
An Entropy Sumset Inequality and Polynomially Fast Convergence
to Shannon Capacity Over All Alphabets

Venkatesan Guruswami∗ Ameya Velingker†

December 2, 2014

Abstract

We prove a lower estimate on the increase in entropy when two copies of a conditional random
variable X |Y , with X supported on Zq = {0,1, . . . ,q−1} for prime q, are summed modulo q. Specifically,
given two i.i.d. copies (X1,Y1) and (X2,Y2) of a pair of random variables (X ,Y ), with X taking values in
Zq, we show

H(X1 +X2 | Y1,Y2)−H(X |Y )≥ α(q) ·H(X |Y )(1−H(X |Y ))

for some α(q) > 0, where H(·) is the normalized (by factor log2 q) entropy. In particular, if X |Y is not
close to being fully random or fully deterministic and H(X |Y ) ∈ (γ,1− γ), then the entropy of the sum
increases by Ωq(γ). Our motivation is an effective analysis of the finite-length behavior of polar codes,
for which the linear dependence on γ is quantitatively important. The assumption of q being prime is
necessary: for X supported uniformly on a proper subgroup of Zq we have H(X +X) = H(X). For
X supported on infinite groups without a finite subgroup (the torsion-free case) and no conditioning, a
sumset inequality for the absolute increase in (unnormalized) entropy was shown by Tao in [Tao10].

We use our sumset inequality to analyze Arıkan’s construction of polar codes and prove that for any
q-ary source X , where q is any fixed prime, and any ε > 0, polar codes allow efficient data compression
of N i.i.d. copies of X into (H(X)+ ε)N q-ary symbols, as soon as N is polynomially large in 1/ε . We
can get capacity-achieving source codes with similar guarantees for composite alphabets, by factoring q
into primes and combining different polar codes for each prime in factorization.

A consequence of our result for noisy channel coding is that for all discrete memoryless channels,
there are explicit codes enabling reliable communication within ε > 0 of the symmetric Shannon capacity
for a block length and decoding complexity bounded by a polynomial in 1/ε . The result was previously
shown for the special case of binary-input channels [GX13, HAU13], and this work extends the result to
channels over any alphabet.
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1 Introduction

In a remarkable work, Arıkan [Arı09] introduced the technique of channel polarization, and used it to con-
struct a family of binary linear codes called polar codes that achieve the symmetric Shannon capacity of
binary-input discrete memoryless channels in the limit of large block lengths. Polar codes are based on
an elegant recursive construction and analysis guided by information-theoretic intuition. Arıkan’s work
gave a construction of binary codes, and this was subsequently extended to general alphabets in [STA09].
In addition to being an approach to realize Shannon capacity that is radically different from prior ones,
channel polarization turns out to be a powerful and versatile primitive applicable in many other important
information-theoretic scenarios. For instance, variants of the polar coding approach give solutions to the
lossless and lossy source coding problem [Arı10, KU10], capacity of wiretap channels [MV11], the Slepian-
Wolf, Wyner-Ziv, and Gelfand-Pinsker problems [Kor10], coding for broadcast channels [GAG13], multiple
access channels [STY13, AT12], interference networks [WS14], etc. We recommend the well-written survey
by Şaşoğlu [Sas12] for a detailed introduction to polar codes.

The advantage of polar codes over previous capacity-achieving methods (such as Forney’s concatenated
codes that provably achieved capacity) was highlighted in a recent work [GX13] where polynomial conver-
gence to capacity was shown in the binary case (this was also shown independently in [HAU13]). Specifi-
cally, it was shown that polar codes enable approaching the symmetric capacity of binary-input memoryless
channels within an additive gap of ε with block length, construction, and encoding/decoding complexity
all bounded by a polynomially growing function of 1/ε . Polar codes are the first and currently only known
construction which provably have this property, thus providing a formal complexity-theoretic sense in which
they are the first constructive capacity-achieving codes.

The main objective of this paper is to extend this result to the non-binary case, and we manage to do this
for all alphabets in this work. We stress that the best previously proven complexity bound for communicating
at rates within ε of capacity of channels with non-binary inputs was exponential in 1/ε . Our work shows the
polynomial solvability of the central computational challenge raised by Shannon’s non-constructive coding
theorems, in the full generality of all discrete sources (for compression/noiseless coding) and all discrete
memoryless channels (for noisy coding).

The high level approach to prove the polynomially fast convergence to capacity is similar to what was
done in [GX13], which is to replace the appeal to general martingale convergence theorems (which lead
to ineffective bounds) with a more direct analysis of the convergence rate of a specific martingale of en-
tropies.1 However, the extension to the non-binary case is far from immediate, and we need to establish
a quantitatively strong “entropy increase lemma” (see details in Section 4) over all prime alphabets. The
corresponding inequality admits an easier proof in the binary case, but requires more work for general prime
alphabets. For alphabets of size m where m is not a prime, we can construct a capacity-achieving code by
combining together polar codes for each prime dividing m.

In the next section, we briefly sketch the high level structure of polar codes, and the crucial role played by
a certain “entropy sumset inequality” in our effective analysis. Proving this entropic inequality is the main
new component in this work, though additional technical work is needed to glue it together with several
other ingredients to yield the overall coding result.

1The approach taken in [HAU13] to analyze the speed of polarization for the binary was different, based on channel Bhat-
tacharyya parameters instead of entropies. This approach does not seem as flexible as the entropic one to generalize to larger
alphabets.
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2 Overview of the Contribution

In order to illustrate our main contribution, which is an inequality on conditional entropies for inputs from
prime alphabets, in a simple setting, we will focus on the source coding (lossless compression) model in this
paper. The consequence of our results for channel coding, which is not immediate but follows in a standard
manner from compression of sources with side information (see for instance [Sas12, Sec 2.4]), is stated in
Theorem 3.

Let Zq = {0,1, . . . ,q−1} denote the additive group of integers modulo q. Suppose X is a source (ran-
dom variable) over Zq (with q prime), with entropy H(X) (throughout the paper, by entropy we will mean
the entropy normalized by a lgq factor, so that H(X) ∈ [0,1]). The source coding problem consists of
compressing N i.i.d. copies X0,X1, . . . ,XN−1 of X to ≈ H(X)N (say (H(X)+ ε)N) symbols from Zq. The
approach based on channel polarization is to find an explicit permutation matrix A ∈ ZN×N

q , such that if
(U0, . . . ,UN−1)

t = A(X0, . . . ,XN−1)
t , then in the limit of N→ ∞, for most indices i, the conditional entropy

H(Ui|U0, . . . ,Ui−1) is either ≈ 0 or ≈ 1. Note that the conditional entropies at the source H(Xi|X0, . . . ,Xi−1)
are all equal to H(X) (as the samples are i.i.d.). However, after the linear transformation by A, the condi-
tional entropies get polarized to the boundaries 0 and 1. By the chain rule and conservation of entropy, the
fraction of i for which H(Ui|U0, . . . ,Ui−1)≈ 1 (resp. ≈ 0) must be ≈ H(X) (resp. ≈ 1−H(X)).

The polarization phenomenon is used to compress the Xi’s as follows: The encoder only outputs Ui for
indices i∈B where B= {i |H(Ui|U0, . . . ,Ui−1)> ζ} for some tiny ζ = ζ (N)→ 0. The decoder (decompres-
sion algorithm), called a successive cancellation decoder, estimates the Ui’s in the order i = 0,1, . . . ,N−1.
For indices i ∈ B that are output at the encoder, this is trivial, and for other positions, the decoder computes
the maximum likelihood estimate ûi of Ui, assuming U0, . . . ,Ui−1 equal û0, . . . , ûi−1, respectively. Finally,
the decoder estimates the inputs at the source by applying the inverse transformation A−1 to (û0, . . . , ûN−1)

t .
The probability of incorrect decompression (over the randomness of the source) is upper bounded, via a

union bound over indices outside B, by ∑i/∈B H(Ui|U0, . . . ,Ui−1)≤ ζ N. Thus, if ζ � 1/N, we have a reliable
lossless compression scheme. Thus, in order to achieve compression rate H(X)+ ε , we need a polarizing
map A for which H(Ui|U0, . . . ,Ui−1)� 1/N for at least 1−H(X)− ε fraction of indices. This in particular
means that H(Ui|U0, . . . ,Ui−1)≈ 0 or≈ 1 for all but a vanishing fraction of indices, which can be compactly
expressed as Ei

[
H(Ui|U0, . . . ,Ui−1)

(
1−H(Ui|U0, . . . ,Ui−1)

)]
→ 0 as n→ ∞.

Such polarizing maps A are in fact implied by a source coding solution, and exist in abundance (a
random invertible map works w.h.p.). The big novelty in Arıkan’s work is an explicit recursive construction
of polarizing maps, which further, due to their recursive structure, enable efficient maximum likelihood
estimation of Ui given knowledge of U0, . . . ,Ui−1.

Arıkan’s construction is based on recursive application of the basic 2× 2 invertible map K =
(

1 1
0 1

)
.2

While Arıkan’s original analysis was for the binary case, the same construction based on the matrix K also
works for any prime alphabet [STA09]. Let An denote the matrix of the polarizing map for N = 2n. In the
base case n = 1, the outputs are U0 = X0 +X1 and U1 = X1. If X0,X1 ∼ X are i.i.d., the entropy H(U0) =
H(X0 + X1) > H(X) (unless H(X) ∈ {0,1}), and by the chain rule H(U1|U0) < H(X), thereby creating
a small separation in the entropies. Recursively, if (V0, . . . ,V2n−1−1) and (T0, . . . ,T2n−1−1) are the outputs
of An−1 on the first half and second half of (X0, . . . ,X2n−1), respectively, then the output (U0, . . . ,U2n−1)
satisfies U2i = Vi + Ti and U2i+1 = Ti. If Hn denotes the random variable equal to H(Ui|U0, . . . ,Ui−1) for
a random i ∈ {0,1, . . . ,2n− 1}, then the sequence {Hn} forms a bounded martingale. The polarization
property, namely that Hn → Bernoulli(H(X)) in the limit of n→ ∞, can be shown by appealing to the
martingale convergence theorem. However, in order to obtain a finite upper bound on n(ε), the value of n

2Subsequent work established that polarization is a common phenomenon that holds for most choices of the “base” matrix
instead of just K [KSU10].
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needed for E[Hn(1−Hn)] ≤ ε (so that most conditional entropies to polarize to < ε or > 1− ε), we need
a more quantitative analysis. This was done for the binary case in [GX13], by quantifying the increase in
entropy H(Vi+Ti|V0, . . . ,Vi−1,T0, . . . ,Ti−1)−H(Vi|V0, . . . ,Vi−1) at each stage, and proving that the entropies
diverge apart at a sufficient pace for Hn to polarize to 0/1 exponentially fast in n, namely E[Hn(1−Hn)]≤ ρn

for some absolute constant ρ < 1.
The main technical challenge in this work is to show an analogous entropy increase lemma for all prime

alphabets. The primality assumption is necessary, because a random variable X uniformly supported on a
proper subgroup has H(X) /∈ {0,1} and yet H(X +X) = H(X). Formally, we prove:

Theorem 1. Let (Xi,Yi), i = 1,2 be i.i.d. copies of a correlated random variable (X ,Y ) with X supported
on Zq for a prime q. Then for some α(q)> 0,

H(X1 +X2|Y1,Y2)−H(X |Y )≥ α(q) ·H(X |Y )(1−H(X |Y )). (1)

The linear dependence of the entropy increase on the quantity H(X |Y )(1−H(X |Y )) is crucial to estab-
lish a speed of polarization adequate for polynomial convergence to capacity. A polynomial dependence
is implicit in [Sas10], but obtaining a linear dependence requires lot more care. For the case q = 2, The-
orem 1 is relatively easy to establish, as it is known that the extremal case (with minimal increase) occurs
when H(X |Y = y) = H(X |Y ) for all y in the support of Y [Sas12, Lem 2.2]. This is based on the so-called
“Mrs. Gerber’s Lemma" for binary-input channels [WZ73, Wit74], the analog of which is not known for
the non-binary case [JA14]. This allows us to reduce the binary version of (1) to an inequality about simple
Bernoulli random variables with no conditioning, and the inequality then follows, as the sum of two p-biased
coins is 2p(1− p)-biased and has higher entropy (unless p ∈ {0, 1

2 ,1}). In the q-ary case, no such simple
characterization of the extremal cases is known or seems likely [Sas12, Sec 4.1]. Nevertheless, we prove
the inequality in the q-ary setting by first proving two inequalities for unconditioned random variables, and
then handling the conditioning explicitly based on several cases.

More specifically, the proof technique for Theorem 1 involves using an averaging argument to write the
left-hand side of (1) as the expectation, over y,z∼Y , of ∆y,z =H(Xy+Xz)− H(Xy)+H(Xz)

2 , the entropy increase
in the sum of random variables Xy and Xz with respect to their average entropy (this increase is called the
Ruzsa distance between the random variables Xy and Xz, see [Tao10]). We then rely on inequalities for
unconditioned random variables to obtain a lower bound for this entropy increase. In general, once needs
the entropy increase to be at least c ·min{H(Xy)(1−H(Xy)),H(Xz)(1−H(Xz))}, but for some cases, we
actually need such an entropy increase with respect to a larger weighted average. Hence, we prove the
stronger inequality given by Theorem 10, which shows such an increase with respect to 2H(Xy)+H(Xz)

3 for

H(Xy)≥H(Xz)
3. Moreover, for some cases of the proof, it suffices to bound ∆y,z from below by |H(Xy)−H(Xz)|

2 ,
which is provided by Lemma 9, another inequality for unconditional random variables.

We note a version of Theorem 1 (in fact with tight bounds) for the case of unconditioned random vari-
ables X taking values in a torsion-free group was established by Tao in his work on entropic analogs of fun-
damental sumset inequalities in additive combinatorics [Tao10] (results of similar flavor for integer-valued
random variables were shown in [HAT14]). Theorem 1 is a result in the same spirit for groups with torsion
(and which further handles conditional entropy). While we do not focus on optimizing the dependence of
α(q) on q, pinning down the optimal dependence, especially for the case without any conditioning, seems
like a natural question; see Remark 1 for further elaboration.

3While the weaker inequality H(A+B)≥ H(A)+H(B)
2 + c ·min{H(A)(1−H(A)),H(B)(1−H(B))} seems to be insufficient for

our approach, it should be noted that the stronger inequality H(A+B) ≥ max{H(A),H(B)}+ c ·min{H(A)(1−H(A)),H(B)(1−
H(B))} is generally not true. Thus, Theorem 10 provides the right middle ground. A limitation of similar spirit for the entropy
increase when summing two integer-valued random variables was pointed out in [HAT14].
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Given the entropy sumset inequality for conditional random variables, we are able to track the decay
of
√

Hn(1−Hn) and use Theorem 1 to show that for N = poly(1/ε), at most H(X)+ ε of the conditional
entropies H(Ui|U0, . . . ,Ui−1) exceed ε . However, to construct a good source code, we need H(X)+ε fraction
of the conditional entropies to be� 1/N. This is achieved by augmenting a “fine” polarization stage that
is analyzed using an appropriate Bhattacharyya parameter. The details of this step are similar to the binary
case, and are included in Appendix C.

The efficient construction of the linear source code (i.e., figuring out which entropies polarize very close
to 0 so that those symbols can be dropped), and the efficient implementation of the successive cancellation
decoder are similar to the binary case [GX13] and omitted here. Upon combining these ingredients, we get
the following result on lossless compression with complexity scaling polynomially in the gap to capacity:

Theorem 2. Let X be a q-ary source for q prime with side information Y (which means (X ,Y ) is a correlated
random variable). Let 0 < ε < 1

2 . Then there exists N ≤ (1/ε)c(q) for a constant c(q) < ∞ depending
only on q and an explicit (constructible in poly(N) time) matrix L ∈ {0,1}(H(X |Y )+ε)N×N such that ~X =
(X0,X1, . . . ,XN−1)

t , formed by taking N i.i.d. copies (X0,Y0),(X1,Y1), . . . ,(XN−1,YN−1) of (X ,Y ), can, with
high probability, be recovered from L ·~X and~Y = (Y0,Y1, . . . ,YN−1)

t in poly(N) time.

Moreover, can obtain Theorem 2 for arbitrary (not necessarily prime) q with the modification that the
map ZN

q → ZH(X |Y )+ε)N
q is no longer linear. This is obtained by factoring q into primes and combining polar

codes over prime alphabets for each prime in the factorization.

Channel coding. Using known methods to construct channel codes from polar source codes for compressing
sources with side information (see, for instance, [Sas12, Sec 2.4] for a nice discussion of this aspect), we
obtain the following result for channel coding, enabling reliable communication at rates within an additive
gap ε to the symmetric capacity for discrete memoryless channels over any fixed alphabet, with overall
complexity bounded polynomially in 1/ε . Recall that a discrete memoryless channel (DMC) W has a finite
input alphabet X and a finite output alphabet Y with transition probabilities p(y|x) for receiving y ∈ Y
when x∈X is transmitted on the channel. The entropy H(W ) of the channel is defined to be H(X |Y ) where
X is uniform in X and Y is the output of W on input X ; the symmetric capacity of W , which is the largest
rate at which one can reliably communicate on W when the inputs have a uniform prior, equals 1−H(W ).
Moreover, it should be noted that if W is a symmetric DMC, then the symmetric capacity of W is precisely
the Shannon capacity of W .

Theorem 3. Let q ≥ 2, and let W be any discrete memoryless channel capacity with input alphabet Zq.
Then, there exists an N ≤ (1/ε)c(q) for a constant c(q)< ∞ depending only on q, as well as a deterministic
poly(N) construction of a q-ary code of block length N and rate at least 1−H(W )− ε , along with a
deterministic N ·poly(logN) time decoding algorithm for the code such that the block error probability for
communication over W is at most 2−N0.49

. Moreover, when q is prime, the constructed codes are linear.

The structure of our paper will be as follows. Section 3 will introduce notation, describe the construction
of polar codes, and define channels as a tool for analyzing entropy increases for a pair of correlated random
variables. Section 4 will then prove our main theorem and describe the “rough” and “fine” polarization
results that follow from the main theorem and allow us to achieve Theorem 2. The appendix contains basic
lemmas about the entropy of random variables that will be used in the proof of the main theorem. Section 5
shows how polar codes for prime alphabets may be combined to obtain a capacity-achieving construction
over all alphabets, thereby achieving a variant of Theorem 2 over non-prime alphabets, as well its channel-
coding counterpart, Theorem 3.
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3 Construction of Polar Codes

Notation. We begin by setting some of the notation to be used in the rest of the paper. We will let lg denote
the base 2 logarithm, while ln will denote the natural logarithm.

For our purposes, unless otherwise stated, q will be a prime integer, and we identify Zq = {0,1,2, . . . ,q−
1} with the additive group of integers modulo q. We will generally view Zq as a q-ary alphabet.

Given a q-ary random variable X taking values in Zq, we let H(X) denote the normalized entropy of X :

H(X) =− 1
lgq ∑

a∈Zq

Pr[X = a] lg(Pr[X = a]).

In a slight abuse of notation, we also define H(p) for a probability distribution p. If p is a probability
distribution over Zq, then we shall let H(p) = H(X), where X is a random variable sampled according to
p. Also, for nonnegative constants c0,c1, . . . ,cq−1 summing to 1, we will often write H(c0, . . . ,cq−1) as the
entropy of the probability distribution on Zq that samples i with probability ci. Moreover, for a probability
distribution p over Zq, we let p(+ j) denote the jth cyclic shift of p, namely, the probability distribution p(+ j)

over Zq that satisfies
p(+ j)(m) = p(m− j)

for all m ∈ Zq, where m− j is taken modulo q. Note that H(p) = H(p(+ j)) for all j ∈ Zq.
Also, let ‖ · ‖1 denote the `1 norm on Rq. In particular, for two probability distributions p and p′, the

quantity ‖p− p′‖1 will correspond to twice the total variational distance between p and p′.
Finally, given a row vector (tuple)~v, we let~vt denote a column vector given by the transpose of~v.

3.1 Encoding Map

Let us formally define the polarization map that we will use to compress a source X . Given n≥ 1, we define
an invertible linear transformation G : Z2n

q → Z2n

q by G = Gn, where Gt : Z2t

q → Z2t

q , 0≤ t ≤ n is a sequence
of invertible linear transformations defined as follows: G0 is the identity map on Zq, and for any 0≤ k < n
and ~X = (X0,X1, . . . ,X2k+1−1)

t , we recursively define Gk+1~X as

Gk+1~X = πk+1(Gk(X0, . . . ,X2k−1)+Gk(X2k , . . . ,X2k+1−1),Gk(X2k , . . . ,X2k+1−1)),

where πk+1 : Z2k+1

q → Z2k+1

q is a permutation defined by

πn(v) j =

{
vi j = 2i
vi+2k j = 2i+1

.

G also has an explicit matrix form, namely, G = BnK⊗n, where K =
(

1 1
0 1

)
, ⊗ is the Kronecker product,

and Bn is the 2n×2n bit-reversal permutation matrix for n-bit strings (see [Arı10]).
In our set-up, we have a q-ary source X , and we let ~X = (X0,X1, . . . ,X2n−1)

t be a collection of N = 2n

i.i.d. samples from X . Moreover, we encode ~X as ~U = (U0,U1, . . . ,U2n−1)
t , given by ~U = G ·~X . Note that G

only has 0,1 entries, so each Ui is the sum (modulo q) of some subset of the Xi’s.
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3.2 Channels

For purposes of our analysis, we define a channel W = (A;B) to be a pair of correlated random variables
A,B; moreover, we define the channel entropy of W to be H(W ) = H(A|B), i.e., the entropy of A conditioned
on B.4

Given a channel W , we can define two channel transformations − and + as follows. Suppose we take
two i.i.d. copies (A0;B0) and (A1;B1) of W . Then, W− and W+ are defined by

W− = (A0 +A1;B0,B1)

W+ = (A1;A0 +A1,B0,B1).

By the chain rule for entropy, we see that

H(W−)+H(W+) = 2H(W ). (2)

In other words, splitting two copies of W into W− and W+ preserves the total channel entropy. These
channels are easily seen to obey

H(W+)≤ H(W )≤ H(W−).

and the key to our analysis will be quantifying the separation in the entropies of the two split channels.
The aformentioned channel transformations will help us abstract each step of the recursive polarization

that occurs in the definition of G. Let W = (X ;Y ), where X is a source taking values in Zq, and Y can
be viewed as side information. Then, H(W ) = H(X |Y ). One special case occurs when Y = 0, which
corresponds to an absence of side information.

Note that if start with W , then after n successive applications of either W 7→W− or W 7→W+, we
can obtain one of N = 2n possible channels in {W s : s ∈ {+,−}n}. (Here, if s = s0s1 · · ·sn−1, with each
si ∈ {+,−}, then W s denotes (· · ·((W s0)s1)· · ·)sn−2)sn−1). By successive applications of (2), we know that

∑
s∈{+,−}n

W s = 2nH(W ) = 2nH(X |Y ).

Moreover, it can be verified (see [Sas12]) that if 0 ≤ i < 2n has binary representation bn−1bn−2 · · ·b0 (with
b0 being the least significant bit of i), then

H(Ui|U0,U1, . . . ,Ui−1,Y0,Y1, . . . ,YN−1) = H(W sn−1sn−2···s0),

where

s j =

{
− if b j = 0
+ if b j = 1

.

As shorthand notation, we will define the channel

W (i)
n =W sn−1sn−2···s0 ,

where s0,s1, . . . ,sn−1 are as above.

4It should be noted W can also be interpreted as a communication channel that takes in an input A and outputs B according to
some conditional probability distribution. This is quite natural in the noisy channel coding setting in which one wishes to use a
polar code for encoding data in order to achieve the channel capacity of a symmetric discrete memoryless channel. However, since
we focus on the problem of source coding (data compression) rather than noisy channel coding in this paper, we will simply view
W as a pair of correlated random variables.
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[STA09] shows that all but a vanishing fraction of the N channels W s will be have channel entropy close
to 0 or 1:

Theorem 4. For any δ > 0, we have that

lim
n→∞

|{s ∈ {+,−}n : H(W s) ∈ (δ ,1−δ )}|
2n = 0.

Hence, one can then argue that as n grows, the fraction of channels with channel entropy close to 1
approaches H(X |Y ). In particular, for any δ > 0, if we let

Highn,δ = {i : H(Ui|U0,U1, . . . ,Ui−1,Y0,Y1, . . . ,YN−1)> δ}, (3)

then
|Highn,δ |

2n → H(X |Y ),

as n→ ∞. Thus, it can be shown that for any fixed ε > 0 and small δ > 0, there exists suitably large n such
that {Ui}i∈Highn,δ

gives a source coding of ~X =(X0,X1, . . . ,XN−1) (with side information~Y =(Y0,Y1, . . . ,YN−1)
with rate ≤ H(X |Y )+ ε .

Our goal is to show that N = 2n can be taken to be just polynomial in 1/ε in order to obtain a rate
≤ H(X |Y )+ ε .

3.3 Bhattacharyya Parameter

In order to analyze a channel W = (X ;Y ), where X takes values in Zq, we will define the q-ary source
Bhattacharyya parameter Zmax(W ) of the channel W as

Zmax(W ) = max
d 6=0

Zd(W ),

where
Zd(W ) = ∑

x∈Zq

∑
y∈Supp(Y )

√
p(x,y)p(x+d,y).

Here, p(x,y) is the probability that X = x and Y = y under the joint probability distribution (X ,Y ).
Now, the maximum likelihood decoder attempts to decode x given y by choosing the most likely symbol

x̂:
x̂ = argmax

x′∈Zq

Pr[X = x′|Y = y].

Let Pe(W ) be the probability of an error under maximum likelihood decoding, i.e., the probability that x̂ 6= x
(or the defining argmax for x̂ is not unique) for random (x,y) ∼ (X ,Y ). It is known (see Proposition 4.7
in [Sas12]) that Zmax(W ) provides an upper bound on Pe(W ):

Lemma 5. If W is a channel with q-ary input, then the error probability of the maximum-likelihood decoder
for a single channel use satisfies

Pe(W )≤ (q−1)Zmax(W ).

Next, the following proposition shows how the Zmax operator behaves on the polarized channels W− and
W+. For a proof, see Theorem 1 in [Sas12].

Lemma 6. Zmax(W+)≤ Zmax(W )2, and Zmax(W−)≤ q3Zmax(W ).

9



Finally, the following lemma shows that Zmax(W ) is small whenever H(W ) is small.

Lemma 7. Zmax(W )2 ≤ (q−1)2H(W ).

The proof follows from Proposition 4.8 of [Sas12].

4 Quantification of Polarization

Our goal is to show “rough” polarization of the channel. More precisely, we wish to show that for some
m = O(lg(1/ε)) and constant K, we have

Pr
i
[Z(W (i)

m )≤ 2−Km]≥ 1−H(W )− ε.

The above polarization result will then be used to show the stronger notion of “fine” polarization, which will
establish the polynomial gap to capacity.

The main ingredient in showing polarization is the following theorem, which quantifies the splitting that
occurs with each polarizing step.

Theorem 8. For any channel W = (A;B), where A takes values in Zq, we have

H(W−)≥ H(W )+α(q) ·H(W )(1−H(W )),

where α(q) is a constant depending only on q.

Theorem 8 follows as a direct consequence of Theorem 1, which we prove in Section 4.2. Section 4.1
focuses on proving Theorem 10 (tackling the unconditioned case), which will be used in the proof of Theo-
rem 1.

4.1 Unconditional Entropy Gain

We first prove some results that provide a lower bound on the normalized entropy H(A+B) of a sum of
random variables A,B in terms of the individual entropies.

Lemma 9. Let A and B be random variables taking values over Zq. Then,

H(A+B)≥max{H(A),H(B)}.

Proof. Without loss of generality, assume H(A) ≥ H(B). Let p be the underlying probability distribution
for A. Let λi = Pr[B = i]. Then, the underlying probability distribution of A+B is λ0 p(+0)+λ1 p(+1)+ · · ·+
λq−1 p(+(q−1)). The desired result then follows directly from Lemma 15.

The next theorem provides a different lower bound for H(A+B).

Theorem 10. Let A and B be random variables taking values over Zq such that H(A)≥ H(B). Then,

H(A+B)≥ 2H(A)+H(B)
3

+ c ·min{H(A)(1−H(A)),H(B)(1−H(B))}

for c = γ3
0 lgq

48q5(q−1)3 lg(6/γ0) lg2 e
, where γ0 =

1
500(q−1)4 lgq .

10



Overview of proof. The proof of the Theorem 10 splits into various cases depending on where H(A) and
H(B) lie. Note that some of these cases overlap. The overall idea is as follows. If H(A) and H(B) are
both bounded away from 0 and 1 (Case 2), then the desired inequality follows from the concavity of the
entropy function, using Lemmas 15 and 16 (note that this uses primality of q). Another setting in which
the inequality can be readily proven is when H(A)−H(B) is bounded away from 0 (which we deal with in
Cases 4 and 5).

Thus, the remaining cases occur when H(A) and H(B) are either both small (Case 1) or both large
(Case 3). In the former case, one can show that A must have most of its weight on a particular symbol,
and similarly for B (note that this is why we must choose γ0 � 1

logq ; otherwise, A could be, for instance,
supported uniformly on a set of size 2). Then, one can use the fact that a q-ary random variable having
weight 1− ε has entropy Θ(ε log(1/ε)) (Lemmas 20 and 21) in order to prove the desired inequality (using
Lemma 22).

For the latter case, we simply show that each of the q symbols of A must have weight close to 1/q, and
similarly for B. Then, we use the fact that such a random variable whose maximum deviation from 1/q is δ

has entropy 1−Θ(δ 2) (Lemma 24) in order to prove the desired result (using Lemma 25).

Proof. Let γ0 be as defined in the theorem statement. Note that we must have at least one of the following
cases:

1. 0≤ H(A),H(B)≤ γ0.

2. γ0
2 ≤ H(A),H(B)≤ 1− γ0

2 .

3. 1− γ0 ≤ H(A),H(B)≤ 1.

4. H(A)> γ0 and H(B)< γ0
2 .

5. H(A)> 1− γ0
2 and H(B)< 1− γ0.

We treat each case separately.

Case 1. Let max0≤ j<q Pr[A = j] = 1− ε , where ε ≤ q−1
q . Note that if ε ≥ 1

e , then Fact 19 implies that

H(A) ≥ −(1− ε) lg(1− ε)

lgq

≥ 1
lgq
·min

{
−1

q
lg
(

1
q

)
,−
(

1− 1
e

)
lg
(

1− 1
e

)}
> γ0,

which is a contradiction. Thus, ε < 1
e .

Now, simply note that if ε > γ0 lgq, then Lemma 20 and Fact 19 would imply that

H(A)≥ ε lg(1/ε)

lgq
> γ0,

a contradiction. Hence, we must have ε ≤ γ0 lgq. Similarly, we can write max0≤ j<q Pr[B = j] = 1− ε ′ for
some positive ε ′ ≤ γ0 lgq. Then, Lemma 22 implies that

H(A+B)≥ 2H(A)+H(B)
3

+
1

51
H(B)(1−H(B)),
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as desired.
Case 2. Let p be the underlying probability distribution for A, and let λi = Pr[B = i]. Then, the underly-
ing probability distribution of A+B is λ0 p(+0) + λ1 p(+1) + · · ·+ λq−1 p(+(q−1)). Let (i0, i1, . . . , iq−1) be a
permutation of (0,1, . . . ,q−1) such that λi0 ≥ λi1 ≥ ·· · ≥ λiq−1 .

Since λ0 +λ1 + · · ·+λq−1 = 1 and max0≤ j≤q−1 λ j = λi0 , we have

λi0 ≥
1
q
. (4)

Next, let ε0 =
γ0

6lg(6/γ0)
. we claim that

λi1 >
ε0

q−1
. (5)

Suppose not, for the sake of contradiction. Then, λi1 ,λi2 , . . . ,λiq−1 ≤
ε0

q−1 , which implies that λi0 = 1−

∑
q−1
j=1 λi j ≥ 1− ε0. Since ε0 ≤min

{
1
e ,

1
500 ,

1
(q−1)4

}
, Lemma 21 and Fact 19 imply that

H(B)≤ 17ε0 lg(1/ε0)

12lgq
,

which is less than γ0
2 , resulting in a contradiction. Thus, (5) is true.

Therefore, by Lemma 15 and Lemma 16,

H(A+B) = H(λ0 p(+0)+λ1 p(+1)+ · · ·+λq−1 p(+(q−1)))

≥ H(A)+
1

2lgq
· λi0λi1

λi0 +λi1
‖p(+i0)− p(+i1)‖2

1

≥ H(A)+
1

2lgq
λi0λi1‖p(+i0)− p(+i1)‖2

≥ H(A)+
λi0λi1(1−H(p))2 lgq

8q4(q−1)2 lg2 e

= H(A)+
λi0λi1γ2

0 lgq
32q4(q−1)2 lg2 e

≥ 2H(A)+H(B)
3

+
ε0γ2

0 lgq
32q5(q−1)3 lg2 e

.

Finally, note that min{H(A)(1−H(A)),H(B)(1−H(B))} ≤ 1
4 , which implies that

ε0γ2
0 lgq

32q5(q−1)3 lg2 e
≥

ε0γ2
0 lgq

8q5(q−1)3 lg2 e
min{H(A)(1−H(A)),H(B)(1−H(B))}.

Therefore,

H(A+B)≥ 2H(A)+H(B)
3

+ c ·min{H(A)(1−H(A)),H(B)(1−H(B))},

where c = γ3
0 lgq

48q5(q−1)3 lg(6/γ0) lg2 e
.

12



Case 3. Let Pr[A = i] = 1
q +δi for 0≤ i≤ q−1. If δ = max0≤i<q |δi|, then by Lemma 24, we have

1− γ0 ≤ H(A)≤ 1− q2(q lnq− (q−1))
(q−1)3 lnq

δ
2,

which implies that

δ ≤

√
γ0(q−1)3 lnq

q2(q lnq− (q−1))
<

1
2q2 .

Similarly, if we let Pr[B = i] = 1
q +δ ′i for all i, and δ ′ = max0≤i<q |δ ′i |, then

δ
′ ≤

√
γ0(q−1)3 lnq

q2(q lnq− (q−1))
<

1
2q2 .

Thus, by Lemma 25, we see that

H(A+B) ≥ H(A)+
lnq

16q2 ·H(A)(1−H(A))

≥ 2H(A)+H(B)
3

+
lnq

16q2 ·min{H(A)(1−H(A)),H(B)(1−H(B))},

as desired.
Case 4. Note that by Lemma 9,

H(A+B)− 2H(A)+H(B)
3

≥ H(A)− 2H(A)+H(B)
3

=
H(A)−H(B)

3

≥ γ0

6

≥ 1
3

H(B)(1−H(B)).

Case 5. As in Case 4, we have that

H(A+B)− 2H(A)+H(B)
3

≥ γ0

6
.

However, this time, the above quantity is bounded from below by 1
3 H(A)(1−H(A)), which completes this

case.

4.2 Conditional Entropy Gain

Theorem 8 now follows as a simple consequence of our main theorem, which we restate and prove below.

Theorem 1. Let (Xi,Yi), i = 1,2 be i.i.d. copies of a correlated random variable (X ,Y ) with X supported
on Zq for a prime q. Then for some α(q)> 0,

H(X1 +X2|Y1,Y2)−H(X |Y )≥ α(q) ·H(X |Y )(1−H(X |Y )). (1)

13



Remark 1. We have not attempted to optimize the dependence of α(q) on q, and our proof gets α(q)≥ 1
qO(1) .

It is easy to see that α(q)≤ O(1/ logq) even without conditioning (i.e., when Y = 0). Understanding what
is the true behavior of α(q) seems like an interesting and basic question about sums of random variables.
For random variables X taking values from a torsion-free group G and with sufficiently large H2(X), it is
known that H2(X1 +X2)−H2(X)≥ 1

2 −o(1) and that this is best possible [Tao10], where H2(·) denotes the
unnormalized entropy (in bits). When G is the group of integers, a lower bound H2(X1 +X2)−H2(X) ≥
g(H2(X)) for an increasing function g(·) was shown for all Z-valued random variables X [HAT14]. For
groups G with torsion, we cannot hope for any entropy increase unless G is finite and isomorphic to Zq for q
prime (as G cannot have non-trivial finite subgroups), and we cannot hope for an absolute entropy increase
even for Zq. So determining the asymptotics of α(q) as a function of q is the analog of the question studied
in [Tao10] for finite groups.

Overview of proof. Let Xy denote X |Y = y. Then, we use an averaging argument: We reduce the desired
inequality to providing a lower bound for ∆y,z = H(Xy +Xz)− H(Xy)+H(Xz)

2 , whose expectation over y,z∼ Y
is the left-hand side of (1). Then, one splits into three cases for small, large, and medium values of H(X |Y ).

Thus, we reduce the problem to aruguing about unconditional entropies. As a first step, one would
expect to prove ∆y,z≥min{H(Xy)(1−H(Xy)),H(Xz)(1−H(Xz))} and use this in the proof of the conditional
inequality. However, this inequality turns out to be too weak to deal with the case in which H(X |Y ) is tiny
(case 2). This is the reason we require Theorem 10, which provides an increase for H(Xy+Xz) over a higher
weighted average instead of the simple average of H(Xy) and H(Xz). Additionally, we use the inequality
H(Xy +Xz)≥max{H(Xy),H(Xz)} to handle certain cases, and this is provided by Lemma 9.

In cases 1 and 3 (for H(X |Y ) in the middle and high regimes), the proof idea is that either (1) there is
a significant mass of (y,z) ∼ Y ×Y for which H(Xy) and H(Xz) are separated, in which case one can use
Lemma 9 to bound E[∆y,z] from below, or (2) there is a significant mass of y∼Y for which H(Xy) lies away
from 0 and 1, in which case H(Xy)(1−H(Xy)) can be bounded from below, enabling us to use Theorem 10.

Proof. Let h = H(X |Y ), and let c be the constants defined in the statement of Theorem 10. Moreover, let
γ1 = 1/20 and let

p = Pr
y

[
H(Xy) ∈

(
γ1

2
,1− γ1

2

)]
.

Also, let Xy denote X |Y = y, and let

∆y,z = H(Xy +Xz)−
H(Xy)+H(Xz)

2
.

Note that Lemma 9 implies that ∆y,z ≥ 0 for all y,z. Also, Ey∼Y,z∼Y [∆y,z] = H(X1 +X2|Y1,Y2)−H(X |Y ). For
simplicity, we will often omit the subscript and write E[∆y,z].

We split into three cases, depending on the value of h.
Case 1: h ∈ (γ1,1− γ1).

• Subcase 1: p ≥ γ1
4 . Note that if H(Xy) ∈

(
γ1
2 ,1−

γ1
2

)
, then H(Xy)(1−H(Xy)) ≥ γ1

2

(
1− γ1

2

)
. Hence,
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by Theorem 10, we have

E[∆y,z] ≥ ∑
y,z

γ1
2 <H(Xy),H(Xz)<1− γ1

2

Pr[Y = y] ·Pr[Y = z]

·
(

H(Xy +Xz)−
2max{H(Xy),H(Xz)}+min{H(Xy),H(Xz)}

3

)
≥ ∑

y,z
γ1
2 <H(Xy),H(Xz)<1− γ1

2

Pr[Y = y] ·Pr[Y = z] · c

·min{H(Xy)(1−H(Xy)),H(Xz)(1−H(Xz))}

≥ cγ1

2

(
1− γ1

2

)
∑
y,z

γ1
2 <H(Xy),H(Xz)<1− γ1

2

Pr[Y = y] ·Pr[Y = z]

= cp2 · γ1

2

(
1− γ1

2

)
≥

cγ3
1

32

(
1− γ1

2

)
≥

cγ3
1

8

(
1− γ1

2

)
·h(1−h).

• Subcase 2: p < γ1
4 . Note that

γ1 < h ≤ Pr
y

[
H(Xy)≤

γ1

2

]
· γ1

2
+Pr

y

[
H(Xy)>

γ1

2

]
·1

≤ γ1

2
+Pr

y

[
H(Xy)>

γ1

2

]
which implies that

Pr
y

[
H(Xy)>

γ1

2

]
≥ γ1

2
.

Thus,

Pr
y

[
H(Xy)≥ 1− γ1

2

]
= Pr

y

[
H(Xy)>

γ1

2

]
−Pr

y

[
γ1

2
< H(Xy)< 1− γ1

2

]
≥ γ1

2
− p

>
γ1

4
. (6)

Also,

1− γ1 > h≥
(

1− γ1

2

)
·Pr

y

[
H(Xy)≥ 1− γ1

2

]
,

which implies that

Pr
y

[
H(Xy)≥ 1− γ1

2

]
<

1− γ1

1− γ1
2
.
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Hence,

Pr
y

[
H(Xy)≤

γ1

2

]
= 1−Pr

y

[
γ1

2
< H(Xy)< 1− γ1

2

]
−Pr

y

[
H(Xy)≥ 1− γ1

2

]
> 1− p− 1− γ1

1− γ1
2

> 1− γ1

4
− 1− γ1

1− γ1
2

≥ γ1

4
. (7)

Using Lemma 9 along with (6) and (7), we now conclude that

E[∆y,z] ≥ ∑
y,z

H(Xy)≥1− γ1
2

H(Xz)≤
γ1
2

Pr[Y = y] ·Pr[Z = z] ·
∣∣∣∣H(Xy)−H(Xz)

2

∣∣∣∣

≥ γ1

4
· γ1

4
· 1− γ1

2
≥ γ2

1 (1− γ1)

8
·h(1−h),

as desired.

Case 2: h≤ γ1. Then, define S =
{

y : H(Xy)>
4
5

}
. We split into two subcases.

• Subcase 1: ∑y∈S Pr[Y = y] ·H(Xy)≥ 2h
3 . Then, Pr[Y ∈ S]≥ 2h

3 , and so, by Lemma 9, we have

Ey,z[H(Xy +Xz)]−h ≥ Pr
y,z

{y,z}∩S 6= /0

Pr[Y = y] ·Pr[Y = z] ·max{H(Xy),H(Xz)}−h

≥ 4
5
(2 ·Pr[Y ∈ S]−Pr[Y ∈ S]2)−h

≥ 4
5

(
2 · 2h

3
−
(

2h
3

)2
)
−h

=
1
15

h
(

1− 16
3

h
)

≥ 1
15

(
1− 16γ1

3

)
h(1−h).

• Subcase 2: ∑y∈S Pr[Y = y] ·H(Xy)<
2h
3 . Then,

∑
y 6∈S

Pr[Y = y] ·H(Xy)>
h
3
. (8)

Moreover, observe that h≥ 4
5 ·Pr[Y ∈ S], implying that

Pr[Y 6∈ S]≥ 1− 5h
4
. (9)
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Hence, using Theorem 10, (8), and (9), we find that

E[∆y,z] ≥ ∑
y,z6∈S

Pr[Y = y] ·Pr[Y = z] ·
(

2max{H(Xy),H(Xz)}+min{H(Xy),H(Xz)}
3

+ c ·min{H(Xy)(1−H(Xy)),H(Xz)(1−H(Xz))}−
H(Xy)+H(Xz)

2

)
≥ ∑

y,z6∈S
Pr[Y = y] ·Pr[Y = z]

(∣∣∣∣H(Xy)−H(Xz)

6

∣∣∣∣+ c
5
·min{H(Xy),H(Xz)}

)
≥ ∑

y,z6∈S
Pr[Y = y] ·Pr[Y = z] ·

(
H(Xy)

6
−
(

1
6
− c

5

)
H(Xz)

)
=

c
5

Pr[Y 6∈ S] ·∑
y 6∈S

Pr[Y = y] ·H(Xy)

>
c
5

(
1− 5h

4

)
· h

3
≥ c
(

1
15
− γ1

12

)
h(1−h), as desired.

Case 3: h≥ 1− γ1. Write γ = 1−h, and let

S =
{

y : H(Xy)> 1− γ

2

}
.

Moreover, let S be the complement of S. We split into two subcases.

1. Subcase 1: Pry[y ∈ S]< 1
10 . Then, letting r = Pry

[
H(Xy)≤ 1

10

]
, we see that

h = 1− γ = ∑
y

H(Xy)≤ 1
10

Pr[Y = y] ·H(Xy)+ ∑
y

H(Xy)>
1
10

Pr[Y = y] ·H(Xy)

≤ 1
10
·Pr

y

[
H(Xy)≤

1
10

]
+1 ·Pr

y

[
H(Xy)>

1
10

]
=

r
10

+(1− r),

which implies that r ≤ 10
9 γ ≤ 10

9 γ1. Hence, letting T =
{

y : 1
10 ≤ H(Xy)≤ 1− γ

2

}
, we see that

Pr
y
[y ∈ T ]≥ 1− 1

10
− r ≥ 9

10
− 10

9
γ1 ≥

1
2
. (10)

Hence, by Theorem 10 and (10),

E[∆y,z] ≥ ∑
y,z∈T

Pr[Y = y] ·Pr[Y = z] ·∆y,z

≥ ∑
y,z∈T

Pr[Y = y] ·Pr[Y = z] · (c ·min{H(Xy)(1−H(Xy)),H(Xz)(1−H(Xz))})

≥ (Pr[Y ∈ T ])2
(

c · γ
2

(
1− γ

2

))
≥ c

8
γ

(
1− γ

2

)
≥ c

8
h(1−h) .
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2. Subcase 2: Pry[y ∈ S]≥ 1
10 . Then, observe that by Lemma 9,

E[∆y,z] ≥ ∑
y∈S
z∈S

Pr[Y = y] ·Pr[Y = z] ·
H(Xy)−H(Xz)

2

=
Pr[Y ∈ S] ·∑y∈S Pr[Y = y] ·H(Xy)−Pr[Y ∈ S] ·∑y∈S Pr[Y = y] ·H(Xy)

2

=
∑y∈S Pr[Y = y]H(Xy)− (1− γ)Pr[Y ∈ S]

2

≥
(
1− γ

2

)
Pr[Y ∈ S]− (1− γ)Pr[Y ∈ S]

2

≥ γ

4
·Pr[Y ∈ S]≥ γ

40
≥ 1

40
h(1−h) .

4.3 Rough Polarization

Now that we have established Theorem 8, we are ready to show rough polarization of the channels W (i)
n ,

0≤ i < 2n, for large enough n. The precise theorem showing rough polarization is as follows.

Theorem 11. There is a constant Λ < 1 such that the following holds. For any Λ < ρ < 1, there exists a
constant bρ such that for all channels W with q-ary input, all ε > 0, and all n > bρ lg(1/ε), there exists a
set

W ′ ⊆ {W (i)
n : 0≤ i≤ 2n−1}

such that for all M ∈W ′, we have Zmax(M)≤ 2ρn and Pri[W
(i)
n ∈W ′]≥ 1−H(W )− ε .

The proof of Theorem 11 follows from the following lemma:

Lemma 12. Let T (W ) = H(W )(1−H(W )) denote the symmetric entropy of a channel W. Then, there
exists a constant Λ < 1 (possibly dependent on q) such that

1
2

(√
T
(

W (2 j)
n+1

)
+

√
T
(

W (2 j+1)
n+1

))
≤ Λ

√
T
(

W ( j)
n

)
(11)

for any 0≤ j < 2n.

The proof of Lemma 12 follows from arguments similar to those in the proof of Lemma 8 in [GX13].
For the sake of completeness, we present a complete proof of Lemma 12 in Appendix B.

We now show how to prove Theorem 11 from Lemma 12. Again, the argument follows the one shown
in the proof of Proposition 5 in [GX13], except that we work with Zmax as opposed to Z.

Proof. For any ρ ∈ (0,1), let

Al
ρ =

{
i : H(W (i)

n )≤ 1−
√

1−4ρn

2

}
Au

ρ =

{
i : H(W (i)

n )≥ 1+
√

1−4ρn

2

}
Aρ = Al

ρ ∪Au
ρ .
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Moreover, note that repeated application of (11), we have

Ei

√
T (W (i)

n )≤ Λ
n
√

T (W )≤ Λn

2
.

Thus, by Markov’s inequality,

Pr
i
[T (W (i)

n )≥ α]≤ Λn

2
√

α
(12)

Then, observe that

H(W ) = Ei

[
H(W (i)

n )
]

≥ Pr[Al
ρ ] ·min

i∈Al
ρ

H(W (i)
n )+Pr[Au

ρ ] ·min
i∈Au

ρ

H(W (i)
n )+Pr[Aρ ] ·min

i∈Aρ

H(W (i)
n )

≥ Pr[Au
ρ ] · (1−2ρ

n). (13)

Therefore,

Pr
i

[
H(W (i)

n )≤ 2ρ
n
]
≥ Pr[Al

ρ ]

= 1−Pr[Au
ρ ]−Pr[Aρ ]

≥ 1−H(W )−Pr[Au
ρ ] ·2ρ

n−Pr[Aρ ] (14)

≥ 1−H(W )−2ρ
n− 1

2
(Λ/
√

ρ)n, (15)

where (14) follows from (13), and (15) follows from (12). Thus, it is clear that if ρ > Λ2, then there exists a
constant aρ such that for n > aρ lg(1/ε), we have

Pr
i

[
H(W (i)

n )≤ 2ρ
n
]
≥ 1−H(W )− ε.

To conclude, note that Lemma 7 implies

Pr
i

[
Zmax(W

(i)
n )≤ 2ρ

n
]
≥ Pr

i

[
H(W (i)

n )≤ 4ρ2n

(q−1)2

]
≥ Pr

i

[
H(W (i)

n )≤ 2
(

ρ2

(q−1)2

)n]
≥ 1−H(W )− ε

for n > bρ lg(1/ε), where bρ = aρ2/(q−1)2 .

4.4 Fine Polarization

Now, we describe the statement of “fine polarization.” This is quantified by the following theorem.

Theorem 13. For any 0 < δ < 1
2 , there exists a constant cδ that satisfies the following statement: For any

q-ary input memoryless channel W and 0 < ε < 1
2 , if n0 > cδ lg(1/ε), then

Pr
i

[
Zmax(W

(i)
n0 )≤ 2−2δn0

]
≥ 1−H(W )− ε.
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The proof follows from arguments similar to those in [AT09, GX13]. For the sake of completeness,
and because there are some slight differences in the behavior of the q-ary Bhattacharyya parameters from
Section 3.3 compared to the binary case, we present a proof in Appendix C.

As a corollary, we obtain the following result on lossless compression with complexity scaling polyno-
mially in the gap to capacity:

Theorem 2. Let X be a q-ary source for q prime with side information Y (which means (X ,Y ) is a correlated
random variable). Let 0 < ε < 1

2 . Then there exists N ≤ (1/ε)c(q) for a constant c(q) < ∞ depending
only on q and an explicit (constructible in poly(N) time) matrix L ∈ {0,1}(H(X |Y )+ε)N×N such that ~X =
(X0,X1, . . . ,XN−1)

t , formed by taking N i.i.d. copies (X0,Y0),(X1,Y1), . . . ,(XN−1,YN−1) of (X ,Y ), can, with
high probability, be recovered from L ·~X and~Y = (Y0,Y1, . . . ,YN−1)

t in poly(N) time.

Proof. Let W = (X ;Y ), and fix δ = 0.499. Also, let N = 2n0 . Then, by Theorem 13, for any n0 > cδ lg(1/ε),
we have that

Pr
i

[
Zmax(W

(i)
n0 )≤ 2−2δn0

]
≥ 1−H(X)− ε.

Moreover, let N = 2n0 . Recall the notation in (3). Then, letting δ ′ = 2−2δn0 , we have that Pri[i ∈Highn0,δ ′ ]≤
H(X |Y )+ ε and Z(W (i)

n0 ) ≥ δ ′ for all i ∈ Highn0,δ ′ . Thus, we can take L to be the linear map Gn0 projected
onto the coordinates of Highn0,δ ′ .

By Lemma 5 and the union bound, the probability that attempting to recover ~X from L ·~X and~Y results
in an error is given by

∑
i 6∈Highn0 ,δ

′

Pe(W
(i)
n0 )≤ ∑

i6∈Highn0 ,δ
′

(q−1)Zmax(W
(i)
n0 )≤ (q−1)Nδ

′ = (q−1)2n0−2δn0
, (16)

which is≤ 2−N0.49
for N ≥ (1/ε)µ for some positive constant µ (possibly depending on q). Hence, it suffices

to take c(q) = 1+max{cδ ,µ}.
Finally, the fact that both the construction of L and the recovery of ~X from L ·~X and ~Y can be done in

poly(N) time follows in a similar fashion to the binary case (see the binning algorithm and the successive
cancellation decoder in [GX13] for details). Moreover, the entries of L are all in {0,1} because of the fact
that L can be obtained by taking a submatrix of BnK⊗n0 , where Bn is a permutation matrix, and K =

(
1 1
0 1

)
(see [Arı10]).

5 Extension to Arbitrary Alphabets

In the previous sections, we have shown polarization and polynomial gap to capacity for polar codes over
prime alphabets. We now describe how to extend this to obtain channel polarization and the explicit con-
struction of a polar code with polynomial gap to capacity over arbitrary alphabets.

The idea is to use the multi-level code construction technique sketched in [STA09] (and also recently in
[LA14] for alphabets of size 2m). We outline the procedure here. Suppose we have a channel W = (X ;Y ),
where X ∈ Zq and Y ∈ Y . Moreover, assume that q = ∏

s
i=1 qi is the prime factorization of q.

Now, we can write X = (U (1),U (2), . . . ,U (s)), where each U (i) is a random variable distributed over [qi].
We also define the channels W (1),W (2), . . . ,W (s) as follows: W ( j) = (U ( j);Y,U (1),U (2), . . . ,U ( j−1)). Note
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that

H(W ) = H(X |Y ) = H(U (1),U (2), . . . ,U (s)|Y )

=
s

∑
j=1

H(U ( j)|Y,U (1),U (2), . . . ,U ( j−1))

=
s

∑
j=1

H(W ( j)),

which means that W splits into W (1),W (2), . . . ,W (s). Since each W ( j) is a channel whose input is over a
prime alphabet, one can polarize each W ( j) separately using the procedure of the previous sections. More
precisely, the encoding procedure is as follows. For N large enough (as specified by Theorem 2), we take
N copies (X0;Y0),(X1;Y1), . . . ,(XN−1;YN−1) of W , where Xi = (U (1)

i ,U (2)
i , . . .U (s)

i ). Then, sequentially for

j = 1,2, . . . ,s, we encode U ( j)
0 ,U ( j)

1 , . . . ,U ( j)
N−1 using

{(
Yi,U

(1)
i ,U (2)

i , . . . ,U ( j−1)
i

)}
i=0,1,...,N−1

as side infor-

mation (which can be done using the procedure of the previous sections, since U j is a source over a prime
alphabet).

For decoding, one can simply use s stages of the successive cancellation decoder. In the jth stage, one
uses the successive cancellation decoder for W ( j) in order to decode U ( j)

0 ,U ( j)
1 , . . . ,U ( j)

N−1, assuming that{
U (k)

i

}
k< j

has been recovered correctly from the previous stages of successive canellation decoding. Note

that the error probability in decoding X0,X1, . . . ,XN−1 can be obtained by taking a union bound over the
error probabilities for each of the s stages of successive cancellation decoding. Since each individual error
probability is exponentially small (see (16)), it follows that the overall error probability is also negligible.

As a consequence, we obtain Theorem 2 for non-prime q, with the additional modification that the map
ZN

q → ZH(X |Y )+ε)N
q is not linear. Moreover, using the translation from source coding to noisy channel coding

(see [Sas12, Sec 2.4]), we obtain the following result for channel coding.

Theorem 3. Let q ≥ 2, and let W be any discrete memoryless channel capacity with input alphabet Zq.
Then, there exists an N ≤ (1/ε)c(q) for a constant c(q)< ∞ depending only on q, as well as a deterministic
poly(N) construction of a q-ary code of block length N and rate at least 1−H(W )− ε , along with a
deterministic N ·poly(logN) time decoding algorithm for the code such that the block error probability for
communication over W is at most 2−N0.49

. Moreover, when q is prime, the constructed codes are linear.

Remark 2. If q is prime, then the q-ary code of Theorem 3 is, in fact, linear.
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A Basic Entropic Lemmas and Proof

For a random variable X taking values in Zq, let H(X) denote the entropy of X , normalized to the interval
[0,1]. More formally, if p is the probability mass function of X , then

H(X) =
1

lgq

q

∑
i=1

p(i) lg(p(i))

Moreover, note for the lemmas and theorems in this section, q ≥ 2 is an integer. We do not make any
primality assumption about q anywhere in this section with the exception of Lemma 16.

Lemma 14. If X and Y are random variables taking values in Zq, then

H(αX +(1−α)Y )≥ αH(X)+(1−α)H(Y )+
1

2lgq
α(1−α)‖X−Y‖2

1.

Proof. This follows from the fact that −H is a 1
lgq -strongly convex function with respect to the `1 norm on

{x = (x1,x2, . . . ,xq) ∈ Rq : x1,x2, . . . ,xq ≥ 0,‖x‖1 ≤ 1}

(see Example 2.5 in [Sha12] for details).

Lemma 15. Let p be a distribution over Zq. Then, if λ0,λ1, . . . ,λq−1 are nonnegative numbers adding up to
1, we have

H(λ0 p(+0)+λ1 p(+1)+ · · ·+λq−1 p(+(q−1)))≥ H(p)+
1

2lgq
·

λiλ j

λi +λ j
‖p(+i)− p(+ j)‖2

1,

for any i 6= j such that λi +λ j > 0.
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Proof. Note that if λi +λ j > 0, then we have that by Lemma 14,

H

(
q−1

∑
k=0

λk p(+k)

)
= H

(
∑

k 6=i, j
λk p(+k)+(λi +λ j)

(
λi

λi +λ j
p(+i)+

λ j

λi +λ j
p(+ j)

))

≥ ∑
k 6=i. j

λkH(p(+k))+(λi +λ j)H
(

λi

λi +λ j
p(+i)+

λ j

λi +λ j
p(+ j)

)
= (1−λi−λ j)H(p)+(λi +λ j)

(
λi

λi +λ j
H(p(+i))+

λ j

λi +λ j
H(p(+ j))

)
+(λi +λ j) ·

1
2lgq

· λi

λi +λ j
·

λ j

λi +λ j
· ‖p(+i)− p(+ j)‖2

1

= H(p)+
1

2lgq
·

λiλ j

λi +λ j
· ‖p(+i)− p(+ j)‖2

1,

as desired.

Lemma 16. Let p be a distribution over Zq, where q is prime. Then,

‖p(+i)− p(+ j)‖1 ≥
(1−H(p)) lgq
2q2(q−1) lge

.

See Lemma 4.5 of [Sas12] for a proof of the above lemma.

Lemma 17. There exists an ε1 > 0 such that for any 0 < ε ≤ ε1, we have

−(1− ε) lg(1− ε)≤−1
6

ε lgε.

Proof. By L’Hôpital’s rule,

lim
ε→0+

(1− ε) lg(1− ε)

ε lgε
= lim

ε→0+

(1− ε) ln(1− ε)

ε lnε
= lim

ε→0+

−1− ln(1− ε)

1+ lnε
= 0,

This implies the claim.

Remark 3. One can, for instance, take ε1 =
1

500 in the above lemma.

The following claim states that for sufficiently small ε , the quantity ε lg
(

q−1
ε

)
is close to −ε lgε . We

omit the proof, which is rather straightforward.

Fact 18. Let ε2 =
1

(q−1)4 . Then, for any 0 < ε ≤ ε2, we have

ε lg
(

q−1
ε

)
≤ 5

4
ε lg(1/ε).

We present one final fact.

Fact 19. The function f (x) = x lg(1/x) is increasing on the interval (0,1/e) and decreasing on the interval
(1/e,1).

Proof. The statement is a simple consequence of the fact that f ′(x) = 1
ln2(−1+ ln(1/x)) is positive on the

interval (0,1/e) and negative on the interval (1/e,1).
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A.1 Low Entropy Variables

Now, we prove lemmas that provide bounds on the entropy of a probability distribution that samples one
symbol in Zq with high probability, i.e., a distribution that has low entropy.

Lemma 20. Suppose 0 < ε < 1. If p is a distribution on Zq with mass 1− ε on one symbol, then

H(p)≥ ε lg(1/ε)

lgq
.

Proof. Recall that the normalized entropy function H is concave. Therefore,

H(p)≥ H(1− ε,ε,0,0, . . . ,0︸ ︷︷ ︸
q−2

).

Note that
H(1− ε,ε,0,0, . . . ,0︸ ︷︷ ︸

q−2

) =
1

lgq
(−(1− ε) lg(1− ε)− ε lgε)≥ −ε lgε

lgq
,

which establishes the claim.

Lemma 21. Suppose 0 < ε ≤min{ε1,ε2}, where ε1 =
1

500 and ε2 =
1

(q−1)4 . If p is a distribution on Zq with
mass 1− ε on one symbol, then

H(p)≤ 17ε lg(1/ε)

12lgq
.

Proof. By concavity of the normalized entropy function H, we have that

H(p)≤ H
(

1− ε,
ε

q−1
,

ε

q−1
, . . . ,

ε

q−1

)
.

Moreover,

H
(

1− ε,
ε

q−1
,

ε

q−1
, . . . ,

ε

q−1

)
=

1
lgq

(
−(1− ε) lg(1− ε)+(q−1) ·

(
ε

q−1
lg

q−1
ε

))

=
−(1− ε) lg(1− ε)

lgq
+

ε lg
(

q−1
ε

)
lgq

.

By Lemma 17 (and the remark following it) and Fact 18, the above quantity is bounded from above by

1
6 ε lg(1/ε)

lgq
+

5
4 ε lg(1/ε)

lgq
=

17ε lg(1/ε)

12lgq
,

as desired.

Remark 4. Lemmas 20 and 21 show that for sufficiently small ε , a random variable X over Zq having weight
1− ε on a particular symbol in Zq has entropy Θ(ε lg(1/ε)/ lgq). This allows us to prove Lemma 22.
Therefore, the constant 17/12 in Lemma 21 is not so critical except that it is close enough to 1 for our
purposes.

Lemma 22. Let X ,Y be random variables taking values in Zq such that H(X) ≥ H(Y ), and assume 0 <
ε,ε ′ ≤min{ε1,ε2}, where ε1 =

1
500 and ε2 =

1
(q−1)4 . Suppose that X has mass 1− ε on one symbol, while Y
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has mass 1− ε ′ on a symbol. Then,

H(X +Y )− 2H(X)+H(Y )
3

≥ 1
51
·H(Y )(1−H(Y )). (17)

Overview of proof. The idea is that ε,ε ′ are small enough that we are able to invoke Lemmas 20 and
21. In particular, we show that X +Y also has high weight on a particular symbol, which allows us to use
Lemma 20 to bound H(X +Y ) from below. Furthermore, we use Lemma 21 in order to bound H(X), H(Y ),
and, therefore, 2H(X)+H(Y )

3 from above. This gives us the necessary entropy increase for the left-hand side
of 17. Note that the constant 1/51 on the right-hand side of 17 is not of any particular importance, and we
have not made any attempt to optimize the constant.

Proof. Let j ∈ Zq such that Pr[X = j] = 1− ε , and let j′ ∈ Zq such that Pr[X = j′] = 1− ε ′. Then,

Pr[X +Y = j+ j′]≥ (1− ε)(1− ε
′)≥

(
499
500

)2

. (18)

(In a slight abuse of notation, j+ j′ will mean j+ j′ (mod q).)
Similarly, let us find an upper bound on Pr[X +Y = j+ j′]. Let p and p′ be the underlying probability

distributions of X and X ′, respectively. Then, observe that Pr[X +Y = j+ j′] can be bounded from above as
follows:

q−1

∑
k=0

p(k)p′( j+ j′− k) = p( j)p′( j′)+ ∑
k 6= j

p(k)p′( j+ j′− k)

≤ (1− ε)(1− ε
′)+ ∑

k 6= j

(
p(k)+ p′( j+ j′− k)

2

)2

≤ (1− ε)(1− ε
′)+

(
∑k 6= j(p(k)+ p′( j+ j′− k))

2

)2

= (1− ε)(1− ε
′)+

(
∑k 6= j p(k)+∑k 6= j′ p′(k)

2

)2

= (1− ε)(1− ε
′)+

(
ε + ε ′

2

)2

= 1−
(

ε + ε
′− 3

2
εε
′− ε2

4
− ε ′2

4

)
≤ 1− 17

18
(ε + ε

′). (19)

Now, by Lemma 21, we have

H(X)≤ 17ε lg(1/ε)

12lgq

and

H(Y )≤ 17ε ′ lg(1/ε ′)

12lgq
.

Also, by (18) and (19), we know that X has mass 1− δ on a symbol, where 17
18(ε + ε ′) ≤ δ < 1

e . Thus, by
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Lemma 20 and Fact 19, we have

H(X +Y )− 2H(X)+H(Y )
3

≥ H(X +Y )− 17
18lgq

ε lg(1/ε)− 17
36lgq

ε
′ lg(1/ε

′)

≥ 1
lgq

(
17
18

(ε + ε
′) lg

(
1

17
18(ε + ε ′)

)
− 17

18
ε lg(1/ε)− 17

36
ε
′ lg(1/ε

′)

)

≥ 1
lgq

(
17
18

(17ε
′+ ε

′) lg

(
1

17
18(17ε ′+ ε ′)

)

−17
18

(17ε
′) lg(1/17ε

′)− 17
36

ε
′ lg(1/ε

′)

)
(20)

=
1

lgq

(
17
18

ε
′ lg(1/17ε

′)− 17
36

ε
′ lg(1/ε

′)

)
≥ 1

36lgq
ε
′ lg(1/ε

′)

≥ 1
51

H(Y )(1−H(Y )),

were (20) follows from the fact that

d
dε

(
17
18

(ε + ε
′) lg

(
1

17
18(ε + ε ′)

)
− 17

18
ε lg(1/ε)− 17

36
ε
′ lg(1/ε

′)

)
=

17
18

(
lg

(
ε

17
18(ε + ε ′)

))
,

which is negative for ε < 17ε ′ and positive for ε > 17ε ′.

A.2 High Entropy Variables

For the remainder of this section, let f (x) = − x lgx
lgq . The following lemma proves lower and upper bounds

on f (x).

Lemma 23. For −1
q ≤ t ≤ q−1

q , we have

1
q
+

(
1− 1

lnq

)
t− q

lnq
t2 ≤ f

(
1
q
+ t
)
≤ 1

q
+

(
1− 1

lnq

)
t− q(q lnq− (q−1))

(q−1)2 lnq
t2. (21)

Proof. Let

g(t) = f
(

1
q
+ t
)
− 1

q
−
(

1− 1
lnq

)
t +

q
lnq

t2.

To prove the lower bound in (21), it suffices to show that g(t) ≥ 0 for all −1
q ≤ t ≤ q−1

q . Note that the first
and second derivatives of g are

g′(t) = −
ln
(

1
q + t

)
lnq

−1+
2qt
lnq

g′′(t) = − 1(
1
q + t

)
lnq

+
2q
lnq

.
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It is clear that g′′(t) is an increasing function of t ∈
(
−1

q ,
q−1

q

)
, and g′′(−1/2q) = 0. Since g′(−1/2q) =

ln2−1
lnq < 0, it follows that g(t) is minimized either at t = −1/q or at the unique value of t > − 1

2q for which
g′(t) = 0. Note that this latter value of t is t = 0, at which g(t) = 0. Moreover, g(−1/q) = 0. Thus, g(t)≥ 0
on the desired domain, which establishes the lower bound.

Now, let us prove the upper bound in (21). Define

h(t) =
1
q
+

(
1− 1

lnq

)
t− q(q lnq− (q−1))

(q−1)2 lnq
t2− f

(
1
q
+ t
)
.

Note that it suffices to show that h(t)≥ 0 for all −1
q ≤ t ≤ q−1

q . Observe that the first and second derivatives
of h are

h′(t) = 1− 2q(q lnq− (q−1))
(q−1)2 lnq

t +
ln
(

1
q + t

)
lnq

h′′(t) = −2q(q lnq− (q−1))
(q−1)2 lnq

+
1(

1
q + t

)
lnq

.

Now, observe that h′(0) = 0 and h′′(0) > 0. Moreover, h′′(t) is decreasing on t ∈
(
−1

q ,
q−1

q

)
. Thus, it

follows that the minimum value of h(t) occurs at either t = 0 or t = q−1
q . Since h(0) = h

(
q−1

q

)
= 0, we

must have that h(t)≥ 0 on the desired domain, which establishes the upper bound.

Next, we prove a lemma that provides lower and upper bounds on the entropy of a distribution that
samples each symbol in Zq with probability close to 1

q .

Lemma 24. Suppose p is a distribution on Zq such that for each 0≤ i≤ q−1, we have p(i) = 1
q +δi with

max0≤i<q |δi|= δ . Then,

1− q2

lnq
δ

2 ≤ H(p)≤ 1− q2(q lnq− (q−1))
(q−1)3 lnq

δ
2.

Proof. Observe that ∑
q−1
i=0 δi = 0. Thus, for the lower bound on H(p), note that

H(p) =
q−1

∑
i=0

f
(

1
q
+δi

)
≥

q−1

∑
i=0

(
1
q
+

(
1− 1

lnq

)
δi−

q
lnq

δ
2
i

)
= 1− q

lnq

q−1

∑
i=0

δ
2
i

≥ 1− q2

lnq
δ

2,

where the second line is obtained using Lemma 23, and the final line uses the fact that |δi| ≤ δ for all i.
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Similarly, note that the upper bound on H(p) can be obtained as follows:

H(p) =
q−1

∑
i=0

f
(

1
q
+δi

)
≤

q−1

∑
i=0

(
1
q
+

(
1− 1

lnq

)
δi−

q(q lnq− (q−1))
(q−1)2 lnq

δ
2
i

)
= 1− q(q lnq− (q−1))

(q−1)2 lnq

q−1

∑
i=0

δ
2
i

≤ 1− q2(q lnq− (q−1))
(q−1)3 lnq

δ
2,

where we have used the fact that

q−1

∑
i=0

δ
2
i ≥ δ

2 +(q−1) ·
(

δ

q−1

)2

=
q

q−1
δ

2.

Remark 5. Lemma 24 shows that if p is a distribution over Zq with max0≤i<q |p(i)− 1
q |= δ , then H(p) =

1−Θq(δ
2).

Lemma 25. Let X and Y be random variables taking values in Zq such that H(X)≥H(Y ). Also, assume 0<
δ ,δ ′ ≤ 1

2q2 . Suppose Pr[X = i] = 1
q +δi and Pr[Y = i] = 1

q +δ ′i for 0≤ i≤ q−1, such that max0≤i<q |δi|= δ

and max0≤i<q |δ ′i |= δ ′. Then,

H(X +Y )−H(X)≥ lnq
16q2 ·H(X)(1−H(X)). (22)

Overview of proof. We show that since X and Y sample all symbols in Zq with probability close to 1/q, it
follows that X +Y also samples each symbol with probability close to 1/q. In particular, one can show that
X +Y samples each symbol with probability in

[
1
q −

δ

2q ,
1
q +

δ

2q

]
. Thus, we can use Lemma 24 to get a lower

bound on H(X +Y ). Similarly, Lemma 24 also gives us an upper bound on H(X). This allows us to bound
the left-hand side of (22) adequately.

Proof. By Lemma 24, we know that

1− q2

lnq
δ

2 ≤ H(X)≤ 1− q2(q lnq− (q−1))
(q−1)3 lnq

δ
2. (23)
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Note that

Pr[X +Y = k] =
q−1

∑
i=0

Pr[X = i]Pr[Y = k− i]

=
q−1

∑
i=0

(
1
q
+δi

)(
1
q
+δ

′
k−i

)
=

1
q
+

q−1

∑
i=0

δiδ
′
k−i

≤ 1
q
+qδδ

′

≤ 1
q
+

δ

2q
.

Similarly,

Pr[X +Y = k] =
1
q
+

q−1

∑
i=0

δiδk−i ≥
1
q
−qδδ

′ ≥ 1
q
− δ

2q
.

Thus, Lemma 24 implies that

H(X +Y )≥ 1− q2

lnq

(
δ

2q

)2

= 1− 1
4lnq

δ
2. (24)

Therefore, by (23) and (24), we have

H(X +Y )−H(X) ≥
(

1− 1
4lnq

δ
2
)
−
(

1− q2(q lnq− (q−1))
(q−1)3 lnq

δ
2
)

=

(
q lnq− (q−1)

(q−1)3 − 1
4q2

)
· q2

lnq
δ

2

≥ lnq
16q2 ·

q2

lnq
δ

2

≥ lnq
16q2 (1−H(X))

≥ lnq
16q2 H(X)(1−H(X)),

as desired.

B Rough Polarization

Proof of Lemma 12: Fix a 0 ≤ j < 2n. Also, let h = H(W ( j)
n ), and let δ = H((W ( j)

n )−)−H(W ( j)
n ) =

H(W ( j)
n )−H((W ( j)

n )+). Then, note that√
T (W (2 j)

n+1 )+

√
T (W (2 j+1)

n+1 ) =
√

h(1−h)+(1−2h)δ −δ 2 +
√

h(1−h)− (1−2h)δ −δ 2. (25)
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For ease of notation, let f : [−1,1]→ R be the function given by

f (x) =
√

h(1−h)+ x+
√

h(1−h)− x.

By symmetry, we may assume that h ≤ 1
2 without loss of generality. Moreover, if we let α = α(q) be the

constant described in Theorem 1, then we know that δ ≥ αh(1− h). Then, since f ′′′(x) ≤ 0 for 0 ≤ x ≤
h(1−h), Taylor’s Theorem implies that√

T (W (2 j)
n+1 )+

√
T (W (2 j+1)

n+1 ) ≤ f ((1−2h)δ )

≤ f (0)+ f ′(0)((1−2h)δ )+
f ′′(0)

2
((1−2h)δ )2

= 2
√

h(1−h)− ((1−2h)δ )2

4(h(1−h))3/2

≤ 2
√

h(1−h)− (αh(1−h)(1−2h))2

4(h(1−h))3/2

= 2
√

h(1−h)− α2

4
(1−2h)2

√
h(1−h).

Thus, if 1−2h≥ α

8+α
, then the desired result follows for Λ≥ 1− 1

2

(
α2

16+2α

)2
.

Next, consider the case in which 1− 2h < α

8+α
. Then, 4

8+α
< h ≤ 1

2 . Hence, δ ≥ αh(1− h) ≥ 2α

8+α
,

which implies that δ ≥ 2(1−2h). It follows that

(1−2h)δ −δ
2 ≤−δ 2

2
.

Hence, by plugging this into (25), we have that

1
2

(√
T (W (2 j)

n+1 )+

√
T (W (2 j+1)

n+1 )

)
≤
√

h(1−h)− δ 2

2

Now, recall that δ ≥ 2α

8+α
, a constant bounded away from 0. Moreover, if c is a positive constant, then

√
x−c√

x

is an increasing function of x for x > c. Since h(1−h)≤ 1
4 , it follows that

1
2

(√
T (W (2 j)

n+1 )+

√
T (W (2 j+1)

n+1 )

)
T (W ( j)

n )
≤

√
h(1−h)− δ 2

2√
h(1−h)

≤

√
1
4 −

δ 2

2√
1
4

≤

√
1− 8α2

(8+α)2 .

We conclude that the desired statement holds for Λ = max
{

1− 1
2

(
α2

16+2α

)2
,
√

1− 8α2

(8+α)2

}
.
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C Fine polarization: Proof of Theorem 13

Theorem 13. For any 0 < δ < 1
2 , there exists a constant cδ that satisfies the following statement: For any

q-ary input memoryless channel W and 0 < ε < 1
2 , if n0 > cδ lg(1/ε), then

Pr
i

[
Zmax(W

(i)
n0 )≤ 2−2δn0

]
≥ 1−H(W )− ε.

Proof. Let ρ ∈ (Λ2,1) be a fixed constant, where Λ is the constant described in Theorem 11, and choose
γ > lg(1/ρ) such that β =

(
1+ 1

γ

)
δ < 1

2 . Then, let us set m =
⌊

n0
1+γ

⌋
and n =

⌈
γn0
1+γ

⌉
, so that n0 = m+n.

Moreover, let d =
⌊

12n lgq
m lg(1/ρ)

⌋
and choose a constant aρ > 0 such that

aρ >
12(ln2)(lgq)

(1−2β )2 lg(1/ρ)

(
1+ lg

(
48γ lgq
lg(1/ρ)

))
.

Now, we choose

n0 > (1+ γ)max
{

2bρ lg(2/ε),
24lg(1/β ) lgq

β lg(1/ρ)
,2aρ lg(2/ε),1,

1
γ

}
, (26)

where bρ is the constant described in Theorem 11. Note that this guarantees that

m > max
{

bρ lg(2/ε),
12lg(1/β ) lgq

β lg(1/ρ)
,aρ lg(2/ε)

}
. (27)

Then, Theorem 11 implies that there exists a set

W ′ ⊆ {W (i)
m : 0≤ i≤ 2m−1} (28)

such that for all M ∈W ′, we have Zmax(M)≤ 2ρm and

Pr
i
[W (i)

m ∈W ′]≥ 1−H(W )− ε

2
. (29)

Let T be the set of indices i for which W (i)
m ∈W ′.

Fix an arbitrary M ∈W ′. Recursively define
{

Z̃(i)
k

}
0≤i≤2k−1

by Z̃(0)
0 = Zmax(M) and

Z̃(i)
k+1 =


(

Z̃bi/2c
k

)2
, i≡ 1 (mod 2)

q3Z̃bi/2c
k , i≡ 0 (mod 2)

.

Now, let us define the sets G j(n)⊆ {i ∈ Z : 0≤ i≤ 2n−1}, for j = 0,1, . . . ,d−1 as follows:

G j(n) =

i : ∑
jn
d ≤k< ( j+1)n

d

ik ≥ βn/d

 ,

where in−1in−2 · · · i0 is the binary representation of i. Also, let G(n) =
⋂

0≤ j<d G j(n). Note that if we choose i
uniformly among 0,1, . . . ,2n−1, then i0, i1, . . . , in−1 are i.i.d. Bernoulli random variables. Thus, Hoeffding’s
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inequality implies that

Pr
0≤i<2n

[i ∈ G j(n)]≥ 1− exp(−(1−2β )2n/2d)

for every j. Hence, by the union bound,

Pr
0≤i<2n

[i ∈ G(n)]≥ 1−d exp(−(1−2β )2n/2d). (30)

Now, assume i∈G(n). Note that Z̃(
bi/2n(d− j−1)/dc)

( j+1)n/d can be obtained by taking Z̃(
bi/2n(d− j)/dc)

jn/d and performing
a sequence of n/d operations, each of which is either z 7→ z2 (squaring) or z 7→ q3z (q3-fold increase). Since
i ∈ G j(n), at least βn/d of the operations must be squarings. Hence, it is not too difficult to see that the

maximum possible value of Z̃(
bi/2n(d− j−1)/dc)

( j+1)n/d is obtained when we have (1−β )n/d q3-fold increases followed
by βn/d squarings. Hence,

lg Z̃(
bi/2n(d− j−1)/dc)

( j+1)n/d ≤ 2βn/d
(

n
d
(1−β )(3lgq)+ lg Z̃(

bi/2n(d− j)/dc)
jn/d

)
.

Making repeated use of the above inequality, we see that

lgZ(M(i)
n ) ≤ lg Z̃(i)

n

≤ 2βn lgZmax(M)+
n
d
(1−β )(3lgq)

(
2βn/d +22βn/d + · · ·+2βn

)
≤ 2βn lgZmax(M)+

n
d
(3lgq)

(1−β )2βn

1−2−
βn
d

≤ 2βn
(

lg(2ρ
m)+

n
d
(3lgq)

)
(31)

≤ −2βn, (32)

where (31) follows from (27) and

2−
n
d β ≤ 2−

βm lg(1/ρ)
12lgq

≤ β ,

while (32) follows from (27) and

lg(2ρ
m)+

n
d
(3lgq) ≤ lg(2ρ

m)+
3n lgq
6n lgq

m lg(1/ρ)

≤ 1−m lg(1/ρ)+
m lg(1/ρ)

2

= 1− m lg(1/ρ)

2
≤ −1.

Therefore, for any 0 ≤ k < 2n0 that can be written as k = 2ni′+ i, for 0 ≤ i′ < 2m and 0 ≤ i < 2n such that
i′ ∈ T and i ∈ G(n), we have that for M =W (i′)

m ,

lgZmax(W
(k)
n0 ) = lgZmax(M

(i)
n )≤−2βn ≤−2δn0 .
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Moreover, by (29), (30), and the union bound, we see that the probability that a uniformly chosen 0≤ k < 2n0

is of the above form is at least

1−H(W )− ε

2
−de−

(1−2β )2n
2d ≥ 1−H(W )− ε

2
− 12n lgq

m lg(1/ρ)
exp
(
−(1−2β )2m lg(1/ρ)

12lgq

)
≥ 1−H(W )− ε

2
− 48γ lgq

lg(1/ρ)
exp
(
−(1−2β )2m lg(1/ρ)

12lgq

)
≥ 1−H(W )− ε

2
− 48γ lgq

lg(1/ρ)

(
ε

2

) aρ (1−2β )2 lg(1/ρ)

12(ln2)(lgq)

≥ 1−H(W )− ε

2
− 48γ lgq

lg(1/ρ)

(
ε

2

)1+lg
(

48γ lgq
lg(1/ρ)

)

≥ 1−H(W )− ε

2
− 48γ lgq

lg(1/ρ)
· ε

2
·
(

1
2

)lg
(

48γ lgq
lg(1/ρ)

)

= 1−H(W )− ε.

So if we take cδ = max
{

4(1+ γ)aρ ,4(1+ γ)bρ ,1+ γ, 1+γ

γ
, 24(1+γ) lg(1/β ) lgq

β lg(1/ρ)

}
, then n0 > cδ lg(1/ε) would

guarantee (26). This completes the proof.
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