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Abstract

The Minimum Circuit Size Problem (MCSP) igjiven the truth table of a Boolean function f and
a size parameter Kk, is the circuit complexity of f at mdat khis is the definitive problem of circuit
synthesis, and it has been studied since the 1950s. Unlikg m@blems of its kind, MCSP iaot
known to beNP-hard, yet an efficient algorithm for this problem also segery unlikely: for example,
MCSP e P would imply there are no pseudorandom functions.

Although mostNP-complete problems are complete under strong “local” rédnotions such
as poly-logarithmic time projections, we show that MCSRiisvably notNP-hard undetO(n%/?-¢)-
time projections, for everg > 0. We prove that thé&lP-hardness of MCSP under (logtime-uniform)
ACO reductions would imply extremely strong lower bound8> ¢ P, andE ¢ .0.-SIZE(2°M) for
somed > 0 (henceP = BPP also follows). We show that even tiNP-hardness of MCSP under gen-
eral polynomial-time reductions would separate compjesiiassesEXP # NP NP 0y, which implies
EXP #£ ZPP. These results help explain why it has been so difficult tae@tbat MCSP isNP-hard.

We also consider the nondeterministic generalization o8RCthe Nondeterministic Minimum Cir-
cuit Size Problem (NMCSP), where one wishes to computetmeleterministicircuit complexity of
a given function. We prove that th&P-hardness of NMCSP, even under arbitrary polynomial-time
reductions, would impleXP ¢ P /oy

1 Introduction

The Minimum Circuit Size Problem (MCSP) is the canonical logic synthesisl@na we are giver{T, k)
whereT is a string of 2 bits (for somen), kis a positive integer (encoded in binary or unary), and the goal is
to determine ifT is the truth table of a boolean function with circuit complexity at mogEor concreteness,
let's say our circuits are defined over AND, OR, NOT gates of fan-in agtdg MCSP is ilNP, because
any circuit of size at modt could be guessed nondeterministicallyOtklogk) < O(|T|) time, then verified

on all bits of the truth tabl& in poly(2",k) < poly(|T|) time?

MCSP is natural and basic, but unlike thousands of other computatiartaepns studied over the last 40
years, the complexity of MCSP has yet to be determined. The problem cetdl&{zomplete, it could be
NP-intermediate, or it could even be i (It is reported that Levin delayed publishing his initial results on
NP-completeness out of wanting to include a proof that MCSRRHscomplete All14]. More notes on the
history of this problem can be found iKCO0Q].)

Lower Bounds for MCSP? There is substantial evidence that MC&M. The Natural Proofs work
of Razborov and RudichR97 shows that if MCSR= P, then (essentially by definition) there isPa
natural property useful againB,,; therefore, efficient algorithms for MCSP imply that there are no
pseudorandom functions. Kabanets and @& (0] made this critical observation, noting that the hardness

1Recall that every Boolean functidi: {0,1}" — {0,1} has a circuit of size at mo&t< (14 0(1))2"/n [Lup59. Hence every
instance(T, k) with k > 2|T|/log|T| is a yes-instance of MCSP.
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of factoring Blum integers implies that MCSP is hard. Allendeal.[ABK "06] strengthened these results
considerably, showing that Discrete Log and many approximate lattice prslfil®em cryptography are
solvable inBPPMCSPand Integer Factoring is iBPPMCSP. (Furthermore, ABK *06] also prove that MCSP
¢ ACO.) Allender and Das4D14] recently showed that Graph Isomorphism iRiR"°SP, and in fact every
problem with statistical zero-knowledge interactive proofs is in prorBiB&-with a MCSP oracle.

NP-Hardness for MCSP?These reductions indicate strongly that MCSP is not solvable in randomized
polynomial time; perhaps it islP-complete? Evidence for thgP-completeness of MCSP has been less
conclusive. The variant of the problem where we are looking for a minirsiz® DNF (instead of an
arbitrary circuit) is known to b&lP-complete AHM T08]. Kabanets and CaK[C00] show that, if MCSP is
NP-complete under so-called “natural” poly-time reductions (where the cis@gt parametek output by
the reduction is a function of only the input length to the reduction) #¢R ¢ P .y, andE ¢ SIZE(2")
for somee > 0 unlesdNP ¢ SUBEXP. ThereforeNP-completeness under a restricted reduction type would
imply (expected) circuit lower bounds. Allendet al. [ABK"06] show that if PH C SIZE(2”°<1)) then
MCSP is not hard foff C° underACO reductions. The generalization MCSfr circuits with A-oracle
gates has also been studied; it is known for example that MM &'SB complete foPSPACE underZPP
reductions ABK *06], and recently Allender and Holde\H14] proved that MCSPBF is not PSPACE-
complete under logspace reductions. They also showed, among similis,rdst if there is a séh € PH
that such that MCSPis hard forP underACO reductions, the® = NP.

NP-completeness has been defined for many different reducibility notiamigngmial time, logarithmic
space ACO, even logarithmic time reductions. In this paper, we study the possibility of RKESngNP-
complete for these reducibilities. We prove several new results in this dingstionmarized as follows:

1. Under “local” polynomial-time reductions where any given output bitlsacomputed im°d) time,
MCSP isprovably notNP-complete, contrary to many other natukd?-complete problems. (In fact,
even PARITY cannot reduce to MCSP under such reductions: seediné.1)

2. Under slightly stronger reductions such as uniféw@®, theNP-completeness of MCSP would imply
NP ¢ P/p0|y2 andE ¢ i.0.-SIZE(2°") for somed > 0, thereforeP = BPP as well by JW97].

3. Under the strongest reducibility notions such as polynomial timeNfx&ompleteness of MCSP
would still imply major separations of complexity classes. For exantf{®, = ZPP would follow, a
major (embarrassingly) open problem.

Together, the above results tell a convincing story about why MCSP ées difficult to proveNP-
complete (if that is even true). Part 1 shows that, unlike many textbook tiedsdor NP-hardness, no
simple “gadget-based” reduction can work for proving lfe-hardness of MCSP. Part 2 shows that going
only a little beyond the sophistication of textbook reductions would sepgrfaten NP and fully derandom-
ize BPP, which looks supremely difficult (if possible at all). Finally, part 3 showat #aven establishing the
most relaxed version of the statement “MCSMNB-complete” requires separating exponential time from
randomized polynomial time, a separation that appears quite far from aairihe@ present time.

MCSP is Not Hard Under “Local” Reductions. Many NP-complete problems are still complete under
polynomial-time reductions with severe-looking restrictions, such as redsatibich only nee®(log®n)
time to output an arbitrary bit of the output. LtetN — N; think of t(n) asn'~¢ for somee > 0.

Definition 1.1 An algorithm R: Z* x Z* — {0,1,x} is a TIME(t(n)) reduction fromL to L’ if there is a
constant ¢ 1 such that for all x¢ =~

e R(x,i) has random access to x and runs ifitQx|)) time for all i € {0, 1}2¢10% X1,
e There is ar/y < [x|°+ c such that Rx,i) € {0,1} for all i < ¢y, and Rx,i) =« for all i > ¢, and

2After learning of our preliminary results, Eric Allender and Dhiraj Holdé14] independently establishe®l £ NP as a
consequence, and Valentine Kabanets (personal communicatior) émualternative proof of the implication foiP Z P /oy



e XxeL < R(X,1)-R(x,2)---R(x,¢x) € L.

(Note thatx denotes an “out of bounds” character to mark the end of the output.) i§htte overall
reduction outputs strings of polynomial length, but any desired bit of tiygudean be printed i©(t(n))
time. TIME(n°®Y) reductions are powerful enough for almost HIP-completeness results, which have
“local” structure transforming small pieces of the input to small pieces of thpub> More precisely,
an O(n¥)-time reductionR from L to L’ is a projection if there is a polynomial-time algorithnA that,
giveni =1,...,n% in binary, A outputs either a fixed bit (O or 1) which is thth bit of R(x) for all x

of lengthn, or aj =1,...,n with b € {0,1} such that thath bit of R(x) (for all x of lengthn) equals
b-xj+(1—b)-(1—x;). Skyum and Valiant$V85 observed that almost alP-complete problems are also
complete under projections. So for example, we have:

Proposition 1 ([SV85 PY86]) SAT, Vertex Cover, Independent Set, Hamiltonian Path, and 3-Colarag
NP-complete undel IME(poly(logn)) reductions.

In contrast to the above, we prove that MCSRascomplete undeT IME (n%/3) reductions. Indeed there
is no local reduction from even the simple language PARITY to MCSP:

Theorem 1.1 For everyd < 1/2, there is noTIME(n®) reduction from PARITY to MCSP. As a corollary,
MCSP is notAC0[2]-hard underTIME(n®) reductions’

This establishes that MCSP cannot be “localNP-hard in the way that many canoniddP-complete
problems are known to be.

Hardness Under Stronger Reducibilities. For stronger reducibility notions than sub-polynomial time,
we do not yet have unconditional non-hardness results for MCSRo{@se, a proof that MCSP is niiP-
complete under poly-time reductions would immediately impls NP.) Nevertheless, we can still prove
interesting complexity consequences assumind\tfdardness of MCSP under these sorts of reductions.

Theorem 1.2 If MCSP isNP-hard under polynomial-time reductions, th&XP # NP NP ,qy. Conse-
quently,EXP #£ ZPP.

Corollary 1.1 If MCSP isNP-hard under logspace reductions, theBPACE # ZPP.

Theorem 1.3 If MCSP isNP-hard under logtime-uniforrACO reductions, theNP ¢ P, and E ¢
.0.-SIZE(2°M) for somed > 0. As a consequenck,= BPP also follows.

Thatis, thedifficulty of computing circuit complexity would impliower boundseven in the most general
setting (there ar@o restrictions on the polynomial-time reductions here, in contrast with Kabanets a
Cai [KCOQ)). We conjecture that the consequence of Thectebean be strengthened EXP ¢ P/, and
that MCSP is (unconditionally) ndP-hard under uniforrACO reductions.

>>-Hardness for Nondeterministic MCSP Implies Circuit Lower Bounds. Intuitively, the difficulty of
solving MCSP via uniform algorithms should be related to circuit lower boagdsnst functions defined
by uniform algorithms. That is, our intuition is that “MCSPN&-complete” implies circuit lower bounds.

3We say “almost alNP-completeness results” because one potential counterexample is tha tggliection from Subset Sum
to Partition: two numbers in the output of this reduction require takingstine of all number@ the input Subset Sum instance.
Hence the straightforward reduction does not seem to be computahlm@@w -size ACO.

4Dhiraj Holden and Chris Umans (personal communication) provegitgently that there is iBIME (poly(logn)) reduction
from SAT to MCSP unlesBIEXP C 2,P.



We have not yet shown a result like this (but come close wWKIP £ ZPP in Theoreml.2). However, we
can show thak,P-completeness for theondeterministiversion of MCSP would impleXP ¢ P gy

In the Nondeterministic Minimum Circuit Size Problem (NMCSP), we are gi&k) as in MCSP, but
now we want to know ifT denotes a boolean function wittondeterministicircuit complexity at mosk.
It is easy to see that NMCSP is EpP: nondeterministically guess a circ@with a “main” input and
“auxiliary” input, nondeterministically evaluaté on all 2" inputsx for which T (x) = 1, then universally
verify on all 2" inputsy satisfyingT (y) = 0 that no auxiliary input makes output 1 ony.

We can show that if NMCSP is hard even for Merlin-Arthur games, themii¢ilmver bounds follow.
Theorem 1.4 If NMCSP isMA-hard under polynomial-time reductions, thEKP ¢ P /5,y

Vinodchandran Yin05] studied NMCSP forstrong nondeterministic circuits, showing that a “natural”
reduction from SAT or Graph Isomorphism to this problem would haverakirgeresting implications.

1.1 Intuition

The MCSP problem is a special kind of “meta-algorithmic” problem, where thetidescribes a function
(and a complexity upper bound) and the goal is to essentially compute thi¢ conewlexity of the function.
That is, like many of the central problems in theory, MCSP is a problem aloooputation itself.

In this paper, we apply many tools from the literature to prove our resultshblkey new idea exploits
the meta-algorithmic nature of MCSP directly in the assumed reductions to MGSBKé/advantage of the
fact that instances of MCSP are written in a rather non-succinct wayertties truth table of the function
is provided. For the simplest example of the approach.,. le¢ a unary (tally) language, and suppose we
have aTIME(poly(logn)) reductionR from L to MCSP. The outputs d® are pairgT,k) whereT is a truth
table andk is the size parameter. Because each bR &f computable in polylog time, it follows that each
truth tableT output byR can in fact be described by a polylogarithmic size circuit specifying thetteoiy
the input instance df, and the mechanics of the polylog time reduction used to compute a givenRit of
Therefore the circuit complexities @il outputs of Rare at most polylogarithmic in (the input length);
furthermore, the size parametér the outputs oR on n-bit inputs are at most po{logn), otherwise the
MCSP instance is trivially a “yes” instance. That is, the efficient redudRatself yields a strong upper
bound on the witness sizes of the output$RofThis ability to boundk from above by a small value based
on the existence of an efficient reduction to MCSP is quite powerful, anid ksamany consequences.

Several of our theorems have the form that, if computing circuit complexipihard (or nondetermin-
istic circuit complexity is>,P-hard), then circuit lower bounds follow. This is intriguing to us, as one als
expects thaefficient algorithmdor computing circuit complexity also lead to lower bounds! (For exam-
ple, [KCOO, IKW02, Wil13] show that polynomial-time algorithms for MCSP in various forms would imply
circuit lower bounds againgXP and/orNEXP.) If a circuit lower bound can be proved to follow from
assuming MCSP i8lP-intermediate (or NMCSP i&,P-intermediate), perhaps we can prove circuit lower
bounds unconditionally without necessarily resolving the complexity of MCSP

2 Preliminaries

For simplicity, all languages are ovéD,1}. We assume knowledge of the basics of complexity the-
ory [AB09]. Here are a few (perhaps) non-standard notions we use. Forcados: N — N, poly(s(n))
is shorthand forO(s(n)®) for some constant, and O(s(n)) is shorthand fors(n) - poly(logn). Define
SIZE(s(n)) to be the class of languages computable by a circuit family of@{z&)). DefineZ, TIME]t(n)]
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to be the class of languages recognizable By enachine in timeD(t(n)); more precisely, the languages
such that there exists a linear time macHhihsuch that for all strings,

xel < (Jye {0,121}y (vze {0,1}'M))[M(x,y,2) accepts
In some of our results, we apply the well-known PARITY lower bound astdd:

Theorem 2.1 (Hastad [H&s8q) For every k> 2, PARITY cannot be computed by circuits with AND, OR,
and NOT gates of depth k and sg%&™ “ ")

Machine model. The machine model used in our results may be any model with random access to th
input via addressing, such as a random-access Turing machine. Theangdonent we want is that the
“address” of the bit/symbol/word being read at any step is stored as ahleaghd writable binary integer.

A remark on sub-polynomial reductions. In Definition 1.1 we defined sub-polynomial time reductions
to output out-of-bounds characters which denote the end of an outg. sWe could also have defined
our reductions to output a string of lengtff'2%" on an input of lengtm, for some fixed constart> 1.
This makes it easy for the reduction to know the “end” of the output. We tihio@mpute the length of
the output inO(log¥) time via Definition1.1, by performing a doubling search on the indi¢és find one
* (trying the indices 12,4, 8, etc.), then performing a binary search for the fksThe results in this paper
hold for either reduction model (but the encoding of MCSP may have toimarivial ways, depending on
the reduction notion used).

Encoding MCSP.Lety,...,yx € {0,1}* be the list ofk-bit strings in lex order. Giverf : {0,1}" —
{0,1}, the truth table off is defined to bét(f) := f(y1)f(y2)--- f(yn).

The truth table of a circuit is the truth table of the function it computes.TLet{0,1}*. Thefunction
encoded by Tdenoted ady, is the function satisfyingt(fr) = T0?-ITl, wherek is the minimum integer
satisfying ¥ > T. Thecircuit complexity of T denoted a€C(T), is simply the minimum number of gates
of any circuit computingr.

There are several possible encodings of MCSP we could use. The wiainyg wish to stress is that
it's possible to encode the circuit size paramétar essentially unary or in binary, and our results remain
the same. (This is important, because some of our proofs superficiallytsemty on a short encoding
of k) We illustrate our point with two encodings, both of which are suitable for ¢fgeiction model of
Definition 1.1 First, we may define MCSP to be the set of strifigavhere|T| is the largest power of two
satisfying|T| < |Tx| andCC(fr) < |x|; we call this aunary encodingbecause is effectively encoded in
unary. (Note we cannot detect if a string has the fokinlogtime, so we shall let ark-bit stringx denote
the parametek. Further note that, if the size parameker |T|/2, then the instance would be trivially a
yes-instance. Hence this encoding captures the “interesting” instahdes problem.) Second, we may
define MCSP to be the set of binary stringssuch tha{T]| is the largest power of two such that| < |Tk|,

k is written in binary (with most significant bit 1) af@C( ft) < k. Call this thebinary encoding

Proposition 2 There areTIME(poly(logn)) reductions between the unary encoding of MCSP and the bi-
nary encoding of MCSP.

The proof is a simple exercise, in Appendix More points on encoding MCSP for these reductions can
be found there as well.

Another variant of MCSP has the size parameter fixed to a large value;drggon has been studied
extensively in the context of KT-complexitAl01, ABK 06]. Define MCSPto be the version with circuit
size parameter set @ |2, that is, MCSP := {T | CC(T) < |T|*/2}. To the best of our knowledge, all
theorems in this paper hold for MCS#s well; indeed most of the proofs only become simpler for this case.
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A simple lemma on the circuit complexity of substrings.We also use the fact that for any strimgthe
circuit complexity of an arbitrary substring ®fcan be bounded via the circuit complexity f

Lemma 2.1 (Will3]) There is a universal & 1 such that for any binary string T and any substring S of
T,CC(fs) <CC(fr)+clog|T|.

Proof. Letc be sufficiently large in the following. Lék be the minimum integer satisfyind 2 |T|, so
the Boolean functiorft representind has truth tablgr 02T/, Suppose is a sizes circuit for fr. LetS
be a substring of =t;---tx € {0, 1}2k, and letA B e {1,...,2} be such thaB=ta---tg. Let/ < kbe a
minimum integer which satisfies 2 B— A. We wish to construct a small circtiit with ¢ inputs and truth
table 02 ~B-A) Let X1,...,Xy be thel-bit strings in lex order. Our circuiD on inputx; first computes
i+A if i+A<B—AthenD outputsC(x;,a), otherwiseD outputs 0. Note there are circuits df n size
for addition of twon-bit numbers (this is folklore). Therefore in size at mdstk we can, given inpux; of
length?, outputi + A. Determining ifi + A < B— A can be done wittic’ - ¢)-size circuits. Therefor® can
either be implemented as a circuit of size at mostt/ (k+ ¢+ 1). To complete the proof, let>3c’. O

3 MCSP and Sub-Polynomial Time Reductions

In this section, we prove the following impossibility results iP-hardness of MCSP:

Reminder of Theorem1.1 For everyd < 1/2, there is noTIME(n®) reduction from PARITY to MCSP. As
a corollary, MCSP is noACO[2]-hard underTIME(n®) reductions.

The proof has the following outline. First we show that there are (fmdyr)-time reductions from PAR-
ITY to itself which can “insert polyn) zeroes” into a PARITY instance. Then, assuming thereTiB\E (n®)
reduction from PARITY to MCSP, we use the aforementioned zero-ingeatgorithm to turn the reduction
into a “natural reduction” (in the sense of Kabanets and &&iJ0]) from PARITY to MCSP, where the
circuit size parametek output by the reduction depends only on the input lengtiNext, we show how
to bound the value df from above byf)(t(n)), by exploiting naturalness. Then we use this boundk tm
construct &, algorithm for PARITY which existentially guesses @xit(n))-size circuit for the truth table
produced by the reduction, then universally verifies the circuit is coorall bits of the truth table. Finally,
we convert theZ, algorithm into a depth-three circuit family of2(") size, and appeal to &$tad’sACO
lower bound for PARITY for a contradiction.

We start with a simple poljyogn)-time reduction for padding a string with zeroes in a go)ysize set
of prescribed bit positions. L& ¢ Z’ for a positive integef. We saySis sortedif Si] < Sfi + 1] for all
i=1,....0—1

Proposition 3 Let p(n) be a polynomial. There is an algorithm A which, given x of length n, a sorfad tu
S= (i1,...,ipm) of indices from{1,....,n+p(n)}, and a bit index j=1,...,p(n)+n, Ax,S j) outputs
the jth bit of the string kobtained by inserting zeroes in the bit positionsJ, . . .,i,n) of x. Furthermore,
A(x,S, j) runs in Qlog?n) time on x of length n.

Proof. Givenx of lengthn, a sortedS= (iy,...,ip) € {1,...,n+p}P,and anindeX =1,...,n+ p, Afirst
checks ifj € Sin O(log?n) time by binary search, comparing pairs@flogn)-bit integers inO(logn) time.

If yes, thenA outputs 0. If no, lek=0,...,p— 1 be such thaj < ix,1; thenA outputsx;_,. (Note that
computingj — k is possible inO(logn) time.) It is easy to verify that the concatenation of all output# of
overj=1,...,|x|+ pis the stringx but with zeroes inserted in the bit positions.. . ,ip. O

Lett(n) = n'~¢ for somee > 0. The next step is to show thaflAME(t(n)) reduction from PARITY to
MCSP can be turned intoraatural reduction, in the following sense:
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Definition 3.1 (Kabanets-Cai KC00]) A reduction from a language L to MCSPriaturalif the size of all
output instances and the size parameters k depend only on the lengthrgubeo the reduction.

The main restriction in the above definition is that the size pararkegatput by the reduction does not
vary over different inputs of length

Claim 1 Ifthere is aTIME(t(n)) reduction from PARITY to MCSP, then there iSIME(t(n) log?n) natural
reduction from PARITY to MCSP. Furthermore, the value of k in this natadalction isO(t(n)).

Proof. By assumption, we can choosearge enough to satisfi(2n)log(2n) < n. We define a new
(natural) reductioi® from PARITY to MCSP:

R (x,i) begins by gathering a list of the bits of the input that affect the size parakefeahe
output, for a hypotheticalrbit input which has zeroes in the positions read=oyT his works
as follows. We simulate th&IME(t(n)) reductionR from L to MCSP on the output indices
corresponding to bits of the size paramé¢eas if Ris reading an input’ of length 2. When
Rattempts to read a bit of the input, record the ingesequested in a lis§, and continue the
simulation as if the bit at positior} is a 0. Since the MCSP instance is polynomial in size,
k written in binary is at mosO(logn) bits (otherwise we may simply output a trivial “yes”
instance), so the number of indices of the output that deskiibbat mosiO(logn) in the binary
encoding. It follows that the size paramekein the output depends on at maé2n)log(2n)
bits of the (hypothetical) ”2bit input. ThereforgS < t(2n)log(2n). SortS= (iy,...,ijg) in
O(t(n)log?n) time, and remove duplicate indices.

R then simulates th& IME(t(n)) reductionR(x,i) from PARITY to MCSP. However, when-
ever an input bitj of x is requested bR, if j < n+|S then run the algorithrd\(x, S j) from
Proposition3 to instead obtain th¢th bit of theO(n+ |S))-bit stringx’ which has zeroes in the
bit positions in the sorted tupl&. Otherwise, ifj > n+|S and j < 2n then output O, and if
j > 2n then outputx (out of bounds). Since the algorithm of Proposit®rnuns inO(log?n)
time, this step of the reduction tak€st(n)log?n) time.

That is, the reductioR first looks for all the bits in a 2-bit input that affect the output size parameter
in the reductiorR, assuming the bits read are all 0. TH&munsR on a simulated stringrbit stringx’ for
which all those bits are zero (and possibly more at the end, to enféfee2n). Since the parity ok’ equals
the parity ofx, the MCSP instance output I is a yes-instance if and onlyxfhas odd parity. However for
the reductiorR, the output parametéris now a function of only the input length; that R is natural.

Now let us argue for an upper bound knDefine a functionf (i) which computeg := 0", then runs and
outputsR'(z i). The truth table off, tt(f), is therefore an instance of MCSP. SiriRas natural, the value
of k appearing irit( f) is thesameas the value ok for all lengthn instances of PARITY.

However, the circuit complexity of is smalt on anyi, R(0",i) can be computed in tim@(t(n) log?n).
Therefore the circuit complexity dfis at most somewhich isO(t(n)). In particular, theTIME(t(n) log?n)
reduction can be efficiently converted to a circuit, with any bit of the inguefficiently computed in
O(logn) time at every request (the only thing to check is that the index requestsd’tieeceech). As the
instancef of MCSP ha<CC(f) <'s, by Lemma2.1the truth tableT in the instancét(f) hasCC(T) < csas
well for some constard.

Since @ has even parity, the truth table bfs not in MCSP. This implies that the valueloiin the instance
tt(f) must bdess than cs- O(t(n)). Therefore the value dffixed in the reduction from PARITY to MCSP
must be at mosD(t(n)log?n). O

Now, we show that efficient reductions from PARITY to MCSP yield effitE, algorithms for PARITY:
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Claim 2 If there is aTIME(t(n)) reduction from PARITY to MCSP, then there iEA IME(O(t(n))) algo-
rithm for PARITY.

Proof. Construct &, algorithm for PARITY as follows:

Given an inputx, existentially guess a circu with O(logn) inputs and size at most=
O(t(n)), wheresis taken from Claiml. Then universally verify over all possib@(logn)-bit
inputsi to C thatC(i) = R(x,i), whereR is from Claim1. If yes, thenaccept elsereject

Since we know the value of the size parameter in the instance outipby) is at moss (from Claim1),
there is a circuilC of size at moss with the above property if and only ¥ has odd parity. Since the
number of inputs t& is O(logn), the universal quantification in the above procedure is @flpgn) bits.
Verification also take€(t(n)) time, sinceC can be evaluated i®(t(n)) time on any input. Hence thg,
procedure has the claimed running time. O

Finally, we can complete the proof of Theordmi:

Proof of Theorem 1.1 Suppose that PARITY has BIME(n®) reduction from PARITY to MCSP, for
somed < 1/2. Then by Claim2, there is ax, algorithm for PARITY running inO(n’) time. Such an
algorithm can be converted into a depth -three OR-AND-OR circuit of #8)2 the top OR at the output
has incoming wires for all pOSS|bIé3@ existential guesses for tl® machine, the middle AND tries all
200°) universal guesses, and the remaining deterministic computati@(ruﬁ) bits is computable with a
CNF (AND of ORSs) of 3|ze on° ). Therefore, the assumed reduction implies that PARITY has depth-three
ACO circuits of size ™). For§ < 1/2, this is false by Hstad (Theorer@.1). O

Remark 1 We used only the following properties of PARITY in the above proof: (afanénsert zeroes
into a string efficiently without affecting its membership in PARITY, (b) PXRids trivial no-instances
(strings of all zeroes), and (c) PARITY lacks small depth-three it&iccMVe imagine that some of the ideas
in the above proof may be useful for other “non-hardness” results irfuhae.

4 NP-Hardness of MCSP Implies Lower Bounds

We now turn to stronger reducibility notions, showing that eMérhardness of MCSP under these reduc-
tions implies separation results that currently appear out of reach.

4.1 Consequences of NP-Hardness Under Polytime and LogspaReductions

Reminder of Theorem 1.2 If MCSP isNP-hard under polynomial-time reductions, th&xXP # NP N
P /poly- ConsequentlyEXP # ZPP.

Reminder of Corollary 1.1 If MCSP isNP-hard under logspace reductions, theBPACE # ZPP.

These theorems follow from establishing that the-hardness of MCSP and small circuits flBXKP
impliesNEXP = EXP. In fact, it suffices that MCSP is hard for only sparse languagédin(Recall that a
languagd. is sparseif there is ac such that for alh, LN {0,1}"] < n®+c.)

Theorem 4.1 If every sparse language iNP has a polynomial-time reduction to MCSP, thEKP C
P /poly = EXP = NEXP.



Proof. Suppose that MCSP is hard for spahsie languages under polynomial-time reductions, and that
EXP C P/poly- LetL € NTIME(Z”C) for somec > 1. Itis enough to show that € EXP.

Define the padded languagée:= {x012‘x‘C | xe L}. The languagé’ is then a sparse languageN®. By
assumption, there is a polynomial time reduction fionio MCSP. Composing the obvious reduction from
L to L’ with the reduction fronL’ to MCSP, we have a®?*-time reductionR from n-bit instances of. to
2¢"_pit instances of MCSP, for some constahtDefine the language

BITSg := {(x,i) | theith bit of R(x) is 1}.

BITSr s clearly inEXP. SinceEXP C Py, for somed > 1 there is a circuit family{C,} of size at most
nd + d computing BIT% on n-bit inputs.

Now, on a given instance of L, the circuitD(i) := Cyjyj4¢.jxc(X,1) hasc - [x/® inputs (ranging over all
possiblei = 1,...,2°"X) and size at most(|x|) := (2+¢')4|x/°? 4-d, such thatt(D) is the output oR(x).
Therefore, for every, the truth tables output biR(x) all have circuit complexity at mos- s(|x|) for some
constane, by Lemma2.1 This observation leads to the following exponential time algorithm_for

On inputx, run the reductiorR(x), obtaining an exponential sized instari@ek) of MCSP. If
k> e-s(|x|) thenaccept Otherwise, cycle through every circtitof size at mosk; if tt(E) =T
thenaccept If no suchE is found,reject

Producing the truth tabl€ takes exponential time, and checking &l%V'°95) circuits of sizeO(s(n))
on all polynomial sized inputs to the truth table also takes exponential time. Asulilte= EXP, which
completes the proof. O

The same argument can be used to prove collapses for other reducibHibiesxample, swapping time
for space in the proof of Theoreml, we obtain:

Corollary 4.1 If MCSP isNP-hard under logspace reductions, th&®$PACE C P,y = NEXP =
PSPACE.

Theoremd.1 shows that complexity class separations follow from establishing that MCSP-fsard in
the most general sense. We now prove Thedte2rthatNP-hardness of MCSP implieSXP # NP NP /g

Proof of Theorem1.2 By contradiction. Suppose MCSPN$-hard andEXP = NP NP /. ThenEXP C

P /poly impliesNEXP = EXP by Theorem4.1, butNEXP = EXP C NP, contradicting the nondeterministic

time hierarchy Z83]. O
Corollary1.limmediately follows from the same argument as Theoienapplying Corollary.1

We would like to strengthen Theorehn2to show that thélP-hardness of MCSP actually impliegcuit
lower bounds such d&XP ¢ P ). This seems like a more natural consequencédRiardness reduction
would presumably be able to print truth tables of high circuit complexity froAnstances of low complex-
ity. (Indeed this is the intuition behind Kabanets and Cai’s results concematgral” reductions KCO00Q].)

4.2 Consequences of NP-Hardness under ACO Reductions
Now we turn to showing consequences of assuming that MC8IP-ikard under uniforrACO reductions.
Here we obtain consequences so strong that we are skeptical the ésipaghrue.

Reminder of Theorem1.3 If MCSP isNP-hard under logtime-unifornACO reductions, theMP ¢ P /o)y
andE ¢ i.0.-SIZE(2%") for somed > 0. As a consequencB,= BPP also follows.
We will handle the two consequences in two separate theorems.
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Theorem 4.2 If MCSP isNP-hard under LOGTIME-uniforrACO reductions, then
NP C P /poly = NEXP C P /)y

Proof.  The proof is similar in spirit to that of Theoreshl Suppose that MCSP idP-hard under
LOGTIME-uniform ACO reductions, and thalP C P ,oy. ThenZcP C P, for everyk > 1.

Let L € NEXP; in particular, letL € NTIME(2™) for somec. As in Theorend.1, define the sparskP
language’ = {x01' | x € L, t = 2X°}. By assumption, there is a LOGTIME-uniforAC0 reductionR from
the sparse languadé to MCSP. This reduction can be naturally viewed a58 reductionS(-,-) from L
to exponential-sized instances of MCSP, for some cong&talmt particular,S(x, i) outputs thath bit of the
reductionR on inputx01!, andScan be implemented iB:P, and hence i /poly @s well.

That is, for all inputsx, the stringS(x, 1) - - - §(x, 2°(X)) is the truth table of a function with poljx|)-size
circuits. Therefore by Lemma.1, the truth table of the MCSP instance being outputxanust have a
poly(|x|)-size circuit. We can then decidein X ,P time: on an inpuk, existentially guess a circu@ of
poly(|x|) size, then for all inputg to C, verify thatS(x,y) = C(y). The latter equality can be checkedigP.
As aresult, we havBlEXP C 2, . ,P C P /poly- O

Theorem 4.3 If MCSP isNP-hard underP-uniform ACO reductions, therE ¢ i.0.-SIZE(2°") for some
o > 0. As a consequencB,= BPP also follows from the assumption (Impagliazzo and Wigder8a9F]).

Proof. Assume the opposite: that MCSPN®-hard undelP-uniform ACO reductions and for every > O,

E Ci.0.-SIZE(2t"). By Agrawalet al.[AAI T01] (Theorem 4.1), all languages hard féP underP-uniform
ACO reductions are also hard fiP underP-uniform NCO reductions. Therefore MCSP P-hard under
P-uniform NCO reductions. Since in aNCO circuit all outputs depend on a constant number of input bits,
the circuit size parametdrin the output of the reduction depends on o@iffogn) input bits. By Claiml,

the NCO reduction from PARITY to MCSP can be converted into a natural reducfidnerefore we may
assume that the size paramedten the output of the reduction is a function of only the length of the input
to the reduction.

Let R be a polynomial-time algorithm that on input firoduces &-uniform NCO circuit C, on n inputs
that reduces PARITY to MCSP. Fixsuch thaR runs in at mosh® + c time and every truth table produced
by the reduction is of length at mast+ c. Define an algorithnR' as follows:

On input(n,i,b), wheren is a binary integeri = 1,...,n°+c, andb € {0,1}, run R(1") to
produce the circui€,, then evaluat€,(0") to produce a truth tabl&,. If b= 0, output the"
bit of C,.. If b= 1, output tha'" bit of T,.

For an input(n,i,b), R runs in timeO(n°); whenm = |(n,i,b)|, this running time is 8™ < n®1)_ By
assumption, for everg > 0, R has circuits{Dp} of sizeO(2¢™M) < O(n?#) for infinitely many input lengths
m. This has two important consequences:

1. For everye > 0 there are infinitely many input lengths= O(logn) such that the size parametein
the natural reduction from PARITY to MCSP is at mest (or, the instance is trivial). To see this,
first observe that'is always a no-instance of PARITY, $0") always maps to a truth tablg, of
circuit complexity greater thak(n) (for somek(n)). SinceR/(n,i,1) prints thei'" bit of R(O"), and
the functionR'(n, -, 1) is computable with a®(n?¢)-size circuitDy, the circuit complexity ofly, is at
mostO(n?¢), by Lemma2.1 Therefore the output size parametaaf R(0") for these input lengths
is at mostO(n%).

2. On thesameinput lengthsm for which k is O(n%), the samecircuit D, of sizeO(n%) can compute
any bit of theNCO circuit C, that reduces PARITY to MCSP. This follows from simply setting: O
in the input ofDp,.
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The key point is that both conditions are simultaneously satisfied for infinitelyyrirgut lengthsm,
because both computations are made by the s&ifietine algorithmR. We use these facts to construct
an i.0.Z, TIME(O(n%)) algorithmA, as follows:

On input(x, D), wheren = |x| andD is anO(n?) size circuit withm = O(logn) inputs:

AssumeD computesR(n,i,b) on inputs such that = |(n,i,b)|. EvaluateD on n, O(logn)
different choices of, andb = 0, to construct the portion of thgCO circuit C, that computes
the size parametéds in the output of the reduction from PARITY to MCSP. Then, use this
O(logn)-size subcircuit to compute the valuelofor the input length.

Next, nondeterministically guess a circ@it of size at mosk; we wish to verify that for alli,
C/(i) outputs the'" bit of the truth tableT, produced by thélC0 reduction on inpuk. We can
verify this by noting that thé" bit of T, can also be computed @(nf) time, viaD. Namely,
universally choose aip and produce th@®(1)-size subcircuit that computes th& output bit of
the NCO circuit C, (by making a constant number of queriexavith b = 0). Then, simulate
the resultingd(1)-size subcircuit on the relevant input bitsxafo compute thé'" bit of Ty, and
check thaC'(i) equals this bit. If all checks pasa;cept elsereject

Assuming the circuiD actually compute®, A(x,D) computes PARITY correctly. For evegy> 0, there
are infinitely manym such that the circuit size parameteis at most 2™ < O(n%), and the circuiD
of size 2EM < O(n%) exists. Under these conditions, the ab@yealgorithmA runs inO(n%) time. As
a result, for everye > 0 we can find for infinitely many such that the algorithm has a corresponding
depth-3ACO0 circuit of 2°(™) size. Suppose we hardwire ti¢n%)-size circuitD that compute® into the
corresponding\CO circuit, on input lengths for which D exists. Then for alé > 0, PARITY can be solved
infinitely often with depth-3ACO circuits of 2(") size, contradicting Bistad (Theorerf.1). O

Proof of Theorem 1.3 Suppose MCSP i8IP-hard under logtime-uniforrACO reductions. The con-
sequencé ¢ SIZE(2°") was already established in Theordn3. The consequendsP ¢ P /poty follows
immediately from combining Theoreth2and Theorens.3. O

4.3 The Hardness of Nondeterministic Circuit Complexity

Finally, we consider the generalization of MCSP to the nondeterministic circaiemBecall that monde-
terministic circuit Cof sizestakes two inputs, a stringon n bits and a stringy on at moss bits. We sayC
computes a functioffi : {0,1}" — {0, 1} if for all x € {0,1}", f(x) =1 <= there is & of length at moss
such thaC(x,y) = 1.

Observe that the Cook-Levin theorem implies that every nondeterministigtérof sizes has an equiv-
alent nondeterministic depth-two circut of size s- poly(logs). Therefore we define nondeterministic
MCSP (NMCSP) to be the set of all paif$,k) whereT is the truth table of a function computed by a
depth-two nondeterministic circuit of size at mdst This problem is inX;P: given (T k), existentially
guess a nondeterministic circ@itof size at mosk, then for every such thafl (x) = 1, existentially guess a
y such tha€(x,y) = 1; for everyx such thafl (x) = 0, universally verify that for aly, C(x,y) = 0. However,
NMCSP is not known to b&,P-hard. (The proof of Theorerh 4 below will work for the depth-two version
and the unrestricted version all the same.)

Recall that it isknownthat MCSP for depth-two circuits iP-hard JAHM T08]. That is, the “determin-
istic counterpart” of MCSP is known to B¢P-hard.

Reminder of Theorem1.4 If NMCSP isMA-hard under polynomial-time reductions, thEXP Z P /.
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Proof. Suppose that NMCSP i8lA-hard under polynomial-time reductions, and suppose EXdt C
P /poly- We wish to establish a contradiction. The proofis similar in structure to otheretres of this section

(such as Theorer.1). LetL € MATIME(2™), and define’ = {x012"" | x € L} € MA. By assumption,
there is a reductioR from L’ to NMCSP that runs in polynomial time. Therefore for some constame
have a reductioi® from L that runs in 2" time, and outputs‘?‘c-sized instances of NMCSP with a size
parametes(x) on inputx. SinceR' runs in exponential time, and we assuBiXP is in P o, there is &
such that for allk, there is a nondeterministic circ@((x,i),y) of < n+k size that computes tti¢h bit

of R(x). Therefore we know that(x) < |x/X+k on such instances (otherwise we can triviatcep). We
claim thatL € EXP, by the following algorithm:

Givenx, run R (x) to computes(x). If s(x) > |x|K+ k thenaccept
For all circuitsC in increasing order of size up 80x),
Initialize a tableT of 29 bits to be all-zero.
For alli = 1,...,29" and all 2% possible nondeterministic strings check for eact if there is ay
such thaC((x,i),y) = 1; if so, sefT [i| = 1.
If T =R/(x) thenaccept
Reject(no nondeterministic circuit of size at magk) was found).

Becauses(x) < |x|¥+k, the above algorithm runs if"2°¥(1°3" time and decidek. ThereforelL € EXP.
But this implies thatMAEXP = EXP C P 0y, Which contradicts the circuit lower bound of Buhrman,
Fortnow, and ThieraufBFT9§|. O

5 Conclusion

We have demonstrated several formal reasons why it has been difiqutbve that MCSP i8lP-hard. In
some cases, provingP-hardness would imply longstanding complexity class separations; in otbes,da
is simply impossible to prov&P-hardness.

There are many open questions left to explore. Based on our studpnjexture that:

e If MCSP isNP-hard under polynomial-time reductions theXP ¢ P .. We showed that if MCSP
is hard for spars@&P languages thelXP # ZPP; surely a reduction from SAT to MCSP would
provide a stronger consequence.

e MCSP is (unconditionally) ndtiP-hard under logtime-uniforrACO reductions. Theorerh. 1already
implies that MCSP isn'NP-hard under polylogtime-uniforidCO reductions. Perhaps this next step
isn’t far away, since we already know that hardness uReaniform ACO reductions implies hardness
underP-uniform NCO reductions (by Agrawadt al. [AAl 701]).

It seems that we can prove that finding the minimum DNF for a given truth tabl@4sard, because of
29(7) size lower bounds against DNF&HIM*+08]. Since there are¥™) size lower bounds againao,
can it be proved that finding the minimuACO circuit for a given truth table iQuasiNP-hard? In general,
can circuit lower bounds imply hardness results for circuit minimization?
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A Appendix: Unary and Binary Encodings of MCSP

We will describe our reductions in the reduction model with “out of bouraatsdrs (Definitionl.1). In that
model, we may defina unary encoding of MCSFT, k) to beT xwhere|T| is the largest power of two such
that|T| < |Tx|, k= |x|. This encoding is sensible because we may assume WLO& th&T|/log|T|:
the size of a minimum circuit for a boolean function einputs is always less thad 2 /n. Similarly, we
definedMICSP(T, k) in the binary encodingo simply beT kwhere|T | is the largest power of two such that
IT| <|Tk.

Note that these encodings may be undesirable if one really wants to allowygsgiinstances in a reduc-
tion to MCSP where the size paramekeis too large for the instance to be interesting, or if one wants to
allow T to have length other than a power of two. For those cases, the followingyl®naoding works:
we can encode the instan€E k) as the stringd 00k’ such thak’ is k written “in binary” over the alphabet
{01,11}. There are alsdIME(poly(logn)) reductions to and from this encoding to the others above, mainly
becausd’ has lengtfO(logn).

Proposition 4 There areTIME(poly(logn)) reductions between the unary encoding of MCSP and the bi-
nary encoding of MCSP.

Proof. We can reduce from the binary encoding to the unary encoding as folewsn an inpuy, perform

a doubling search (probing positions 1, 2, 4, 2/, etc.) until ax character is returned. Letting 2 |y| be
the position of the last bit read, this tak@glog|y|) probes to the input. Then we may “parse” the input
into T as the first 2 bits, and integek’ as the remainder. To process the intedewe begin by assuming
k' =1, then we read in log/) bits past the position‘2doublingk’ for each bit read and adding 1 when the
bit read is 1, untik’ > |y| (in which case we don’t have to read further: the instance is trivially ges)je
read ax (in which case we have determined the integdgrFinally, if the bit positioni requested is at most
2!, then we output the identical bit from the inpOk. If not, we print 1 ifi < 2° +k+ 1, andx otherwise.
The overall output of this reduction &1¥ wherek < |T|. Since addition oD(logn) numbers can be done
in O(logn) time, the above takes pdlpgn) time.

To reduce from the unary encoding to the binary encoding, we pedataubling search on the inpyas
in the previous reduction, to find the largésiuch that 2< |y|. Then we let the first2bits beT, and set the
parametek = |y| — 2 — 1. (Finding|y| can be done via binary search@ilog|y|) calls to the reduction.)
From here, outputting thi¢h bit of eitherT or k in the binary encoding is easy, singg= O(log|y|).
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