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Abstract

Polynomial approximations to boolean functions have led to many positive results in com-
puter science. In particular, polynomial approximations to the sign function underly algorithms
for agnostically learning halfspaces, as well as pseudorandom generators for halfspaces. In this
work, we investigate the limits of these techniques by proving inapproximability results for the
sign function.

Firstly, the “polynomial regression” algorithm of Kalai et al. (SIAM J. Comput. 2008) shows
that halfspaces can be learned with respect to log-concave distributions on Rn in the challenging
agnostic learning model. The power of this algorithm relies on the fact that under log-concave
distributions, halfspaces can be approximated arbitrarily well by low-degree polynomials. We
ask whether this technique can be extended beyond log-concave distributions, and establish a
negative result. We show that polynomials of any degree cannot approximate the sign function
to within arbitrarily low error for a large class of non-log-concave distributions on the real line,
including those with densities proportional to exp(−|x|0.99). This impossibility result extends
to multivariate distributions, and thus gives a strong limitation on the power of the polynomial
regression algorithm for halfspaces.

Secondly, we investigate the derandomization of Chernoff-type concentration inequalities.
Chernoff-type tail bounds on sums of independent random variables have pervasive applications
in theoretical computer science. Schmidt et al. (SIAM J. Discrete Math. 1995) showed that
these inequalities can be established for sums of random variables with only O(log(1/δ))-wise
independence, for a tail probability of δ. We show that their results are tight up to constant
factors.

These results rely on techniques from weighted approximation theory, which studies how
well functions on the real line can be approximated by polynomials under various distributions.
We believe that these techniques will have further applications in other areas of theoretical
computer science.
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1 Introduction

Approximation theory is a classical area of mathematics that studies how well functions can be
approximated by simpler ones. It has found many applications in computer science. Most of these
applications of approximation theory focus on the approximation of functions by polynomials in
the uniform norm (or infinity norm). For instance, approximate degree, which captures how well a
boolean function can be approximated by low-degree polynomials in the uniform norm, underlies
important lower bounds in circuit complexity [Bei93, Bei94, She09], quantum query complexity
[BBC+01, AS04], and communication complexity [She08]. It also underlies state-of-the art algo-
rithms in learning theory [KKMS08, KS04], streaming [HNO08], and in spectral methods [SV14].

While it is compelling to study polynomial approximations under the uniform norm, there are
scenarios where it is more natural to study weighted polynomial approximations, where error is
measured in terms of an Lp norm under some distribution. For instance, in agnostic learning,
the polynomial regression algorithm of Kalai et al. [KKMS08] has guarantees based on how well
functions in a concept class of interest can be approximated by low-degree polynomials in L1

distance.
In this work, we show how ideas from weighted approximation theory can yield tight lower

bounds for several problems in theoretical computer science. As our first application, we establish
a strong limitation on the distributions under which halfspaces can be learned using the polynomial
regression algorithm of Kalai et al. Second, in the area of derandomization, we give a tight charac-
terization of the amount of k-wise independence necessary to establish Chernoff-like concentration
inequalities.

1.1 Agnostically Learning Halfspaces

Halfspaces are a fundamental concept class in machine learning, both in theory and in practice.1

Their study dates back to the Perceptron algorithm of the 1950s. Halfspaces serve as building
blocks in many applications, including boosting and kernel methods.

Halfspaces can be learned in the PAC model [Val84] either by solving a linear program, or via
simple iterative update algorithms (e.g. the Perceptron algorithm). However, learning halfspaces
with classification noise is a much more difficult problem, and often needs to be dealt with in
practice.

In this work, we study a challenging model of adversarial noise – the agnostic learning model of
Kearns et al. [KSSH94]. In this model, a learner has access to examples drawn from a distribution
D on X × {±1} and must output a hypothesis h : X → {±1} such that

P
(x,y)∼D

[h(x) 6= y] ≤ opt + ε,

where opt is the error of the best concept in the concept class – that is, opt = minf∈C P
(x,y)∼D

[f(x) 6= y].

The theory of agnostic learning is not well-understood, even in the case of halfspaces. Positive
results for efficient agnostic learning of high-dimensional halfspaces are restricted to limited classes
of distributions.2 For instance, halfspaces can be learned under the uniform distribution over the

1A halfspace is a function f : Rn → {±1} given by f(x) = sgn(w · x− θ) for w ∈ Rn and θ ∈ R, where sgn(x) = 1
if x ≥ 0 and sgn(x) = −1 otherwise.

2An efficient algorithm is one which runs in time polynomial in the dimension n for any constant ε > 0 – that is,
time nOε(1).
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hypercube or the unit sphere, or on any log-concave distribution [KKMS08]. On the negative side, a
variety of both computational and information-theoretic hardness results are known. For instance,
proper agnostic learning of halfspaces (where the learner is required to output a hypothesis that is
itself a halfspace) is known to be NP-hard [FGKP06]. Moreover, agnostically learning halfspaces
under arbitrary distributions is as hard as PAC learning DNFs [LBW95], which is a longstanding
open problem.

There is essentially only one known technique for agnostically learning high-dimensional halfs-
paces: the L1 regression algorithm [KKMS08], which we discuss in more detail in Section 2.2. In
its most general form, the algorithm selects a linear space of functions H ⊂ {h : X → R}. After
drawing a number of examples (xi, yi) from D, it computes

h∗ = argmin
h∈H

∑
i

|h(xi)− yi|.

The output of the algorithm is sgn(h∗(x)− t) for some t. We need to ensure that the minimisation
can be computed efficiently (e.g. by linear programming) and that every concept f ∈ C can be
approximated by some h ∈ H – that is E

x∼D
[|h(x)− f(x)|] ≤ ε. If this is the case, then C is

agnostically learnable in time poly(|H|).
Kalai et al. (and most subsequent work on learning using L1 regression, e.g. [KOS08, GKK08,

BOW10, KKM13, FK14]) chose H to be the class of low-degree polynomials. They showed that
under certain classes of distributions, every halfspace can be approximated by a polynomial of
degree Oε(1), and hence halfspaces are agnostically learnable in time nOε(1).

Distributional assumptions arise because we use an L1 approximation measure (namely E
x∼D

[|h(x)− f(x)|]),
which depends on the distribution. A distribution-independent approximation would require an L∞
approximation, which is too much to hope for in many circumstances.

1.1.1 Our Results

Can we weaken the distributional assumptions required for learning halfspaces using current tech-
niques? Our result addressing this question (Theorem 2) is a negative one. We show that polynomial
approximations to halfspaces do not exist for a large class of distributions, namely:

Definition 1. An absolutely continuous distribution D on R is a log-superlinear (LSL) distribution
if there exist C > 0 and γ ∈ (0, 1) such that the density w of D satisfies w(x) ≥ C exp(−|x|γ).3

Theorem 2. For any LSL distribution D, there exists ε > 0 such that no polynomial (of any
degree) can approximate the sign function with L1 error less than ε with respect to D.

In particular, this implies that the polynomial regression algorithm is not able to agnostically
learn thresholds on the real line to within arbitrarily small error. Note that this result does not
rule out the possibility that halfspaces can be agnostically learned by other techniques. Indeed, the
classic approach of empirical risk minimization (see [KSSH94] and the references therein) gives an
efficient algorithm for learning thresholds (which are halfspaces in one dimension) under arbitrary
distributions. Thus the problem of learning real thresholds under LSL distributions is an explicit
example for which polynomial regression fails while other techniques can succeed.

3The name log-superlinear comes from the fact that the tails of the probability density function of a LSL distri-
bution are heavier than that of the log-linear Laplace distribution.
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If we were to take γ ≥ 1, the probability density function C(γ)e−|x|
γ

(where C(γ) is a normalising
constant) would give a log-concave distribution, in which case Kalai et al. [KKMS08] show that
good polynomial approximations to halfspaces exist. Thus our result gives a threshold between
where polynomial approximations to halfspaces exist and where they do not.

Our result for thresholds extends readily to an impossibility result for learning halfspaces over
Rn:

Theorem 3. For any product distribution D on Rn with a LSL marginal distribution on some
coordinate, there exists ε > 0 and a halfspace h such that no polynomial can approximate h with L1

error less than ε with respect to D.

Our result echoes prior work establishing the limits of uniform polynomial approximations for
various concept classes. For instance, the seminal work of Minsky and Papert [MP72] showed
that there is an intersection of two halfpsaces over Rn which cannot be represented as the sign
of any polynomial. Building on work of Nisan and Szegedy [NS94], Paturi [Pat92] gave tight
lower bounds for uniform approximations to symmetric boolean functions. This, and subsequent
work on lower bounds for approximate degree, immediately imply limitations for distribution-
independent agnostic learning via polynomial regression. Klivans and Sherstov [KS10] also showed
a strong generalization of Paturi’s result to disjunctions, giving limitations on how well they can
be approximated by linear combinations of arbitrary features. By contrast to all of these results,
our work shows a strong limitation for certain distribution-dependent polynomial approximations.

In the distribution-dependent setting, Feldman and Kothari [FK14] showed that polynomial
regression cannot be used to learn disjunctions with respect to symmetric distributions on the
hypercube. Recent work of Daniely et al. [DLS14] also uses ideas from approximation theory to
show limitations on broad class of regression and kernel-based methods for learning halfspaces,
even under a margin assumption. While our results only apply to polynomial regression, they hold
for approximations of arbitrarily high complexity (i.e. degree), and for a large class of natural
distributions.

The proof of Theorem 2 relies on several Markov-type inequalities for weighted polynomial
approximations. These are generalizations of the classical Markov inequality for uniform approxi-
mations, which gives a bound on the derivative of a low-degree polynomial that is bounded on the
unit interval:

Theorem 4 ([Mar90]). Let p be a polynomial of degree d with |p(x)| ≤ 1 on the interval [−1, 1].
Then |p′(x)| ≤ d2 on [−1, 1].

Early work on the approximate degree of boolean functions [NS94, Pat92] used Markov’s in-
equality to get tight lower bounds on the degree of uniform approximations to symmetric functions.
For weighted approximations under LSL distributions, we actually get a much stronger statement.
It turns out that under LSL distributions, the derivative of a bounded polynomial near the origin
is at most a constant independent of degree. With this powerful fact in hand, the proof of Theorem
2 is quite simple. Consider the threshold function f(t) = sgn(t). Since f has a “jump” at zero, any
good polynomial approximation to f must be bounded and have a large derivative near zero. The
higher quality the approximation, the larger a derivative we need. But since the derivative of any
polynomial is bounded by a constant, we cannot get arbitrarily good approximations to f using
polynomials.

We give the full proof in Section 2.4, and discuss the multivariate generalization in Section 2.5.
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1.1.2 Related Work

There is a rich literature on lower bounds for agnostic learning. In the case of proper agnostic
learning Feldman et. al [FGKP06] gave an optimal NP-hardness result for even weakly agnostically
learn halfspaces over Qn. Guruswami and Raghavendra [GR06] showed that the same is true even
for halfspaces on the boolean hypercube.

There has also been a line of work giving representation-independent hardness of learning half-
spaces based on cryptographic assumptions. Feldman et. al [FGKP06] and Klivans and Sherstov
[KS09] showed that, assuming the security of certain public key encryptions schemes, it is hard to
even PAC learn thresholds and intersections of halfspaces, respectively. These results imply that it
is hard to agnostically learn a single halfspace in the harsh noise regime, i.e. when opt is very close
to 1

2 . Shalev-Schwartz et al. [SSSS11] further showed that halfspaces cannot be efficiently learned
even under a large margin assumptions.

There has also been extensive work proving unconditional lower bounds for restricted learning
algorithms. One well-studied restriction on a learner is that it operates in Kearns’ statistical
query (SQ) model [Kea98, BFJ+94, KS07, FLS11]. This model captures L1 regression, as well
as essentially every technique known for learning (besides Gaussian elimination). Very recently,
Dachman-Soled et al. [DFT+14] showed that polynomial regression is in fact essentially the optimal
SQ algorithm for agnostic learning with respect to product distributions on the hypercube.

The limitations we prove for polynomial regression do not rule out the existence of other agnostic
learning algorithms, including those using L1 regression with different feature spaces. Wimmer
[Wim10] showed how to use a different family of basis functions to learn halfspaces over symmetric
distributions on the hypercube. Subsequent work of Feldman and Kothari [FK14] improved the
running time in the special case of disjunctions. We leave it as an intriguing open question to
determine whether other basis functions can be used to learn halfspaces under LSL distributions.

1.2 Tail Bounds for Limited Independence

The famous Hoeffding bound [Hoe63] implies that if X ∈ {±1}n is a uniform random variable and
r ∈ Rn is fixed, then, for all T ≥ 0,

P
X

[|X · r| ≥ T ] ≤ 2e
− T2

2||r||22 .

We ask the following question:

For what pseudorandom X is the Hoeffding bound true?

More precisely, given T and δ, can we construct a pseudorandom X such that P
X

[|X · r| ≥ T ] ≤ δ

for all r ∈ {±1}n?4 Of particular interest is the parameter regime δ = 1/ poly(n) and T =
Θ(||r||2

√
log(1/δ)). The probabilistic method gives a non-constructive proof that there exists such

an X which can be sampled with seed length O(log(n/δ)). The challenge is to give an explicit
construction of such an X which can be efficiently sampled with a short seed.

This is a very natural pseudorandomness question: Concentration of measure is a fundamental
property of independent random variables and one of the key objectives of pseudorandomness re-
search is to replicate such properties for variables with low entropy. Finding a pseudorandom X

4For simplicity we restrict our attention to r ∈ {±1}n.
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exhibiting good concentration is also a relaxation of a more general and well-studied pseudorandom-
ness question, namely constructing pseudorandom generators that fool linear threshold functions
[DGJ+09, MZ10, GOWZ10, DSTW10]. This can also be viewed as a special case of constructing
pseudorandom generators for space-bounded computation [Nis92, INW94, Rei08, BRRY10, BV10,
KNP11, RSV13].

For δ = 1/poly(n) and T = Θ(
√
n log(1/δ)), we can construct generators X with seed length

O(log2 n) using a variety of methods (including [Nis92, MZ10]). In particular, it suffices for X to
be O(log(1/δ))-wise independent:

Theorem 5 (Tail Bound for Limited Independence). Let n ≥ 1, η > 0, and δ ∈ (0, 1) be given.
Let X ∈ {±1}n be k-wise independent for k = 2dη loge(1/δ)e. Set T = e(η+1)/2η

√
k ||r||2. Then, for

all r ∈ Rn,
P [|X · r| ≥ T ] ≤ δ.

A k-wise independent X ∈ {±1}n can be sampled with seed length O(k ·log n) [ABI85]. Another
construction which achieves seed length O(log n · log(1/δ)) is to sample X from a small-bias space
[NN93]. Very recently, Gopalan et al. [GKM14] constructed a new generator with seed length
Õ(log(n/δ)), which is nearly optimal.

In this work, we ask whether the tail bound of Theorem 5 for k-wise independence is tight.
That is, can we prove stronger tail bounds for k-wise independent X?

Question 6. How much independence is needed for X to satisfy a Hoeffding-like tail bound? That
is, what is the minimum k = k(n, δ, T ) for which any k-wise independent X ∈ {±1}n satisfies

P
X

[|X · r| ≥ T ] ≤ δ

for all r ∈ {−1, 1}n, where · denotes the inner product.

1.2.1 Our Results

Theorem 5 shows that k(n, δ, T ) ≤ O(log(1/δ)) for T = O(
√
n log(1/δ)). In this work, we show

that this is essentially tight:

Theorem 7. For T = c
√
n log(1/δ) (c > 5), we have k(n, δ, T ) = Ω(logc(1/δ)) for sufficiently

large n.

The only previous lower bound was

k(n, δ, T )) ≥ Ω

(
log(1/δ)

log n

)
,

which holds for any T ≤ n and is due to [SSS95]. This is useful if δ < n−ω(1), but the lower
bound is constant in our parameter regime. This lower bound follows from the fact that a random
variable X with support size s cannot give a tail bound with δ < 1/s, and that there exist k-wise
independent distributions with support size s ≤ O(nk).

The most natural way to prove Theorem 7 would be to construct a family of k-wise independent
distributions that do not satisfy the required tail bound. However, we instead study the dual
formulation of the problem (following [Baz09, DETT10]) and then use lower bound techniques
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from approximation theory. To the best of our knowledge, this indirect approach is novel. Our
results imply the existence of k-wise independent distributions with poor tail bounds, but give no
immediate indication as to how to construct them!

We now describe the proof idea in slightly more detail. The answer to Question 6 can be posed in
terms of the value of a certain linear program. The variables represent the probability distribution
of the random variable X and the constraints force X to be k-wise independent. The objective
of the linear program is maximize P [|X · r| ≥ T ]. Thus, the value of the program is at most δ if

and only if k ≥ k(n, δ, T ). Taking the dual of this linear program and appealing to strong duality
yields an alternative characterization of k(n, δ, T ). Namely, k(n, δ, T ) is the smallest k for which
the threshold function FT (x) = 1(|x| ≥ T ) admits an upper sandwiching polynomial of degree k
and expectation at most δ. Here, an upper sandwiching polynomial is simply a polynomial p for
which p(x) ≥ FT (x) pointwise.

We then use ideas from weighted approximation theory to give a lower bound on k for which
such sandwiching polynomials exist. In order to apply these ideas, we make a few symmetrization
and approximation arguments to reduce the problem to a continuous one-dimensional problem:
Find a degree lower bound for a univariate polynomial that is a good upper sandwich for the
function fT (x) = sgn(|x|−T ), with respect to a Gaussian distribution. As in our proof of Theorem
2, the solution of this problem appeals to a weighted Markov-type inequality. Again, the idea is
that an upper sandwich for fT must have a large jump at the threshold T , which is impossible for
low-degree polynomials. The formal proof of this claim is based on a variant of an “infinite-finite
range” inequality, which asserts that the weighted norm of a polynomial on the real line is bounded
by its norm on a finite interval.

2 Agnostically Learning Halfspaces

The class of log-concave distributions over Rn (defined below) is essentially the broadest under
which we know how to agnostically learn halfspaces. While many distributions used in machine
learning are log-concave, such as the normal, Laplace, beta, and Dirichlet distributions, log-concave
distributions do not capture everything. For instance, the log-normal distribution and heavier-tailed
exponential power law distributions are not log-concave. The main motivating question for this
section is whether we can relax the assumption of log-concavity for agnostically learning halfspaces.
To this end, we show a negative result: for LSL distributions, agnostic learning of halfspaces will
require new techniques.

2.1 Background

Our starting point is the work of Kalai et al. [KKMS08]. Among their results is the following.

Theorem 8 ([KKMS08]). The concept class of halfspaces over Rn is agnostically learnable in time
poly(nOε(1)) under log-concave distributions.

A log-concave distribution is an absolutely continuous probability distribution such that the
logarithm of the probability density function is concave. For example, the standard multivariate
Gaussian distribution on Rn has the probability density function x 7→ e−||x||

2
2/2/(2π)n/2. The

natural logarithm of this is −||x||22/2 − n/2 · log(2π), which is concave. The class of log-concave
distributions also includes the Laplace distribution and other natural distributions. However, it
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does not contain heavy-tailed distributions (such as power laws) nor non-smooth distributions (such
as discrete probability distributions).

Kalai et al. also show that we can agnostically learn halfspaces under the uniform distribution
over the hypercube {±1}n or over the unit sphere {x ∈ Rn : ||x||2 = 1}.

2.2 The L1 Regression Algorithm

The results of Kalai et al. are based on the so-called L1 regression algorithm, which relies on being
able to approximate the concept class in question by a low-degree polynomial:

Theorem 9 ([KKMS08]). Fix a distribution D on X × {±1} and a concept class C ⊂ {f : X →
{±1}}.5 Suppose that, for all f ∈ C, there exists a polynomial p : X → R of degree at most d
such that E

x∼DX
[|p(x)− f(x)|] ≤ ε, where DX is the marginal distribution of D on X. Then, with

probability 1− δ the L1 regression algorithm outputs a hypothesis h such that

P
(x,y)∼D

[h(x) 6= y] ≤ min
f∈C

P
(x,y)∼D

[f(x) 6= y] + ε

in time poly(nd, 1/ε, log(1/δ)) with access only to examples drawn from D.

The L1 regression algorithm solves a linear program to find a polynomial p of degree at most d
that minimises

∑
i |p(xi)− yi|, where (xi, yi) are the examples sampled from D. The hypothesis is

then h(x) = sgn(p(x)− t), where t ∈ [−1, 1] is chosen to minimise the error of h on the examples.
Given Theorem 9, proving Theorem 8 reduces to showing that halfspaces can be approximated

by low-degree polynomials under the distributions we are interested in. It is important to note that
making assumptions on the distribution is necessary (barring a major breakthrough): Agnostically
learning halfspaces under arbitrary distributions is at least as hard as PAC learning DNF formulas
[LBW95]. Moreover, proper learning of halfspaces under arbitrary distributions is known to be
NP-hard [FGKP06].

In fact, we can reduce the task of approximating a halfspace to a one-dimensional problem.
A halfspace is given by f(x) = sgn(w · x − θ) for some w ∈ Rn and θ ∈ R. It suffices to find a
univariate polynomial p of degree at most d such that E

x∼Dw,θ
[|p(x)− sgn(x)|] ≤ ε, where Dw,θ is

the distribution of w · x− θ when x is drawn from DX . If DX is log-concave, then so is Dw,θ.

2.3 On the Density of Polynomials

In this section, we give some intuition for why one might expect that polynomial approximations
do not suffice for learning under LSL distributions. It turns out that under a LSL distribution
w, polynomials actually fail to be dense in the space C0[w] of continuous functions vanishing at
infinity when weighted by w. This is in stark contrast to the classical Weierstrass approximation
theorem, which asserts that the polynomials are dense in C0 under the uniform weight. These
kinds of results address Bernstein’s approximation problem [Ber24], a precise statement of which is
as follows.

5Here X = Rn.
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Question 10. Let w : R→ [0, 1] be a measurable function. Let C0[w] denote the space of continuous
functions f for which lim|x|→∞ f(x)w(x) = 0. Under what conditions on w is it true that for every
f ∈ C0[w], there is a sequence of polynomials {pn}∞n=1 for which

lim
n→∞

‖(pn − f)w‖∞ = 0?

(The choice of the L∞ norm here appears to make very little difference). If Bernstein’s problem
admits a positive resolution, we say that the polynomials are dense in C0[w]. The excellent survey
of Lubinsky [Lub07] presents a number of criteria for when polynomials are dense. The one that is
most readily applied was proved by Carleson [Car51] (but appears to be implicit in [IK37]):

Theorem 11. Let w be even and positive with log(w(ex)) concave. Then the polynomials are dense
in C0[w] iff ∫ ∞

0

logw(x)

1 + x2
dx = −∞.

This immediately yields the following dichotomy result for exponential power distributions:

Corollary 12. For γ > 0 and wγ(x) = exp(−|x|γ), the polynomials are dense in C0[wγ ] iff γ ≥ 1.

In particular, this justifies our assertion that the polynomials fail to be dense in the continuous
functions under LSL distributions.

So what does this have to do with agnostically learning halfspaces? Recall that the analysis
of the L1-regression algorithm of Kalai et al. [KKMS08] reduces approximating a halfspace under
a distribution D to the problem of approximating each threshold function sgn(x − θ) under each
marginal distribution of D. So for the algorithm to work, we require D to have marginals w under
which sgn(x − θ) can be approximated arbitrarily well by polynomials. Now if the polynomials
are dense in C0[w], then threshold functions can also be approximated arbitrarily well (since C0[w]
is in turn dense in L1[w]). Such an appeal to density actually underlies Kalai et al.’s proof of
approximability under log-concave distributions. On the other hand, if the polynomials fail to be
dense, then one might conjecture that thresholds cannot be arbitrarily well approximated.

Our result, presented in the next section, confirms the conjecture that even the sign function
cannot be approximated arbitrarily well by polynomials under LSL distributions.

2.4 Lower Bound for One Variable

Consider the LSL density function

wγ(x) := C(γ) exp(−|x|γ)

on the reals for γ ∈ (0, 1), where C(γ) is a normalizing constant. Define the sign function sgn(x) = 1
if x ≥ 0 and sgn(x) = −1 otherwise. In this section, we show that for sufficiently small ε, the sign
function does not have an L1 approximation under the distribution wγ . More formally,

Proposition 13. For any γ ∈ (0, 1), there exists an ε = ε(γ) such that for any polynomial p,∫
R
|p(x)− sgn(x)|wγ(x) dx > ε.
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The proof is based on the following Markov-type inequality, which roughly says that a bounded
polynomial cannot have a large derivative (under the weight wγ). This implies the claim, since the
sign function we are trying to approximate has a large “jump” at the origin.

Lemma 14. For γ ∈ (0, 1) there is a constant M(γ) such that

sup
x∈R

(|p′(x)|wγ(x)) ≤M(γ)

∫
R
|p(x)|wγ(x) dx.

Proof. The lemma is a combination of a Markov-type inequality and a Nikolskii-type, available in
a survey of Nevai [Nev86]:

Theorem 15 ([NT86], [Nev86, Theorem 4.17.4]). There exists a constant C1(γ) such that for any
polynomial p, ∫

R
|p′(x)|wγ(x) dx ≤ C1(γ)

∫
R
|p(x)|wγ(x) dx.

Theorem 16 ([NT87], [Nev86, Theorem 4.17.5]). There exists a constant C2(γ) such that for any
polynomial p,

sup
x

(|p(x)|wγ(x)) ≤ C2(γ)

∫
R
|p(x)|wγ(x) dx.

Proof of Proposition 13. Fix ε ∈ (0, 1) and suppose p is a polynomial satisfying∫
R
|p(x)− sgn(x)|wγ(x) dx ≤ ε.

Since the absolute value of the sign function integrates to 1, this forces∫
R
|p(x)|wγ(x) dx ≤ 1 + ε ≤ 2.

Therefore, we have by Lemma 14 that |p′(x)|wγ(x) ≤ 2M(γ) for every x.
The idea is now to show that there is some x0 for which |p′(x0)|wγ(x0) ≥ Ω(1/ε). To see this,

let δ = 4ε/C(γ) and observe that there must exist some x+ ∈ [0, δ] such that p(x+) ≥ 1/2. If this
were not the case, then we would have∫

R
|p(x)|wγ(x) dx ≥ 1

2

∫ δ

0
C(γ) exp(−δγ) ≥ ε

for δ small enough to make exp(−δγ) ≥ 1/2, yielding a contradiction. A similar argument shows
that there is some x− ∈ [−δ, 0] with p(x−) ≤ −1/2. Therefore, by the mean value theorem, there
is some x0 ∈ [x−, x+] with p′(x0) ≥ 1/2δ = C(γ)/8ε. Moreover, because we took δ small enough,
we also have p′(x0)w(x0) ≥ C(γ)/16ε. This shows that no polynomial ε-approximates sgn as long
as ε < C/32M .

Moreover, the proposition shows that it is impossible to get arbitrarily close polynomial ap-
proximations to halfspaces under densities w for which there are constants C and γ ∈ (0, 1) with
w(x) ≥ C exp(−|x|γ) for all x ∈ R. This shows that LSL distributions on R do not support
polynomial approximations to halfspaces.
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2.5 Extending the Lower Bound to Multivariate Distributions

It is straightforward to extend the lower bound from the previous section to product distributions
with LSL marginals.

Theorem 17. Let X = (X1, . . . , Xn) be a random variable over Rn with density fX(x) = w(x1)f(x2, . . . , xn).
Suppose the density w specifies a univariate γ-LSL distribution. Then there exists an ε = ε(γ) such
that for any polynomial p,∫

Rn
|p(x1, . . . , xn)− sgn(x1)|fX(x1, . . . , xn) dx1dx2 . . . dxn > ε.

That is, the linear threshold function sgn(x1) cannot be approximated arbitrarily well by polynomials.

Proof. Let p(x1, . . . , xn) be a polynomial, and define a univariate polynomial q by “averaging out”
the variables x2, . . . , xn:

q(x1) :=

∫
Rn−1

p(x1, . . . , xn)f(x2, . . . , xn) dx2 . . . dxn.

Then we have∫
R
|q(x1)− sgn(x1)|w(x1) dx1 =

∫
R

∣∣∣∣∫
Rn−1

(p(x1, . . . , xn)− sgn(x1))f(x2, . . . , xn) dx2 . . . dxn

∣∣∣∣w(x1) dx1

≤
∫
R

(∫
Rn−1

|p(x1, . . . , xn)− sgn(x1)|f(x2, . . . , xn) dx2 . . . dxn

)
w(x1) dx1

=

∫
Rn

∫
Rn
|p(x1, . . . , xn)− sgn(x1)|fX(x1, . . . , xn) dx1dx2 . . . dxn.

By Proposition 13, the latter quantity must be at least ε(γ).

Let wnγ (x) ∝ exp(−(|x1|γ + · · · + |xn|γ)) denote the density of the prototypical multivariate
LSL distribution, with each marginal having the same exponential power law distribution. Our
impossibility result holds uniformly for every distribution in the sequence {wnγ}. That is, for every
γ ∈ (0, 1), there exists ε = ε(γ) for which halfspaces cannot be learned by polynomials under any
of the distributions specified by {wnγ}.

As a consequence, we get inapproximability results for several natural classes of distributions
that dominate {wnγ} by constant factors (i.e. not growing with n).

1. Any power-law distribution, i.e. a distribution with density ∝ ‖x‖−M for some constant M ,
since such a distribution dominates every wnγ .

2. Multivariate generalizations of the log-normal distribution, i.e. any distribution with density
∝ exp(−polylog(‖x‖)).

3. Multivariate exponential power distributions, which have densities ∝ exp(−‖x‖γ) for γ ∈
(0, 1). These distributions dominate the prototypical wnγ by the inequality of `p-norms:

‖x‖γ ≤ |x1|γ + · · ·+ |xn|γ

for every 0 ≤ γ ≤ 2.
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3 Tail Bounds for Limited Independence

Our proof consists of three steps:

§3.1 First we reformulate the question of tail bounds for k-wise independent distributions using
linear programming duality and symmetrisation. This reduces the problem to proving a
degree lower bound on univariate polynomials. Namely we need to give a lower bound on
the degree of a polynomial p : {0, 1, · · ·n} → R such that p(i) ≥ 0 for all i, p(i) ≥ 1 if
|i− n/2| ≥ T , and E [p(i)] ≤ δ, where i is drawn from the binomial distribution.

§3.2 We then transform the problem from one about polynomials with a discrete domain to one
about polynomials with a continuous domain. This amounts to showing that, since E [p(i)] ≤ δ
with respect to the binomial distribution, we can bound E [p(x+ n/2)] with respect to a

truncated Gaussian distribution on x.

§3.3 Finally we can apply the tools of weighted approximation theory. We know that p(x+ n/2)
is small for x near the origin, but p(T + n/2) ≥ 1. We show that any low-degree polynomial
that is bounded near the origin cannot grow too quickly. This implies that p must have high
degree.

3.1 Dual Formulation

Question 6 from the introduction is equivalent to finding the smallest k for which the value of the
following linear program is at most δ.

Linear Program Formulation of Question 6

max
ψ

∑
x∈{−1,1}n

ψ(x)FT (x)

s.t.
∑

x∈{−1,1}n
ψ(x)χS(x) = 0 for all |S| ≤ k

∑
x∈{−1,1}n

ψ(x) = 1

0 ≤ ψ(x) ≤ 1 for all x ∈ {−1, 1}n.

Here, FT (x) = 1 if |x| ≥ T and is 0 otherwise, and χS(x) is the Fourier character corresponding to
S ⊆ [n].

If we set P
X

[X = x] = φ(x), then the constraints impose that X is a k-wise independent distri-

bution, while the objective function is P
X

[∣∣∣∑i∈[n]Xi

∣∣∣ ≥ T]. Thus the above linear program finds

the k-wise independent distribution with the worst tail bound. If the value of the program is at
most δ, then all k-wise independent distributions satisfy the tail bound, as required.

Taking the dual of the above linear program yields the following.

Dual Formulation of Question 6
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min
p

2−n
∑

x∈{−1,1}n
p(x)

s.t. deg(p) ≤ k
p(x) ≥ FT (x) for all x ∈ {−1, 1}n.

By strong duality, the value of the dual linear program is the same as that of the primal.
The multilinear polynomial p as an “upper sandwich” of FT – that is, p ≥ FT and E

X∈{±1}n
[p(X)]

is minimal. Therefore, k(n, δ, T ) is the smallest k for which FT admits an upper sandwiching
polynomial of degree k with expectation δ.

Consider the shifted univariate symmetrization of FT

F ′T (x) =

{
1 if |x− n/2| ≥ T
0 otherwise.

By applying the well-known Minsky-Papert symmetrization [MP72] to the dual formulation above,
we get the following characterization.

Theorem 18. The quantity k(n, δ, T ) from Question 6 is the smallest k for which there exists a
degree-k univariate polynomial p : {0, . . . , n} → R such that

1. p(i) ≥ F ′T (i) for all 0 ≤ i ≤ n and

2. 2−n
∑n

i=0

(
n
i

)
p(i) ≤ δ.

The upper bound on k(n, δ, T ) (Theorem 5) is proved (in the appendix) by showing that

p(i) =

(
i− n/2
T

)k
satisfies the requirements of Theorem 18 for an appropriate even k.6 So this characterisation does
in fact capture how upper bounds are proved. The fact that it is a tight characterisation allows us
to prove that a barrier to the technique is in fact an impossibility result.

With this characterisation of our problem, we may move on to proving inapproximability results.

3.2 A Continuous Version

To apply techniques from the theory of weighted polynomial approximations, we move to poly-
nomials on a continuous domain. We replace the binomial distribution upon which Theorem 18
evaluates p with a Gaussian distribution.

Define the probability density function

w(x) =
1√
π
e−x

2
.

We define the L∞ norm with respect to the weight w:

‖g‖L∞(S) = sup
x∈S
|g(x)|w(x).

Now we can give the continuous version of the problem:

6While our results show that this polynomial is asymptotically optimal, numerical experiments have shown that
it is not exactly optimal.
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Theorem 19. Let T = c
√
n log(1/δ) for c ≥ 5, and d = k(n, δ, T ). Assume n ≥ (12c)2(3 log(1/δ))3.

Then for T ′ = 4cT/
√
n, there is a degree d polynomial q such that

1. q(T ′) = q(−T ′) ≥ 1 and

2. ‖q‖L∞[−
√
d,
√
d] ≤ δ

0.9(n+ 1).

The following lemma is key to moving from the discrete to the continous setting. It shows that
if a polynomial is bounded at evenly spaced points, then it must also be bounded between those
points, assuming the number of points is sufficiently large relative to the degree.

Lemma 20. [EZ64, RC66, NS94] Let q be a polynomial of degree d such that |q(i)| ≤ 1 for
i = 0, 1, . . . ,m, where 3d2 ≤ m. Then |q(x)| ≤ 3

2 for all x ∈ [0,m].

Proof. Let a = maxx∈[0,m] |q′(x)|. Then by the mean value theorem, |q(x)| ≤ 1 +a/2 for x ∈ [0,m].
By Markov’s inequality ([Mar90], see also [Che82]),

a ≤ 2d2(1 + a/2)

m
.

Rearranging gives
a

2 + a
≤ d2

m
≤ 1

3
.

Therefore, a ≤ 1, and hence |q(x)| ≤ 3
2 for x ∈ [0,m].

We also require the following anti-concentration lemma.

Lemma 21. (
n

n/2 + α
√
n

)
≥ 2n−6α

2

n+ 1
.

Proof. It is well known via Stirling’s approximation that
(
n
k

)
≥ 2nH(k/n)/(n+1), where H(·) denotes

the binary entropy function. We estimate

H

(
1

2
+

α√
n

)
≥
(

1

2
+

α√
n

)(
1− 2α

(log 2)
√
n

)
+

(
1

2
− α√

n

)(
1 +

2α

(log 2)
√
n

)
≥ 1− 4α2

(log 2)n
,

which concludes the proof.

Proof of Theorem 19. Let p be the polynomial promised by Theorem 18. By Theorem 5, we know
that d ≤ 3 log(1/δ). Define

q(x) = p(x
√
n/4c+ n/2).

Then q(±T ′) = p(±T + n/2) ≥ FT (±T + n/2) = 1, dispensing with the first claim.
Now for all integers i in the interval n/2±

√
nd/4c, we have

2−n
(
n

i

)
|p(i)| ≤ δ
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and hence, by Lemma 21,

|p(i)| ≤ 2nδ( n
n/2+

√
nd/4c

) ≤ (n+ 1)δ26d/16c
2 ≤ (n+ 1)δ1−18/16c

2 ≤ (n+ 1)δ0.9.

By Lemma 20, |p(x)| ≤ 3
2(n+1)δ0.9 on the whole interval n/2±

√
nd/4c. Thus |q(x)| ≤ 3

2(n+1)δ0.9

on [−
√
d,
√
d], completing the proof.

3.3 The Lower Bound

Now we state the result we need from approximation theory. The following “infinite-finite range
inequality” shows that the norm of weighted polynomial on the real line is determined by its norm
on a finite interval around the origin. Thus, an upper bound on the magnitude of a polynomial near
the origin yields a bound on its growth away from the origin.. We will apply this to the polynomial
given to us in Theorem 19.

Theorem 22. For any polynomial p of degree d and B > 1,

‖p‖L∞(R\[−B
√
d,B
√
d]) ≤ (2eB)d exp(−B2d)‖p‖L∞[−

√
d,
√
d].

The proof follows [Lub07, Theorem 6.1] and [Nev86, Theorem 4.16.12].

Proof. Let p̃ be a polynomial of degree d. Let Td(x) denote the dth Chebyshev polynomial of the
first kind [Che82]. By the extremal properties of Td, we have

|p̃(x)| ≤ |Td(x)|
(

max
t∈[−1,1]

|p̃(t)|
)
≤ (2|x|)d

(
max
t∈[−1,1]

|p̃(t)|
)

for |x| ≥ 1. Rescaling p(x) = p̃(x/
√
d) yields

|p(x)| ≤
(

2|x|√
d

)d(
max

t∈[−
√
d,
√
d]
|p(t)|

)
≤
√
πed

(
2|x|√
d

)d
‖p‖L∞[−

√
d,
√
d]

for |x| ≥
√
d. Now let |x| = B

√
d for some B > 1. Then

|p(x)|w(x) ≤ ed(2B)d exp(−B2d)‖p‖L∞[−
√
d,
√
d].

Since the coefficient (2eB)d exp(−B2d) is decreasing in B, this proves the claim.

The above approximation theory result, combined with our continuous formulation Theorem
19, enables us to complete the proof.

Theorem 23. Let T = c
√
n log(1/δ) for c ≥ 5. Assume n ≥ (12c)2(3 log(1/δ))3. Then k(n, δ, T ) >

log(1/δ)/9 log c.

Proof. Let q be the polynomial given by Theorem 19. Let T ′ = 4cT/
√
n, d = log(1/δ)/9 log c, and

B = T ′/
√
d = 12c2

√
log c. For the sake of contradiction, we suppose that q satisfies the conditions

of Theorem 19, but deg(q) ≤ d. Then

‖q‖L∞(R\[−B
√
d,B
√
d]) = ‖q‖L∞(R\[−T ′,T ′]) ≥

exp(−T ′2)√
π

.
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On the other hand, applying Theorem 22, gives

‖q‖L∞(R\[−B
√
d,B
√
d]) ≤ (2eB)d exp(−T ′2)δ0.9(n+ 1).

Combining the two inequalities gives

1√
π
≤ (2eB)dδ0.9(n+ 1) ≤

(
24ec2

√
log(c)

)log(1/δ)/9 log(c)
δ0.9(n+ 1) ≤ δ1/3(n+ 1),

which is a contradiction.

Theorem 23 yields Theorem 7.

4 Further Work

Our negative results naturally suggest a number of directions for future work.
Are halfspaces agnostically learnable under LSL distributions? Our negative result does not

even necessarily rule out the use of L1 regression for this task: The polynomial regression algorithm
of Kalai et al. [KKMS08] is in fact quite flexible. Nothing is really special about the basis of low-
degree monomials, and the algorithm works equally well over any small, efficiently evaluable “feature
space”. That is, if we can show that halfspaces are well-approximated by linear combinations of
features from a feature space F under a distribution D, then we can agnostically learn halfspaces
with respect to D in time proportional to |F|. Could one hope for such approximations? Wimmer
[Wim10] and Feldman and Kothari [FK14] have shown how to use non-polynomial basis functions
to obtain faster learning algorithms on the boolean hypercube. On the other hand, recent work of
Dachman-Soled et al. [DFT+14] shows that, at least for product distributions on the hypercube,
polynomials yield the best basis for L1 regression.

Are there other suitable derandomizations of concentration inequalities? In this work, we fo-
cused on understanding the limits of k-wise independent distributions. Gopalan et al. [GKM14]
gave a much more sophisticated generator with nearly optimal seed length. But could simple, nat-
ural pseudorandom distributions, such as small-bias spaces, give strong tail bounds themselves?
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A Upper Bound for Limited Independence

Theorem 5 follows from the following well-known [SSS95, BR94] lemma, which we prove for com-
pleteness.

Lemma 24. Let X ∈ {±1}n be uniform and r ∈ Rn. For all even k ≥ 2,

E
[
(X · r)k

]
≤
(
e ||r||22 k

)k/2
.

An even stronger form of Lemma 24 follows immediately from the hypercontractivity theorem
[Bon70] [O’D14, §9]: Letting f(x) = x · r, we have

E
[
(X · r)k

]
= ||f ||kk ≤

(
(k − 1)deg(f)/2 ||f ||2

)k
=
(√

k − 1 ||r||2
)k
,

as required. A self-contained proof follows.

Proof. We start by bounding the moment generating function of X · r: Let t ∈ R be fixed later.
For any i ∈ [n], we have

E
[
etriXi

]
=

1

2

(
etri + e−tri

)
=

∞∑
k=0

(tri)
k + (−tri)k

2k!
=

∞∑
k=0

(tri)
2k

(2k)!
≤
∞∑
k=0

(t2r2i )
k

2kk!
= et

2r2i /2.

By independence,

E
[
et(X·r)

]
=

n∏
i=1

E
[
etriXi

]
≤

n∏
i=1

et
2r2i /2 = et

2||r||22/2.

Now we have

E
[
et(X·r)

]
=
∞∑
k=0

tk

k!
E
[
(X · r)k

]
≤ et2||r||

2
2/2.

We wish to bound a single moment, namely E
[
(X · r)k∗

]
for an even k∗. We do this by picking

one term out of the above infinite sum. We have E
[
(X · r)k

]
≥ 0 for even k, so these terms can

be removed from the sum without increasing it. By changing the sign of t, we can ensure that the
sum of the odd terms is positive and thus

tk∗

k∗!
E
[
(X · r)k∗

]
≤
∞∑
k=0

tk

k!
E
[
(X · r)k

]
= E

[
et(X·r)

]
≤ et2||r||

2
2/2.

Rearranging and setting t = ±
√
k∗/ ||r||2, we obtain

E
[
(X · r)k∗

]
≤ k∗!

tk∗
et

2||r||22/2 =
k∗! ||r||k∗2 ek∗/2
√
k∗
k∗

≤

(
k2∗ ||r||

2
2 e

k∗

)k∗/2
= (e ||r||22 k∗)

k∗/2,

as required.
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Now we can prove the upper bound for k-wise independence using the connection between
moment bounds and tail bounds [SSS95].

Proof of Theorem 5. Note that, if X ∈ {±1}n is k-wise independent, then

E
[
(X · r)k

]
=

∑
i1···ik∈[n]

 k∏
j=1

rij

 · E
 k∏
j=1

Xij


is the same as for uniform X, as this is the expectation of a degree-k polynomial. By Lemma 24
and Markov’s inequality, we have (assuming k is even),

P [|X · r| ≥ T ] = P
[
(X · r)k ≥ T k

]
≤

E
[
(X · r)k

]
T k

≤

(
e ||r||22 k
T 2

)k/2
.

Substituting k = 2dη loge(1/δ)e and T = e(η+1)/2η
√
k ||r||2, we have

P [|X · r| ≥ T ] ≤

(
e ||r||22 k

(e(η+1)/2η
√
k ||r||2)2

)dη loge(1/δ)e
= e−dη loge(1/δ)e/η ≤ δ.
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