fn. Subspace designs are a (large) collection of subspaces such that every
low-dimensional subspace intersects few of them. Dimension expanders are a (small) collection of linear
maps Ai : Fn→ Fn such that for every subspace V ⊆ Fn of bounded dimension, the dimension of ∑i Ai(V ) is
at least α ·dim(V ) for a constant α > 1. Rank condensers are a (small) collection of linear maps Fn→ Ft

(for t� n) such that for every subspace of dimension r, its image under at least one of the maps has large
dimension (equal to r in the lossless case, and Ω(r) in the lossy case). A two-source rank condenser is a map
E : Fn×Fn→ Ft such that for every pair A,B⊆ Fn with rank r each, f (A×B) has rank Ω(r2) (or even r2 in
the lossless case) — the tensor product construction is lossless but requires t = n2, so the challenge here is to
“derandomize” the tensor product and achieve t� n2 (and even t� n for the lossy case for r�

√
n).

Conceptually, our work highlights close interconnections between these notions. In particular, we show
that subspace designs (which were introduced in the context of list decoding variants of algebraic-geometric
codes in [GX13]) are the same concept as lossless rank condensers but that they emphasize a different
regime of parameters. This connection also highlights that a strong variant of subspace designs yields
lossy rank condensers. The near-optimal explicit construction of (strong) subspace designs in [GK13] then
yields lossless and lossy rank condensers with parameters close to the existential constructions. Our main
technical application is an explicit construction of constant-degree dimension expanders over polynomially
large fields, that expands all subspaces of Fn of dimension n/2 (say) by a factor α > 1. We achieve this
construction by first increasing the rank in a trivial way by increasing the dimension of the ambient space,
and then using a lossy rank condenser to reduce the ambient space back to Fn while preserving the rank up
to a constant factor. While previous constructions of dimension expanders were at least as complicated as
constructions of standard expander graphs (or more so), our construction and analysis is rather elementary.
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Unfortunately, unlike previous work, our techniques are currently best suited to large fields due to connections
with Reed-Solomon codes. However, we do obtain dimension expanders over small fields by paying various
logarithmic penalties.

Turning to two-source rank condensers, our original motivation to propose them was a possible route to
iteratively construct subspace-evasive sets that might offer some way around the exponential dependence
on intersection size that seems inherent to constructions based on algebraic varieties. While there appears
to be serious obstacles to such an approach, the notion seems a fundamental one to study regardless. In
this work, we focus on two-source rank condensers f : Fn×Fn→ Ft where the map f is bilinear as this
seems like a natural class of constructions to study. We observe that the lossless variant is equivalent to the
notion of a linear rank-metric code. Known optimal constructions of rank-metric codes such as the Gabidulin
codes thereby yield lossless two-source condensers with optimal output length (equal to Θ(nr) for rank-r
subsets of Fn). For lossy two-source rank condensers, we can enumerate over the seeds of our seeded lossy
condenser, applying it to both sources separately and condensing the sources to rΘ(1) dimensions (from the
original n). For small r (e.g., constant), we can “concatenate” this construction with a near-optimal lossy
two-source condenser found by brute-force to obtain output length Θ(n/r), matching the non-constructive
bound. In general, our method reduces the problem to the case of relatively high “rate” (when r ≈ n1/3),
which is typically easier to tackle.

Organization: In the next three sections, we state (informal versions of) our results, all of ideas behind
them, and brief discussions of prior work for seeded rank condensers (Section 2), dimension expanders
(Section 3), and two-source rank condensers (Section 4). We then give an expanded treatment with formal
statements and proofs, as well as detailed comparison with related work in Sections 6, 7, 8 and 9. The
connection between rank-metric codes and two-source lossless rank condensers is described in Appendix B.
We also include detailed results on the parameters achieved by random constructions in Appendix C.

2 Subspace Designs and Rank Condensers

We begin by discussing the notion of a subspace design, as recently defined by Guruswami and Xing [GX13],
and contrast this with the notion of a seeded (single source) rank condenser to which we add the qualifier
of lossless, as defined by Forbes, Saptharishi and Shpilka [FSS14]. We will describe how these objects
are essentially the same notion, where the rank condenser can be considered the “primal” object and the
subspace design the “dual” object. We then introduce lossy rank condensers, a new notion that is key to our
construction of dimension expanders (see Section 3) and describe how the construction of subspace designs
of Guruswami and Kopparty [GK13] implies nearly optimal lossy rank condensers.

2.1 Subspace Designs

We begin with the definition of a subspace design.

Definition 2.1 (Guruswami-Xing [GX13] and Guruswami-Kopparty [GK13]). Let F be a field. A collection
H= {Hi}i of subspaces Hi⊆Fn is a weak (r,L)-subspace design if for every subspace V ⊆Fn with dimV = r,

|{i | dim(Hi∩V )> 0}|6 L .

The collectionH is a strong (r,L)-subspace design if for every subspace V ⊆ Fn with dimV = r,

∑
i

dim(Hi∩V )6 L .
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The collectionH is explicit if given an index i ∈ [|H|] a basis for the i-th subspace inH can be constructed
in poly(n, log |H|) operations in F. ♦

We note here that the above subspaces Hi are not constrained to be of equal dimension. Allowing the
dimension of the Hi to vary could conceivably allow for improved constructions, but no construction so far
uses this freedom. As such, we will primarily concern ourselves with the case when the dimensions are equal.

Guruswami-Xing [GX13] defined subspace designs as a way to prune list-decodable codes to ensure a
small list-size while maintaining high rate. As such, one wishes for the size |H| of the design to be large
while maintaining L of moderate size. In particular, they showed that large designs exist non-constructively.

Proposition (Guruswami-Xing [GX13]). Let Fq be a finite field. Let ε > 0, n> 8/ε and s6 εn/2. Then there
is a strong (s, 8s/ε)-subspace designH of (1− ε)n-dimensional subspaces in Fn

q with |H|= qεn/8.

Note that the co-dimension of the subspaces inH is εn, which is twice that of the maximum dimension
s≈ εn/2. We now further remark on the variations of this definition. The following relation between the weak
and strong versions is immediate.

Lemma 2.2 (Guruswami-Kopparty [GK13]). Let F be a field, and let H be a collection of subspaces in
Fn. Then if H is a strong (r,L)-subspace design, then H is a weak (r,L)-subspace design. If H is a weak
(r,L)-subspace design, thenH is a strong (r,rL)-subspace design.

We also observe that as every dimension 6 r subspace can be padded to a dimension r subspace, we
immediately can see that subspace designs apply to smaller subspaces as well.

Lemma 2.3. Let F be a field, and let H be a weak/strong (r,L)-subspace design in Fn. Then H is a
(s,L)-subspace design over Fn for every 16 s6 r.

While the above seems to allow one to focus on dimension r as opposed to dimension 6 r, this is not
strictly true as one can achieve a better list size L for dimension s� r. Similarly, the above lemma relating
strong and weak designs seems to suggest that qualitatively (up to polynomial factors) these notions are the
same. However, as we will later (Section 7), obtaining the appropriate (strong) list size simultaneously for all
s6 r will be crucial for our application to constant-degree dimension expanders.

2.2 Seeded Lossless Rank Condensers

Subspace designs ask that for any small subspace V there is some Hi ∈H so that Hi∩V is small. Equivalently,
the amount of dimension in V that is outside Hi is large so that in some sense the dimension of V is preserved.
This perspective is more naturally phrased in the language of (seeded) rank condensers, as defined by Forbes,
Saptharishi and Shpilka [FSS14]. The definition we use here is tuned to the equivalence with subspace
designs, and we recover their definition as the lossless version of what we term here a lossy seeded rank
condenser (see Definition 2.5). We will discuss prior work and motivation for rank condensers that is less
immediately relevant in Section 6. We begin with the definition.

Definition 2.4. Let F be a field and n > r > 1. A collection of matrices E ⊆ Ft×n is a weak (seeded)
(r,L)-lossless rank condenser if for all matrices M ∈ Fn×r with rankM = r,

|{E | E ∈ E , rankEM < rankM}|6 L .

The collection E is a strong (seeded) (r,L)-lossless rank condenser if for all matrices M ∈ Fn×r with
rankM = r,

∑
E∈E

(rankM− rankEM)6 L .

The collection E is explicit if given an index i∈ [|E|] the i-th matrix of E can be constructed in poly(t,n, log |E|)
operations in F. ♦
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As we have many types of condensers in this paper (weak, strong, lossless, lossy, two-source, etc.) we
will often just refer to them as “condensers” (perhaps with some relevant parameters such as “(r,ε)”) when
the relevant adjectives are clear from context.

As it can only increase the quality of the condenser, one naturally considers the case when rankE = t for
all E ∈ E . However, we do not impose this restriction just as we do not impose the condition that subspaces
in subspace designs all have the same dimension. In fact, by the equivalence of subspace designs and lossless
rank condensers (Proposition 6.1) one can see that these two restrictions are equivalent.

We briefly remark that as all of the pseudorandom objects we consider in this work are linear (or in the
case of two-source condensers, bilinear) we will often freely pass between subspaces V ⊆ Fn of dimension r
and matrices M ∈ Fn×r of rank r, using that we can choose a basis for V so that col-spanM =V . As such, we
will often treat a matrix M ∈ Fn×r as a list of r vectors in Fn.

We now note that subspace designs are equivalent to lossless rank condensers.

Proposition (Proposition 6.1). Let F be a field and n> r> 1. LetH= {Hi}i∈[M] be a collection of subspaces
Hi ⊆ Fn and let E = {Ei}i∈[M] ⊆ Ft×n be a collection of matrices, where we have that row-spanEi = (Hi)

⊥

for i ∈ [M]. Then H is a weak/strong (r,L)-subspace design iff E is a weak/strong (r,L)-lossless rank
condenser.

While the above proposition is quite simple, it offers a unifying perspective of these different objects
which was key to obtaining further results.

2.3 Seeded Lossy Rank Condensers

While the above seeded lossless rank condensers already have applications to list-decodable codes, rank
condensers were defined in Forbes, Saptharishi and Shpilka [FSS14] for quite different reasons. We now give
a definition closer to their motivation.

Definition 2.5. Let F be a field and n > r > 1 and ε > 0. A collection of matrices E ⊆ Ft×n is a (seeded)
(r,ε)-lossy rank condenser if for all matrices M ∈ Fn×r with rankM = r,

rankEM > (1− ε) rankM ,

for some E ∈ E . The collection E is a (seeded) (6 r,ε)-lossy rank condenser if it a (s,ε)-lossy condenser
for all 16 s6 r.

The collection E is explicit if given an index i ∈ [|E|] the i-th matrix of E can be constructed in
poly(t,n, log |E|) operations in F. ♦

This notion is a natural linear-algebraic analogue of condensers for min-entropy from the realm of Boolean
pseudorandomness. One contrast is that we do not require that most E ∈ E have the desired condensing
property as this does not seem important for our applications, although we note that one can also obtain this
stronger requirement with our methods.

In is worthwhile to contrast this object with subspace designs or lossless rank condensers. The goal
of subspace designs was (due to connections with list-decodable codes) to construct a large design while
less focus was on the exact list-size bound. Here, we have the somewhat different goal of obtaining a small
collection of matrices, which is akin to obtaining a very small list size in a subspace design. The focus on the
collection being small is from the use of such condensers in derandomization, as we will need to enumerate
over each matrix in the collection.

In particular, the notion of a (r,0)-lossy rank condenser is of interest because it is lossless, which is
important for many applications. In particular, this notion was previously defined as a “rank condenser
(hitting set)” in the work of Forbes, Saptharishi and Shpilka [FSS14], but the construction and usage of
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these objects predates them1. In particular, Gabizon and Raz [GR08a] constructed a (r,0)-condenser with
size nr2, and they used this to construct affine extractors over large fields. Karnin and Shpilka [KS11]
named the construction of Gabizon and Raz [GR08a] to be “rank preserving subspaces” and used this
construction to make a polynomial identity testing2 algorithm of Dvir and Shpilka [DS07] work in the black
box model. Forbes and Shpilka [FS12] later gave an improved construction of a rank condenser with only
nr size, and showed how they can be used to make another polynomial identity testing algorithm of Raz
and Shpilka [RS05] work in the black-box model. Forbes, Saptharishi and Shpilka [FSS14], building on the
work of Agrawal, Saha, and Saxena [ASS13], analyzed “multivariate” lossless rank condensers as they arose
naturally in a polynomial identity testing algorithm.

Beyond applications to polynomial identity testing, Lokshtanov, Misra, Panolan and Saurabh [LMPS14]
used these condensers to derandomize a fixed-parameter-tractable algorithm of Marx [Mar09] for `-matroid
intersection. Cheung, Kwok and Lau [CKL13] rediscovered the rank condenser of Gabizon and Raz [GR08a]
and (among other things) used this to give faster randomized algorithms for exact linear algebra. Forbes,
Saptharishi and Shpilka [FSS14] showed a generic recipe to construct such rank condensers from any
error-correcting code (over large fields). Given these applications and connections present in (r,ε)-lossy rank
condensers for ε = 0, we expect the ε > 0 version will similarly have many applications.

We now quote the parameters given by the probabilistic method.

Proposition (Informal version of Proposition C.11 and Proposition C.12). Let Fq be a finite field. Let
n> r > 1, ε > 0 and t > (1− ε)r. Then there is a collection E of k matrices E ⊆ Ft×n

q that is a (r,ε)-lossy
rank condenser whenever

k >
rn+oq(1)

(t− (1− ε)r)(bεrc+1)−oq(1)
. (2.6)

For ε > 0, there is a collection E of size k that is a (6 r,ε)-lossy rank condenser whenever

k >
n+oq(1)

ε(t− (1− ε)r)−oq(1)
.

Thus we can make the output size t of the condenser to be almost equal to the guaranteed dimension
bound of (1− ε)r. Further, we see that there is essentially no penalty in (existentially) insisting for a (6 r,ε)-
condenser over a (r,ε)-condenser. However, we show in Lemma 6.6 that the notion of (6 r,ε)-condenser is
provably stronger.

2.4 Our Results

We now turn to our constructions of condensers. We begin with the following construction, which is
the rank condenser of Forbes and Shpilka [FS12] and was named the folded Wronskian by Guruswami-
Kopparty [GK13].

Construction 2.7 (Folded Wronskian). Let F be a field. Let ω ∈ F be an element of multiplicative order > n.
Define Wt,ω(x) ∈ F[x]JtK×JnK by (Wt,ω(x))i, j := (ω ix) j.

That is, identifying FJnK with the degree < n polynomials F[x]<n, we see that Wt,ω(x) : F[x]<n→ F[x]t
defined by

f (x) 7→ ( f (x), f (ωx), · · · , f (ω t−1x)) .

1We note that the works we highlight are not necessarily the first or last in their respective lines of research, and rather we only
highlight those that (to the best of our knowledge) had results concerning lossless rank condensers.

2The polynomial identity testing problem is when given a algebraic circuit C (perhaps from a restricted class of circuits) to
deterministically decide whether the circuit C computes the identically zero polynomial. The black box version is where we only
allow access to C by evaluating the polynomial it computes. See Shpilka and Yehudayoff [SY10] for more on this problem.
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That is, we define JnK := {0, . . . ,n− 1} so that in the above i and j are indexed from zero. When the
value of ω is clear from context we will just write “Wt”. Note that the fact that ω has large multiplicative
order means that we require a large field, in particular that |F|> n.

The key result that forms the starting point for our constructions is the following analysis of the folded
Wronskian by Guruswami and Kopparty [GK13]. While their analysis was originally in the context of
subspace designs, we state their result here in the language of lossless rank condensers as it is more natural in
our context.

Theorem 2.8 (Guruswami-Kopparty [GK13]). Assume the setup of Construction 2.7 where we take t > r > 1.
Let S ⊆ {(ω`) j | j > 0} where ` > t− r+ 1. Then {Wt(α) | α ∈ S} ⊆ Ft×n is a strong (r, r(n−r)

t−r+1 )-lossless
rank condenser.

We note here that the above parameters are slightly stronger than what Guruswami and Kopparty [GK13]
obtain, as they only obtain a list bound of r(n−1)

t−r+1 . This improved bound follows by using some of the
analysis from Forbes, Saptharishi and Shpilka [FSS14] as explained in Section 6. Note that this construction
essentially matches the non-constructive bound (2.6) when ε = 0.

The above analysis indicates that for a matrix M ∈ Fn×r of rank r that the total rank loss over all maps in
E is at most r(n−r)

t−r+1 . Thus, by an averaging argument, at most 1/k · r(n−r)
t−r+1 such maps can have a rank loss of

> k. This observation thus shows that the above construction is not just a lossless rank condenser but also a
lossy condenser (with different parameters).

Corollary (Corollary 6.9). Let F be a field. Let n, t > r > 1 and ε > 0, where ω ∈ F is an element of
multiplicative order > poly(n). Define E := {Wt,ω((ω

t) j) | 06 j < n
ε(t−r+1)}, that is, the folded Wronskian

evaluated at n
ε(t−r+1) distinct powers of ω t . Then E is an explicit (6 r,ε)-lossy rank condenser.

To motivate our below application to dimension expanders, suppose that r = n/3 and t = n/2 and some
ε > 0. This says then that we construct a rank condenser that maps Fn to Fn/2 that maps rank n/3 subspaces to
rank (1− ε)n/3 subspaces. Further, this condenser is a collection of at most

n
ε(n/2− n/3)

= 6/ε

maps such that one map from the collection always preserves the desired rank. To obtain these parameters, it
is key to the analysis that we have a strong lossless condenser and that it obtains the (near-optimal) bound
given by Guruswami and Kopparty [GK13]. Note that these condensing parameters are very much similar to
the min-entropy condenser of Raz [Raz05], who uses a constant number of random bits to condense a source
with constant-rate min-entropy.

3 Dimension Expanders

We now turn to our main object of interest, dimension expanders. Dimension expanders were defined
by Barak, Impagliazzo, Shpilka and Wigderson [BISW04] in an attempt to translate challenges in the
explicit construction of objects in Boolean pseudorandomness into the regime of linear algebra. Indeed, in
combinatorics there is a well-established analogy between subsets of [n] and subspaces of vector spaces
over finite fields. In the context of pseudorandomness, we can then translate questions that manipulate the
size of subsets S⊆ {0,1}n (or more generally, the min-entropy of distributions over {0,1}n) into questions
about manipulating the dimension of subspaces V ⊆ Fn. While these regimes seem different, it is conceivable
that such linear algebraic constructions could yield new constructions in Boolean pseudorandomness (such
as how the inner-product function is a two-source extractor). Indeed, as in the work of Guruswami and
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Wang [GW13], this idea has borne fruit (if in a perhaps unexpected way) by showing how linear-algebraic
pseudorandom objects can improve list-decodable codes. We now define dimension expanders.

Definition 3.1. Let F be a field, n > 1, ε > 0 and α ∈ R with α > 1. A collection of matrices A =
{A1, . . . ,Ad} ⊆ Fn×n is a (ε,α)-dimension expander of degree d if for all subspaces V ⊆ Fn of dimension
6 εn that

dim
d

∑
i=1

Ai(V ) = dimspan{Ai(V )}d
i=1 > α dimV .

The collectionA is explicit if given an index i∈ [|A|] the i-th matrix inA can be constructed in poly(n, log |A|)
operations in F. ♦

We remark that in the above definition one can generally assume that all of the maps Ai are of full-rank,
as that can only increase dim∑

d
i=1 Ai(V ). Similarly, one can assume that A1 equals the identity matrix In as

we can use the transform Ai 7→ A−1
1 Ai as again this does not affect the size of the outputted dimension. While

these assumptions are thus without loss of generality, we will not impose them.
In general we will be most interested in (Ω(1),1+Ω(1))-dimension expanders of constant degree, which

we shall thus call “dimension expanders” without any quantification. This parameter regime is of interest
because it matches that of the probabilistic method, which we quote the results of below.

Proposition (Informal version of Proposition C.10). Let Fq be a finite field, n > 1, ε > 0 and α ∈ R with
α > 1. Then there exist a collection matricesA= {A1, . . . ,Ad} ⊆ Fn×n which is a (ε,α)-dimension expander
of degree d whenever

d > α +
1

1−αε
+oq(1) .

Put into more concrete terms, we see that one can existentially obtain (1/2d,d−O(1))-dimension ex-
pansion with degree d. That we have an expansion of (1− ε)d in a degree d expander is akin to lossless
(vertex) expanders which have a similar degree/expansion relation, and these expanders have applications
beyond those of normal expanders (see Capalbo, Reingold, Vadhan and Wigderson [CRVW02] and references
therein). While previous work focused on obtaining constant-degree dimension expanders, our work raises
the questions of obtaining lossless dimension expanders so that we match the above bound. Our work, as
discussed below, lends itself to being particularly quantitative with regards to the size and parameters of the
construction. However, we do not obtain lossless dimension expanders, and to the best of our knowledge,
neither do the other previous constructions of dimension expanders discussed below.

While we discuss prior work in depth in Section 7, we briefly summarize the state of art in dimension
expanders in the following theorems.

Theorem (Lubotzky and Zelmanov [LZ08] and Harrow [Har08]). Let F be a field of characteristic zero and
n> 1. There exists an explicit O(1)-sized collection A⊆ Fn×n such that A is a (1/2,1+Ω(1))-dimension
expander over Fn.

This construction requires characteristic zero as it uses a notion of distance that lacks a good definition in
finite characteristic.

Theorem (Bourgain and Yehudayoff [BY13]). Let n > 1. There exists an explicit O(1)-sized collection
A⊆ {0,1}n×n such that A is a (1/2,1+Ω(1))-dimension expander over Fn, over every field F.

Note that the above construction is only a function of n, and not of the field, so that this single construction
is a dimension expander over all fields.

As explained in Section 7, both of the above constructions in some way attempt to extend existing ideas
about expander graphs into the world of dimension expanders. The first replicates the representation theory
approach to constructing expanding Cayley graphs, and the second shows how bipartite expanders (with the
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Fn Fnd Fn
tensoring

(6 εdn,δ )-lossy
condenser

degree d degree dn
δ (n−εdn)

dim εn dim εdn dim (1−δ )εdn

Figure 1: Constructing dimension expanders from tensoring and lossy rank condensers.

strong requirement of monotonicity) extend to also be dimension expanders.

Our Work. In our work we take a different approach to constructing dimension expanders that treats
such expanders as part of an emerging theme of linear-algebraic pseudorandomness as seen by recent
linear-algebraic approaches to list-decoding [Gur11, GX12, GW13, GX13, GW14] and linear-algebraic
derandomization of subclasses of polynomial identity testing [KS11, FS12]. The first consequence of this
perspective is that we work in fields that are at least polynomially large as this is the setting of Reed-Solomon
codes. To obtain dimension expanders over smaller fields, a natural solution within this theory is to use “code
concatenation” ideas from coding theory. Unfortunately the idea of code concatenation is somewhat subtle in
our setting and so only supplies a concatenation (based on converting Reed-Solomon codes to BCH codes)
that incurs a logarithmic loss in the parameters. The second consequence is that we build our dimension
expanders out of the existing linear-algebraic pseudorandom objects that have emerged from prior work. That
is, just how in Boolean pseudorandomness the notions of expanders, extractors and list-decodable codes are
all related (see for example Vadhan [Vad12]), we leverage such connections to construct our expanders from
the above mentioned rank condensers.

We now explain our construction, which while ultimately was motivated by the connections between
two-source rank condensers and dimension expanders (Proposition 9.1), can be explained in a self-contained
manner. The first observation is that one can easily obtain “(1,d)-expanders” of degree d ∈N if one is willing
to allow the ambient space to grow. That is, consider the tensor product Fn⊗Fd = Fnd . By properties of the
tensor product, for V ⊆ Fn of rank r 6 n we know that V ⊗Fd is of rank rd in Fnd . Further, V ⊗Fd can be
seen as the image of d maps Ti : Fn→ Fnd where the i-th map places the space Fn into the “i-th block” of
(Fn)d = Fnd . In analogy to bipartite expander graphs, this is akin to giving each left vertex its own “private
neighborhood” of right vertices into which it expands.

While trivial, the above step now allows us to convert a question of expansion to a question of condensing.
That is, tensoring achieves expansion only because the output of the maps are larger than the input, while the
non-trivial aspect of dimension expanders is to expand while keeping the output size the same. However,
tensoring has expanded dimension and thus we can now focus on reducing the output size. Specifically,
suppose that we consider V ⊆ Fn of rank r = n/2d. Then its image under the above tensoring is W := ∑i Ti(V )
of dimension n/2. This subspace W lies in an nd-dimensional space and we wish return it to an n-dimensional
space while not loosing too much in the dimension. However, this last problem is exactly the question of
lossy rank condensing. As shown above after the informal version of Corollary 6.9, we can condense such
constant-rate dimension in a lossy way using a constant number of maps. In this example, we can condense
W to Fn using dn

ε(n−n/2) =
2d
ε

maps, at least one of which produces a (1− ε)n/2 dimensional space. Thus, this

expands V ⊆ Fn of rank n
2d to be of dimension (1− ε)n/2 within Fn, all while using d · 2d

ε
= 2d2

ε
maps (we

multiply the number of maps due to the composition). We summarize this composition in Figure 1.
We note that the above discussion has only discussed constant-rate rank, that is, subspaces of Fn with

rank Ω(n). Dimension expanders however are required to expand all small subspaces. Our construction also
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handles this case as the lossy rank condensers we use will preserve a (1−δ ) fraction of the input rank, as
long as that rank is small enough. In the above sketch there is also the technicality that we must tensor with
Fd with d being integral, which restricts d > 2 as d = 1 does not yield expansion. With this construction
alone one would only obtain expansion in Fn for rank < n/d 6 n/2, but we manage to sidestep this restriction
by a simple truncation argument. Putting the above pieces together we obtain the following theorem.

Theorem (Main Theorem, Informal version of Corollary 7.3 and Corollary 7.4). Let n,d > 1 and let 0 < ε 6
η < 1 be constants. Let F be a field with |F|> poly(n). There is an explicit (ε,η/ε)-dimension expander in
Fn of degree Θ

(
1

ε2(1−η)2

)
. If ε < 1/d then there is an explicit (ε,(1−δ )d)-dimension expander in Fn with

degree d2

δ (1−εd) .

These expanders yield an expansion of α with degree ≈ α2, and thus are not lossless. In particular,
the existential bound of Proposition C.10 shows that there are (ε,η/ε)-dimension expanders with degree
≈ 1/ε + 1

1−η
. In remains an interesting challenge to obtain such lossless dimension expanders. In particular,

we note that we get “all of the dimension” from the tensoring step using only one map from the condenser.
This occurs despite the fact that most maps in the condenser preserve all of the dimension (assuming we
double the seed length). It seems natural to hope that an integrated analysis of the tensoring and condensing
stages would show that the construction has a better expansion than what we obtain.

Over small fields our results are comparatively weaker as we simulate a larger field within the small field
(as how one transforms Reed-Solomon codes to BCH codes), so that we pay various logarithmic penalties.

Corollary (Informal version of Corollary 8.8). Let Fq be a finite field. Let n,d > 1. Then there are explicit(
Θ

(
1

d logq dn

)
,Θ(d)

)
-dimension expanders in Fn

q of degree Θ(d2 logq dn).

4 Two-Source Rank Condensers

In the context of Boolean pseudorandomness, it is well known (see for example Vadhan [Vad12]) that strong
min-entropy seeded extractors (extractors that output the entropy of the source plus the entropy of the seed)
are equivalent to a form of vertex expansion. Such extractors are a special case of (seedless) two-source
min-entropy extractors where one of the sources is very small and of full entropy. Thus, as a generalization
of the dimension expanders we have already defined, we can thus define the notion of a (seedless) two-source
rank condenser. While it is often most natural to consider the two sources to be of equal dimension, to
highlight the connection to dimension expanders (Proposition 9.1) we consider sources with unbalanced
dimension.

Definition 4.1. Let F be a field and n > r > 1 and m > s > 1. A function f : Fn×Fm→ Ft is a (seedless)
(r,s,ε)-two-source rank condenser if for all sets A⊆ Fn and B⊆ Fm with rankA = r and rankB = s,

rank f (A×B) = rank{ f (v,w)}v∈A,w∈B > (1− ε) rankA · rankB .

The function f is a (6 r,s,ε)-condenser if it is a (r′,s,ε)-condenser for all 1 6 r′ 6 r, and (6 r,6 s,ε)-
condensers are defined similarly. If ε = 0 we say the rank condenser is lossless and it is otherwise lossy. The
function f is bilinear if f (v,w) = (vtrEiw)t

i=1 for Ei ∈ Fn×m. The function f is explicit if it can be evaluated
in poly(n,m, t) steps. ♦

While this definition is naturally motivated as a generalization of dimension expanders, we originally
were motivated to study these objects due to potential applications for constructing subspace evasive sets, as
we describe in Appendix A.

Note that in general we allow the function f to be arbitrary, but in this work we will restrict ourselves
to bilinear functions f as they are the most natural. In this case, as discussed after Definition 2.4, we
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see that the function f acts on subspaces so that we ask that for subspaces V ⊆ Fn and W ⊆ Fm that
dim f (V,W )> (1− ε)dimV ·dimW . In this way, f can be thought of as a derandomized tensor product.

We now quote the parameters as given by the probabilistic method.

Proposition (Informal version of Proposition C.13 and Proposition C.14). Let Fq be a finite field. Let
n > r > 1 and m > s > 1 and ε > 0. Then there exists a function f : Fn×Fm → Ft which is a bilinear
(r,s,ε)-two-source rank condenser, assuming that

t >
n
εs

+
m
εr

+(1− ε)rs+oq(1) .

for ε > 0. Further, there exists a f which is a (6 r,s,ε)-condenser assuming that

t >
n
εs

+
m
ε
+(1− ε)rs+oq(1) .

If ε = 0, then there exists an f which is a (r,s,0)-condenser assuming that

t > rn+ sm+ rs+oq(1) .

In particular, in the balanced case of n = m and r = s this shows that any t > 2n
εr +(1− ε)r2 + oq(1)

suffices. Note that unlike the single-source setting, there is a large penalty for condensing all small enough
sources. Thus, the above gives (r,r, 1/2)-condensers with output≈ n

r + r2 but to obtain a (6 r,r, 1/2)-condenser
the resulting output size is ≈ n+ r2 (and Proposition 9.4 shows that a linear dependence on n is needed in
this case).

Note that in our definitions of seeded rank condensers there was no analogue of strong min-entropy
extractors, which are extractors that also recover the entropy of the seed in addition to the entropy of the
source. That is, in our setting, there is no “rank of the seed” to recover as the seed is simply an index into
the collection E . The notion of a two-source rank condenser in some sense allows the second source to be a
“seed” in that we can associate elements of E with elements in a basis for Fm. However, we do not pursue this
analogy further as two-source rank condensers meeting the probabilistic method (Proposition C.14) do not
seem to yield good lossy rank condensers in all regimes as two-source condensers can require an output size
which is linear in the input size (Proposition 9.4).

However, the connection between two-source extractors and expanders does hold tightly for the notion of
rank, as we show. Note that for this connection it suffices to have condensers that work when one of the two
sources has full rank.

Proposition (Informal version of Proposition 9.1). Let Fq be a finite field. For large n and all other parameters
constant, constructions of bilinear (6 δn,m,ε)-two-source rank condensers f : Fn×Fm→ Ft that meet the
probabilistic method bound of Proposition C.14 yield constructions of (δ ,α)-dimension expanders in Fn

meeting the probabilistic method bound of Proposition C.10.

We also give constructions of two-source condensers using seeded rank condensers. That is, for two
sources we use a seeded rank condenser to condense each source and use a union bound to show that the
seed-length only doubles. We then enumerate over seeds and for each seed we then tensor the two condensed
sources together. While this approach seems wasteful, we show that it yields optimal lossless two-source rank
condensers by appropriate pruning. In particular, we observe that this is the same construction as given by
Forbes and Shpilka [FS12] for an object known as a rank-metric code. We push this observation further to see
(in Appendix B) that bilinear lossless two-source rank condensers are equivalent to rank-metric codes. Using
this connection, we obtain optimal such condensers over any field using known constructions of rank-metric
codes.
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Theorem (Informal version of Proposition 9.8 and Corollary B.6). Let F be a field and n > r > 1 and
m> s> 1. Then there is an explicit f : Fn×Fm→ Ft which is a (r,s,0) with t 6 O(max{r,s}(n+m)).

We then turn to constructions of lossy two-source condensers, where our results are considerably weaker.
However, we are able to give near-optimal results for constant r by using a brute force “inner condenser” and
using our condense-then-tensor results as an “outer condenser”.

Proposition (Informal version of Proposition 9.9). Let F be a field and n> r > 1, where F is polynomially
large and r 6 O(1). Then there is an explicit bilinear (r,r,1− (1− ε)3)-two source rank condenser f :
Fn×Fn→ Ft with t 6 O(n/ε2r).

5 Notation

We briefly summarize some notation we use. We will apply functions not just to inputs, but to sets of inputs.
Thus, if f : S→ T and U ⊆ S, then f (U) := { f (x)}x∈U . We denote [n] := {1, . . . ,n} and JnK= {0, . . . ,n−1}.
We sometimes use JnK to index matrices from 0, so that M ∈ FJnK×m has its rows indexed from zero but its
columns indexed from 1. The i-th row of a matrix M will be denoted by Mi,• and the j-th column denoted
M•, j. The transpose of a matrix M will be denoted by Mtr.

6 Constructions of Subspace Designs and Rank Condensers

In this section we relate subspace designs to lossless rank condensers, and use this relation to construct
lossless and lossy seeded rank condensers. We begin with this relation, as given by taking dual spaces. We
then construct lossless rank condensers using the folded Wronskian from Construction 2.7 and the analysis
of Guruswami-Kopparty [GK13] quoted in Theorem 2.8 (which we slightly improve using the analysis of
Forbes, Saptharishi and Shpilka [FSS14]). We then turn to lossy condensers, first noting that condensing
“dimension 6 r” and “dimension r” is more subtle in this regime. We then show how to convert any strong
lossless condenser to a lossy condenser and in particular do so for our explicit lossless condenser. As a result
we obtain a lossy condenser nearly matching the probabilistic method.

6.1 Lossless Rank Condensers

We first show that subspace designs and lossless seeded rank condensers are the same object.

Proposition 6.1. Let F be a field and n> r > 1. LetH= {Hi}i∈[M] be a collection of subspaces Hi ⊆ Fn and
let E = {Ei}i∈[M] ⊆ Ft×n be a collection of matrices, where we have that row-spanEi = (Hi)

⊥ for i ∈ [M].
ThenH is a weak/strong (r,L)-subspace design iff E is a weak/strong (r,L)-lossless rank condenser.

Proof: There is a natural surjection from matrices M ∈ Fn×r with rank r to r-dimensional subspaces V
given by M 7→ col-spanM. We now show that rank condensers act on matrices in the same way that
subspace designs act on subspaces. Each matrix Ei naturally defines a map ϕi : Fn→ Ft where by definition
kerϕi = (row-spanEi)

⊥=Hi. Basic linear algebra shows that rankM = dimV = dimϕi(V )+dim(kerϕi∩V ).
Using that ϕi(V ) = rankEiM, we have that rankM− rankEiM = dim(Hi∩V ).

Thus, summing over i we see that for M with V = col-spanM,

∑
i
(rankM− rankEiM) = ∑

i
dim(Hi∩V ) .
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Thus, the left summation is bounded by L for all M iff the right summation is bounded by L for all V , so that
E is (r,L)-strong iffH is (r,L)-strong.

Observing that rankEiM < rankM iff dim(Hi∩V )> 0, the same conclusion holds for (r,L)-weak designs
and condensers.

Given the above equivalence, we now phrase the construction of Guruswami and Kopparty [GK13] of
subspace designs in the language of lossless condensers. To do so, we first need the following result of
Forbes, Saptharishi and Shpilka [FSS14] which gives an analysis of the folded Wronskian.

Proposition 6.2 (Implicit in Forbes, Saptharishi and Shpilka [FSS14], given explicitly by Forbes [For14,
Theorem 5.4.3]). Assume the setup of Construction 2.7. Let M ∈ Fn×r be of rank r. Then the r× r
Wr,ω(x)M ∈ F[x]r×r has determinant detWr,ω(x)M ∈ F[x] which is a non-zero polynomial such that after
dividing out powers of x has degree 6 r(n− r).

There are roughly three components to the above result: the non-zeroness of the polynomial detWr,ω(x)M,
the degree bound on detWr,ω(x)M, and the multiplicative order lower bound of the distinguished element ω

needed for these facts.

The non-zeroness of detWr,ω(x)M has been explicitly established by various works. Forbes and Sh-
pilka [FS12] gave a proof based on the Cauchy-Binet formula, Guruswami and Wang [GW13] via analyzing
a certain linear system, Guruswami and Kopparty [GK13] via an analysis akin to that of the folded Reed-
Solomon codes of Guruswami and Rudra [GR08b], and Lokshtanov, Misra, Panolan and Saurabh [LMPS14]
via a reduction to the n = 2 case. We remark that these proofs have some similarity to analyses of the (classi-
cal) Wronskian, as discussed in Guruswami-Kopparty [GK13] and Forbes-Saptharishi-Shpilka [FSS14], so
that similar proofs can be extracted from that literature.

The above proofs of non-zeroness yield different degree upper bounds on detWr,ω(x)M and the multi-
plicative order of ω . The obvious degree bound for detWr,ω(x)M is r(n−1) as this is an r× r determinant
with entries who are polynomials of degree < n. Forbes and Shpilka [FS12] refined this bound to nr−

(r+1
2

)
,

and this is tight. However, Forbes, Saptharishi and Shpilka [FSS14] observed 3 (and this is explicitly stated in
Forbes [For14]) that one can clear powers of x to derive the degree bound of r(n− r), and again this is tight.
Regarding the multiplicative order of ω , most of the above proofs show that order > n is sufficient, and this
is also tight.

Given the above analysis, we now derive the weak lossless condenser of Forbes and Shpilka [FS12] (with
an updated degree bound).

Corollary 6.3 (Forbes and Shpilka [FS12]). Assume the setup of Construction 2.7 where we take t = r. Let
S⊆ F\{0}. Then {Wr(α) | α ∈ S} ⊆ Fr×n is a weak (r,r(n− r))-lossless rank condenser.

Proof: As rankWr(α)M = rankM = r iff detWr(α)M 6= 0, we see that by Proposition 6.2 there are at most
r(n− r) such α ∈ F\{0} where rankWr(α)M < rankM, giving the desired bound.

Note that in the above condenser the output size t is equal to the rank bound r so that this might
appropriately be called a rank extractor4. In some applications this equality is important, and indeed for our

3Forbes, Saptharishi and Shpilka [FSS14] noted more generally that a similar construction follows from any error-correcting
code, and that the code in the folded Wronskian is the dual Reed-Solomon code. However, the dual Reed-Solomon code seems
special in that it gives rise to “folding” of the resulting construction, which is crucial for Theorem 2.8.

4The paper of Dvir, Gabizon and Wigderson [DGW09] also defined a notion of a rank extractor, but that was for algebraic rank
(or transcendence degree) of polynomials which generalizes linear-algebraic rank to polynomials of higher degree.
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construction of dimension expanders we would ideally have lossy rank extractors (which we do not achieve,
as discussed after Corollary 6.9).

While the above degree and order analysis is tight, Guruswami-Kopparty [GK13] extended it in two
ways. The first is to study the multiplicities and the second is to study the case when t > r. They observed
that the multiplicity of vanishing of detWr(α)M upper bounds the rank deficiency (rankM− rankWr(α)M)
so that instead of a weak condenser we can obtain a strong condenser with the same list bound. For t > r,
they observed that taking the values of α as powers of ω introduces a certain redundancy between different
α-values which is akin to the folding of folded Reed-Solomon codes of Guruswami-Rudra [GR08b] and
this allows one to obtain a smaller list bound by pruning this redundancy. Updating their argument with the
above degree bound (as powers of ω are non-zero, so we can safely ignore powers of x in the determinant
with respect to the determinant being non-zero) we get the following analysis of the folded Wronskian as a
lossless rank condenser.

Theorem 2.8 (Guruswami-Kopparty [GK13]). Assume the setup of Construction 2.7 where we take t > r > 1.
Let S ⊆ {(ω`) j | j > 0} where ` > t− r+ 1. Then {Wt(α) | α ∈ S} ⊆ Ft×n is a strong (r, r(n−r)

t−r+1 )-lossless
rank condenser.

We now conclude with an explicit instantiation of the above when taking all points in a finite field.

Corollary 6.4. Let Fq be a finite field and let n, t > r > 1 such that q > n. Given a generator ω of Fq, there

is an explicit E ⊆ Ft×n
q with |E|= bq−1

t c, such that E is a strong
(

r, r(n−r)
t−r+1

)
-lossless rank condenser.

Proof: As ω generates Fq, we can apply Theorem 2.8 as ω has the desired multiplicative order of q−1> n.

Now take S =
{

1,ω t ,(ω t)2, . . . ,(ω t)b
q−1

t c
}

and E := {Wt(α) | α ∈ S}. For any 1 6 r 6 t, we have that

t > t− r+1 so that E has the desired condensing properties by Theorem 2.8. That |E|= bq−1
t c follows from

construction by the multiplicative order of ω . That E is explicit is also clear as we can index E by
[
bq−1

t c
]

and then given an i ∈
[
bq−1

t c
]

produce Wt(ω
i) in poly(n, t, logq) operations in Fq via repeated squaring.

6.2 Lossy Rank Condensers

We now turn from lossless condensers to lossy condensers, as defined in Section 2. The motivation for
studying objects that can lose a small amount of rank is to obtain a comparatively smaller seed length. Before
turning to constructions, we study the issue of condensing “rank r” as compared to the stronger notion of
condensing “rank 6 r”, where the latter notion is provably stronger. We then relate lossless condensers
to lossy condensers, observing that an averaging argument converts strong lossless condensers to lossy
condensers with a smaller list bound. This leads us to constructing lossy condensers from our lossless
constructions, and this will achieve condensing of “rank 6 r” as needed for our application to dimension
expanders (Section 7) as they must expand all small subspaces.

We begin by recalling that a (r,ε)-lossy condenser should condenser rank r to rank (1− ε)r, and that
a (6 r,ε)-condenser should condense rank s to rank (1− ε)s for all s6 r. Insisting on the latter notion is
somewhat out of line with the usual definition of min-entropy condensers, that ask for min-entropy > k
being condensed to some > k′ min-entropy, without any (stated) guarantee on sources with input min-entropy
� k. As such, (6 r,ε)-condenser notion is more akin to the conductors of Capalbo, Reingold, Vadhan and
Wigderson [CRVW02] (which are maps that have min-entropy output guarantees for any input min-entropy)
than condensers. However, when ε = 0, we see that condensing for rank r implies condensing 6 r with the
same list bound, similar to Lemma 2.3.
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Lemma 6.5. Let F be a field and n> r > 1. Let E ⊆ Ft×n be a weak/strong (r,L)-lossless rank condenser.
Then E is a (6 r,L)-lossless rank condenser.

However, we now note that this connection breaks for ε > 0.

Lemma 6.6. Let F be a field, let n> 1. Let E ⊆ Ft×3n be a (2n, 1/2)-lossy rank condenser. Let π : F4n→ F3n

be the projection map onto the first 3n coordinates and let P ∈ F3n×4n be the associated projection matrix.
Then E ′ := {EP | E ∈ E} ⊆ Ft×4n is a (3n, 2/3)-lossy condenser but not a (s,1− δ )-condenser for any
16 s6 n and δ < 1.

Proof: For a vector space V ⊆ F4n, the dimension of the projection π(V ) has dimπ(V ) = dimV −dim(V ∩
kerπ)> dimV −n. Thus, if dimV > 3n then dimπ(V )> 2n, so that there is some E ∈ E so that E(π(V ))
has dimension > n. Thus E ′, the composition of E and π , will map spaces of dimension 3n to spaces of
dimension > n so that E ′ is a (3n, 2/3)-condenser.

Now consider V ⊆ F4n of dimension s 6 n which is a subspace of the kernel of the projection map π

(which has dimension n). Then clearly π(V ) = 0, so that the rank of the condenser E ′ on π(V ) is always
zero, so E ′ preserves none of the rank of V , so that E ′ is not a (s,1− δ )-condenser for any 1 6 s 6 n and
δ < 1.

This example embeds itself into many examples of “manipulating rank r” versus “manipulating rank 6 r”
by pseudorandom objects. Thus, it shows that to obtain the latter guarantee one needs to explicitly consider
dimension 6 r, and indeed our techniques will work in this regime.

We now give constructions of good lossy rank condensers, using strong lossless rank condensers. As
strong lossless condensers bound the sum of all rank losses (rankM− rankEM) it follows from an averaging
argument that an at most 1/k fraction of the maps can have a rank deficiency > k. Thus we can take a seed
length of the lossy condenser that is 1/k of the list bound of the lossless condenser. For this reduction, a weak
lossless condensers would not suffice as the resulting seed length would not be smaller than the original list
bound.

Proposition 6.7. Let F be a field and let n> r > 1 and ε > 0. Let E ⊆ Ft×n be a strong (r,L)-lossless rank
condenser. Then for any E ′ ⊆ E with |E ′|> L

bεrc+1 , E ′ is a (r,ε)-lossy rank condenser.

Proof: We argue the contrapositive. As E ′ is not a lossy condenser there is a matrix M ∈ Fn×r with rank r so
that for all E ∈ E ′,

rankEM < (1− ε) rankM ,

and thus
rankM− rankEM > ε rankM = εr ,

so that
rankM− rankEM > bεrc+1 .

Thus, using that E ′ is a strong (r,L)-design (as it is a subset of E is such a design, and this is preserved under
taking subsets),

L> ∑
E∈E ′

(rankM− rankEM)

> ∑
E∈E ′

(bεrc+1)

= |E ′| · (bεrc+1) ,

and thus |E ′|6 L
bεrc+1 as desired.
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We now use this lemma, along with the results on lossless condensers, to obtain our desired lossy
condenser.

Proposition 6.8. Assume the setup of Construction 2.7 where we take n, t > r > 1 and ε > 0. Let S ⊆
{(ω`) j | j > 0} where `> t and |S|>min

{
n

ε(t−r+1) ,n
2
}

. Then E := {Wt(α) | α ∈ S} ⊆ Ft×n is a (6 r,ε)-
lossy rank condenser.

Proof: If |S|> n2> r(n−r)+1 then we have a lossless (6 r,0)-condenser by Corollary 6.3 (and Lemma 6.5).

Thus consider |S| > n
ε(t−r+1) . By Theorem 2.8 and Proposition 6.7 it follows that E is a (s,ε)-lossy

condenser as long as |S|> s(n−s)
(bεsc+1)(t−s+1) (as `> t > t− s+1 as s> 1). In particular, it suffices if

|S|> sn
(bεsc+1)(t− s+1)

and thus as bεsc+1> εs and s6 r, it suffices if

|S|> sn
εs · (t− r+1)

=
n

ε · (t− r+1)
,

where this last bound is independent of s, so that we get the desired result.

Note that in the above it is crucial that not only does the condenser of Theorem 2.8 condense all small
ranks s6 r, but also that the list bound is smaller as s decreases. Now we take this construction with explicit
values for the α’s.

Corollary 6.9. Let F be a field. Let n, t > r > 1 and ε > 0. Define N :=
⌈

n
ε(t−r+1)

⌉
and let M > N. Suppose

|F| is of size > tn2. Then there is an explicit (6 r,ε)-lossy rank condenser E ⊆ Ft×n of size |E|= M.

Proof: As |F|> tn2 it follows that we can find an element ω ∈ F with multiplicative order > tn2 in poly(n, t)
steps (see for example Forbes [For14, Lemma A.0.5]). Thus, the set S := {(ω t) j|06 j < min{N,n2}} has
size min{N,n2} and these explicit elements are all distinct as ω has order > t min{N,n2}.

We now appeal to Proposition 6.8, seeing that our set S is sufficiently large and our setup matches
that of Construction 2.7 as ω has order > n. Further, we see that the resulting matrices E are explicit as
Construction 2.7 is explicit. Padding the result with zero-matrices yields an explicit set E with size M.

Thus, we see that the above essentially almost matches the list bound of n
ε(t−(1−ε)r) of the probabilistic

method for lossy condensers condensing dimension 6 r, as given by Proposition C.12. However, there are
two gaps. The first is that this construction requires the use of polynomially large fields, while the existential
bound also holds for constant-sized fields. Second is that this construction requires that the output t have
“t > r” even though we only require the rank to be > (1− ε)r. The probabilistic method of Proposition C.12
allows us to take t ≈ (1− ε)r. While this does not seem dramatic, it will cause a slight complication in our
construction of dimension expanders (as discussed after Corollary 7.3).

7 Constructions of Dimension Expanders

In this section we construct constant-degree dimension expanders by composing a tensoring operation
with our construction of a lossy rank condenser, as constructed in in Section 6. We first discuss previous
constructions of dimension expanders, then turn to our own construction.
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7.1 Previous Constructions

There have been two main types of constructions. The first is to use Cayley graphs from groups with
Kazhdan’s property T, and the second is to use monotone expanders.

Property T : This approach to constructing dimension expanders is rooted in their similarities to expanding
Cayley graphs, which we now discuss. Specifically, dimension expanders can be seen as a certain type of
(vertex) expander in the usual sense, as observed by Dvir and Shpilka [DS11]. That is, given a (Ω(1),1+
Ω(1))-dimension expander A= {A1, . . . ,Ad} ⊆ Fn

q (where we assume without loss of generality that all Ai

are invertible, as discussed after Definition 3.1), consider the graph G with vertex set Fn
q such that v ∈ Fn

q
is connected to {Aiv}i. Note that this is a Schreier graph, as we have a subgroup of GLn(Fq) (the subgroup
generated by the Ai) acting on the set Fn

q. While in general this graph G is directed, one could assume (as
is common in Cayley and Schreier graphs) that A is symmetric so that A ∈ A iff A−1 ∈ A, in which case
G is undirected. That the graph G expands (as a vertex expander) would mean that whenever S ⊆ Fn

q has
|S|6 (1−Ω(1))|Fn

q|, that the neighborhood of S has size at least 1+Ω(1) times the size of S. That is, that
| ∪i Ai(S)| > (1+Ω(1))|S|. That A is a dimension expander asks for an expansion property of G that is
both weaker and stronger than that of vertex expansion in some respects. It is weaker in that we only care
about when the set S is a subspace of Fn

q. However, it is also stronger as vertex expansion only yields that
|∪i Ai(S)|> (1+Ω(1))|S| which only implies dimspan∪iAi(S)> dimS+Ω(1), while dimension expansion
yields that dimspan∪iAi(S)> (1+Ω(1))dimS.

As seen by the above connection, dimension expanders can be seen as a type of Schreier graph. Thus, to
understand the construction of dimension expanders it is first helpful to recall the construction of expanding
Cayley graphs in particular (as these are Schreier graphs). In particular, if you have a group G with generators
Γ, then the corresponding Cayley graph is an expander if the Kazhdan constant is strictly bounded away from
zero (in which case it is said that G has property T with respect to Γ). The Kazhdan constant being bounded
away from zero roughly means that each irreducible unitary representation of G must “move” each non-zero
vector a non-trivial amount via some generator in Γ.

Given that the above notions are inherently linear algebraic, Wigderson [Wig04] made a conjecture (see
Dvir and Wigderson [DW10, Conjecture 7.1]) that any expanding Cayley graph would yield a dimension
expander. Specifically, that any irreducible representation ρ : G→ Fn×n of that group G with generators
Γ⊆ G would have that ρ(Γ) is a dimension-expander. This collection will be of constant-size if the original
expander was constant degree, and would intuitively expand dimension by analogy to how a positive Kazhdan
constant “moves” any vector so these matrices must “move” a subspace to obtain a non-trivial amount of
additional dimension.

Lubotzky and Zelmanov [LZ08] proved Wigderson’s conjecture in characteristic zero by exploiting
the connection of expansion in Cayley graphs to the underlying group having property T . Thus, they
established explicit constant-degree (Ω(1),1+Ω(1))-dimension expanders in any field of characteristic zero.
Unfortunately, as property T relies on the representations being over the characteristic zero (so that distance
is a well-defined notion), the conjecture remains open in finite characteristic. Harrow [Har08] independently
obtained this result in the context of quantum expanders, which imply dimension expanders in characteristic
zero. We summarize this in the following theorem.

Theorem (Lubotzky and Zelmanov [LZ08] and Harrow [Har08]). Let F be a field of characteristic zero and
n> 1. There exists an explicit O(1)-sized collection A⊆ Fn×n such that A is a (1/2,1+Ω(1))-dimension
expander over Fn.

Monotone Expanders: This second approach to constructing dimension expanders exploits another sim-
ilarity to expander graphs, but now to bipartite (vertex) expanders. Specifically, as observed in Bourgain
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and Yehudayoff [BY13], bipartite vertex expanders can be seen as special cases of dimension expanders,
where bipartite vertex expanders only expand subspaces spanned by basis vectors and dimension expanders
expand all subspaces. Indeed, suppose the graph G is on the vertex set with bipartition [n]t [n] and we
partition the edges E of G into partial matchings E = E1t·· ·tEd so that d is an upper bound on the degree
of G. Then we can view the sets Ei as defining (partial) maps Ei : [n]→ [n] which we can then view as
matrices Ai ∈ {0,1}n×n by using these maps to act on the standard basis vectors and then extending linearly.
That G is a good vertex expander means that for any S⊆ [n] with |S|6 (1−Ω(1))n that the neighborhood
of S in G is slightly larger, that is, | ∪i Ei(S)| > (1+Ω(1))|S|. However, from this we see that the vector
space V := span{ei}i∈S (where ei is the i-th standard basis vector) thus expands under the collection {Ai}, as
dim∑i Ai(V ) = |∪i Ei(S)|> (1+Ω(1))|S|= (1+Ω(1))dimV .

Given the above connection, one can then ask in which contexts do the above matrices Ai also expand any
subspace, as opposed to just those spanned by basis vectors. Dvir and Shpilka [DS11] implicitly observed
that dimension expansion occurs when these (partial) maps Ei : [n]→ [n] are monotone. That is, if each
edge set Ei defines a partial map Ei : [n]→ [n] so that if Ei( j) and Ei(k) are defined for j,k ∈ [n], then
j < k =⇒ Ei( j) < Ei(k). When this monotonicity occurs, the resulting matrices {Ai}i are a dimension
expander, and this statement was made explicit by Dvir and Wigderson [DW10].

Thus, to construct explicit constant-degree dimension expanders it then suffices to construct explicit
constant-degree monotone expanders (where the partition of the edges into monotone maps must also
be explicit). Unfortunately, monotone expanders seem a more delicate object than unrestricted expanders.
Indeed, the standard probabilistic method arguments cannot demonstrate even the existence of constant-degree
monotone expanders (see [DW10, BY13]). However, using this connection along with Cayley expanders over
Zn, Dvir and Shpilka [DS11] were able to construct monotone expanders (and thus dimension expanders) with
logarithmic degree, as well as constant-degree expanders with inverse-logarithmic expansion. We formally
state their result here to contrast with our results over F2 (Corollary 8.8), as our results are much weaker
(only achieving (Ω(1/lgn),1+Ω(1))-expanders of logarithmic degree).

Theorem (Dvir and Shpilka [DS11]). Let n > 1. There exists an explicit O(lgn)-sized collection A ⊆
{0,1}n×n such that A is a (Ω(1),1+Ω(1))-dimension expander over Fn, for every field F.

Let n > 1. There exists an explicit O(1)-sized collection A ⊆ {0,1}n×n such that A is a (Ω(1),1+
Ω(1/lgn))-dimension expander over Fn, for every field F.

Dvir and Wigderson [DW10] gave an iterative construction of monotone expanders in spirit of the zig-zag
product of Reingold, Vadhan and Wigderson [RVW02]. Using this approach they were able to give monotone
expanders (and thus dimension expanders) of degree lg(c)(n) (the c-th iterated logarithm) for any constant c.
Assuming a base construction of a constant-degree monotone expander (which is not known to exist via the
probabilistic method), they were able to produce constant-degree dimension expanders.

In a more sophisticated work, Bourgain and Yehudayoff [BY13] used expansion in the group SL2(R) to
obtain explicit constant degree monotone expanders, and thus dimension expanders.

Theorem (Bourgain and Yehudayoff [BY13]). Let n > 1. There exists an explicit O(1)-sized collection
A⊆ {0,1}n×n such that A is a (1/2,1+Ω(1))-dimension expander over Fn, for every field F.

A remarkable feature of the above works is that they achieve (for each n) a single collection of matrices
that is a dimension expander for every field, in particular by only using {0,1}-values. In contrast, our
constructions will very much depend on the underlying field by using elements of large multiplicative order.
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7.2 Our Construction

We now proceed to give the details of our construction, following the outline given in Section 3. That is, we
apply a tensoring operation to yield expansion but increasing the ambient dimension, and then use a lossy
rank condenser to preserve this expansion while reducing the ambient dimension to its original size. As
mentioned in Section 3, this approach is somewhat limited to expanding rank 6 n/2 subspaces as we can only
tensor with integral-dimensional spaces. To circumvent this, we observe that we can simply “forget” some
of the rank we obtained by tensoring and this allows the construction to expand any rank. We start with a
generic analysis, where we parameterize the “forgetfullness” by γ .

Proposition 7.1. Let F be a field. Let n > r > 1, d > 1, δ ∈ (0,1], and γ ∈ [0,1]. Let E ⊆ Fn×nd be a
(6 d(1− γ)rde,δ )-lossy rank condenser. For i ∈ [d], define Ti ∈ Fnd×n to be the matrix of the map v 7→ v⊗ei,
where ei ∈ Fd is the i-th standard basis vector. Define A := {ETi | E ∈ E , i ∈ [d]}. Then A ⊆ Fn×n is a
(r/n,(1− γ)(1−δ )d)-dimension expander of degree d · |E|.

Proof: That A ⊆ Fn×n is clear from construction, as E ∈ Fn×nd and Ti ∈ Fnd×n. That |A| = d · |E| is also
clear. We now argue the expansion property.

Consider some V ⊆ Fn with dimV = s6 r. Then we have that V ⊗Fd ⊆ Fnd has rank sd by the properties
of the tensor product, and using that V⊗Fd =∑i Ti(V ), it follows that dim∑i Ti(V )= sd. In particular, we have
that there is some subspace W ⊆∑i Ti(V ) with dimW = d(1− γ)sde6 d(1− γ)rde. By the hypothesis on E , it
follows that for some E ∈E that dimE(W )> (1−δ )d(1− γ)sde> (1−δ )(1−γ)sd =(1−δ )(1−γ)d ·dimV .
Thus, as dim∑A∈A A(V )> dimE(W )> (1−δ )(1−γ)d ·dimV we see that there is the desired expansion.

We now instantiate this recipe with our explicit construction of a lossy rank condenser (Corollary 6.9) to
deduce the following.

Theorem 7.2. Let F be a field. Let n,d > 1. Let ε ∈ (0,1), δ ∈ (0,1] and γ ∈ [0,1], subject to

(1− γ)εd < 1 .

Then there is an explicit (ε,(1− γ)(1−δ )d)-dimension expander of degree

d ·
⌈

d
δ (1− (1− γ)εd)

⌉
,

whenever |F|> d2n3.

Proof: For r = bεnc, Corollary 6.9 yields an explicit (6 d(1− γ)rde,δ )-lossy rank condenser of size M :=⌈
d

δ (1−(1−γ)εd)

⌉
as⌈

nd
δ (n−d(1− γ)rde+1)

⌉
6

⌈
nd

δ (n− (1− γ)rd)

⌉
6

⌈
d

δ (1− (1− γ)εd)

⌉
.

Note that Corollary 6.9 requires that n> d(1− γ)rde, which is true iff (1− γ)rd 6 n, which follows from
(1− γ)εd 6 1, and we have by hypothesis that (1− γ)εd < 1. We now use this condenser in Proposition 7.1,
noting that this construction is also explicit and multiplies the degree by d.

We now note one particularly natural set of parameters for the above construction, namely when γ = 0.
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Corollary 7.3. Let F be a field. Let n,d > 1. Let ε ∈ (0,1), δ ∈ (0,1], subject to ε < 1/d. Then there is an
explicit (ε,(1−δ )d)-dimension expander of degree d ·

⌈
d

δ (1−εd)

⌉
whenever |F|> d2n3.

Now consider this construction when ε 6 1/2d and δ = 1/2, so that we have that the degree of the expander
is ≈ 4d2, when the expansion α has α = d/2. However, the existential construction of Proposition C.10 yields
that the degree could be≈ α +2 here. Thus, our construction suffers from a quadratic loss as compared to the
existential bounds. In particular, we do not achieve lossless dimension expanders. Intuitively, this quadratic
loss is because we compose a tensor step with a condensing step, so that the degree of each step multiplies.

While the above corollary with γ = 0 is sufficient for expanding small rank subspaces, it intrinsically
cannot yield, for example, (2/3,1+Ω(1))-expanders, because the parameter d must be an integer. Thus, after
our tensoring step, from rank r we get rank rd and we must take d > 1 to achieve any expansion. But as
there is no way to tensor with Fd for d fractional, we must have that d > 2. However, our construction of
a lossy rank condenser (Proposition 6.8) requires that the output size be at least the rank bound of rd > 2r.
Thus, since the output size must be n so that we achieve n×n matrices, it follows that this method does not
work for 2r > n. Note that if we had lossy condensers meeting the existential bound (Proposition C.12) then
we would only need that n> (1−δ )rd and thus taking δ sufficiently close to 1 would remedy the r 6 n/2

limitation seen here.

However, as we currently cannot match the above existential bound, the above construction introduces
the γ parameter. When γ > 0, we simply “forget” that the tensoring yields dimension rd and simply work
with the smaller rank bound of (1− γ)rd, thus allowing us to take any r where (1− γ)rd 6 n. In particular,
by letting γ close to 1 we can take any rank r. We now implement the above by choosing γ carefully so that
we can obtain constant degree expanders in Fn that expand rank εn to rank ηn for any constants ε 6 η < 1.

Corollary 7.4. Let F be a field. Let n> 1. Let 0 < ε 6 η < 1. Then there is an explicit (ε,η/ε)-dimension
expander of degree ⌈

1+η

2ε

⌉
·


2(1+η)

⌈
1+η

2ε

⌉
(1−η)2

6 d1/εe ·
⌈

4d1/εe
(1−η)2

⌉
,

whenever |F|> d2n3.

Proof: This follows from Theorem 7.2 by choosing parameters carefully. In particular, we will to choose
d,δ ,γ so that (1−δ )(1− γ)εd = η but that (1− γ)εd is bounded away from one.

In particular, choose d =
⌈

1+η

2ε

⌉
. Note that as ε < 1 we have that d > 2. Now choose γ so that

(1− γ)εd = 1+η

2 so that (1− γ)
⌈

1+η

2ε

⌉
= 1+η

2ε
from which it follows that γ ∈ [0,1). Now choose δ so that

(1−δ )(1−γ)εd = η , in particular that (1−δ ) = 2η

1+η
, so that δ = 1−η

1+η
∈ (0,1). Thus, plugging these values

into Corollary 7.3 yields the desired parameters.

The above constructions all require large fields. In Section 8 we show how to simulate these results in
small fields by paying certain logarithmic penalties.

8 Constructions over Small Fields

The main constructions of this paper rely on the folded Wronskian (Construction 2.7) which requires a
polynomially large field. In this section, we discuss to what extent we can extend our techniques to smaller

21



fields. Guruswami and Kopparty [GK13] gave a way to convert subspace designs over large fields to subspace
designs over small fields with comparable parameters. However, their method was not able to preserve the
strong-ness of the subspace design and as we saw this strong-ness is essential for our construction of constant
degree dimension expanders (Section 7). We give in this section an alternate method for simulating large
fields that preserves strong-ness but is slightly worse in other parameters than the method of Guruswami and
Kopparty [GK13]. Our method is based on the conversion of Reed-Solomon codes to BCH codes and can be
seen as a basic form of “code concatenation” from coding theory (although more sophisticated versions of
that idea do not seem to work in our setting, see Remark 8.9). As a consequence, we obtain over any field
constructions of strong lossless rank condensers with “inverse logarithmic output rate” and logarithmic-degree
(Ω(1/lgn),1+Θ(1))-dimension expanders.

We begin by showing how to transform a matrix over an extension field K of F to a matrix over F, while
preserving rank. This operation will increase the rows of this matrix (which is undesirable, but tolerable) and
is akin to converting Reed-Solomon codes to BCH codes.

Construction 8.1. Let F be a subfield of K, where dimFK= k so that ϕ : K∼= Fk is an F-vector space iso-
morphism. Define ϕn : Kn ∼= Fkn by applying ϕ coordinate-wise, so that (α1, . . . ,αn) 7→ (ϕ(α1), . . . ,ϕ(αn)).
For a matrix M ∈Kn×m, define ϕn(M) ∈ Fkn×m as the result of applying ϕn to each column of M.

The key point about this map ϕn is that it is F-linear so that it composes nicely with matrix multiplication.

Lemma 8.2. Assume the setup of Construction 8.1. Let E ∈Kt×n and M ∈ Fn×r. Then ϕ t(EM) = ϕ t(E)M.

Proof: Let E have columns v1, . . . ,vn ∈ Kt . Then the i-th column is (EM)•,i = ∑
n
j=1 M j,iv j. Thus by F-

linearity of ϕ t , ϕ t((EM)•,i) = ∑
n
j=1 M j,iϕ

t(v j) = (ϕ t(E)M)•,i. Thus, each column of ϕ t(EM) and ϕ t(E)M
agree, so they are equal.

We now show that this map ϕn preserves rank of matrices as we switch fields.

Lemma 8.3. Assume the setup of Construction 8.1. Let M ∈ Kn×m be a matrix. Then ϕn(M) has
rankF ϕn(M)> rankK M.

Proof: Consider the kernel of the matrix M over K, kerK M = {v | v∈Km,Mv= 0}, so that this represents the
K-dependencies among the columns of M. Likewise, consider the F-dependencies of ϕn(M), kerF ϕn(M) =
{v | v ∈ Fm,ϕn(M)v = 0}. By Lemma 8.2 we have ϕn(Mv) = ϕn(M)v for v ∈ Fm. As ϕn is an isomorphism,
we conclude that for v∈ Fm, Mv= 0 iff ϕn(M)v= 0. Thus, it follows that kerF ϕn(M)⊆ kerK M. In particular,
we see that the F-dependencies between the columns of M are a subset of the K-dependencies of the columns
of M, from which the claim follows.

Thus, we arrive at the following.

Corollary 8.4. Assume the setup of Construction 8.1. Let E ∈Kt×n and M ∈ Fn×r. Then rankF ϕ t(E)M >
rankK EM.

Note that in the above the results are in general neither tight nor improvable. To see that the rank can
increase, consider α1, . . . ,αk ∈K which are an F-basis for K. Then the matrix M = [α1, . . . ,αk] ∈K1×k has
K-rank equal to 1, while ϕ1(M) has F-rank equal to k. To see that the rank may not increase, consider the
n×n identity matrix In ∈Kn. The resulting matrix ϕn(In) ∈ Fkn×n still has rank n as its rank cannot exceed
the number of columns.

In general, one can “get more” F-rank from a matrix over K by expanding the number of rows and
columns of this matrix. That is, for a K-vector space V we use that dimFV = k dimKV instead of just
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that dimFV > dimKV . Indeed, Guruswami-Kopparty [GK13] used this to simulate large fields in their
construction of subspace designs. The downside of this approach is that it does not act as the composition of
linear maps (so we do not get Lemma 8.2), and thus does not preserve strong-ness of the design.

We now apply the above results to convert strong lossless rank condensers over large fields to condensers
over small fields.

Proposition 8.5. Assume the setup of Construction 8.1 with n > r > 1. Let E ⊆ Kt×n be a weak/strong
(r,L)-lossless rank condenser. Then ϕn(E) := {ϕn(E) | E ∈ E} ⊆ Fkt×n is a weak/strong (r,L)-lossless rank
condenser.

Proof: Consider a matrix M ∈ Fn×r with rankF M = r. Then by Corollary 8.4, we have that for any E ∈ E
that rankF ϕ t(E)M > rankK EM. Noting that rankF M = rankK M as M is an F-matrix, we have the inclusion
of sets {E | rankK EM < rankK M} ⊇ {E | rankF ϕ t(E)M < rankF M}, so since the former set has size 6 L
then so does the latter. As this holds for any M, it follows that ϕ t(E) has the desired weak condensing.

Similarly, we see that rankF M− rankF ϕ t(E)M 6 rankK M− rankK EM and since summing over E ∈ E
of the right-hand side yields 6 L (assuming now E is strong), then so does summing over the left-hand side.
Thus, ϕ t(E) has the desired strong condensing as well.

We now apply the above simulation of a large field to translate Corollary 6.4 to small fields.

Corollary 8.6. Let Fq be a finite field and let n, t > r > 1 such that qk > n. Given an explicit presentation

of Fqk ∼= Fk
q and a generator ω of Fqk , there is an explicit E ⊆ Fkt×n

q with |E| = bqk−1
t c, such that for all

16 r 6 t, E is a strong (r, r(n−r)
t−r+1 )-lossless rank condenser (and thus strong (r, r(n−r)

t−r+1 )-subspace design).

Proof: Corollary 6.4 implies that we have such a E ′ ∈ Ft×n
qk with |E ′|= bqk−1

t c that has the desired condensing
properties (and thus design properties by our equivalence (Proposition 6.1)). We now apply our large field
simulation (Proposition 8.5) to obtain E . Clearly E has the desired size and condensing properties. That E
can be indexed in poly(n, t,k logq) is also clear given the explicit presentation Fqk ∼= Fk

q.

In comparison, Guruswami and Kopparty [GK13] obtain a similar construction of weak designs where
the list bound has decreased by a factor of k. However, for our applications the strong-ness of the above is
more important.

Similarly, we can obtain explicit lossy rank condensers where the output size is logarithmically larger
than it was previously.

Corollary 8.7. Let Fq be a finite field. Let n, t > r> 1 and ε > 0. Define N :=
⌈

n
ε(t−r+1)

⌉
and let M>N. Then

there is an explicit (6 r,ε)-lossy rank condenser E ′ ⊆ Fkt×n of size |E ′|= M, where k := dlogq(tn
2 +1)e=

Θ(logq tn).

Proof: First, observe that tn2 + 1 6 qk 6 q · (tn2 + 1) 6 (tn2 + 1)2. Now, recall that we can construct an
explicit presentation of Fqk extending Fq in time poly(qk)6 poly(n, t) (see for example Forbes [For14, Lemma
3.2.5]). Now by Corollary 6.9 we have a (6 r,ε)-lossy rank condenser E ⊆ Ft×n

qk of size |E|= M. We then
convert this to be over Fq following the logic of Proposition 8.5.

Likewise we obtain logarithmic-degree dimension expanders, but we can only expand rank of inverse
logarithmic rate.
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Corollary 8.8. Let Fq be a finite field. Let n,d > 1 and define k := dlogq(d
2n3 +1)e. Let ε ∈ (0,1) and

δ ∈ (0,1], subject to 1− εdk < 1. Then there is an explicit (ε,(1− δ )d)-dimension expander of degree
d ·
⌈

dk
δ (1−εdk)

⌉
.

Proof: As in Theorem 7.2, we will instantiate Proposition 7.1 with an explicit lossy condenser. However,
here we take the parameter γ of Theorem 7.2 to have γ = 0, as γ > 0 was only needed to expand in the
high-rate regime (which this proof will not achieve).

Thus, for r = bεnc we use Corollary 8.7 to obtain an explicit (6 rd,δ )-condenser in Fn×nd
q with resulting

seed length of
⌈

dk
δ (1−εdk)

⌉
as⌈

nd
δ (bn/kc− rd +1)

⌉
6

⌈
nd

δ (n/k− rd)

⌉
=

⌈
ndk

δ (n− rdk)

⌉
6

⌈
dk

δ (1− εdk)

⌉
,

noting that we are restricted in needing that bn/kc · k 6 n (and we pad matrices from kbn/kc rows to n rows).
Plugging this into Proposition 7.1 thus yields the desired dimension expander.

Put more informally, this yields for every integer d, a
(

Θ

(
1

d logq dn

)
,Θ(d)

)
-dimension expanders in Fn

q

of degree Θ(d2 logq dn).

We now briefly remark on the difficulty of using more sophisticated code concatenation ideas from coding
theory to obtain better results.

Remark 8.9. The above constructions mimic the conversion of Reed-Solomon codes of block-length n (over
the large alphabet of Fqk , with k = dlogq ne) to BCH codes of block-length n (over the small alphabet of Fq).
This conversion preserves the distance of the code, but multiplies the number of parity checks of the code
by factor of dlogq ne for codes of block-length n. As such, the relative distance of the resulting BCH code
cannot be better than 1/dlogq ne without the code becoming trivial.

Coding theory has the method of code concatenation for reducing the alphabet size without incurring
the above logarithmic loss. In particular, one can reduce Reed-Solomon codes to a code over F2 while only
incurring a constant factor loss in the distance and rate. Unfortunately, it is unclear how to implement code
concatenation in the context of this paper.

Specifically, in code concatenation for the Hamming metric, one first uses the isomorphism that Fnk
q = Fn

qk ,

one then uses the outer-code E1 : Fn
qk → Fm

qk , to which one then applies an inner-code E2 : Fqk = Fk
q→ Fk′

q
component-wise. In the Hamming metric, the isomorphism in the first step of the composition will preserve
(or increase) the relative Hamming weight, so that a vector v ∈ Fnk

q with weight d
nk will have weight at

least
d/k

n = d
nk when considered as a vector in Fn

qk . Thus, we have not lost in the distance by appealing to
this isomorphism, which intuitively follows from the fact that the Hamming weight of a vector is defined
coordinate-wise.

However, this isomorphism does not seem to play well with rank (as the rank of a matrix is not defined
column-wise), as discussed in the comments after Corollary 8.4. That is, the rank can drop by a factor of
k when treating a Fq-vector space V ⊆ Fnk

q as a Fqk -vector space in Fn
qk . One can recover this factor of k as

done in the large-field simulation of Guruswami-Kopparty [GK13] in the context of subspace designs but this
construction seems to lose the strong-ness of the construction which is essential for our work. ♦
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9 Constructions of Two-Source Rank Condensers

In this section, we relate two-source rank condensers to the pseudorandom objects we have already discussed.
First, we show that two-source rank condensers with good parameters (even for the special case when one
of the sources has full rank) yield constructions of dimension expanders with good parameters. We then
show that seeded (single-source) rank condensers can be used to construct two-source rank condensers
with good parameters. In particular, for (r,r,0)-condensers we obtain an output length of Θ(nr), which is
essentially optimal. However, we note that this is essentially the construction of Forbes and Shpilka [FS12] for
constructing rank-metric codes. We show in Appendix B that (bilinear) lossless two-source rank condensers
are equivalent to (linear) rank-metric codes, and as a consequence derive optimal such condensers from
rank-metric code constructions. For (r,r,1− (1− ε)3)-lossy two-source condensers, we show how to obtain
output size Θ(n/ε2r) for constant r by using our ideas as an “outer condenser” and finding via brute-force an
“inner condenser”.

We begin by showing how two-source rank condensers imply dimension expanders.

Proposition 9.1. Let Fq be a finite field. Let n> r > 1, m> 1, and ε > 0. Let E1, . . . ,Et ∈ Fn×m be such that
f : Fn×Fm→ Ft with f (v,w) := (vtrEiw)i∈[t] is a bilinear (6 r,m,ε)-two-source rank condenser.

Then, for i ∈ [m], define Ai ∈ Ft×n to the be matrix of the linear transformation v 7→ f (v,ei), where
ei ∈ Fm is the i-th standard basis vector. Then A := {Ai}m

i=1 has the following property: for all V ⊆ Fn of
dimension 6 r,

dim∑
i

Ai(V )> (1− ε)mdimV .

In particular, consider δ := r/n, α := (1− ε)m with αδ < 1, where m,δ ,α and ε are constant. For
n>Ωm,α,δ ,ε(1) whenever

t 6
n

εm
+

m
ε
+(1− ε)rm+oq(1)+O(1) ,

we have that the collection A is a degree-m (δ ,α)-dimension expander in Fn whenever

m > α +
1

1−αδ
.

Proof: First note that for each i ∈ [m], the map v 7→ (vtrE jei) j∈[t] is indeed a linear map in v from Fn→ Ft ,
so that Ai is well defined. Now consider a subspace V ⊆ Fn of dimension 6 r. By bilinearity of f , we have
that dim f (V,Fm) = dim f (V, Im), where Im is the m×m identity matrix so that col-spanIm = Fm. The rank
condenser property guarantees that dim f (V, Im) > (1− ε)mdimV . In particular, as { f (V,ei)}i∈[m] spans
∑i Ai(V ), it follows that dim∑i Ai(V )> (1− ε)mdimV as desired.

To see the second part of the claim, note that for A to be a dimension expander we only need t 6 n as we
can then pad the matrices in A to be n×n matrices. Thus it suffices that

n
εm

+
m
ε
+(1− ε)rm+oq(1)+O(1)6 n ,

for which it suffices that
1

εm
+on(1)+(1− ε)δm+on(1)6 1 ,

which is equivalent to
1

εm
6 1−αδ −on(1) .
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Using that εm = m−α , we see this is equivalent to

m> α +
1

1−αδ −on(1)
,

which will be satisfied for large n as long as m,ε,α,δ are constants and m > α + 1
1−αδ

.

Thus, the above shows that obtaining two-source rank condensers meeting the probabilistic method bound
of Proposition C.14 will yield dimension expanders essentially meeting the probabilistic method bound for
dimension expanders (Proposition C.10).

In the definition of a two-source condenser, we say that it is bilinear if each coordinate of the output
function is a bilinear form. It will sometimes be more convenient to consider all of the coordinates together.
In this case, a bilinear condenser acts as a matrix E times the tensor product v⊗w as we now show.

Lemma 9.2. Let F be a field and let f : Fn×Fm→ Ft . Let E ∈ Ft×nm and for i ∈ [t] define Ei := Ei,• ∈ Fn×m,
the i-th row of E interpreted via the isomorphism Fn×m =Fnm. Then f has f (v,w) = (vtrEiw)t

i=1 for Ei ∈Fn×m

iff f (v,w) = E · (v⊗w), where v⊗w ∈ Fnm is the tensor product of v and w.

Proof:

(E · (v⊗w))i = ∑
j∈[nm]

Ei, j · (v⊗w) j

using the isomorphism between Fnm and Fn×m so that we now index by [n]× [m],

= ∑
j∈[n],k∈[m]

(Ei) j,k · (v⊗w) j,k

factoring the tensor product,

= ∑
j∈[n],k∈[m]

(Ei) j,k · v j ·wk

= ∑
j∈[n],k∈[m]

v j(Ei) j,kwk

= vtrEiw .

As such, for bilinear rank condensers we can simply consider the matrix E to be the condenser and not
discuss the function f .

Similar to Lemma 2.3 we can obtain that lossless two-source condensers automatically work for all
smaller rank bounds.

Lemma 9.3. Let F be a field and let n > r > 1 and m > s > 1. Let f : Fn×Fm→ Ft . Then f is a lossless
(r,s,0)-two-source rank condenser iff f is a lossless (6 r,6 s,0)-condenser.

However, just as in Lemma 6.6 this is provably false for lossy condensers. However, while for single-
source condensers we can expect to (and do) obtain “rank 6 r” results essentially for free from “natural”
constructions obtaining results for “rank = r”, this is provably not the case for two-source condensers. In
particular, we now show that condensing all small enough sources can induce a linear output lower bound,
showing that the linear dependence in the output given by Proposition C.14 for (6 r,s,ε)-condensers is
needed (in contrast to (6 r,s,ε)-condensers which can do better).
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Proposition 9.4. Let F be a field and let n> 1 and m> s> 1. Let f : Fn×Fm→ Ft where f is a bilinear
(1,s,ε)-two-source rank condenser for ε < 1. Then t > m− εs.

Proof: The condenser is defined by a matrix E ∈ Ft×nm such that for any A ∈ Fn×1 of rank 1 and B ∈ Fm×s

of rank s we have that rankE(A⊗B)> (1− ε)1 · s. Thus, take A = {e1} where e1 ∈ Fn is the first standard
basis vector. Thus E(A⊗B) = E1B, for some E1 ∈ Ft×m as once we fix v, the map w 7→ E(v⊗w) is linear.

Thus, we need that E1 ∈ Ft×m has that for any B ∈ Fm×s that rankE1B > (1− ε) rankB. If kerE1 has
dimension > εs then we can find a subspace V with dimV = s and dim(V ∩ kerE1) > εs, so dimV −
dimE1V > εs and thus E is not such a condenser. Thus, it must be that dimkerE1 6 εs. However, as
dimkerE1 > m− t it follows that t > m− εs.

9.1 Constructing Optimal Lossless Two-Source Condensers

We now turn to constructing two-source rank condensers. In this subsection, we consider the lossless case
(ε = 0). Thus, we are given A ∈ Fn×r of rank r and B ∈ Fm×s and wish to obtain rank rs from them. One
can trivially do this via the tensor product, so that A⊗B ∈ Fnm×rs has rank rs. However, we would like a
condenser with a smaller output size. To achieve this, we observe that we can apply seeded rank condensers
E : Fn→ Fr and E ′ : Fm→ Fs and after this dimension reduction apply the tensor product. This will certainly
yield rank rs for some E ∈ E and E ′ ∈ E ′, so we must enumerate over all such choices. While this would
naively yield an output size of |E||E ′|rs, we can use that our lossless condensers (Corollary 6.3) only have
a finite number of bad values so that a union bound yields an output size of (|E|+ |E ′|)rs, as stated in the
following proposition.

Proposition 9.5. Let F be a field. Let n> r > 1 and m> s> 1. Let ω ∈ F be an element of multiplicative
order > n,m. Identify Fn and Fm with the spaces of low-degree univariate polynomials, so that Fn =
F[x]<n and Fm = F[y]<m so that Fn⊗Fm = Fnm = F[x,y]<n,<m is the space of bivariate functions with the
respective individual degree bounds. Let S ⊆ F \ {0} be a set where |S| = r(n− r)+ s(m− s)+ 1. Then
E : F[x,y]<n,<m→ Frs·|S| defined by

h(x,y) 7→ (h(ω i
α,ω j

α))i∈JrK, j∈JsK,α∈S

is a bilinear (r,s,0)-two-source rank condenser with output size 6 rs(rn+ sm).

Proof: By construction and Lemma 9.2 we see that E is bilinear and has the desired output size (as r,s> 1),
so that it suffices to show the condensing property.

Assume the setup of Construction 2.7. In this construction, we see that Wr(α) is a linear map Wr(α) :
F[x]<n→ Fr given by f (α) 7→ ( f (α), f (ωα), . . . , f (ωr−1α)), and Ws(α) : F[y]<m→ Fs defined similarly
(where we abuse the notation of Construction 2.7 so that we allow Ws(α) to act on F[y]<m). Thus, we see
that (Wr(α)⊗Ws(α)) : F[x,y]<n,<m→ Frs is a linear map sending h(x,y) 7→ (h(ω iα,ω jα))i∈JrK, j∈JsK.

Consider A ∈ (F[x]<n)r of rank r and B ∈ (F[y]<m)s of rank s. It suffices to show that rankE(A⊗B)>
rs and as E is simply the collection of the maps (Wr(α)⊗Ws(α)) for α ∈ S, it suffices to show that
rank

(
(Wr(α)⊗Ws(α)) · (A⊗B)

)
= rank((Wr(α)A)⊗ (Ws(α)B)) has rank > rs for some α ∈ S.

It follows from Proposition 6.2 that there are at most r(n− r) values of α where rankWr(α)A < rankA.
Similarly, there are at most s(m− s) values of α where rankWs(α)B < rankB. Thus, as |S| > r(n− r)+
s(m− s) it follows there is some α0 ∈ S where rankWr(α0)A = rankA and rankWs(α0)B = rankB. Thus, it
follows that rank((Wr(α0)A)⊗ (Ws(α0)B)) = rs as desired.
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Note that in the balanced case of n = m and r = s, this yields an output size of ≈ 2nr3 which while
better than the trivial n2 is still far from the probabilistic method bound of 2nr (Proposition C.13). However,
we observe that the above map has a fair bit of redundancy which we can prune, and we can prune this
redundancy because of the following lemma.

Lemma 9.6. Let F be a field. Let n,m> 1, 16 r6 n and 16 s6m. Let E ∈ Ft×nm be a bilinear (r,s,ε)-two-
source rank condenser and suppose that E ′ ∈ Ft ′×nm has row-spanE ⊆ row-spanE ′. Then E ′ is a bilinear
(r,s,ε)-two-source rank condenser.

Proof: That row-spanE ⊆ row-spanE ′ means that there is a P ∈ Ft×t ′ so that E = PE ′. Now consider some
A ∈ Fn×r of rank r and B ∈ Fm×s of rank s. That E is such a condenser means that rankE(A⊗B)> (1−ε)rs.
But then rankE(A⊗B) = rankPE ′(A⊗B)6 rankE ′(A⊗B). Thus it follows that rankE ′(A⊗B)> (1−ε)rs,
so that E ′ is also such a condenser.

We now use the above lemma to prune the redundancies of Proposition 9.5 to obtain a near-optimal
lossless two-source condenser.

Corollary 9.7. Let F be a field. Let n > r > 1 and m > s > 1. Let ω ∈ F be an element of multiplicative
order > n,m. Identify Fn and Fm with the spaces of low-degree univariate polynomials, so that Fn = F[x]<n

and Fm = F[y]<m so that Fn⊗Fm = Fnm = F[x,y]<n,<m is the space of bivariate functions with the respective
individual degree bounds. Let T ⊆F\{0} be a set where |T |= n+m−1. Then E ′ :F[x,y]<n,<m→F(r+s−1)·|T |

defined by
h′(x,y) 7→ (h′(β ,ωk

β ))−r<k<s,β∈T

is a bilinear (r,s,0)-two-source rank condenser with output size (r+ s−1)(n+m−1).

Proof: Note that the map of Proposition 9.5 consists of evaluating h(x,y) ∈ F[x,y]<n,<m at the points
h(ω iα,ω jα) for i ∈ JrK, j ∈ JsK, and α in some set. Note that each such evaluation is the evaluation of the
corresponding univariate polynomial h(x,ω j−ix) at the point β = ω iα . As the polynomial h(x,ω j−ix) is of
degree 6 (n−1)+(m−1) and there are (r−1)+(s−1)+1 values of k = i− j, we see that by polynomial
interpolation that the evaluations of the map Proposition 9.5 are contained in the linear combinations of the
evaluations

h′(x,y) 7→ (h′(β ,ωk
β ))−r<k<s,β∈T ,

since |T |> (n−1)+(m−1)+1 = n+m−1. Appealing to Lemma 9.6 then yields the claim.

Thus, in the balanced case of n = m and r = s we obtain an output of size 6 4nr, which matches the
probabilistic method up to a factor of 2. While this seems to close the story on lossless two-source rank
condensers, we note here that this construction is exactly the construction of Forbes and Shpilka [FS12] for
an object called a rank metric code. While a priori it might seem that rank-metric codes are weaker objects
(so that the above analysis would add something new), we show in Appendix B the rank metric codes are
equivalent to lossless two-source rank condensers.

Proposition (Proposition B.4, Proposition B.5). Let F be a field. Let n,m > 1 and n,m > r > 0. A matrix
E ∈ Ft×nm is a bilinear (r,r,0)-two-source rank condenser iff C := kerE ⊆ Fn×m is a distance > r + 1
rank-metric code.

Thus, we can then leverage constructions of rank-metric codes to slightly improve upon the above
condenser. In particular, Gabidulin [Gab85] rank-metric codes work over any fixed finite field, and the
codes of Roth [Rot91] and Forbes-Shpilka [FS12] improve upon the above condensers by removing further
redundancy. Perhaps more importantly, these codes are optimal for their respective regimes. In particular, we
can translate the known bounds for rank-metric codes into the language of condensers.
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Proposition (Proposition B.7, Proposition B.9). Let F be a field and m> n> r > 1. Let f : Fn×Fm→ Ft be
a bilinear (r,r,0)-two source rank condenser. Then t > rm. Further, if F is algebraically closed and n = m
then t > r(2n− r).

We can then match these bounds with constructions of rank-metric codes, appealing to the above
equivalence with condensers.

Proposition 9.8 (Proposition B.8, Proposition B.10). Let F be a field and m> n> r > 1.

If F = Fq is a finite field, and Fqm is given explicitly as an extension of Fq then there is an explicit
f : Fn×Fm→ Ft which is a bilinear (r,r,0)-two source rank condenser with t = rm.

If |F|> n then there is another such explicit f with t = r(n+m− r).

We note that the last part of the above result can be proven by a tighter analysis of the construction used
in Corollary 9.7, but the cleanest exposition goes through rank-metric codes.

9.2 Constructing Lossy Condensers

We now turn to constructions of lossy two-source condensers, where our results are still far from optimal.
Because of this distance to optimality, we restrict our attention to balanced sources, so that we seek (r,r,ε)-
condensers f : Fn×Fn→ Ft . We begin by discussing how the strategy in the lossless case (condense each
source with a seeded condenser, tensor the results, then finally prune the output) does not seem to give any
better results. Despite this, we show that this idea can serve well as a “outer condenser”, so that if we had
a good “inner condenser” for rank r subspaces of an r3-dimensional space we would obtain near-optimal
results.

Recall the strategy of the previous section. That is, we obtained lossless two-source condensers by
using a seeded condenser based on the folded Wronskian (Construction 2.7), where we map f (x) 7→
( f (α), f (ωα), . . . , f (ω t−1α)) for various α . While using this approach yielded suboptimal results when
applied naively (Proposition 9.5) we saw how to prune the output to yield an essentially optimal result
(Corollary 9.7). The key idea to this pruning was that the induced map

f (x,y) 7→ ( f (ω i
α,ω j

α))i, j∈JtK,α∈S

evaluates f through evaluations of univariate polynomials f (x,ωkx), and we can then restrict the number of
evaluations to each univariate polynomial to be at most the degree bound of that polynomial. This helps as
k · |S| was much larger than the degree of f (x,ωkx).

One can thus implement the above strategy in the lossy case, where we now use the analysis of the
folded Wronskian as a lossy rank condenser (Proposition 6.8). Thus, before any attempt at pruning we
see that the output size is t2 · n

ε(t−r) , which is minimized at ≈ nr for t = 2r. While this improves upon the
non-pruned lossless condenser of Proposition 9.5 it does not even yield a smaller output size than the lossless
constructions we give above.

Thus, to obtain better results we might try to prune this construction. However, we see that each univariate
f (x,ωkx) is evaluated only at n

ε(t−r) points, which is below the degree bound of deg f (x,ωkx) = 2n. Thus,
there seems to be no pruning available to improve the above strategy.

Despite this, we observe that the above strategy has now reduced the problem to a smaller dimensional
space, for which one could apply different methods. We now show that taking t = r3 in this reduction can
lead to near-optimal results.
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Proposition 9.9. Let F be a field and n > r > 1. Assume the setup of Construction 2.7. Suppose that
E ∈ Ft ′×t2

is a bilinear (d(1− ε)re,d(1− ε)re,ε)-two source rank condenser. Let S⊆ {(ω t) j | j > 0} with
|S|=

⌈
2n

ε(t−r+1)

⌉
. Then E ′ := (E · (Wt(α)⊗Wt(α)))α∈S ∈ Ft ′·|S|×n2

is (r,r,1− (1− ε)3)-condenser.

In particular, taking t = r3 and taking E to be a condenser meeting the bound of Proposition C.13 so that
t ′ 6 2r3

εr +(1− ε)r2 +O(1), we obtain that E ′ is a (r,r,1− (1− ε)3)-condenser in Ft ′′×n2
for t ′′ 6 O(n/ε2r).

Proof: Given A,B ∈ Fn×r of rank r, we see that by Proposition 6.8 there are < 2 n
ε(t−r+1) values of α ∈ S such

that rankWt(α)A < (1− ε) rankA or rankWt(α)B < (1− ε) rankB. Thus, as |S| > 2n
ε(t−r+1) there is some

α0 where rankWt(α0)A, rankWt(α0)B> (1− ε)r. Thus, it follows that as E is a (d(1− ε)re,d(1− ε)re,ε)-
condenser that E((Wt(α0)A)⊗(Wt(α0)B)) has rank> (1−ε) ·(1−ε)2r2. Thus, it follows that (E ·(Wt(α)⊗
Wt(α)))α∈S applied to A⊗B has rank > (1− ε)3r2, showing that this is indeed the desired condenser.

To obtain the bound on t ′, note that

t ′′ = |S| · t ′

6

⌈
2n

ε(r3− r+1)

⌉
·
(

2r3

εr
+(1− ε)r2 +O(1)

)
= O

( n
ε2r

)
.

In particular, one could find such a condenser E via brute force when r = O(1).

10 Open Questions

This work leaves several directions for future work.

1. Can one obtain (r,ε)-lossy seeded rank extractors, where the output is ≈ (1− ε)r? Our methods
require the output to be > r.

2. Can one develop of theory of “code concatenation” to improve our results in Section 8 for small fields?

3. Can one obtain lossy two-source rank condensers with output size o(nr) for r = ω(1)?

4. Can one obtain lossless dimension expanders, where the degree/expansion relationship matches the
probabilistic method?

5. What is the complexity of computing dimension expansion? That is, given matrices A1, . . . ,Ad ∈ Fn×n,
compute the largest α so that A := {Ai}d

i=1 is a (1/2,α)-dimension expander.
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A Toward Iterative Constructions of Subspace Evasive Sets

We describe here a motivation for studying two-source rank condensers via a potential application to
constructing another object called a subspace evasive set, as defined by Guruswami [Gur11].

Definition A.1 (Guruswami [Gur11]). A set S ⊆ Fn is a (r,L)-subspace evasive set if for every (6 r)-
dimensional subspace V ⊆ Fn, |V ∩ S| 6 L. Equivalently, a set S is (r,L)-subspace evasive if for every
subset T ⊆ S with |T |= L+1, rankT > r+1. ♦
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This notion was introduced as a method to prune the lists in list-decodable codes when using a linear
algebraic approach that pins down candidate messages to a low-dimensional subspace [Vad12,Gur11,GW13].
To obtain a high rate code after this pruning we desire a large subspace evasive set. Such large sets are
guaranteed by the probabilistic method, as given in the following lemma.

Lemma A.2 (Guruswami [Gur11]). Let Fq be a finite field. Let ε > 0 and n > r > 1. There exists a
(r, 2r/ε)-subspace evasive set in Fn

q of size bq(1−ε)nc when r 6 εn/2.

The work of Ben-Aroya and Shinkar [BS12] showed that for r > (1/ε)Ω(1) the above size-bound of “2r/ε”
is asymptotically optimal up to constants.

Note that the most basic construction of a subspace evasive set is based on taking the set of moment curve
vectors S := {(1,α, . . . ,αn−1) | α ∈ Fq}. This set S is highly evasive (as it is (n,n−1)-subspace-evasive),
but has size q, which is quite far from the above bq(1−ε)nc. Thus far, the best explicit constructions are due to
Dvir-Lovett [DL12] and Ben-Aroya and Shinkar [BS12].

Theorem (Dvir and Lovett [DL12]). Let Fq be a finite field. Let ε > 0 and n> r > 1. Then there exists an
explicit (r,(r/ε)r)-subspace evasive set in Fn

q of size > q(1−ε)n.

Theorem (Ben-Aroya and Shinkar [BS12]). Let Fq be a finite field. Let 0 < ε < 1/2 and n > r > 1 where
r, 1/ε 6 O(1). Then there exists an explicit (r,(2/ε)r)-subspace evasive set in Fn

q of size > q(1−ε)n.

Note that while the latter result only works for constant r and ε , this is still an interesting parameter
regime for list-decoding applications.

Given that we are far from optimal explicit constructions for subspace evasive sets, we consider in this
work an iterative approach to constructing subspace evasive sets along the lines of the zig-zag product of
Reingold, Vadhan and Wigderson [RVW02] for constructing expanders. That is, suppose that S ⊆ Fn

q is
(r,L)-subspace evasive. It follows that S⊗S = {v⊗w | v,w ∈ S} is in a certain sense subspace-evasive. That
is, for all T,R⊆ S with |T |, |R|= L+1, the product set T ⊗R⊆ S⊗S has dimension > (r+1)2. Thus, large
enough “product sets” among S⊗S have high rank. While having this property for all product sets is far from
having it for all sets of similar size, and thus this is far from a iterative approach for boosting evasiveness,
there is also the more basic problem that the rate of this construction is poor. That is, ideally we have that the
rate

logq |S|
n is at least Ω(1). However,

logq |S⊗S|
n2 = 2

n
logq |S|

n and thus this tensoring operation decreases the rate
dramatically.

While the “product versus non-product set” problem seems fundamental to the above approach, we try to
ameliorate the rate issue by “derandomizing” the tensor product using a two-source rank condenser. That
is, if S is (r,L)-subspace evasive and f : Fn×Fn→ Ft is a (r+1,r+1, 1/2)-condenser, then we can define
S⊗ f S := { f (v,w) | v,w ∈ S} and observe that for any subset R,T ⊆ S with |R|, |T | > L+ 1 we have that
R⊗ f T ⊆ S⊗ f S has rank > (r+1)2/2. While this evades slightly smaller subspaces than using the standard
tensor product, this operation still qualitatively squares the evasiveness as long as r >Ω(1) initially. Further,
the rate has not dropped substantially if good enough condensers are used. That is, the probabilistic method
(Proposition C.13) shows that we can take t = Θ(n/r+ r2). Thus, as long as r6O( 3

√
n), we get that t = Θ(n/r)

and that
logq |S⊗ f S|

t = Θ(2r
logq |S|

n ). Thus, as long as r > Ω(1) the rate has actually increased under this
derandomized tensor product. Thus, from the perspective of iteratively constructing subspace evasive sets
such condensers allow one to focus on the “product versus non-product set” problem.

Unfortunately in this work we do not construct such condensers with t ≈ n/r, nor are we even able to
obtain t = O(n) for any r > ω(1).
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B Lossless Two-source Condensers versus Rank-Metric Codes

In this section we define the notion of a rank metric code and show that it is equivalent to our notion of a
two-source condenser Definition 4.1. We then review constructions and limitations of rank-metric codes.
Finally we derive the corresponding results in the language of two-source condensers.

B.1 Equivalence of Condensers and Rank-Metric Codes

We begin with the definition of rank metric codes.

Definition B.1. Let F be a field and n,m > r > 1. A set C ⊆ Fn×m is a rank metric code with distance r if
for all A,B ∈ C with A 6= B, rank(A−B)> r. The code is linear if C is a linear space. The parity checks of
a linear code C consist of a basis for the dual space C⊥. A linear rank metric code C is explicit if one can
construct a basis of C in poly(n,m) operations in F. ♦

When the linear code C is simply the zero subspace we define the distance to be min{n,m}+1. We now
observe that via standard coding theory arguments linear codes have their distance equal to the minimum
weight of a non-zero element in the code (where “weight” here means “rank”).

Lemma B.2. Let F be a field and n,m> 1. Let C ⊆ Fn×m be a linear rank-metric code. Then the distance of
C is min06=M∈C rankM.

We now give a lemma relating the inner product of matrices to the trace of their product, which will be
helpful in the below results.

Lemma B.3. Let F be a field and n,m> 1. Let M,N ∈ Fn×m. Then the inner product of M and N as vectors
in Fnm can be expressed as 〈M,N〉= tr(MtrN) = tr(NtrM).

Proof: It suffices to prove the first part, as 〈M,N〉= 〈N,M〉.

〈M,N〉= ∑
i∈[n], j∈[m]

Mi, jNi, j = ∑
i∈[n], j∈[m]

(Mtr) j,iNi, j = ∑
j∈[m]

((Mtr) ·N) j, j = tr(MtrN) .

We now show that a matrix E ∈ Ft×nm defining a bilinear lossless two-source condenser has a kernel
which is a good rank-metric code. In particular, if E had a low-rank matrix M ∈ Fn×m in its kernel, than E
would not losslessly preserve the row-span and column-span of M.

Proposition B.4. Let F be a field and let n,m > 1 and n,m > r > 0. Let f : Fn×Fm → Ft be a bilinear
lossless (r,r,0)-two-source rank condenser defined by f (v,w) = (vtrEkw)k∈[t] with Ek ∈ Fn×m. Then {Ek}k
are the parity checks of a linear rank-metric code with distance > r+1.

Proof: We show the contrapositive for r > 0, as when r = 0 the claim is trivial as every rank-metric code has
distance > 1. That {Ek}k are not such parity checks means that there is a non-zero matrix M ∈ Fn×m with
rank s6 r such that (〈Ek,M〉)k∈[t] = 0. Let M = ABtr with A ∈ Fn×s and B ∈ Fm×s.

As ( f (v,w))k = vtrEkw, it follows that we can express the k-th output of f (A,B) as ( f (A,B))k = AtrEkB∈
Fs×s. Now consider the inner product of these vectors with the s× s identity matrix Is ∈ Fs×s, and appealing
to Lemma B.3 we have that 〈Is,AtrEkB〉 = tr(IsAtrEkB) = tr(BAtrEk) = tr(MtrEk) = 〈Ek,M〉, using the fact
that the trace is invariant under cyclic permutations.

As (〈Ek,M〉)k∈[t] = 0 it follows that 〈Is,AtrEkB〉= 0 for all k. That is, the t× s2 matrix which is the output
f (A,B) has a non-trivial nullspace as it contains the matrix Is. Thus, rank f (A,B)< s2 = rankA · rankB, so
that f is not a lossless rank condenser.
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Somewhat surprisingly, we also show the converse to the above, showing that the parity checks of any
rank-metric code yield a bilinear lossless two-source rank condenser. This follows from the observation that
if a matrix E ∈ Ft×nm fails to condense the pair of subspaces A ∈ Fn×r and B ∈ Fm×s then E(A⊗B) must
have rank < rs so that it has a linear dependence E(A⊗B)C = 0 where C ∈ Frs×1. However, using that
Frs×1 = Fr×s, we can see that (A⊗B)C can be interpreted as the matrix ACBtr ∈ Fn×m, which is of rank 6 r,s.
Thus, E has a low-rank matrix in its kernel, and so the kernel does not define a good rank-metric code.

Proposition B.5. Let F be a field and let n,m> 1 and n,m> d > 0. Let E1, . . . ,Et ∈ Fn×m be the parity check
matrix of a linear rank-metric code with distance d+1. Define f :Fn×Fm→Ft by ( f (v,w))k := vtrEkw. Then
f is a bilinear lossless (d,m,0)-two-source rank condenser, as well as a bilinear lossless (n,d,0)-two-source
rank condenser.

Proof: We consider the contrapositive. Suppose that A ∈ Fn×r with rankA = r and B ∈ Fm×s with rankB = s
is not losslessly condensed, so that rank f (A,B) < rs. The output of f (A,B) is a set of rs vectors, each in
Ft , which we can consider as a t× rs matrix. Viewing this matrix row-wise we can express the k-th output
of f (A,B) as ( f (A,B))k = AtrEkB. Thus, that rank f (A,B) < rs means that there is some non-zero matrix
C ∈ Fr×s such that 〈C,( f (A,B))k〉= 0 for all k. Thus, (appealing to Lemma B.3)

0 = 〈C,( f (A,B))k〉= tr(CtrAtrEkB) = tr(BCtrAtrEk) = 〈Ek,ACBtr〉 ,

for all k ∈ [t].

Note that we can decompose C into the basis {eietr
j }i∈[r], j∈[s] for Fr×s where ei is the i-th standard basis

vector. Thus,

ACBtr = A

(
∑

i∈[r], j∈[s]
Ci, jeietr

j

)
Btr = ∑

i∈[r], j∈[s]
Ci, j ·A(eietr

j )B
tr = ∑

i∈[r], j∈[s]
Ci, j ·A•,i(B•, j)tr ,

where A•,i is the i-th column of A and likewise for B. Now note that the outer-products {A•,i(B•, j)tr}i∈[r], j∈[s]⊆
Fn×m are linearly independent as this is simply saying that the tensor product multiplies rank. Thus, as C 6= 0,
it follows that ACBtr is a non-trivial linear combination of the {A•,i(B•, j)tr}i, j and thus ACBtr 6= 0.

However, now note that ACBtr ∈ Fn×m has rankACBtr 6 min{rankA, rankB} so that rankACBtr 6
min{r,s}. Thus, if min{r,s} 6 d then this shows that the {Ek}k are not the parity checks of a distance
d +1 rank metric as ACBtr is a non-zero matrix with rank < d +1 where (〈Ek,ACBtr〉)k∈[t] = 0. Thus, the
claim follows by taking first r 6 d and s6 m, then taking r 6 n and s6 d.

It thus follows that focusing on balanced sources in lossless two-source condensers is sufficient, using
that lossless condensers also condense smaller sources (Lemma 9.3).

Corollary B.6. Let F be a field and let n,m> r > 1. Let f : Fn×Fm→ Ft be a bilinear lossless (r,r,0)-two-
source rank condenser. Then f is also a (6 r,6 m,0)- and (6 n,6 r,0)-condenser.

B.2 Constructions of Rank-Metric Codes

We now review for completeness known constructions of rank-metric codes, which by the above equivalence
yields constructions of bilinear lossless rank condensers. In this section, we will assume that m> n, so that
we work with short and fat matrices. We begin with a basic limitation of rank-metric codes which is a direct
generalization of the Singleton bound for codes in the Hamming metric.
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Proposition B.7 (Gabidulin [Gab85], Delsarte [Del78], and Roth [Rot91]). Let F be a field and m> n> 1
and n > r > 0. Let C ⊆ Fn×m be a rank-metric code with distance > r + 1. If C is a linear code then
dimC 6 m(n− r). If F is finite (and C possibly non-linear) then log|F| |C|6 m(n− r).

We now give a well-known construction of rank-metric codes, now called Gabidulin codes, which are a
q-linearized version of Reed-Solomon codes. Correspondingly, these codes meet the above analogue of the
Singleton bound.

Proposition B.8 (Gabidulin [Gab85], Delsarte [Del78], and Roth [Rot91]). Let Fq be a finite field and
m > n > 1 and n > r > 0. Given a presentation of Fqm as a extension field Fq, there is an explicit linear
rank-metric code C ⊆ Fn×m with distance r+1 with dimC = m(n− r).

Proof: n = m: First, we call a polynomial f (x)∈Fqm [x] to be q-linearized if it can written as f (x)=∑
k
i=0 βixqi

.
Now note that the evaluation map f : Fqm → Fqm is Fq-linear by the Frobenius endomorphism, thus we can
consider f as a linear map M f : Fm

q → Fm
q . Further, we can treat M f as a matrix M f ∈ Fm×m

q by choosing
some Fq-basis α1, . . . ,αm for Fqm so that ∑i γiαi→ ∑i γi f (αi) for γi ∈ Fq.

Now note that the roots of a q-linearized polynomial, by the above linearity, form a Fq-linear space within
Fqm . In particular, if f is q-linearized and has deg f 6 qk then it has 6 qk roots, so the map M f has a kernel
of Fq-dimension 6 k, so that rankM f > m− k.

Finally, define Ck := {M f | f ∈ Fqm [x], f = ∑
k
i=0 βixqi} ⊆ Fm×m

q for k < m. Noting that the degree 6 qk

q-linearized polynomials form a Fq-vector-space, it follows that Ck is a linear space of dimension 6 (k+1)m.
Further, Ck is a linear space of dimension > (k+1)m as the map from polynomials to matrices is injective.
That is, a degree 6 qk q-linearized polynomial that yields a zero matrix must be zero as the zero matrix
has a kernel of size qn but a non-zero such polynomial has at most qk roots. Thus, Ck is a rank metric code
of distance m− k and dimension (k+1)m. Taking k = m− (r+1)< m yields the claim (for r = m we get
k =−1 so that C−1 is just the zero polynomial).

n < m: Consider the above code Cm−(r+1) ⊆ Fm×m with distance r+ 1. Now consider the subcode C′
of the above code where we insist that the last m− n rows are all zero. It follows that C′ is still a linear
rank-metric code with distance r + 1, and we can now embed it into Fn×m. The dimension is at least
dimC′ > dimCm−(r+1)−m(m−n) = m(m− r)−m(m−n) = m(n− r). By the above Singleton-type bound
(Proposition B.7) it follows that this lower bound is met with equality.

explicitness: This is clear from construction as the presentation of Fqm yields a Fq-basis for Fqm and a
way to compute in Fqm .

We remark that these codes are also efficiently decodable, as shown by Gabidulin [Gab85], Del-
sarte [Del78], and Roth [Rot91].

While the above codes are thus optimal, they are only defined for finite fields, and in particular have no
analogue over the complex numbers. In fact, there is provably no analogue as in algebraically closed fields
there is the following upper bound on the dimension of rank metric codes that is lower than the Singleton-type
bound.

Proposition B.9 (Roth [Rot91]). Let F be an algebraically closed field and n> 1 and n> r> 0. Let C ⊆ Fn×n

be a rank-metric code with distance > r+1. If C is a linear code then dimC 6 (n− r)2.

Thus, while Gabidulin codes are no longer applicable in this regime, a different construction was given
by Roth [Rot91] that works over any large field and meets this bound.

Proposition B.10 (Roth [Rot91]). Let F be a field and m> n> 1, n> r > 0 and |F|> n. Then there is an
explicit linear rank-metric codeR⊆ Fn×m with distance r+1 and dimR= (n− r)(m− r).
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Proof: For a matrix M ∈ FJnK×JmK define the k-diagonal M(k) of M to be those entries (Mi, j)i+ j=k where we do
the addition in the integers, recalling that this notation means we index M from 0. Thus, for 06 k < n there are
k+1 entries in the k-diagonal of M, for n6 k < m the diagonal M(k) has n entries, and for m6 k < n+m−1
the diagonal M(k) has (n+m−1)− k entries.

Now recall that as |F| > n there is an explicit5 linear code C` := [`,k,r+ 1]F with k = `− (r+ 1)+ 1
for any r 6 `6 n. For 16 `6 r define C` be the single codeword C` = {0} so that C` has distance > r+1
(trivially).

Now takeR⊆ Fn×m to be

R := {M ∈ Fn×m | ∀06 k < n+m−1,M(k) ∈ C|M(k)|} .

Thus, it follows that for any matrix M ∈ R that all non-zero diagonals M(k) have at least r+ 1 non-zero
entries.

Note that dimC` = max{0, `− r} for all 1 6 ` 6 n. Thus, let us now count the dimension of R as
measured from the full-dimension.

nm−dimR
= ∑

06k<n+m−1
|M(k)|−dimC|M(k)|

= ∑
06k<n+m−1

|M(k)|−max{0, |M(k)|− r}

= ∑
06k<n+m−1

min{|M(k)|,r}

= ∑
06k<r

min{|M(k)|,r}+ ∑
r6k<(n+m−1)−r

min{|M(k)|,r}+ ∑
(n+m−1)−r6k<n+m−1

min{|M(k)|,r}

= ∑
06k<r

(k+1)+ ∑
r6k<(n+m−1)−r

r+ ∑
(n+m−1)−r6k<n+m−1

(n+m−1)− k

=

(
r+1

2

)
+ r(n+m−1−2r)+

(
r+1

2

)
= r(n+m− r) .

Thus, dimR= nm− r(n+m− r) = (n− r)(m− r) as desired.

Now consider a matrix M with rank 6 r. Consider the first k where the diagonal M(k) is non-zero. Note
that the rows with non-zero entries in this diagonal M(k) must be linearly independent as they form a triangular
system. Thus, M(k) is r-sparse, from which it follows that M /∈R. ThusR is a distance > r+1 rank-metric
code. ThatR is explicit is clear from construction.

While Roth [Rot91] did not provide an algorithm to decode the above codes, such an algorithm was
provided Forbes and Shpilka [FS12]. Perhaps more relevant for this paper is that Forbes and Shpilka [FS12]
realized that when the maximum distance separable (MDS) codes C` used in the above proof are instantiated
as dual Reed-Solomon codes, one can show that the above codes actually correspond to evaluation-based
codes of bivariate polynomials.

5That is, taking d = r+1, if α1, . . . ,α` ∈ F are distinct then H ∈ FJdK×` with Hi, j := α i
j is a Vandermonde matrix with every

k× k minor of full-rank. Thus, kerH ⊆ F` has no vectors of sparsity 6 d−1 so that row-span(H)⊥ defines the desired code.
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Proposition B.11 (Forbes and Shpilka [FS12]). Let F be a field and m> n> 1 and n> r > 0. Let ω ∈ F be
an element with multiplicative order > n. Identifying matrices Fn×m with low-degree bivariate polynomials
F[x,y]<n,<m, define

C := { f (x,y) | f ∈ F[x,y]<n,<m,∀i ∈ JrK, f (x,ω ix) = 0} .

Then C is an explicit linear rank-metric code with distance r+1 and dimension (n− r)(m− r).

While one can prove the above by showing that they are an instantiation of Roth’s [Rot91] code, Forbes
and Shpilka [FS12] also gave a proof that we presented as the construction of a lossless two-source condenser
in Corollary 9.7 (and actually that construction can be further pruned to match the above parameters).

C Existential Arguments

In this section, we give arguments via the probabilistic method to show that the relevant pseudorandom
objects exist. These arguments are completely standard, but we include them to demonstrate the quantitative
gaps between our explicit constructions and the existential constructions.

C.1 Probabilistic Tools

We begin by establishing some lemmas that detail probabilistic estimates for when a matrix is low-rank.
Some lemmas are standard (for which proofs can be found for example in the thesis of Forbes [For14]) and
some of which we lack a good reference and thus include for completeness. The first lemma shows how
random linear maps affect full rank matrices.

Lemma C.1. Let F be a finite field and M ∈ Fn×r be of rank r. Let E be a random variable uniformly
distributed over matrices in Fm×n. Then E ·M is uniformly distributed over Fm×r.

We now give an simple estimate for the number of low-dimensional subspaces (which is notably smaller
than the number of low-rank matrices).

Lemma C.2. Let Fq be a finite field and for n > r, the number of dimension r subspaces of Fn
q is 6

min{qrn,q(n−r)n}. Further, this inequality is strict for r ∈ (0,n).

The above estimate is good enough for many purposes, but we will need a more refined version which we
now develop. We first give an estimate for the probability that a random square matrix is full rank.

Lemma C.3 (see for example Forbes [For14, Lemma D.2.4]). Let Fq be a finite field and n > r > 1. The

probability a random matrix in Fr×r
q has rank r is >

(
1− 1

q

) q
q−1

.

We now refine this to more amenable form using that 1+ x6 ex.

Corollary C.4. Let Fq be a finite field and n> r > 1. The probability a random matrix in Fr×r
q has rank r is

> e
− q

(q−1)2 .

Turning this probabilistic estimate into a counting result gives the following.

Corollary C.5. Let Fq be a finite field and r> 1. The number of matrices Fr×r
q with rank r is > e

− q
(q−1)2 qr2

.

We now use this matrix counting result to count subspaces.

Lemma C.6. Let Fq be a finite field and n > r > 1. The number of r-dimensional subspaces of Fn
q is

< e
q

(q−1)2 ·qr(n−r).
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Proof: Consider the map from rank r matrices in Fn×r
q to r-dimensional subspaces of Fn

q defined by M 7→
col-span(M). This map is well-defined and surjective. Consider then the pre-image of a rank r subspace
V ⊆ Fn

q. Each of these matrices is related by an invertible change of basis given by an invertible r× r matrix.

Thus, the pre-images of this map are of size > e
− q

(q−1)2 qr2
by Corollary C.5. The claim follows by applying

double-counting using that there are qrn matrices in Fn×r
q .

We remark that the number of subspaces is always at least qr(n−r), so the above bound is asymptotically
correct for large q. We now bound the probability a random matrix is low-rank.

Lemma C.7. Let Fq be a finite field and n,m > r > 1. Let M be a random variable uniformly distributed
over matrices in Fn×m

q . Then,

Pr[rankM6 r]< min{q−(nm−r(n+m)),q−(n−m)(m−r),e
q

(q−1)2 q−(n−r)(m−r)} .

Proof: A matrix M is rank 6 r iff there exists some V ⊆ Fm
q with dimV = r such that col-spanM ⊆ V .

Equivalently, there exists some V⊥ ⊆ Fm
q with dimV⊥ = m− r such that (col-spanM)⊥ ⊇ V⊥. Taking

A ∈ Fm×(m−r) to be some basis for V⊥, so that rankA = m− r, this is equivalent to saying that MA = 0. Thus,
we have that

Pr[rankM6 r] = Pr[∃V | col-spanA =V⊥,MA = 0]

6∑
V

Pr[MA = 0]

By Lemma C.1 the random variable MA is uniformly distributed over Fn×(m−r)
q ,

= ∑
V

q−n(m−r)

Counting such subspaces V by Lemma C.2, using that 0 < r < m,

< qm·min{r,m−r}q−n(m−r)

6min{q−(nm−r(n+m)),q−(n−m)(m−r)} .

Alternatively, if we count subspaces with the more refined estimate of Lemma C.6, we get that

Pr[rankM6 r]< e
q

(q−1)2 qr(m−r) ·q−n(m−r)

= e
q

(q−1)2 q−(m−r)(n−r) .

Finally, as the quantity will come up more than once, we give the following approximation. It follows
since for q> 3 we have that lnq> 1 and for q = 4 that 2q

(q−1)2 = 8/9 < 1.

Lemma C.8. For q> 4,
2q

(q−1)2 lnq
6 1 .
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C.2 Dimension Expanders

We now turn to non-constructive existence of good dimension expanders. We first study when random
matrices expand subspaces of a given dimension r to a larger dimension t (dimension expanders must expand
all subspaces of dimension at most r).

Proposition C.9. Let Fq be a finite field. Let n> t > r > 1. Let A1, . . . ,Ad be random variables uniformly
distributed over matrices in Fn×n

q . Then with probability > 1− 1/qr, for any subspace V ⊆ Fn
q of dimension r

we have that
dim ∑

i∈[d]
Ai(V )> t ,

assuming that

d >
t−1

r
+

n− r+1
n− t +1

+
2q

(q−1)2 lnq
.

In particular, if q> 4 then it suffices for

d >
t−1

r
+

n− r+1
n− t +1

+1 .

Proof: Fix some subspace V ⊆ Fn
q of dimension r, and let M ∈ Fn×r

q be a rank r matrix with col-spanM =V .
Then we see that dim∑i Ai(V )> t iff the Fn×rd

q block matrix

N(V ) :=
[
A1M| · · · |AdM

]
has rank > t. As M has full rank and the Ai are uniformly random, it follows from Lemma C.1 that N(V ) is
uniformly random matrix over Fn×rd . Thus, by the refined version of Lemma C.7,

Pr[rankN(V )< t] = Pr[rankN(V )6 t−1]

< e
q

(q−1)2 q−(n−t+1)(rd−t+1)

Thus, applying a union bound,

Pr[∃V | rankN(V )< t]6∑
V

Pr[rankN(V )6 t−1]

< ∑
V

e
q

(q−1)2 q−(n−t+1)(rd−t+1)

counting subspaces by Lemma C.6,

6 e
q

(q−1)2 qr(n−r) · e
q

(q−1)2 q−(n−t+1)(rd−t+1)

This quantity is 6 q−r iff

(n− t +1)(rd− t +1)> r(n− r+1)+
2q

(q−1)2 lnq
.

Dividing by r(n− t +1) on both sides, this is equivalent to

d >
t−1

r
+

n− r+1
n− t +1

+
2q

r(n− t +1)(q−1)2 lnq
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using that r > 1 and n− t +1> 1, it thus suffices for

d >
t−1

r
+

n− r+1
n− t +1

+
2q

(q−1)2 lnq
,

as desired. Appealing to Lemma C.8 yields the claim for q> 4.

We now apply a union bound to the above to existentially obtain dimension expanders.

Proposition C.10. Let Fq be a finite field, n > 1, ε > 0 and α ∈ R with 1 6 α < 1/ε. Then there exist a
collection matrices A= {A1, . . . ,Ad} ⊆ Fn×n which is a (ε,α)-dimension expander of degree d whenever

d > α +
1

1−αε
+

2q
(q−1)2 lnq

.

In particular, if q> 4 then it suffices for

d > α +
1

1−αε
+1 .

Proof: For A to be (ε,α) expander means that for subspaces V ⊆ Fn of dimension r 6 εn we need that
dim∑i Ai(V )> α dimV . That is, dim∑i Ai(V )> dαre. For any fixed r 6 εn, Proposition C.9 shows that a
random collection A will have this property for all such V with probability > 1− 1/qr as long as

d >
dαre−1

r
+

n− (r−1)
n− (dαre−1)

+
2q

(q−1)2 lnq

As dαre−16 αr it follows that it is sufficient for

d > α +
n

n−αr
+

2q
(q−1)2 lnq

and thus sufficient for

d > α +
1

1−αε
+

2q
(q−1)2 lnq

,

where this bound is independent of r.

Now, taking the union bound over all 16 r 6 εn we see that the failure probability is at < ∑
∞
r=1 1/qr < 1,

so it follows that such a collection A exists that expands by a factor of α each subspace of dimension of at
most 6 εn. For q> 4 we can appeal to the latter part of Proposition C.9.

C.3 Lossy Rank Condensers

We now give an argument that good lossy rank condensers exist.

Proposition C.11. Let Fq be a finite field. Let n> r > 1, ε > 0 and t > (1− ε)r. Let E1, . . . ,Ek be random
variables uniformly distributed over matrices in Ft×n

q . Then with probability > 1− 1/qr, E := {E1, . . . ,Ek} is
a (r,ε)-lossy rank condenser whenever

k >
rn+ q

(q−1)2 lnq

(t− (1− ε)r)(bεrc+1)− q
(q−1)2 lnq

,
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whenever the denominator is positive. In particular, if q> 4 then it suffices for

k >
rn+1

(t− (1− ε)r)(bεrc+1)−1
,

whenever the denominator is positive.

Proof: We bound the probability that E is not such a condenser. Fix some matrix M ∈ Fn×r
q of rank r. We

then bound the probability

Pr
Ei
[∀i ∈ [k], rankEiM < (1− ε) rankM] = Pr

Ei
[∀i ∈ [k], rankEiM 6 r−bεrc−1]

using independence of the Ei,

=

(
Pr
E1
[rankE1M 6 r−bεrc−1]

)k

as E1M is uniformly distributed over Ft×r
q (by Lemma C.1), and invoking the finer form of Lemma C.7,

<
(

e
q

(q−1)2 q−(t−(r−bεrc−1))(r−(r−bεrc−1))
)k

.

Union bounding over all such M (and using Lemma C.6 to count such M),

Pr[E not a (r,ε)-condenser] = Pr[∃M | ∀i, rankEiM < (1− ε) rankM]

< e
q

(q−1)2 qr(n−r) ·
(

e
q

(q−1)2 q−(t−(r−bεrc−1))(r−(r−bεrc−1))
)k

.

This quantity is at most q−r iff

k >
r(n− r+1)+ q

(q−1)2 lnq

(t− (r−bεrc−1))(bεrc+1)− q
(q−1)2 lnq

so that it is sufficient (as r > 1, and bεrc+1> εr) that

k >
rn+ q

(q−1)2 lnq

(t− (1− ε)r)(bεrc+1)− q
(q−1)2 lnq

,

whenever this denominator is positive. Appealing to Lemma C.8 yields the claim for q> 4.

We note that the finer form of Lemma C.7 was not strictly needed in the above to obtain non-trivial results,
but this finer form allows us to see that the explicit construction of Proposition 6.8 is slightly suboptimal as it
requires t > r (and this sub-optimality manifests in the constructions of dimension expanders as discussed
after Corollary 7.3).

We now observe that by the above we can find a collection E that is a (6 r,ε)-condenser. As any (r,0)-
lossy condenser is also a (s,0)-condenser for all s6 r (Lemma 6.5), this is only non-trivial for ε > 0. Note
that this is indeed non-trivial, as there are (3n, 2/2)-lossy condensers on F4n that are not (s, 2/3)-condensers
for any s6 n (see Lemma 6.6).
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Proposition C.12. Let Fq be a finite field. Let n> r > 1, ε > 0 and t > (1− ε)r. Then there is a collection
E of matrices E ⊆ Ft×n

q that is a (6 r,ε)-lossy rank condenser whenever

k >
n+ q

(q−1)2 lnq

ε(t− (1− ε)r)− q
(q−1)2 lnq

,

whenever this denominator is positive. In particular, if q> 4 then it suffices for

k >
n+1

ε(t− (1− ε)r)−1
,

whenever this denominator is positive.

Proof: Take E := {E1, . . . ,Ek} where Ei are uniformly and independently distributed over Ft×n
q . By Proposi-

tion C.11 we see that E is a (s,ε)-condenser with probability > 1−qs as long as

k >
sn+ q

(q−1)2 lnq

(t− (1− ε)s)(bεsc+1)− q
(q−1)2 lnq

as bεsc+1> εs and s6 r, it is then sufficient for

k >
sn+ q

(q−1)2 lnq

(t− (1− ε)r)εs− q
(q−1)2 lnq

whenever this denominator is positive. Simplifying further, we see that

k >
n+ q

s(q−1)2 lnq

ε(t− (1− ε)r)− q
s(q−1)2 lnq

and thus as s> 1, that

k >
n+ q

(q−1)2 lnq

ε(t− (1− ε)r)− q
(q−1)2 lnq

,

is sufficient whenever this denominator is positive, where this last bound is independent of s. Thus, with this
value of k we see that E is a (s,ε)-condenser for all 16 s6 r except with probability <∑

r
s=1 q−s6∑

∞
s=1 q−s <

1. Thus, such a condenser E exists, where for q> 4 we appeal to the latter half of Proposition C.11.

C.4 Two-Source Rank Condensers

We now give an argument that good two-source rank condensers exist.

Proposition C.13. Let Fq be a finite field. Let n> r > 1, m> s> 1 and ε > 0. Let E be a random variable
uniformly distributed over matrices in Ft×nm

q . Then f : Fn×Fm→ Ft defined by f (v,w) = E · (v⊗w) is a
bilinear (r,s,ε)-two-source rank condenser with probability > 1− 1/qr, assuming that

t >
n
εs

+
m
εr

+(1− ε)rs+
2q

(q−1)2 lnq
.

for ε > 0. If ε = 0, then f is such a (r,s,0)-condensers with probability > 1− 1
qr , assuming that

t > rn+ sm+ rs+
2q

(q−1)2 lnq
−1 .
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Proof: Note that f is indeed a bilinear function as seen from the equivalence of the two definitions
(Lemma 9.2). That f fails to be a (r,s,ε)-condenser means that there are full-rank matrices A ∈ Fn×r

q and
B ∈ Fm×s

q such that f (A,B) = E · (A⊗B) has rank f (A,B)< (1−ε)rs, that is rank f (A,B)6 rs− (bεrsc+1).
Thus, appealing to the above lemmas (and that A⊗B is rank rs),

Pr[ f is not a (r,s,ε)-condenser] = Pr[∃A,B | rank f (A,B)6 rs− (bεrsc+1)]

6∑
A,B

Pr[rank f (A,B)6 rs− (bεrsc+1)]

= ∑
A,B

Pr[rank(E · (A⊗B))6 rs− (bεrsc+1)]

appealing to Lemma C.1 to see that E · (A⊗B) is a random t× rs matrix, and then applying the third form of
Lemma C.7, as well as Lemma C.2,

< ∑
A,B

e
q

(q−1)2 q−(t−(rs−(bεrsc+1)))(rs−(rs−(bεrsc+1)))

< e
q

(q−1)2 qr(n−r) ·qsm · e
q

(q−1)2 q−(t−(rs−(bεrsc+1)))(bεrsc+1)

The above quantity is 6 q−r iff

t >
r(n− r+1)+ sm
bεrsc+1

+(rs−bεrsc+1)+
2q

(bεrsc+1)(q−1)2 lnq

using that r,s> 1, it suffices for

t >
rn+ sm
bεrsc+1

+(rs−bεrsc−1)+
2q

(q−1)2 lnq

which yields the result for ε = 0. For ε > 0, we use that εrs6 bεrsc+1, so see that it suffices for

t >
rn+ sm

εrs
+(1− ε)rs+

2q
(q−1)2 lnq

.

We now use the above to derive a lossy two-source condenser that works even when the first source is
small. Note that as before this is only interesting when ε > 0, as when ε = 0 condensers automatically work
for smaller ranks (Lemma 9.3).

Proposition C.14. Let Fq be a finite field. Let n > r > 1, m > s > 1 and ε > 0. Then there exists a
f : Fn×Fm→ Ft which is a bilinear (6 r,s,ε)-two-source rank condenser, assuming that

t >
n
εs

+
m
ε
+(1− ε)rs+

2q
(q−1)2 lnq

.

Proof: Let E be a random variable uniformly distributed over matrices in Ft×nm
q and define f by f (v,w) =

E · (v⊗w). For r′ with 16 r′ 6 r, Proposition C.13 yields that f is a bilinear (r′,s,ε)-two-source condenser
with probability > 1− 1/qr′ , assuming that

t >
n
εs

+
m
εr′

+(1− ε)r′s+
2q

(q−1)2 lnq
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in particular, as 16 r′ 6 r, if

t >
n
εs

+
m
ε
+(1− ε)rs+

2q
(q−1)2 lnq

,

where this last bound is independent of r′. The probability of failure, union bounding over all 16 r′ 6 r, is at
most ∑

∞

r′=1 q−r′ < 1. Thus the desired f exists.
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