
On the (Non) NP-Hardness of Computing Circuit Complexity

Cody D. Murray
Stanford University

cdmurray@stanford.edu

Ryan Williams
Stanford University
rrw@cs.stanford.edu

Abstract

The Minimum Circuit Size Problem (MCSP) is:given the truth table of a Boolean function f and
a size parameter k, is the circuit complexity of f at most k? This is the definitive problem of circuit
synthesis, and it has been studied since the 1950s. Unlike many problems of its kind, MCSP isnot
known to beNP-hard, yet an efficient algorithm for this problem also seemsvery unlikely: for example,
MCSP∈ P would imply there are no pseudorandom functions.

Although mostNP-complete problems are complete under strong “local” reduction notions such
as poly-logarithmic time projections, we show that MCSP isprovably notNP-hard underO(n1/2−ε)-
time projections, for everyε > 0. We prove that theNP-hardness of MCSP under (logtime-uniform)
AC0 reductions would imply extremely strong lower bounds:NP 6⊂ P/poly andE 6⊂ i.o.-SIZE(2δn) for
someδ > 0 (henceP = BPP also follows). We show that even theNP-hardness of MCSP under gen-
eral polynomial-time reductions would separate complexity classes:EXP 6= NP∩P/poly, which implies
EXP 6= ZPP. These results help explain why it has been so difficult to prove that MCSP isNP-hard.

We also consider the nondeterministic generalization of MCSP: the Nondeterministic Minimum Cir-
cuit Size Problem (NMCSP), where one wishes to compute thenondeterministiccircuit complexity of
a given function. We prove that theΣ2P-hardness of NMCSP, even under arbitrary polynomial-time
reductions, would implyEXP 6⊂ P/poly.

1 Introduction

The Minimum Circuit Size Problem (MCSP) is the canonical logic synthesis problem: we are given〈T,k〉
whereT is a string of 2n bits (for somen), k is a positive integer (encoded in binary or unary), and the goal is
to determine ifT is the truth table of a boolean function with circuit complexity at mostk. (For concreteness,
let’s say our circuits are defined over AND, OR, NOT gates of fan-in at most 2.) MCSP is inNP, because
any circuit of size at mostk could be guessed nondeterministically inO(k logk)≤ O(|T|) time, then verified
on all bits of the truth tableT in poly(2n,k)≤ poly(|T|) time.1

MCSP is natural and basic, but unlike thousands of other computational problems studied over the last 40
years, the complexity of MCSP has yet to be determined. The problem could beNP-complete, it could be
NP-intermediate, or it could even be inP. (It is reported that Levin delayed publishing his initial results on
NP-completeness out of wanting to include a proof that MCSP isNP-complete [All14]. More notes on the
history of this problem can be found in [KC00].)

Lower Bounds for MCSP? There is substantial evidence that MCSP/∈ P. The Natural Proofs work
of Razborov and Rudich [RR97] shows that if MCSP∈ P, then (essentially by definition) there is aP-
natural property useful againstP/poly; therefore, efficient algorithms for MCSP imply that there are no
pseudorandom functions. Kabanets and Cai [KC00] made this critical observation, noting that the hardness

1Recall that every Boolean functionf : {0,1}n →{0,1} has a circuit of size at mostk≤ (1+o(1))2n/n [Lup59]. Hence every
instance〈T,k〉 with k> 2|T|/ log|T| is a yes-instance of MCSP.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 164 (2014)

of factoring Blum integers implies that MCSP is hard. Allenderet al. [ABK+06] strengthened these results
considerably, showing that Discrete Log and many approximate lattice problems from cryptography are
solvable inBPPMCSPand Integer Factoring is inZPPMCSP. (Furthermore, [ABK+06] also prove that MCSP
/∈AC0.) Allender and Das [AD14] recently showed that Graph Isomorphism is inRPMCSP, and in fact every
problem with statistical zero-knowledge interactive proofs is in promise-BPP with a MCSP oracle.

NP-Hardness for MCSP?These reductions indicate strongly that MCSP is not solvable in randomized
polynomial time; perhaps it isNP-complete? Evidence for theNP-completeness of MCSP has been less
conclusive. The variant of the problem where we are looking for a minimumsize DNF (instead of an
arbitrary circuit) is known to beNP-complete [AHM+08]. Kabanets and Cai [KC00] show that, if MCSP is
NP-complete under so-called “natural” poly-time reductions (where the circuitsize parameterk output by
the reduction is a function of only the input length to the reduction) thenEXP 6⊂ P/poly, andE 6⊂ SIZE(2εn)
for someε > 0 unlessNP⊂ SUBEXP. ThereforeNP-completeness under a restricted reduction type would
imply (expected) circuit lower bounds. Allenderet al. [ABK+06] show that ifPH ⊂ SIZE(2no(1)

) then
MCSP is not hard forTC0 underAC0 reductions. The generalization MCSPA for circuits with A-oracle
gates has also been studied; it is known for example that MCSPQBF is complete forPSPACE underZPP
reductions [ABK+06], and recently Allender and Holden [AH14] proved that MCSPQBF is notPSPACE-
complete under logspace reductions. They also showed, among similar results, that if there is a setA∈ PH

that such that MCSPA is hard forP underAC0 reductions, thenP 6= NP.

NP-completeness has been defined for many different reducibility notions: polynomial time, logarithmic
space,AC0, even logarithmic time reductions. In this paper, we study the possibility of MCSP beingNP-
complete for these reducibilities. We prove several new results in this direction, summarized as follows:

1. Under “local” polynomial-time reductions where any given output bit canbe computed inno(1) time,
MCSP isprovably notNP-complete, contrary to many other naturalNP-complete problems. (In fact,
even PARITY cannot reduce to MCSP under such reductions: see Theorem1.1.)

2. Under slightly stronger reductions such as uniformAC0, theNP-completeness of MCSP would imply
NP 6⊂ P/poly

2 andE 6⊂ i.o.-SIZE(2δn) for someδ > 0, thereforeP= BPP as well by [IW97].
3. Under the strongest reducibility notions such as polynomial time, theNP-completeness of MCSP

would still imply major separations of complexity classes. For example,EXP 6= ZPP would follow, a
major (embarrassingly) open problem.

Together, the above results tell a convincing story about why MCSP has been difficult to proveNP-
complete (if that is even true). Part 1 shows that, unlike many textbook reductions forNP-hardness, no
simple “gadget-based” reduction can work for proving theNP-hardness of MCSP. Part 2 shows that going
only a little beyond the sophistication of textbook reductions would separateP fromNP and fully derandom-
izeBPP, which looks supremely difficult (if possible at all). Finally, part 3 shows that even establishing the
most relaxed version of the statement “MCSP isNP-complete” requires separating exponential time from
randomized polynomial time, a separation that appears quite far from a proof at the present time.

MCSP is Not Hard Under “Local” Reductions. ManyNP-complete problems are still complete under
polynomial-time reductions with severe-looking restrictions, such as reductions which only needO(logcn)
time to output an arbitrary bit of the output. Lett : N→ N; think of t(n) asn1−ε for someε > 0.

Definition 1.1 An algorithm R: Σ⋆×Σ⋆ → {0,1,⋆} is a TIME(t(n)) reduction fromL to L′ if there is a
constant c≥ 1 such that for all x∈ Σ⋆,

• R(x, i) has random access to x and runs in O(t(|x|)) time for all i∈ {0,1}⌈2clog2 |x|⌉.
• There is anℓx ≤ |x|c+c such that R(x, i) ∈ {0,1} for all i ≤ ℓx, and R(x, i) = ⋆ for all i > ℓx, and

2After learning of our preliminary results, Eric Allender and Dhiraj Holden[AH14] independently establishedP 6= NP as a
consequence, and Valentine Kabanets (personal communication) found an alternative proof of the implication forNP 6⊂ P/poly.

2

• x∈ L ⇐⇒ R(x,1) ·R(x,2) · · ·R(x, ℓx) ∈ L′.

(Note that⋆ denotes an “out of bounds” character to mark the end of the output.) Thatis, the overall
reduction outputs strings of polynomial length, but any desired bit of the output can be printed inO(t(n))
time. TIME(no(1)) reductions are powerful enough for almost allNP-completeness results, which have
“local” structure transforming small pieces of the input to small pieces of the output.3 More precisely,
an O(nk)-time reductionR from L to L′ is a projection if there is a polynomial-time algorithmA that,
given i = 1, . . . ,nk in binary, A outputs either a fixed bit (0 or 1) which is theith bit of R(x) for all x
of length n, or a j = 1, . . . ,n with b ∈ {0,1} such that theith bit of R(x) (for all x of length n) equals
b·x j +(1−b) ·(1−x j). Skyum and Valiant [SV85] observed that almost allNP-complete problems are also
complete under projections. So for example, we have:

Proposition 1 ([SV85, PY86]) SAT, Vertex Cover, Independent Set, Hamiltonian Path, and 3-Coloringare
NP-complete underTIME(poly(logn)) reductions.

In contrast to the above, we prove that MCSP isnot complete underTIME(n1/3) reductions. Indeed there
is no local reduction from even the simple language PARITY to MCSP:

Theorem 1.1 For everyδ < 1/2, there is noTIME(nδ) reduction from PARITY to MCSP. As a corollary,
MCSP is notAC0[2]-hard underTIME(nδ) reductions.4

This establishes that MCSP cannot be “locally”NP-hard in the way that many canonicalNP-complete
problems are known to be.

Hardness Under Stronger Reducibilities.For stronger reducibility notions than sub-polynomial time,
we do not yet have unconditional non-hardness results for MCSP. (Of course, a proof that MCSP is notNP-
complete under poly-time reductions would immediately implyP 6= NP.) Nevertheless, we can still prove
interesting complexity consequences assuming theNP-hardness of MCSP under these sorts of reductions.

Theorem 1.2 If MCSP isNP-hard under polynomial-time reductions, thenEXP 6= NP∩P/poly. Conse-
quently,EXP 6= ZPP.

Corollary 1.1 If MCSP isNP-hard under logspace reductions, thenPSPACE 6= ZPP.

Theorem 1.3 If MCSP isNP-hard under logtime-uniformAC0 reductions, thenNP 6⊂ P/poly and E 6⊂

i.o.-SIZE(2δn) for someδ > 0. As a consequence,P= BPP also follows.

That is, thedifficultyof computing circuit complexity would implylower bounds, even in the most general
setting (there areno restrictions on the polynomial-time reductions here, in contrast with Kabanets and
Cai [KC00]). We conjecture that the consequence of Theorem1.2can be strengthened toEXP 6⊂ P/poly, and
that MCSP is (unconditionally) notNP-hard under uniformAC0 reductions.

Σ2-Hardness for Nondeterministic MCSP Implies Circuit Lower Bounds. Intuitively, the difficulty of
solving MCSP via uniform algorithms should be related to circuit lower boundsagainst functions defined
by uniform algorithms. That is, our intuition is that “MCSP isNP-complete” implies circuit lower bounds.

3We say “almost allNP-completeness results” because one potential counterexample is the typical reduction from Subset Sum
to Partition: two numbers in the output of this reduction require taking thesum of all numbersin the input Subset Sum instance.
Hence the straightforward reduction does not seem to be computable even in 2no(1)

-sizeAC0.
4Dhiraj Holden and Chris Umans (personal communication) proved independently that there is noTIME(poly(logn)) reduction

from SAT to MCSP unlessNEXP⊂ Σ2P.

3

We have not yet shown a result like this (but come close withEXP 6= ZPP in Theorem1.2). However, we
can show thatΣ2P-completeness for thenondeterministicversion of MCSP would implyEXP 6⊂ P/poly.

In the Nondeterministic Minimum Circuit Size Problem (NMCSP), we are given〈T,k〉 as in MCSP, but
now we want to know ifT denotes a boolean function withnondeterministiccircuit complexity at mostk.
It is easy to see that NMCSP is inΣ2P: nondeterministically guess a circuitC with a “main” input and
“auxiliary” input, nondeterministically evaluateC on all 2n inputsx for which T(x) = 1, then universally
verify on all 2n inputsy satisfyingT(y) = 0 that no auxiliary input makesC output 1 ony.

We can show that if NMCSP is hard even for Merlin-Arthur games, then circuit lower bounds follow.

Theorem 1.4 If NMCSP isMA-hard under polynomial-time reductions, thenEXP 6⊂ P/poly.

Vinodchandran [Vin05] studied NMCSP forstrongnondeterministic circuits, showing that a “natural”
reduction from SAT or Graph Isomorphism to this problem would have several interesting implications.

1.1 Intuition

The MCSP problem is a special kind of “meta-algorithmic” problem, where the input describes a function
(and a complexity upper bound) and the goal is to essentially compute the circuit complexity of the function.
That is, like many of the central problems in theory, MCSP is a problem aboutcomputation itself.

In this paper, we apply many tools from the literature to prove our results, but the key new idea exploits
the meta-algorithmic nature of MCSP directly in the assumed reductions to MCSP. We take advantage of the
fact that instances of MCSP are written in a rather non-succinct way: theentire truth table of the function
is provided. For the simplest example of the approach, letL be a unary (tally) language, and suppose we
have aTIME(poly(logn)) reductionR from L to MCSP. The outputs ofR are pairs(T,k) whereT is a truth
table andk is the size parameter. Because each bit ofR is computable in polylog time, it follows that each
truth tableT output byR can in fact be described by a polylogarithmic size circuit specifying the length of
the input instance ofL, and the mechanics of the polylog time reduction used to compute a given bit ofR.
Therefore the circuit complexities ofall outputs of Rare at most polylogarithmic inn (the input length);
furthermore, the size parametersk in the outputs ofR on n-bit inputs are at most poly(logn), otherwise the
MCSP instance is trivially a “yes” instance. That is, the efficient reductionR itself yields a strong upper
bound on the witness sizes of the outputs ofR. This ability to boundk from above by a small value based
on the existence of an efficient reduction to MCSP is quite powerful, and leads to many consequences.

Several of our theorems have the form that, if computing circuit complexity isNP-hard (or nondetermin-
istic circuit complexity isΣ2P-hard), then circuit lower bounds follow. This is intriguing to us, as one also
expects thatefficient algorithmsfor computing circuit complexity also lead to lower bounds! (For exam-
ple, [KC00, IKW02, Wil13] show that polynomial-time algorithms for MCSP in various forms would imply
circuit lower bounds againstEXP and/orNEXP.) If a circuit lower bound can be proved to follow from
assuming MCSP isNP-intermediate (or NMCSP isΣ2P-intermediate), perhaps we can prove circuit lower
bounds unconditionally without necessarily resolving the complexity of MCSP.

2 Preliminaries

For simplicity, all languages are over{0,1}. We assume knowledge of the basics of complexity the-
ory [AB09]. Here are a few (perhaps) non-standard notions we use. For a function s : N→ N, poly(s(n))
is shorthand forO(s(n)c) for some constantc, and Õ(s(n)) is shorthand fors(n) · poly(logn). Define
SIZE(s(n)) to be the class of languages computable by a circuit family of sizeO(s(n)). DefineΣ2TIME[t(n)]

4

to be the class of languages recognizable by aΣ2 machine in timeO(t(n)); more precisely, the languagesL
such that there exists a linear time machineM such that for all stringsx,

x∈ L ⇐⇒ (∃y∈ {0,1}t(|x|))(∀z∈ {0,1}t(|x|))[M(x,y,z) accepts].

In some of our results, we apply the well-known PARITY lower bound of Håstad:

Theorem 2.1 (H̊astad [Hås86]) For every k≥ 2, PARITY cannot be computed by circuits with AND, OR,

and NOT gates of depth k and size2o(n1/(k−1)).

Machine model. The machine model used in our results may be any model with random access to the
input via addressing, such as a random-access Turing machine. The maincomponent we want is that the
“address” of the bit/symbol/word being read at any step is stored as a readable and writable binary integer.

A remark on sub-polynomial reductions. In Definition 1.1we defined sub-polynomial time reductions
to output out-of-bounds characters which denote the end of an output string. We could also have defined
our reductions to output a string of length 2⌈clog2 n⌉ on an input of lengthn, for some fixed constantc≥ 1.
This makes it easy for the reduction to know the “end” of the output. We can still compute the lengthℓ of
the output inO(logℓ) time via Definition1.1, by performing a doubling search on the indicesi to find one
⋆ (trying the indices 1,2,4,8, etc.), then performing a binary search for the first⋆. The results in this paper
hold for either reduction model (but the encoding of MCSP may have to varyin trivial ways, depending on
the reduction notion used).

Encoding MCSP.Let y1, . . . ,y2k ∈ {0,1}k be the list ofk-bit strings in lex order. Givenf : {0,1}n →
{0,1}, the truth table off is defined to bett(f) := f (y1) f (y2) · · · f (y2n).

The truth table of a circuit is the truth table of the function it computes. LetT ∈ {0,1}⋆. The function
encoded by T, denoted asfT , is the function satisfyingtt(fT) = T02k−|T|, wherek is the minimum integer
satisfying 2k ≥ T. Thecircuit complexity of T, denoted asCC(T), is simply the minimum number of gates
of any circuit computingfT .

There are several possible encodings of MCSP we could use. The main point we wish to stress is that
it’s possible to encode the circuit size parameterk in essentially unary or in binary, and our results remain
the same. (This is important, because some of our proofs superficially seemto rely on a short encoding
of k.) We illustrate our point with two encodings, both of which are suitable for the reduction model of
Definition 1.1. First, we may define MCSP to be the set of stringsTx where|T| is the largest power of two
satisfying|T| < |Tx| andCC(fT) ≤ |x|; we call this aunary encodingbecausek is effectively encoded in
unary. (Note we cannot detect if a string has the form 1k in logtime, so we shall let anyk-bit stringx denote
the parameterk. Further note that, if the size parameterk > |T|/2, then the instance would be trivially a
yes-instance. Hence this encoding captures the “interesting” instances of the problem.) Second, we may
define MCSP to be the set of binary stringsTk such that|T| is the largest power of two such that|T|< |Tk|,
k is written in binary (with most significant bit 1) andCC(fT)≤ k. Call this thebinary encoding.

Proposition 2 There areTIME(poly(logn)) reductions between the unary encoding of MCSP and the bi-
nary encoding of MCSP.

The proof is a simple exercise, in AppendixA. More points on encoding MCSP for these reductions can
be found there as well.

Another variant of MCSP has the size parameter fixed to a large value; this version has been studied
extensively in the context of KT-complexity [All01, ABK+06]. Define MCSP′ to be the version with circuit
size parameter set to|T|1/2, that is,MCSP′ := {T | CC(T) ≤ |T|1/2}. To the best of our knowledge, all
theorems in this paper hold for MCSP′ as well; indeed most of the proofs only become simpler for this case.

5

A simple lemma on the circuit complexity of substrings.We also use the fact that for any stringT, the
circuit complexity of an arbitrary substring ofT can be bounded via the circuit complexity ofT.

Lemma 2.1 ([Wil13]) There is a universal c≥ 1 such that for any binary string T and any substring S of
T , CC(fS)≤CC(fT)+clog|T|.

Proof. Let c′ be sufficiently large in the following. Letk be the minimum integer satisfying 2k ≥ |T|, so
the Boolean functionfT representingT has truth tableT02k−|T|. SupposeC is a size-s circuit for fT . Let S
be a substring ofT = t1 · · · t2k ∈ {0,1}2k

, and letA,B∈ {1, . . . ,2k} be such thatS= tA · · · tB. Let ℓ ≤ k be a
minimum integer which satisfies 2ℓ ≥ B−A. We wish to construct a small circuitD with ℓ inputs and truth
tableS02ℓ−(B−A). Let x1, . . . ,x2ℓ be theℓ-bit strings in lex order. Our circuitD on inputxi first computes
i +A; if i +A≤ B−A thenD outputsC(xi+A), otherwiseD outputs 0. Note there are circuits ofc′ ·n size
for addition of twon-bit numbers (this is folklore). Therefore in size at mostc′ ·k we can, given inputxi of
lengthℓ, outputi +A. Determining ifi +A≤ B−A can be done with(c′ · ℓ)-size circuits. ThereforeD can
either be implemented as a circuit of size at mosts+c′(k+ ℓ+1). To complete the proof, letc≥ 3c′. �

3 MCSP and Sub-Polynomial Time Reductions

In this section, we prove the following impossibility results forNP-hardness of MCSP:

Reminder of Theorem1.1 For everyδ < 1/2, there is noTIME(nδ) reduction from PARITY to MCSP. As
a corollary, MCSP is notAC0[2]-hard underTIME(nδ) reductions.

The proof has the following outline. First we show that there are poly(logn)-time reductions from PAR-
ITY to itself which can “insert poly(n) zeroes” into a PARITY instance. Then, assuming there is aTIME(nδ)
reduction from PARITY to MCSP, we use the aforementioned zero-inserting algorithm to turn the reduction
into a “natural reduction” (in the sense of Kabanets and Cai [KC00]) from PARITY to MCSP, where the
circuit size parameterk output by the reduction depends only on the input lengthn. Next, we show how
to bound the value ofk from above byÕ(t(n)), by exploiting naturalness. Then we use this bound onk to
construct aΣ2 algorithm for PARITY which existentially guesses anÕ(t(n))-size circuit for the truth table
produced by the reduction, then universally verifies the circuit is correct on all bits of the truth table. Finally,
we convert theΣ2 algorithm into a depth-three circuit family of 2Õ(t(n)) size, and appeal to H̊astad’sAC0
lower bound for PARITY for a contradiction.

We start with a simple poly(logn)-time reduction for padding a string with zeroes in a poly(n)-size set
of prescribed bit positions. LetS∈ Z

ℓ for a positive integerℓ. We sayS is sortedif S[i] < S[i +1] for all
i = 1, . . . , ℓ−1.

Proposition 3 Let p(n) be a polynomial. There is an algorithm A which, given x of length n, a sorted tuple
S= (i1, . . . , ip(n)) of indices from{1, . . . ,n+ p(n)}, and a bit index j= 1, . . . , p(n)+ n, A(x,S, j) outputs
the jth bit of the string x′ obtained by inserting zeroes in the bit positions i1, i2, . . . , ip(n) of x. Furthermore,
A(x,S, j) runs in O(log2n) time on x of length n.

Proof. Givenx of lengthn, a sortedS= (i1, . . . , ip) ∈ {1, . . . ,n+ p}p, and an indexj = 1, . . . ,n+ p, A first
checks if j ∈ S in O(log2n) time by binary search, comparing pairs ofO(logn)-bit integers inO(logn) time.
If yes, thenA outputs 0. If no, letk = 0, . . . , p−1 be such thatj < ik+1; thenA outputsx j−k. (Note that
computing j − k is possible inO(logn) time.) It is easy to verify that the concatenation of all outputs ofA
over j = 1, . . . , |x|+ p is the stringx but with zeroes inserted in the bit positionsi1, . . . , ip. �

Let t(n) = n1−ε for someε > 0. The next step is to show that aTIME(t(n)) reduction from PARITY to
MCSP can be turned into anatural reduction, in the following sense:

6

Definition 3.1 (Kabanets-Cai [KC00]) A reduction from a language L to MCSP isnaturalif the size of all
output instances and the size parameters k depend only on the length of theinput to the reduction.

The main restriction in the above definition is that the size parameterk output by the reduction does not
vary over different inputs of lengthn.

Claim 1 If there is aTIME(t(n)) reduction from PARITY to MCSP, then there is aTIME(t(n) log2n) natural
reduction from PARITY to MCSP. Furthermore, the value of k in this naturalreduction isÕ(t(n)).

Proof. By assumption, we can choosen large enough to satisfyt(2n) log(2n) ≪ n. We define a new
(natural) reductionR′ from PARITY to MCSP:

R′(x, i) begins by gathering a list of the bits of the input that affect the size parameter k of the
output, for a hypothetical 2n-bit input which has zeroes in the positions read byR. This works
as follows. We simulate theTIME(t(n)) reductionR from L to MCSP on the output indices
corresponding to bits of the size parameterk, as if Ris reading an inputx′ of length 2n. When
R attempts to read a bit of the input, record the indexi j requested in a listS, and continue the
simulation as if the bit at positioni j is a 0. Since the MCSP instance is polynomial in size,
k written in binary is at mostO(logn) bits (otherwise we may simply output a trivial “yes”
instance), so the number of indices of the output that describek is at mostO(logn) in the binary
encoding. It follows that the size parameterk in the output depends on at mostt(2n) log(2n)
bits of the (hypothetical) 2n-bit input. Therefore|S| ≤ t(2n) log(2n). SortS= (i1, . . . , i|S|) in
O(t(n) log2n) time, and remove duplicate indices.

R′ then simulates theTIME(t(n)) reductionR(x, i) from PARITY to MCSP. However, when-
ever an input bitj of x is requested byR, if j ≤ n+ |S| then run the algorithmA(x,S, j) from
Proposition3 to instead obtain thejth bit of theO(n+ |S|)-bit stringx′ which has zeroes in the
bit positions in the sorted tupleS. Otherwise, if j > n+ |S| and j ≤ 2n then output 0, and if
j > 2n then output⋆ (out of bounds). Since the algorithm of Proposition3 runs inO(log2n)
time, this step of the reduction takesO(t(n) log2n) time.

That is, the reductionR′ first looks for all the bits in a 2n-bit input that affect the output size parameterk
in the reductionR, assuming the bits read are all 0. ThenR′ runsR on a simulated string 2n-bit stringx′ for
which all those bits are zero (and possibly more at the end, to enforce|x′|= 2n). Since the parity ofx′ equals
the parity ofx, the MCSP instance output byR′ is a yes-instance if and only ifx has odd parity. However for
the reductionR′, the output parameterk is now a function of only the input length; that is,R′ is natural.

Now let us argue for an upper bound onk. Define a functionf (i) which computesz := 0n, then runs and
outputsR′(z, i). The truth table off , tt(f), is therefore an instance of MCSP. SinceR′ is natural, the value
of k appearing intt(f) is thesameas the value ofk for all length-n instances of PARITY.

However, the circuit complexity off is small: on anyi, R′(0n, i) can be computed in timeO(t(n) log2n).
Therefore the circuit complexity off is at most someswhich isÕ(t(n)). In particular, theTIME(t(n) log2n)
reduction can be efficiently converted to a circuit, with any bit of the input 0n efficiently computed in
O(logn) time at every request (the only thing to check is that the index requested doesn’t exceedn). As the
instancef of MCSP hasCC(f)≤ s, by Lemma2.1the truth tableT in the instancett(f) hasCC(T)≤ csas
well for some constantc.

Since 0n has even parity, the truth table off is not in MCSP. This implies that the value ofk in the instance
tt(f) must beless than cs= Õ(t(n)). Therefore the value ofk fixed in the reduction from PARITY to MCSP
must be at most̃O(t(n) log2n). �

Now, we show that efficient reductions from PARITY to MCSP yield efficient Σ2 algorithms for PARITY:

7

Claim 2 If there is aTIME(t(n)) reduction from PARITY to MCSP, then there is aΣ2TIME(Õ(t(n))) algo-
rithm for PARITY.

Proof. Construct aΣ2 algorithm for PARITY as follows:

Given an inputx, existentially guess a circuitC with O(logn) inputs and size at mosts=
Õ(t(n)), wheres is taken from Claim1. Then universally verify over all possibleO(logn)-bit
inputsi to C thatC(i) = R′(x, i), whereR′ is from Claim1. If yes, thenaccept, elsereject.

Since we know the value of the size parameter in the instance output byR′(x, ·) is at mosts(from Claim1),
there is a circuitC of size at mosts with the above property if and only ifx has odd parity. Since the
number of inputs toC is O(logn), the universal quantification in the above procedure is onlyO(logn) bits.
Verification also takes̃O(t(n)) time, sinceC can be evaluated iñO(t(n)) time on any input. Hence theΣ2

procedure has the claimed running time. �

Finally, we can complete the proof of Theorem1.1:

Proof of Theorem 1.1. Suppose that PARITY has aTIME(nδ) reduction from PARITY to MCSP, for
someδ < 1/2. Then by Claim2, there is aΣ2 algorithm for PARITY running inÕ(nδ) time. Such an
algorithm can be converted into a depth-three OR-AND-OR circuit of size 2Õ(nδ): the top OR at the output
has incoming wires for all possible 2Õ(nδ) existential guesses for theΣ2 machine, the middle AND tries all
2Õ(nδ) universal guesses, and the remaining deterministic computation onÕ(nδ) bits is computable with a
CNF (AND of ORs) of size 2Õ(nδ). Therefore, the assumed reduction implies that PARITY has depth-three
AC0 circuits of size 2Õ(nδ). Forδ < 1/2, this is false by H̊astad (Theorem2.1). �

Remark 1 We used only the following properties of PARITY in the above proof: (a) onecan insert zeroes
into a string efficiently without affecting its membership in PARITY, (b) PARITY has trivial no-instances
(strings of all zeroes), and (c) PARITY lacks small depth-three circuits. We imagine that some of the ideas
in the above proof may be useful for other “non-hardness” results in thefuture.

4 NP-Hardness of MCSP Implies Lower Bounds

We now turn to stronger reducibility notions, showing that evenNP-hardness of MCSP under these reduc-
tions implies separation results that currently appear out of reach.

4.1 Consequences of NP-Hardness Under Polytime and LogspaceReductions

Reminder of Theorem 1.2 If MCSP isNP-hard under polynomial-time reductions, thenEXP 6= NP∩
P/poly. Consequently,EXP 6= ZPP.

Reminder of Corollary 1.1 If MCSP isNP-hard under logspace reductions, thenPSPACE 6= ZPP.

These theorems follow from establishing that theNP-hardness of MCSP and small circuits forEXP
impliesNEXP= EXP. In fact, it suffices that MCSP is hard for only sparse languages inNP. (Recall that a
languageL is sparseif there is ac such that for alln, |L∩{0,1}n| ≤ nc+c.)

Theorem 4.1 If every sparse language inNP has a polynomial-time reduction to MCSP, thenEXP ⊆
P/poly =⇒ EXP= NEXP.

8

Proof. Suppose that MCSP is hard for sparseNP languages under polynomial-time reductions, and that
EXP⊆ P/poly. Let L ∈ NTIME(2nc

) for somec≥ 1. It is enough to show thatL ∈ EXP.

Define the padded languageL′ := {x012|x|
c

| x∈ L}. The languageL′ is then a sparse language inNP. By
assumption, there is a polynomial time reduction fromL′ to MCSP. Composing the obvious reduction from
L to L′ with the reduction fromL′ to MCSP, we have a 2c

′·nc
-time reductionR from n-bit instances ofL to

2c′·nc
-bit instances of MCSP, for some constantc′. Define the language

BITSR := {(x, i) | the ith bit of R(x) is 1}.

BITSR is clearly inEXP. SinceEXP⊆ P/poly, for somed ≥ 1 there is a circuit family{Cn} of size at most
nd +d computing BITSR onn-bit inputs.

Now, on a given instancex of L, the circuitD(i) := C2|x|+c′·|x|c(x, i) hasc′ · |x|c inputs (ranging over all

possiblei = 1, . . . ,2c′·|x|c) and size at mosts(|x|) := (2+c′)d|x|cd+d, such thattt(D) is the output ofR(x).
Therefore, for everyx, the truth tables output byR(x) all have circuit complexity at moste·s(|x|) for some
constante, by Lemma2.1. This observation leads to the following exponential time algorithm forL:

On inputx, run the reductionR(x), obtaining an exponential sized instance〈T,k〉 of MCSP. If
k> e·s(|x|) thenaccept. Otherwise, cycle through every circuitE of size at mostk; if tt(E) = T
thenaccept. If no suchE is found,reject.

Producing the truth tableT takes exponential time, and checking all 2O(s(n) logs(n)) circuits of sizeO(s(n))
on all polynomial sized inputs to the truth table also takes exponential time. As a result L ∈ EXP, which
completes the proof. �

The same argument can be used to prove collapses for other reducibilities.For example, swapping time
for space in the proof of Theorem4.1, we obtain:

Corollary 4.1 If MCSP isNP-hard under logspace reductions, thenPSPACE ⊆ P/poly =⇒ NEXP =
PSPACE.

Theorem4.1shows that complexity class separations follow from establishing that MCSP isNP-hard in
the most general sense. We now prove Theorem1.2, thatNP-hardness of MCSP impliesEXP 6=NP∩P/poly:

Proof of Theorem1.2. By contradiction. Suppose MCSP isNP-hard andEXP=NP∩P/poly. ThenEXP⊂
P/poly impliesNEXP= EXP by Theorem4.1, butNEXP= EXP⊆ NP, contradicting the nondeterministic
time hierarchy [̌Z8́3]. �

Corollary1.1 immediately follows from the same argument as Theorem1.2, applying Corollary4.1.

We would like to strengthen Theorem1.2to show that theNP-hardness of MCSP actually impliescircuit
lower bounds such asEXP 6⊂P/poly. This seems like a more natural consequence: anNP-hardness reduction
would presumably be able to print truth tables of high circuit complexity from no-instances of low complex-
ity. (Indeed this is the intuition behind Kabanets and Cai’s results concerning“natural” reductions [KC00].)

4.2 Consequences of NP-Hardness under AC0 Reductions

Now we turn to showing consequences of assuming that MCSP isNP-hard under uniformAC0 reductions.
Here we obtain consequences so strong that we are skeptical the hypothesis is true.

Reminder of Theorem1.3 If MCSP isNP-hard under logtime-uniformAC0 reductions, thenNP 6⊂ P/poly

andE 6⊂ i.o.-SIZE(2δn) for someδ > 0. As a consequence,P= BPP also follows.

We will handle the two consequences in two separate theorems.

9

Theorem 4.2 If MCSP isNP-hard under LOGTIME-uniformAC0 reductions, then
NP⊆ P/poly =⇒ NEXP⊆ P/poly.

Proof. The proof is similar in spirit to that of Theorem4.1. Suppose that MCSP isNP-hard under
LOGTIME-uniformAC0 reductions, and thatNP⊆ P/poly. ThenΣkP⊆ P/poly for everyk≥ 1.

Let L ∈ NEXP; in particular, letL ∈ NTIME(2nc
) for somec. As in Theorem4.1, define the sparseNP

languageL′ = {x01t | x∈ L, t = 2|x|
c
}. By assumption, there is a LOGTIME-uniformAC0 reductionR from

the sparse languageL′ to MCSP. This reduction can be naturally viewed as aΣkP reductionS(·, ·) from L
to exponential-sized instances of MCSP, for some constantk. In particular,S(x, i) outputs theith bit of the
reductionR on inputx01t , andScan be implemented inΣkP, and hence inP/poly as well.

That is, for all inputsx, the stringS(x,1) · · ·S(x,2O(|x|c)) is the truth table of a function with poly(|x|)-size
circuits. Therefore by Lemma2.1, the truth table of the MCSP instance being output onx must have a
poly(|x|)-size circuit. We can then decideL in Σk+2P time: on an inputx, existentially guess a circuitC of
poly(|x|) size, then for all inputsy toC, verify thatS(x,y) =C(y). The latter equality can be checked inΣkP.
As a result, we haveNEXP⊆ Σk+2P⊆ P/poly. �

Theorem 4.3 If MCSP isNP-hard underP-uniform AC0 reductions, thenE 6⊂ i.o.-SIZE(2δn) for some
δ > 0. As a consequence,P= BPP also follows from the assumption (Impagliazzo and Wigderson [IW97]).

Proof. Assume the opposite: that MCSP isNP-hard underP-uniformAC0 reductions and for everyε > 0,
E⊂ i.o.-SIZE(2εn). By Agrawalet al. [AAI +01] (Theorem 4.1), all languages hard forNP underP-uniform
AC0 reductions are also hard forNP underP-uniformNC0 reductions. Therefore MCSP isNP-hard under
P-uniformNC0 reductions. Since in anNC0 circuit all outputs depend on a constant number of input bits,
the circuit size parameterk in the output of the reduction depends on onlyO(logn) input bits. By Claim1,
theNC0 reduction from PARITY to MCSP can be converted into a natural reduction. Therefore we may
assume that the size parameterk in the output of the reduction is a function of only the length of the input
to the reduction.

Let R be a polynomial-time algorithm that on input 1n produces aP-uniformNC0 circuit Cn on n inputs
that reduces PARITY to MCSP. Fixc such thatR runs in at mostnc+c time and every truth table produced
by the reduction is of length at mostnc+c. Define an algorithmR′ as follows:

On input (n, i,b), wheren is a binary integer,i = 1, . . . ,nc + c, andb ∈ {0,1}, run R(1n) to
produce the circuitCn, then evaluateCn(0n) to produce a truth tableTn. If b= 0, output theith

bit of Cn. If b= 1, output theith bit of Tn.

For an input(n, i,b), R′ runs in timeO(nc); whenm= |(n, i,b)|, this running time is 2O(m) ≤ nO(1). By
assumption, for everyε > 0, R′ has circuits{Dm} of sizeO(2εm)≤ O(n2ε) for infinitely many input lengths
m. This has two important consequences:

1. For everyε > 0 there are infinitely many input lengthsm= O(logn) such that the size parameterk in
the natural reduction from PARITY to MCSP is at mostn2ε (or, the instance is trivial). To see this,
first observe that 0n is always a no-instance of PARITY, soR(0n) always maps to a truth tableTm of
circuit complexity greater thank(n) (for somek(n)). SinceR′(n, i,1) prints theith bit of R(0n), and
the functionR′(n, ·,1) is computable with anO(n2ε)-size circuitDn, the circuit complexity ofTm is at
mostO(n2ε), by Lemma2.1. Therefore the output size parameterk of R(0n) for these input lengthsm
is at mostO(n2ε).

2. On thesameinput lengthsm for which k is O(n2ε), thesamecircuit Dm of sizeO(n2ε) can compute
any bit of theNC0 circuit Cn that reduces PARITY to MCSP. This follows from simply settingb= 0
in the input ofDm.

10

The key point is that both conditions are simultaneously satisfied for infinitely many input lengthsm,
because both computations are made by the same 2O(n) time algorithmR′. We use these facts to construct
an i.o.-Σ2TIME(Õ(n2ε)) algorithmA, as follows:

On input(x,D), wheren= |x| andD is anO(n2ε) size circuit withm= O(logn) inputs:

AssumeD computesR′(n, i,b) on inputs such thatm= |(n, i,b)|. EvaluateD on n, O(logn)
different choices ofi, andb= 0, to construct the portion of theNC0 circuitCn that computes
the size parameterk in the output of the reduction from PARITY to MCSP. Then, use this
O(logn)-size subcircuit to compute the value ofk for the input lengthn.

Next, nondeterministically guess a circuitC′ of size at mostk; we wish to verify that for alli,
C′(i) outputs theith bit of the truth tableTx produced by theNC0 reduction on inputx. We can
verify this by noting that theith bit of Tx can also be computed inO(nε) time, viaD. Namely,
universally choose ani, and produce theO(1)-size subcircuit that computes theith output bit of
theNC0 circuit Cn (by making a constant number of queries toD with b= 0). Then, simulate
the resultingO(1)-size subcircuit on the relevant input bits ofx to compute theith bit of Tx, and
check thatC′(i) equals this bit. If all checks pass,accept, elsereject.

Assuming the circuitD actually computesR′, A(x,D) computes PARITY correctly. For everyε > 0, there
are infinitely manym such that the circuit size parameterk is at most 2O(εm) ≤ O(n2ε), and the circuitD
of size 2O(εm) ≤ O(n2ε) exists. Under these conditions, the aboveΣ2 algorithmA runs inÕ(n2ε) time. As
a result, for everyε > 0 we can find for infinitely manyn such that the algorithmA has a corresponding
depth-3AC0 circuit of 2Õ(nε) size. Suppose we hardwire theO(n2ε)-size circuitD that computesR′ into the
correspondingAC0 circuit, on input lengthsn for whichD exists. Then for allε > 0, PARITY can be solved
infinitely often with depth-3AC0 circuits of 2Õ(nε) size, contradicting H̊astad (Theorem2.1). �

Proof of Theorem 1.3. Suppose MCSP isNP-hard under logtime-uniformAC0 reductions. The con-
sequenceE 6⊂ SIZE(2δn) was already established in Theorem4.3. The consequenceNP 6⊂ P/poly follows
immediately from combining Theorem4.2and Theorem4.3. �

4.3 The Hardness of Nondeterministic Circuit Complexity

Finally, we consider the generalization of MCSP to the nondeterministic circuit model. Recall that anonde-
terministic circuit Cof sizes takes two inputs, a stringx on n bits and a stringy on at mosts bits. We sayC
computes a functionf : {0,1}n →{0,1} if for all x∈ {0,1}n, f (x) = 1 ⇐⇒ there is ay of length at mosts
such thatC(x,y) = 1.

Observe that the Cook-Levin theorem implies that every nondeterministic circuit C of sizeshas an equiv-
alent nondeterministic depth-two circuitC′ of size s· poly(logs). Therefore we define nondeterministic
MCSP (NMCSP) to be the set of all pairs〈T,k〉 whereT is the truth table of a function computed by a
depth-two nondeterministic circuit of size at mostk. This problem is inΣ2P: given 〈T,k〉, existentially
guess a nondeterministic circuitC of size at mostk, then for everyx such thatT(x) = 1, existentially guess a
y such thatC(x,y) = 1; for everyx such thatT(x) = 0, universally verify that for ally, C(x,y) = 0. However,
NMCSP is not known to beΣ2P-hard. (The proof of Theorem1.4below will work for the depth-two version
and the unrestricted version all the same.)

Recall that it isknownthat MCSP for depth-two circuits isNP-hard [AHM+08]. That is, the “determin-
istic counterpart” of MCSP is known to beNP-hard.

Reminder of Theorem1.4 If NMCSP isMA-hard under polynomial-time reductions, thenEXP 6⊆ P/poly.

11

Proof. Suppose that NMCSP isMA-hard under polynomial-time reductions, and suppose thatEXP ⊆
P/poly. We wish to establish a contradiction. The proof is similar in structure to other theorems of this section

(such as Theorem4.1). Let L ∈ MATIME(2nc
), and defineL′ = {x012|x|

c

| x ∈ L} ∈ MA. By assumption,
there is a reductionR from L′ to NMCSP that runs in polynomial time. Therefore for some constantd we
have a reductionR′ from L that runs in 2dnc

time, and outputs 2dnc
-sized instances of NMCSP with a size

parameters(x) on inputx. SinceR′ runs in exponential time, and we assumeEXP is in P/poly, there is ak
such that for allx, there is a nondeterministic circuitC((x, i),y) of ≤ nk + k size that computes theith bit
of R′(x). Therefore we know thats(x)≤ |x|k+k on such instances (otherwise we can triviallyaccept). We
claim thatL ∈ EXP, by the following algorithm:

Givenx, runR′(x) to computes(x). If s(x)> |x|k+k thenaccept.
For all circuitsC in increasing order of size up tos(x),

Initialize a tableT of 2dnc
bits to be all-zero.

For all i = 1, . . . ,2dnc
and all 2s(x) possible nondeterministic stringsy, check for eachi if there is ay

such thatC((x, i),y) = 1; if so, setT[i] = 1.
If T = R′(x) thenaccept.

Reject(no nondeterministic circuit of size at mosts(x) was found).

Becauses(x)≤ |x|k+k, the above algorithm runs in 2nk·poly(logn) time and decidesL. ThereforeL ∈ EXP.
But this implies thatMAEXP = EXP ⊆ P/poly, which contradicts the circuit lower bound of Buhrman,
Fortnow, and Thierauf [BFT98]. �

5 Conclusion

We have demonstrated several formal reasons why it has been difficultto prove that MCSP isNP-hard. In
some cases, provingNP-hardness would imply longstanding complexity class separations; in other cases, it
is simply impossible to proveNP-hardness.

There are many open questions left to explore. Based on our study, we conjecture that:
• If MCSP isNP-hard under polynomial-time reductions thenEXP 6⊂ P/poly. We showed that if MCSP

is hard for sparseNP languages thenEXP 6= ZPP; surely a reduction from SAT to MCSP would
provide a stronger consequence.

• MCSP is (unconditionally) notNP-hard under logtime-uniformAC0 reductions. Theorem1.1already
implies that MCSP isn’tNP-hard under polylogtime-uniformNC0 reductions. Perhaps this next step
isn’t far away, since we already know that hardness underP-uniformAC0 reductions implies hardness
underP-uniformNC0 reductions (by Agrawalet al. [AAI +01]).

It seems that we can prove that finding the minimum DNF for a given truth table isNP-hard, because of
2Ω(n) size lower bounds against DNFs [AHM+08]. Since there are 2Ω(nδ) size lower bounds againstAC0,
can it be proved that finding the minimumAC0 circuit for a given truth table isQuasiNP-hard? In general,
can circuit lower bounds imply hardness results for circuit minimization?

Acknowledgements. We thank Greg Bodwin and Brynmor Chapman for discussions on these results. We
also thank Eric Allender for providing a preprint of his work with Dhiraj Holden.

References

[AAI +01] Manindra Agrawal, Eric Allender, Russell Impagliazzo, Toniann Pitassi, and Steven Rudich.
Reducing the complexity of reductions.Computational Complexity, 10(2):117–138, 2001.

12

[AB09] Sanjeev Arora and Boaz Barak.Computational Complexity - A Modern Approach. Cambridge
University Press, 2009.

[ABK +06] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneb-
urger. Power from random strings.SIAM J. Comput., 35(6):1467–1493, 2006.

[AD14] Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. InMathematical
Foundations of Computer Science (MFCS), Part II, pages 25–32, 2014.

[AH14] Eric Allender and Dhiraj Holden. The minimum oracle circuit size problem. Manuscript,
submitted for publication, 2014.

[AHM +08] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael Saks. Minimiz-
ing disjunctive normal form formulas andac0 circuits given a truth table.SIAM J. Comput.,
38(1):63–84, 2008.

[All01] Eric Allender. When worlds collide: Derandomization, lower bounds, and Kolmogorov com-
plexity. In FSTTCS, volume 2245 ofLNCS, pages 1–15. Springer, 2001.

[All14] Eric Allender. Personal communication, 2014.

[BFT98] Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separations. InCCC,
pages 8–12, 1998.

[Hås86] Johan H̊astad. Almost optimal lower bounds for small depth circuits. InSTOC, pages 6–20,
1986.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson.In search of an easy witness:
Exponential time vs. probabilistic polynomial time.JCSS, 65(4):672–694, 2002.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. InSTOC, pages 220–229, 1997.

[KC00] Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. InSTOC, pages 73–79,
2000.

[Lup59] O. B. Lupanov. A method of circuit synthesis.Izvestiya VUZ, Radiofizika, 1(1):120–140, 1959.

[PY86] Christos H. Papadimitriou and Mihalis Yannakakis. A note on succinct representations of
graphs.Information and Control, 71(3):181–185, 1986.

[RR97] Alexander Razborov and Steven Rudich. Natural proofs.J. Comput. Syst. Sci., 55(1):24–35,
1997.

[SV85] Sven Skyum and Leslie G Valiant. A complexity theory based on boolean algebra.J. ACM,
32(2):484–502, 1985.

[Vin05] N. V. Vinodchandran. Nondeterministic circuit minimization problem and derandomizing
Arthur-Merlin games.International Journal of Foundations of Computer Science, 16(6):1297–
1308, 2005.

[Wil13] Ryan Williams. Natural proofs versus derandomization. InSTOC, pages 21–30, 2013.

[Ž8́3] StanislavŽák. A Turing machine time hierarchy.Theoretical Computer Science, 26(3):327–
333, 1983.

13

A Appendix: Unary and Binary Encodings of MCSP

We will describe our reductions in the reduction model with “out of bounds”errors (Definition1.1). In that
model, we may definea unary encoding of MCSP(T,k) to beTxwhere|T| is the largest power of two such
that |T| ≤ |Tx|, k = |x|. This encoding is sensible because we may assume WLOG thatk ≤ 2|T|/ log|T|:
the size of a minimum circuit for a boolean function onn inputs is always less than 2n+1/n. Similarly, we
definedMCSP(T,k) in the binary encodingto simply beTk where|T| is the largest power of two such that
|T| ≤ |Tk|.

Note that these encodings may be undesirable if one really wants to allow trivial yes instances in a reduc-
tion to MCSP where the size parameterk is too large for the instance to be interesting, or if one wants to
allow T to have length other than a power of two. For those cases, the following binary encoding works:
we can encode the instance(T,k) as the stringsT00k′ such thatk′ is k written “in binary” over the alphabet
{01,11}. There are alsoTIME(poly(logn)) reductions to and from this encoding to the others above, mainly
becausek′ has lengthO(logn).

Proposition 4 There areTIME(poly(logn)) reductions between the unary encoding of MCSP and the bi-
nary encoding of MCSP.

Proof. We can reduce from the binary encoding to the unary encoding as follows. Given an inputy, perform
a doubling search (probing positions 1, 2, 4,. . ., 2ℓ, etc.) until a⋆ character is returned. Letting 2ℓ < |y| be
the position of the last bit read, this takesO(log|y|) probes to the input. Then we may “parse” the inputy
into T as the first 2ℓ bits, and integerk′ as the remainder. To process the integerk′, we begin by assuming
k′ = 1, then we read in log|y|) bits past the position 2ℓ, doublingk′ for each bit read and adding 1 when the
bit read is 1, untilk′ > |y| (in which case we don’t have to read further: the instance is trivially yes)or we
read a⋆ (in which case we have determined the integerk′). Finally, if the bit positioni requested is at most
2ℓ, then we output the identical bit from the inputTk. If not, we print 1 if i < 2ℓ+ k+1, and⋆ otherwise.
The overall output of this reduction isT1k′ wherek< |T|. Since addition ofO(logn) numbers can be done
in O(logn) time, the above takes poly(logn) time.

To reduce from the unary encoding to the binary encoding, we performa doubling search on the inputy as
in the previous reduction, to find the largestℓ such that 2ℓ < |y|. Then we let the first 2ℓ bits beT, and set the
parameterk = |y|−2ℓ−1. (Finding|y| can be done via binary search inO(log|y|) calls to the reduction.)
From here, outputting theith bit of eitherT or k in the binary encoding is easy, since|k|= O(log|y|).

�

14

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

