
On the Minimization of

(Complete) Ordered Binary Decision Diagrams⋆

Beate Bollig⋆⋆

TU Dortmund, LS2 Informatik, Germany

Abstract. Ordered binary decision diagrams (OBDDs) are a popular data structure
for Boolean functions. Some applications work with a restricted variant called com-
plete OBDDs which is strongly related to nonuniform deterministic finite automata.
One of its complexity measures is the width which has been investigated in several
areas in computer science like machine learning, property testing, and the design and
analysis of implicit graph algorithms. For a given function the size and the width
of a (complete) OBDD is very sensitive to the choice of the variable ordering but
the computation of an optimal variable ordering for the OBDD size is known to be
NP-hard. Since optimal variable orderings with respect to the OBDD size are not
necessarily optimal for the complete model or the OBDD width and hardly anything
about the relation between optimal variable orderings with respect to the size and
the width is known, this relationship is investigated. Here, using a new reduction idea
it is shown that the size minimization problem for complete OBDDs and the width
minimization problem are NP-hard.

1 Introduction

Motivation and results Ordered binary decision diagrams (OBDDs) are very restricted
branching programs, a model well-known in complexity theory for space bounded computa-
tions. They are a popular data structure for Boolean functions [8]. Among the many areas
of applications are verification, model checking, and computer aided design (for a survey
see, e.g., [23]). Complete OBDDs are a restricted variant of OBDDs where on all computa-
tion paths all variables have to be tested. (For the formal definitions see Section 2.) They
are closely related to nonuniform deterministic finite automata for Boolean languages L,
where L ⊆ {0, 1}n, n ∈ N. Therefore, they are a fundamental model. An early application
are parallel algorithms for Boolean operations [16, 17]. A complexity measure of (complete)
OBDDs is the width, the maximal number of nodes labeled by the same variable, which has
been investigated in several areas in computer science. For example, OBDDs of bounded
width have been studied in the machine learning context rather extensively. In particular,
the influence of the width on the difficulty of the corresponding learning problem has been
analyzed (see, e.g., [11]). It has been shown that OBDDs of width 2 are PAC-learnable
while OBDDs of width at least 3 are as hard to learn as DNF formulas. Moreover, also
in complexity theory the width of OBDDs has been investigated, e.g., in property testing.
Lower and upper bounds have been shown for testing functions for the property of being
computable by an ordered binary decision diagram of small width, i.e., given oracle access
to a Boolean function f testing whether f can be represented by an OBDD of small width
or is in a certain sense far from any such function [7, 14, 18]. Newman has presented a prop-
erty testing algorithm for any property decidable by an ordered binary decision diagram of

⋆ Preliminary versions of parts of this paper have been appeared in [2, 3]
⋆⋆ The author is supported by DFG project BO 2755/1-2.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 167 (2014)

constant width [15]. The performance of his algorithm, i.e., the number of queries, depends
highly on the width of the input OBDD. Furthermore, the OBDD width has been used in
the analysis of implicit graph algorithms [19, 25]

Maybe the most important issue of OBDDs is the possibility to choose the variable or-
dering The size and the width of (complete) OBDD representing a function f , defined on
n Boolean variables and essentially dependent on all of them, heavily depends on the cho-
sen variable ordering and may vary between linear and exponential size and constant and
exponential width with respect to n. An example for such a function is the most significant
bit of binary addition. Therefore, the choice of good variable orderings is a key problem
for the usability of (complete) OBDDs. For the size of OBDDs it is well-known that we
cannot expect efficient algorithms for the computation of optimal variable orderings for a
function given by an OBDD representation since the corresponding optimization problem
is NP-hard [5]. Even more we cannot hope to design efficient approximation algorithms
unless NP = P [20]. Optimal variable orderings for OBDDs do not necessarily carry over
to optimal variable orderings for the complete model representing the same function. An
example is the multiplexer, also called direct storage access function (for a formal defini-
tion see Section 3). Hence, it seems to be a natural question to ask for the computational
complexity of the variable ordering problem for complete OBDDs. The NP-completeness
or nonapproximability proofs for OBDDs do not work for the complete model because one
key idea in the reductions is the crucial property that in OBDDs not all variables have to
be tested on a path from the source to one of the sinks. Here, we prove that also for com-
plete OBDDs the decision variant of the problem to compute an optimal variable ordering
for a function given by a complete OBDD is NP-complete. The problems for OBDDs and
complete OBDDs look quite similar but it is unclear how to relate the complexity of the
problems directly. Therefore, for the reduction we choose the same NP-complete problem as
in the NP-completeness proof for OBDDs but our construction is different and we use a new
reduction idea. Although many exponential lower bounds on the size of (complete) OBDDs
for Boolean functions are known and the method how to obtain such bounds is simple, there
are only few functions where the size of (complete) OBDDs is asymptotically known exactly
(see, e.g., [1, 4, 6].) Therefore, the proof may also be interesting on its own right in order to
strengthen the ability to prove tight lower bounds. Moreover, knowledge on the relation of
good variable orderings and Boolean functions is fundamental for the design of heuristics
to compute good orderings. Furthermore, the computational complexity to find an optimal
variable ordering such that the corresponding OBDD width for the representation of a given
function is minimal is investigated. Using a new reduction it is shown that the computation
of the minimal OBDD width is NP-hard. The frame of the two NP-completeness proofs in
the paper is the same which underlines the robustness of our construction. The proof are
different because of the different objective functions. In addition we present examples which
prove that optimal variable orderings with respect to the width are not necessarily optimal
with respect to the size of complete OBDDs and vice versa.

Organization of the paper The rest of the paper is organized as follows. In Section 2
we recall the main definitions concerning OBDDs and complete OBDDs. Furthermore, we
give a short summary on the known results how the sizes of the two models are related.
Section 3 presents some results on the relation between optimal variable orderings with
respect to the size and the width of OBDDs. Furthermore, it is shown that optimal variable
orderings with respect to the width are not necessarily optimal with respect to the size
of complete OBDDs. Section 4 is devoted to the NP-completeness proofs of the variable
ordering problems for the width of OBDDs and the size of complete OBDDs. It is described

2

why the NP-completeness proof for OBDDs does not work for the complete variant. The
last section contains a counterexample which proves that optimal variable orderings with
respect to the size are not necessarily optimal with respect to the width of complete OBDDs.
Finally, we finish the paper with some open problems.

2 Preliminaries

In the following we assume that the reader is familiar with fundamental graph theoretical
concepts (otherwise see, e.g., [10] for more details). In this section we briefly recall the main
notions concerning OBDDs and discuss the relation between OBDDs and complete OBDDs.

On (complete) ordered binary decision diagrams OBDDs are a popular dynamic
data structure in areas working with Boolean functions, like circuit verification or model
checking.

Definition 1. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A variable ordering π
on Xn is given by a permutation on {1, . . . , n} leading to the ordered list xπ(1), . . . , xπ(n)

of the variables. A π-OBDD on Xn is a directed acyclic graph G = (V, E) whose sinks are

labeled by the Boolean constants 0 and 1 and whose non-sink (or decision) nodes are labeled

by Boolean variables from Xn. Each decision node has two outgoing edges, one labeled by 0
and the other by 1. The edges between decision nodes have to respect the variable ordering

π, i.e., if an edge leads from an xi-node to an xj-node, then π−1(i) < π−1(j) (xi precedes

xj in xπ(1), . . . , xπ(n)). At each node v a Boolean function fv ∈ Bn, i.e., {0, 1}n → {0, 1}, is

represented. A c-sink represents the constant function c. If fv0 and fv1 are the functions at the

0- or 1-successor of v, resp., and v is labeled by xi, fv is defined by Shannon’s decomposition

rule fv(a) := aifv0 (a) ∨ aifv1(a). In order to evaluate fv(b), b ∈ {0, 1}n, start at v. After

reaching an xi-node choose the outgoing edge with label bi until a sink is reached. The label

of this sink defines fv(b). The size of a π-OBDD G is equal to the number of its decision

nodes. A π-OBDD of minimal size for a given function f and a fixed variable ordering π is

unique up to isomorphism. A π-OBDD for a function f is called reduced if it is the minimal

π-OBDD for f . The π-OBDD size of a function f , denoted by π-OBDD(f), is the size of the

reduced π-OBDD representing f . An OBDD is a π-OBDD for an arbitrary variable ordering

π. The OBDD size of f is the minimum of all π-OBDD(f).

Since (ordered) binary decision diagrams are a nonuniform model of computation, usually
sequences of binary decision diagrams (Gn)n∈N representing a sequence of Boolean functions
(fn)n∈N with respect to sequences of variable orderings (πn)n∈N are considered, where fn

is a Boolean function on n variables. In the following we simplify the notation because the
meaning is clear from the context. To distinguish between vertices of a graph and BDD
vertices in the rest of the paper, we refer to the latter as nodes. A variable ordering is called
a natural variable ordering if π is the identity 1, 2, . . . , n. Obviously a variable ordering π can
be identified with the corresponding ordering xπ(1), . . . , xπ(n) of the variables if the meaning
is clear from the context.

In order to define the width of a π-OBDD complete OBDDs are introduced. Here, there
are only edges between nodes labeled by neighboring variables, i.e., if an edge leads from an
xi-node to an xj -node, then π−1(i) = π−1(j) − 1.

Definition 2. An OBDD on Xn is complete if all paths from the source to one of the sinks

have length n. The width of a complete OBDD is the maximal number of nodes labeled by

3

the same variable. A complete π-OBDD of minimal size for a given function f and a fixed

variable ordering π is unique up to isomorphism. A π-OBDD for a function f is called

quasi-reduced if it is the minimal complete π-OBDD for f . The complete π-OBDD size of a

function f , denoted by π-QOBDD(f), is the size of the quasi-reduced π-OBDD representing

f . The π-OBDD width of a function f , denoted by π-OBDDw(f), is the width of the quasi-

reduced π-OBDD representing f . A complete OBDD, or QOBDD for short, is a complete

π-OBDD for an arbitrary variable ordering π. The complete OBDD size or QOBDD sizei

of f , denoted by QOBDD(f), is the minimum of all π-QOBDD(f). The OBDD width of f
is the minimum of all π-OBDDw(f).

Complete OBDDs are closely related to nonuniform finite automata for Boolean languages L,
where L ⊆ {0, 1}n (see, e.g., Section 3.2 in [23]). With respect to natural variable orderings
they differ from nonuniform deterministic finite automata only in the minor aspect that
variables have still to be tested if the corresponding subfunction is the constant function 0.

Definition 3. A level p, 1 ≤ p ≤ n, in a complete π-OBDD G contains all nodes in G
labeled by the variable at position p in the variable ordering π.

Let f be a Boolean function on the variables x1, . . . , xn. The subfunction f|xi=c, 1 ≤ i ≤ n
and c ∈ {0, 1}, is defined as f(x1, . . . , xi−1, c, xi+1, . . . , xn). A function f depends essentially

on a Boolean variable z if f|z=0 6= f|z=1. Now, the size of the (quasi-)reduced π-OBDD
representing f can be described by the following result.

Proposition 1 ([21]). The number of xπ(i)-nodes in the quasi-reduced (reduced) π-OBDD
for f is equal to the number of different subfunctions

f|xπ(1)=a1,...,xπ(i−1)=ai−1
(that essentially depend on xπ(i)),

where a1, . . . , ai−1 ∈ {0, 1}.

In a reduced OBDD each node encodes a different function, whereas in a quasi-reduced
OBDD each node labeled by the same variable represents a different function.

On the relation between OBDDs and QOBDDs Wegener has compared the size of
quasi-reduced OBDDs with the size of reduced OBDDs for functions defined on n Boolean
variables. For the natural variable ordering he has proved that the quotient is at most
1+O(2−n/3 ·n) for almost all Boolean functions, i.e., all but a fraction of O(2−n/3). This re-
sult does not rule out the possibility that for many functions there exists some ordering of the
variables where the difference is significantly larger but it has also been shown that the max-
imal quotient of the quasi-reduced OBDD and the size of the reduced OBDD with respect to
the same variable ordering for a function f where the maximum is taken over all variable or-
derings is at most 1+O(2−n/3 ·n) for almost all Boolean functions (Theorem 3 and 4 in [24]).
Nevertheless, one may ask for the quotient of the representation sizes not for almost all but
for some important Boolean functions. It is obvious that π-QOBDD(f) ≤ (n+1)π-OBDD(f)
for all Boolean functions f ∈ Bn. Furthermore, it is not difficult to see that π-QOBDD(f) =
Θ(n ·(π-OBDD(f))) for some function f that depends essentially on all n variables. It is easy
to see that the multiplexer is an example for such a function and a variable ordering where
the so-called address variables are tested before the so-called data variables (see Section 3
for a formal definition). In order to compare the size of OBDDs and QOBDDs more closely
one may ask whether there exists a Boolean function f ∈ Bn that depends essentially on all
variables and QOBDD(fn) = Θ(n · OBDD(fn)). In [6] this question has been answered in

4

the affirmative. Therefore, we can conclude that the OBDD size of a function may be a size
factor of Θ(n) smaller than its QOBDD size. The multiplexer has been a good candidate for
a function with the largest possible gap between the OBDD and the QOBDD size but it has
turned out that the multiplexer only leads to a size gap of Θ(n/ log n) [6] (see also Section
3). Despite all these results we hardly know anything about the relation between the variable
orderings that lead to minimal OBDDs and variable orderings for minimal QOBDDs for a
given function f . In the next section we will recall that optimal variable orderings for one
model are not necessarily optimal for the other one.

3 On Optimal Variable Orderings for (Q)OBDDs

In this section we recall that optimal variable orderings with respect to the size of OBDDs
are not necessarily optimal with respect to the size of complete OBDDs and vice versa.
Moreover, we show that variable orderings that are optimal with respect to the size are
not necessarily optimal for the width of OBDDs. Finally, we prove that optimal variable
orderings with respect to the width are not necessarily optimal with respect to the size
of (Q)OBDDs. Our example for the first results is the multiplexer or direct storage access
function.

Definition 4. Let n = 2k. The multiplexer MUXn is defined on n+k variables ak−1, . . . , a0,

x0, . . . , xn−1. The output of MUXn(a, x) is x|a|2
, where |a|2 :=

∑k−1
i=0 ai2

i. The a-variables

are called address variables, the x-variables are the data variables.

Let π be the variable ordering a0, a1, . . . , ak, x0, x1, . . . , xn−1 and π′ be the ordering
ak−1, ak−2, . . . , ak−m, x0, x1, . . . , xn−1, ak−m−1, . . . , a0. The ordering π is optimal with re-
spect to the OBDD size for the multiplexer and π′ is optimal with respect to the QOBDD
size [4, 6]. More precisely, π-OBDD(MUX) is O(n), π-QOBDD(MUX) is O(n2), and π′-
QOBDD(MUX) is O(n2/ log n). Moreover, π-OBDDw(MUX) is O(n) and π′-OBDDw(MUX)
is O(n/ log n) but π′-OBDD(MUX) is O(n3/2/ log n). Therefore, we can conclude that π is
optimal with respect to the OBDD size but not the OBDD width or the QOBDD size and
π′ is optimal with respect to the QOBDD size but not regarding the OBDD size.

In the remaining section we show that an optimal variable ordering with respect to the
width is not necessarily optimal with respect to the size of complete OBDDs. Later we
will see that also an optimal variable ordering with respect to the size of complete OBDDs
is not necessarily optimal with respect to the width of OBDDs (see Section 5). Here, the
proof idea is simple. We combine two Boolean functions defined on disjoint sets of variables
by conjunction, where the first one dominates the width of the OBDD representation. A
concatenation of an optimal variable ordering for the first Boolean function together with
variable orderings for the second one results in an optimal variable ordering with respect to
the width of the OBDD representation for the combination. Here, we use the fact that the
width of a Boolean function cannot be smaller than the width of any subfunction. For the
second Boolean function we can choose suborderings which are not optimal with respect to
the size without changing the width of the representation for the combination of the Boolean
functions. Therefore, we are done. Now, we get more precisely. The auxiliary function g4 is
defined on the x-variables x1, . . . , x4 and g4 := (x1 ∧ x2) ∨ (x3 ∧ x4). Let fn be an arbitrary
Boolean function defined on the y-variables y1, . . . , yn whose OBDD width is at least 4.
Obviously such a function exists. Let π be an optimal variable ordering with respect to the
OBDD width of fn. A new Boolean function is defined as conjunction of fn and g4. The
function hn is defined on the variables x1, . . . , x4, y1, . . . yn, and hn(x, y) := fn(y) ∧ g4(x).

5

Let π′ be yπ(1), . . . , yπ(n), x1, x2, x3, x4 and let π′′ be yπ(1), . . . , yπ(n), x1, x3, x2, x4. It is not
difficult to prove that the variable orderings π′ and π′′ are both optimal with respect to
the OBDD width of hn but π′-QOBDD(hn) is smaller than π′′-QOBDD(hn). Therefore, the
variable ordering π′′ is optimal with respect to the OBDD width but not with respect to the
size of complete OBDDs for the function hn. Figure 1 shows the quasi-reduced sub-OBDDs
for g4.

x1

x2

x3

x4

0

x4

1

0

x2

x3

x4

1

1

0 1 0

0 1

0 1

0 1 0 10 1

x1

x3

x2

x4

0

x2

x4

1

0

x3

x2

0

x2

x4

1

1

1

0 1

0 1

0 1

0 1

0 1

1 0

0 1

0

i) ii)

Fig. 1. Quasi-reduced OBDDs with respect to the variable ordering i) x1, x2, x3, x4 and ii)
x1, x3, x2, x4 for the function g4(x) = (x1 ∧ x2) ∨ (x3 ∧ x4).

Note, our counterexample can also be used to show that optimal variable orderings with
respect to the width are not necessarily optimal regarding the OBDD size and it can also
be used with respect to alternative definitions of the OBDD width (see also the remark at
the end of Section 4).

4 On Variable Ordering Problems for (Q)OBDDs

In this section we show that improving the QOBDD size or the OBDD width of a Boolean
function is NP-complete. First, we define our BDD optimization problems. We start our NP-
completeness proofs by the presentation of two well-known NP-complete layout problems.
Next, we show how graphs can be transformed into Boolean functions. Afterwards we look
at the corresponding BDD representations and a special class of variable orderings called
sandwich variable orderings. We will see how the values for the objective functions for
inputs to the considered layout problems are related to the size and the width of BDDs with
respect to sandwich variable orderings for the corresponding Boolean functions. Finally, we
prove that each variable ordering can be modified into a sandwich variable ordering without
increasing the size or the width of the BDD representation, respectively. Remarkably, the
two NP-completeness proofs have almost the same frame.

The problems Optimal QOBDD and Optimal OBDD Width In the rest of this
section the complexity of the problems Optimal QOBDD and Optimal OBDD Width is
investigated.

6

Definition 5 (Optimal QOBDD). Given a QOBDD G and a size bound B, the answer

to the problem Optimal QOBDD is yes iff the function represented by G can be represented

by a QOBDD (respecting an arbitrary variable ordering) with at most B nodes.

The problem Optimal QOBDD is in the complexity class NP since a QOBDD can be
guessed. The equivalence of QOBDDs with respect to different variable orderings can be
verified similarly as for OBDDs in deterministic polynomial time [12]. The same holds for
the next problem.

Definition 6 (Optimal OBDD Width). Given a QOBDD G and a bound W , the an-

swer to the problem Optimal OBDD Width is yes iff the function represented by G can be

represented by a QOBDD (respecting an arbitrary variable ordering) whose width is at most

W .

The main result of the paper is the following one.

Theorem 1. The problem Optimal QOBDD and the problem Optimal OBDD Width are

NP-complete.

In the following it does not matter whether our input for the investigated optimization
problems are OBDDs or QOBDDs because one model can be transformed into the other
one in linear size for a fixed variable ordering (and functions that essentially depend on all
Boolean variables). Furthermore, we sometimes talk about the QOBDD width of Boolean
functions which is by definition the same as the OBDD width. Our proof that Optimal
OBDD Width is NP-complete also holds for other definitions of the OBDD width (see also
the remark at the end of this section). Since we have already seen that it is not difficult
to show that both problems are in NP, we finish the proof of Theorem 1 in the rest of
this section by presenting polynomial time reductions from two well-known NP-complete
problems introduced in the next paragraph.

Two NP-complete layout problems As for Optimal OBDD in [5, 22] our NP-hardness
proof for Optimal QOBDD uses a polynomial time reduction from the well-known NP-
complete problem Optimal Linear Arrangement. Also for the proof that Optimal OBDD
Width is NP-complete we use a so-called layout problem named CUTWIDTH which is
known to be NP-hard [13].

A linear arrangement or a layout of an undirected graph with n vertices can be seen as a
bijective function from the vertex set into the set {1, 2, . . . , n}. Assuming that the vertices
are identified by the integers from 1 to n, a layout is a permutation. Graph layout problems
are a class of combinatorial optimization problems where the task is to find a permutation of
the vertices of an input graph that optimizes a problem specific objective function. A large
number of important problems from different applications can be formulated as graph layout
problems (see, e.g., [9] for a nice survey on graph layout problems from an algorithmic point
of view). Next, we introduce Optimal Linear Arrangement and Cutwidth. The first problem
asks for a layout such that the sum of the length of all edges in minimal. For the decision
variant the goal is to decide whether there is a linear arrangement such that the sum of the
edge lengths is not greater than a bound given as part of the input.

Definition 7 (Optimal Linear Arrangement). Given an undirected graph H = (V =
{1, 2, . . . , n}, E) and a bound S, the answer to the problem Optimal Linear Arrangement
(OLA) is yes iff there is a permutation τ on {1, 2, . . . , n} such that

cost(τ) :=
∑

{u,v}∈E

|τ−1(u) − τ−1(v)| ≤ S.

7

Obviously, the cost of τ measures the length of all edges if the vertices of H are arranged in
linear order with respect to τ .

For Cutwidth the maximal number of edges cut by any line inserted between two consec-
utive vertices has to be minimized over all possible layouts. Given a graph H and a positive
integer C the decision variant asks whether there is a linear arrangement of its vertices such
that any line inserted between two neighboring vertices in the ordering cuts at most C edges
of the input graph.

Definition 8 (CUTWIDTH). Given an undirected graph H = (V = {1, 2, . . . , n}, E)
and a permutation τ on {1, 2, . . . , n}, the cutwidth of a vertex v ∈ V with respect to τ ,

denote CWτ (v) is the number of edges (u, w) ∈ E satisfying τ−1(u) ≤ τ−1(v) < τ−1(w).
The cutwidth of H with respect to τ is the maximum cutwidth of its vertices: CWτ (H) :=
maxv∈V CWτ (v). The answer to the problem CUTWIDTH is yes iff for an input graph H
and a bound C there is a permutation τ such that CWτ (H) is at most C.

It is not difficult to see that for the definition of CWτ (H) it does not matter whether CWτ (v)
is the number of edges (u, w) ∈ E satisfying τ−1(u) ≤ τ−1(v) < τ−1(w) or τ−1(u) <
τ−1(v) ≤ τ−1(w).

The polynomial time reductions For the proof of Theorem 1 we use polynomial time
reductions from OLA and Cutwidth. Since the frame of the NP-hardness proofs is almost the
same, we describe the two polynomial time reductions together. For both layout problems
one part of the input is a given graph H = (V, E). In the rest of the proof let m := |E|.
Furthermore, w.l.o.g. we assume that the degree of each vertex in V , i.e., the number of
its neighbors, is at least 2. OLA and CUTWIDTH have a second parameter B and C,
respectively, as input. For the reduction from OLA to Optimal QOBDD we have to transform
the input (H, B) for OLA into an input (G, S) for Optimal QOBDD in polynomial time
such that the QOBDD size of the function represented by G is at most S iff the cost of
an optimal linear arrangement for H is at most B. For the reduction from CUTWIDTH
to Optimal OBDD Width we have to transform the input (H, C) for CUTWIDTH into an
input (G, W) for Optimal OBDD Width in polynomial time such that the OBDD width of
the function represented by G is at most W iff the cost of an optimal cut for H is at most
C. The transformation from an undirected graph H into a Boolean function represented by
an QOBDD of polynomial size is the same for both polynomial time reductions.

For the kth edge {i, j} ∈ E, 1 ≤ k ≤ m and i, j ∈ {1, 2, . . . , n}, we introduce an edge func-
tion fk(v1, v2, . . . , vn) = (vi ∨vj). It is easy to see that the size of a quasi-reduced OBDD rep-
resenting fk with respect to a variable ordering vπ(1), vπ(2), . . . , vπ(n) is n+ |π−1(i)−π−1(j)|
plus additional nodes representing the constant function 0. Figure 2 shows an example of a
quasi-reduced OBDD representing an edge function. Another intuition for the definition of
the edge function is the following. If we ignore the nodes representing the constant function 0
in a quasi-reduced π-OBDD for the edge function fk for now, there are two nodes labeled by
a variable vi1 iff π−1(i) < π−1(i1) ≤ π−1(j). For all other v-variables the number of nodes is
1. Now, if we consider the quasi-reduced π-OBDDs for all edge functions of an input graph H
without mergings between the different representations for the edge functions and ignoring
the nodes representing the constant function 0, the maximal number of nodes labeled by
the same variable is equal to m + CWπ(H). Here, we use the observation above that for the
definition of CWπ(H) it does not matter whether CWπ(v) is the number of edges (u, w) in
the input graph H satisfying π−1(u) ≤ π−1(v) < π−1(w) or π−1(u) < π−1(v) ≤ π−1(w).

We have still several problems to solve. First, in order to obtain a single Boolean function
the edge functions have to be combined to one function. Second, we have to make sure that

8

.
.
.

vi

0 1

0 1

0 1 0 1

.
.
.

.
.
.

vj

0 1

vj

0 1

0 10 1

.
.
.

.
.
.

10

0 10 1

Fig. 2. A quasi-reduced OBDD for the edge function fk(v) = vi ∨ vj with respect to a variable
ordering π where π−1(i) < π−1(j).

representations for different edge functions do share the nodes representing the constant
function 0 but no other nodes. Finally, the part of the QOBDD for the representation of the
edge functions should define the width of the ordered binary decision diagram.

In the following we briefly discuss why the polynomial time reduction in the NP-hardness
proof for Optimal OBDD in [5] does not work for our optimization problems. Already in
[5] for each edge of the input graph for OLA a corresponding Boolean function has been
defined (which is different from our edge function). In order to avoid the sharing of nodes
for different edge functions, in case of OBDDs different edge functions have been defined on
disjoint sets of variables. To ensure that the orderings for the variables of the different edge
functions are not completely independent but correspond to an ordering of the vertices of the
input graph for OLA, another function has been added. Its representation size is very large
and and its OBDD size is optimal if all variables that correspond to the same vertex in the
input graph for OLA are tested one after another. Unfortunately, this idea does not work for
QOBDDs. Moreover, the construction does not work for Optimal OBDD Width. Hence, we
use another construction to combine the edge function and to prevent the unwanted sharing
of BDD nodes. The idea is to use two simple functions to frame the edge functions. For the
framing we use counting functions. Intuitively, we will show that there exists an optimal
variable ordering where the variables that represent the vertices of the input graph for the
layout problems are tested in the middle. Therefore, in the corresponding QOBDD the
representations for the edge functions cannot share BDD nodes. Furthermore, we guarantee
that a level that corresponds to one of these variables defines the width of the representation.

Now, we make the ideas more precise. For a variable vector z = (z1, . . . , zn), n ∈ N,
let ‖ z ‖ be

∑n
i=1 zi. The function F ∈ B2m+n is defined on the variable vectors u =

(u1, u2, . . . , um), v = (v1, v2, . . . , vn), and w = (w1, w2, . . . , wm), and

F (u, v, w) :=
m
∨

i=1

(‖ u ‖= i) ∧ fi(v) ∧ (‖ w ‖= i).

9

The u- and the w-variables are called weight variables and the v-variables are called vertex
variables since they represent the vertices of the input graph H . We call a vertex variable
vj essential for an edge function fi iff j is incident to the ith edge in H . F is symmetric on
the u-variables and on the w-variables, respectively. Here, a function is symmetric on two
variables xi and xj if the function does not change when exchanging the variables xi and
xj . If P = {i1, . . . , im} is the set of positions of the u-variables (or w-variables, respectively)
in a variable ordering π, it does not matter which u-variable is tested on which position in
P for the corresponding size or width of a QOBDD for F . Moreover, the roles of the u-and
the w-variables are exchangeable, therefore, in the remaining part of the section we assume
w.l.o.g. that the u-variables are tested in the ordering u1, u2, . . . , um and the w-variables
in the ordering w1, w2, . . . , wm and u1 is the first variable of all u- and w-variables. Our
transformation computes the (quasi-reduced) OBDD representing F with respect to the
ordering u1, u2, . . . , um, v1, v2, . . . , vn, w1, w2, . . . , wm in polynomial time.

A sandwich variable ordering is a variable ordering where the v-variables are tested
between the u- and the w-variables, and all u-variables as well as all w-variables are tested
consecutively. Figure 3 shows the simplified shape of a quasi-reduced OBDD for F with
respect to sandwich orderings.

v -variables

u-variables

w -variables

m

n

m

Fig. 3. The (simplified) shape of a quasi-reduced OBDD for F with respect to a sandwich ordering,
where the vertex variables are tested between the u- and the w-variables. The width of the quasi-
reduced OBDD is at least m + 1 (and at most 2m + 1) and the width is defined by a level that
contains nodes labeled by a v-variable.

The following lemma is not difficult to prove.

Lemma 1. Let π be a sandwich variable ordering and let π′ be the subordering of π on the

v-variables. Then the π-QOBDD size of F (u, v, w) is

m · (m + 1)/2 + n · m + cost(π′) + m · (m + 1)/2 + (m − 1) + (n + m).

Moreover, π-OBDDw of F (u, v, w) is m + 1 + CWπ′(H).

We are now able to define the bounds S and W in our reductions. Let S := m · (m +
1)/2 + n · m + B + m · (m + 1)/2 + (m − 1) + (n + m) and W := m + 1 + C.

10

In order to prove the correctness of our reductions we have to show that the input graph
H has a linear arrangement whose cost is bounded by B iff F can be represented by a
QOBDD with at most S nodes and it has a minimum cut whose cost is bounded by C iff F
can be represented by a QOBDD whose width is at most W . Using Lemma 1 the only-if-parts
are easy. The if-parts of the correctness proofs are the tricky ones. By our considerations
above it remains to prove that some variable ordering for F = (u, v, w) which is optimal with
respect to the QOBDD size or OBDD width, respectively, is a sandwich variable ordering.

Our proof structure is to modify a given (optimal) variable ordering π in three phases
until it is a sandwich variable ordering. We will see that each phase does not increase the
size and the width of the BDD representation, therefore we will be done.

In all phases we do not change the ordering among the u-variables, among the v-variables,
and among the w-variables, respectively. Remember we assume w.l.o.g. that the first weight
variable is a u-variable. First, we ensure that all u-variables are tested before all w-variables.
We do this by exchanging the positions of the first w-variable in the variable ordering and the
following u-variable without increasing the size and the width of the corresponding QOBDD.
Since the procedure can be iterated, we are done. Figure 4 illustrates the modification in
the variable ordering after one step.

Lemma 2. Let π be a variable ordering on the u-, v-, and w-variables and let ik be the posi-

tion of the variable uk and let jk be the position of the variable wk, 1 ≤ j ≤ m. Furthermore,

let j1 be between il and il+1, l ∈ {1, . . . , m − 1}. Let π′ be the variable ordering where the

variable w1 is at position il+1 and ul+1 is at position j1 and all other variables are ordered

according to π. Then π′-OBDDw(F) is not larger than π-OBDDw(F) and π′-QOBDD(F)
is not larger than π-QOBDD(F).

i)

2m+ n

ii)

2m+ n

1 2 3 4

1 2 3 4

Fig. 4. A simplified description how the variable orderings π and π′ differ. The arrows pointing
down indicate the positions of the u-variables and the arrows pointing up the positions of the
w-variables. Figure i) symbolizes the variable ordering π, Figure ii) the ordering π′.

Next, we change the variable ordering in such a way that the u-variables are tested in
the beginning. Figure 5 visualizes how the variable orderings differ.

Lemma 3. Let π be a variable ordering on the u-, v-, and w-variables where all u-variables

are before the w-variable. Let π′ be the variable ordering that starts with the u-variables

followed by the remaining variables in the same order as in π. Then π′-OBDDw(F) is not

larger than π-OBDDw(F) and π′-QOBDD(F) is not larger than π-QOBDD(F).

Finally, we modify the variable ordering such that the w-variables are tested in the end.
Figure 6 illustrates the difference between variable orderings.

11

i)

2m+ n

ii)

2m+ n

1 2 3 4

1 2 3 4

Fig. 5. A simplified description how the variable orderings π and π′ differ. Figure i) symbolizes the
variable ordering π and Figure ii) illustrates the ordering π′. In both orderings the u-variables are
before the w-variables, furthermore in π′ all u-variables are in the beginning of the ordering.

Lemma 4. Let π be a variable ordering on the u-, v-, and w-variables that starts with the

u-variables. Let π′ be the variable ordering where the u-variables are in the beginning of the

ordering, the v-variables are ordered in the same suborder as in π, and the w-variables are

the last variables in the ordering. Then π′-OBDDw(F) is not larger than π-OBDDw(F) and

π′-QOBDD(F) is not larger than π-QOBDD(F).

i)

2m+ n

ii)

2m+ n

1 2 3 4

1 2 3 4

Fig. 6. A simplified description how the variable orderings π and π′ differ. Figure i) symbolizes the
variable ordering π and Figure ii) illustrates the ordering π′. In both orderings the u-variables are
in the beginning. Moreover, in π′ the w-variables are in the end of the ordering.

Since each phase does not increase the size and the width of the BDD representation, we
are done. By Lemma 2-4 we have shown the following results.

Corollary 1. There exists a sandwich variable ordering that is optimal with respect to the

size of a QOBDD for F (u, v, w).

Corollary 2. There exists a sandwich variable ordering that is optimal with respect to the

width of an OBDD for F (u, v, w).

Remark Note that throughout the paper the width of an OBDD is defined via the complete
or leveled model as is often the case in the literature (see, e.g., [7, 11, 14, 15, 18]). One might
argue that in applications often reduced OBDDs are used and therefore another definition
of the width like the maximal number of nodes labeled by the same variable or the maximal
number of nodes with the same distance from the source would be more appropriate. How-
ever, in this case our NP-completeness proof can be adapted by a modification of the edge
functions from f(v) = vi ∨ vj into

f(v) = (vi ⊕ vj) ∧
∧

1≤ℓ≤n
ℓ /∈{i,j}

vℓ.

12

5 On Optimal Variable Orderings for (Q)OBDDs

In this section we demonstrate that an ordering optimal with respect to the QOBDD size is
not necessarily optimal with respect to the OBDD width. For clarity we present our coun-
terexample not as a Boolean function but as a graph. First, we justify why we can do that.
We have already shown that the problems Optimal QOBDD and Optimal OBDD Width
are NP-complete (see Section 4). For these results we have used two polynomial time re-
ductions from two well-known NP-complete graph problems: Optimal Linear Arrangement
and Cutwidth. The first part of the reductions in the NP-completeness proofs is the poly-
nomial time transformation from an input graph G = (V, E) into a corresponding Boolean
function F . For each edge a single Boolean function is created and in order to combine all
Boolean functions for the edges into one Boolean function and to avoid mergings between
subfunctions for different edges, the so-called edge functions are framed by counting func-
tions. The NP-completeness proofs have shown that there exist optimal variable orderings
called sandwich variable orderings where the v-variables are tested between the u- and the
w-variables (see Figure 3 for the structure of an optimal QOBDD with respect to such an
ordering). Now, let S be the sum of the length of all edges for a linear ordering of the ver-
tices in G and C be the cutwidth of the ordering. Then there are ((m + 1)n + S) v-nodes
in a reduced QOBDD for F with respect to a sandwich ordering where the v-variables are
ordered with respect to the given linear ordering. Moreover, it can be shown that the width
is m + 1 + C. Therefore, it is sufficient to present an input graph G, for which there exist
two linear orderings of the vertices such that the sum of the length of all edges is minimal
but the corresponding cutwidth of G with respect to the two orderings are different. It is not
surprising that an optimal linear ordering for Optimal Linear Arrangement is not necessarily
optimal for Cutwidth. Nevertheless, despite all our efforts we could not find an example in
the literature for which an optimal solution for Optimal Linear Arrangement is not optimal
for Cutwidth. Therefore, in the following we present such an example. Figure 7 shows the
graph we are looking for.

Fig. 7. The graph in our counterexample with respect to two different linear orderings i)
u′′, u′, u, h3, w1, v1, v2, w2, v3, w3, h1, h2 and ii) h3, w1, v1, v2, w2, v3, w3, h1, h2, u, u′, u′′.

For the orderings
u′′, u′, u, h3, w1, v1, v2, w2, v3, w3, h1, h2

13

and

h3, w1, v1, v2, w2, v3, w3, h1, h2, u, u′, u′′

the sum of the lengths of all edges is 36. By case inspection it can be shown that the orderings
are minimal with respect to the sum of the lengths of all edges. The cutwidth of the first
ordering is 6, the cutwidth of the second one 5. Therefore, we are done. To generalize our
result for sequences of Boolean functions, we combine the Boolean function F of our graph
by conjunction with the parity function on the variables z1, z2, . . . , zn. The variable orderings
to be considered start with the z-variables in arbitrary order followed by the two orderings
for F mentioned above. We finish the presentation of our counterexample by some remarks
on the intuition how the graph has been constructed. Our counterexample consists of four
subgraphs. For technical reasons in one of our NP-completeness proofs, each vertex has a
degree of at least two which we have to take into consideration by the construction of our
counterexample. The core of the graph is a complete bipartite graph on the variables in
V = {v1, v2, v3} and W = {w1, w2, w3} together with an additional edge between v1 and v2.
The additional edge should destroy the symmetry between V and W . Moreover, there are
two auxiliary subgraphs. The first one ensures that the vertices v1 and w1 have to be at the
left or right border in a linear subordering of the V - and W -variables in order to minimize
the sum of the lengths of all edges. The task of the second one is similar with respect to the
vertices v3 and w3 but in addition another vertex is introduced to guarantee that the vertex
w2 has to be just in the middle of a linear (sub-)ordering. The important part of the fourth
subgraph is the vertex u which is connected to the vertex w2. As each vertex should have
degree at least two the vertices u′ and u′′ are defined which build together with the vertex
u a triangle. The cutwidth of the graph varies if u is tested before or after the vertex w2,
respectively.

Concluding Remarks

We finish the paper with some open problems. An open question is how large the difference
could be between the minimal size of a complete OBDD for a function f and the size
of a complete minimal OBDD for f . We know that the difference cannot asymptotically
be larger than a factor of n and a lower bound of log n is known for the multiplexer [6].
Moreover, given two variable orderings π and π′ such that π-OBDD(f) and π′-OBDD(f)
are (almost) of the same order, e.g., π-OBDD(f) = Θ(π′-OBDD(f)), are the quasi-reduced
OBDDs for f with respect to π and π′ also of the same order? Furthermore, we do not
know whether there exists a function defined on n Boolean variables such that the difference
between QOBDD(f) and OBDDw(f) is only o(n). Otherwise, if there are any approximation
algorithms for one minimization problem they could be used for the other one (and vice
versa) leading approximately to the same performance ratio.

References

1. Bollig, B.: On the size of (generalized) OBDDs for threshold functions. Inf. Process. Lett.
109(10), 499–503 (2009)

2. Bollig, B.: On the complexity of some ordering problems. In: Proc. of MFCS. pp. 118–129.
LNCS 8635, Springer (2014)

3. Bollig, B.: On the width of ordered binary decision diagrams. In: Proc. of COCOA. LNCS 8881,
Springer (2014)

14

4. Bollig, B., Range, N., Wegener, I.: Exact OBDD bounds for some fundamental functions. Theory
of Computing Systems 47(2), 593–609 (2010)

5. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete. IEEE Trans.
Computers 45(9), 993–1002 (1996)

6. Bollig, B., Wegener, I.: Asymptotically optimal bounds for OBDDs and the solution of some
basic OBDD problems. Journal of Computing and System Science 61(3), 558–579 (2000)

7. Brody, J., Matulef, K., Wu, C.: Lower bounds for testing computability by small width OBDDs.
In: TAMC. pp. 320–331. LNCS 6648, Springer (2011)

8. Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Computers
35(8), 677–691 (1986)

9. Díaz, J., Petit, J., Serna, M.J.: A survey of graph layout problems. ACM Comput. Surv. 34(3),
313–356 (2002)

10. Diestel, R.: Graph Theory, 4th Edition, Graduate texts in mathematics, vol. 173. Springer
(2012)

11. Ergün, F., Kumar, R., Rubinfeld, R.: On learning bounded-width branching programs. In:
COLT. pp. 361–368 (1995)

12. Fortune, F., Hopcroft, J., Schmidt, E.: The complexity of equivalence and containment for free
single variable program schemes. In: Proc. of ICALP. pp. 227–240. LNCS 62, Springer (1978)

13. Gavril, F.: Some NP-complete problems on graphs. In: 11th Conference on Information Science
and Systems. pp. 91–95 (1977)

14. Goldreich, O.: On testing computability by small width OBDDs. In: APPROX-RANDOM. pp.
574–587 (2010)

15. Newman, I.: Testing membership in languages that have small width branching programs. SIAM
J. Comput. 31(5), 1557–1570 (2002)

16. Ochi, H., Ishiura, N., Yajima, S.: Breadth-first manipulation of SBDD of boolean functions for
vector processing. In: DAC. pp. 413–416 (1991)

17. Ochi, H., Yasuoka, K., Yajima, S.: Breadth-first manipulation of very large binary-decision
diagrams. In: ICCAD. pp. 48–55 (1993)

18. Ron, D., Tsur, G.: Testing computability by width-two OBDDs. Theor. Comput. Sci. 420, 64–79
(2012)

19. Sawitzki, D.: The complexity of problems on implicitly represented inputs. In: Proc. of
SOFSEM. pp. 471–482. LNCS 3831, Springer (2006)

20. Sieling, D.: The nonapproximability of OBDD minimization. Information and Computation
172(2), 103–138 (2002)

21. Sieling, D., Wegener, I.: NC-algorithms for operations on binary decision diagrams. Parallel
Processing Letters 3, 3–12 (1993)

22. Tani, S., Hamagushi, K., Yajima, S.: The complexity of the optimal variable ordering problems
of a shared binary decision diagram. In: Proc. of ISAAC. pp. 389–396. LNCS 762, Springer
(1993)

23. Wegener, I.: Branching programs and binary decision diagrams: theory and applications. SIAM
(2000)

24. Wegener, I.: The size of reduced OBDDs and optimal read-once branching programs for almost
all boolean functions. IEEE Trans. Computers 43(11), 1262–1269 (1994)

25. Woelfel, P.: Symbolic topological sorting with OBDDs. J. Discrete Algorithms 4(1), 51–71
(2006)

Appendix A: Proof of Lemma 2

Let G be the quasi-reduced π-QOBDD representing the function F on the u-, v-, and w-
variables, and let G′ be the quasi-reduced π′-QOBDD for F .

Proposition 1 implies directly that only the size of a level between j1 + 1 to il+1 in
the variable ordering π and π′, respectively, could be different in G and G′. Therefore, we

15

compare the number of subfunctions represented by a node labeled by a v-variable at a
position between j1 + 1 and il+1 − 1 in G and G′, and additionally we compare the number
of ul+1-nodes in G with the number of w1-nodes in G′. Our aim is to prove that any level p
in G is at least as large as any level p in G′ for j1 + 1 ≤ p ≤ il+1. We start with descriptions
of the subfunctions in G and G′. In the following we assume that f0 is the constant function
0.

Definition 9. An edge function fi can still be addressed for a subfunction represented on

a level between j1 + 1 and il+1 iff

- the number of u-variables set to 1, or uone for short, is k, k ≤ i,
- the number of w-variables set to 1, or wone for short, is k′, k′ ∈ {0, 1},
- m − l ≥ i − k and m − 1 ≥ i − k′.

Now, a subfunction of F can be described by uone, wone, and the assignments to the v-
variables that are essential for the edge functions that can still be addressed. If uone is k,
0 ≤ k < l or wone = 1, these edge functions are fk, . . . , fk+m−l. For k = l and wone = 0
the still addressable edge functions are fl, . . . , fm−1. For an edge function that can still be
addressed we only have to know whether one of its essential vertex variables has already
been set to 1 or which of its essential vertex variables could still be set to 1. Let f ′

i denote
the corresponding subfunction of fi. Then the considered subfunctions represented in G can
be described by triples

(

uone, wone,
[

f ′
uone

, . . . , f ′
uone+m−l

])

, uone ≤ l − 1 or wone = 1, and

by
(

l, 0,
[

f ′
l , . . . , f ′

m−1

])

. In a similar way the subfunctions in G′ can be described by triples,
where wone is always 0 since the first w-variable is tested not until position il+1 in π′.

The following two facts are not difficult to see.

Fact 1 Two non-constant subfunctions represented in G and obtained by replacing the same

subset of variables by constants could not be equal if only the number of u-variables set to 1
but not the number of w-variables set to 1 are equal.

Fact 2 Two non-constant subfunctions represented in G obtained by replacing the same

subset of variables by constants and for which the number of u-variables set to 1 are different

can only be equal if they can be described by (uone, wone, [∗]) and (u′
one, w′

one, [∗]), where

u′
one = uone − 1, wone = 1, and w′

one = 0.

The reason is simple that because of F ′s definition on all computation paths to the 1-sink
the number of u-variables set to 1 has to be equal to the number of w-variables set to 1.
Now, what is the difference between the investigated subfunctions represented in G and G′?
Roughly speaking, in G′ there are new subfunctions where the number of u-variables set to
1 is l + 1. On the other hand, wone is in all cases 0, and the number of edge functions that
could still be addressed is m − (l + 1) + 1 = m − l, which means 1 less than before.

Together with the two observations above, the following facts are sufficient.

- The number of subfunctions represented in G described by (k, 1, [∗]) is at least as large
as the number of subfunctions represented in G′ by (k, 0, [∗]) for k < l.

- The number of subfunctions represented in G described by (l, 0, [∗]) is at least as large
as the number of subfunctions represented in G′ by (l, 0, [∗]).

- The number of subfunctions represented in G described by (l, 1, [∗]) is at least as large
as the number of subfunctions represented in G′ by (l + 1, 0, [∗]).

Since the three classes of subfunctions are disjoint, we are done. Altogether, by proving that
every level in G is at least as large as in G′ we have shown that π′-OBDDw(F) is not larger
than π-OBDDw(F) and π′-QOBDD(F) is not larger than π-QOBDD(F). Therefore, we are
done.

16

Appendix B: Proof of Lemma 3

Let G be the quasi-reduced π-QOBDD representing the function F on the u-, v-, and w-
variables, and let G′ be the quasi-reduced π′-QOBDD for F . First, we prove that the width
of G′ is not larger than G. We start with a classification of the edge functions on a given
level p with respect to a variable ordering.

Definition 10. We call an edge function, or by abuse of notation edge for short, fresh at

a level p with respect to a variable ordering τ iff none of its essential vertex variables is at

a position p′ where p′ < p in τ . The edge function is incomplete at a level p iff exactly one

of its essential vertex variables is at a position p′, p′ < p. The edge function is complete
at a level p iff both its essential vertex variables are at positions p′, p′ < p. Let ep

f(τ) be

the number of fresh edges, let ep
i (τ) be the number of incomplete edges, and let ep

c(τ) be the

number of complete edges at a position p in the variable ordering τ .

In the following let ℓ be the position of the variable um in π. Proposition 1 implies that
only the number of nodes on a level ℓ′, ℓ′ ≤ ℓ, in the variable ordering π and π′, respectively,
could be different in G and G′. Let emax

i be the maximal number of incomplete edges at a
level ℓ′, ℓ′ ≤ ℓ, in π. Then the maximal width on a level ℓ′, ℓ′ ≤ ℓ in G′ is m + emax

i + 1.
Therefore, our aim is to prove that there exists a level that contains at least m + emax

i + 1
nodes in G.

We use the same notation as in the proof of Lemma 2. Subfunctions represented on level
ℓ in G can be described as tuples

(

uone,
[

f ′
uone

, f ′
uone+1

])

, where uone ∈ {0, 1, . . . , m−1} and
f ′

uone
and f ′

uone+1 are subfunctions of fuone and fuone+1, respectively. By definition of emax
i

we know that there are at least emax
i edges that are not fresh at level ℓ. Therefore, there

are at least emax
i different values for uone such that the edge function fuone+1 is not fresh. If

fuone+1 is not fresh, there are at least two different non-constant subfunctions (uone, [∗, ∗])
on level ℓ in G. Together with the observation that two non-constant subfunctions obtained
from F by replacing only u- and v-variables cannot be equal if the number of u-variables
set to 1 are different, we can conclude that there are at least m + emax

i um-nodes in G. Now,
we make a case inspection.

- If there are two edge functions fj and fj+1, j ∈ {1, . . . , m−1}, where fj is not fresh and
fj+1 is fresh at level ℓ, there exists another subfunction (j, [∗, fj+1]) not counted before
which is represented at a node labeled by um.

- If there are two edge functions fj and fj+1 one incomplete and the other one com-
plete, both complete, or both incomplete with different first essential vertex variables
(with respect to the variable ordering π), there are at least three subfunctions (j, [∗, ∗]).
Therefore there exists at least one additional um-node not counted before.

- Otherwise, there is only one vertex variable on a position ℓ′ ≤ ℓ. In this case there are
already m + 1 + eℓ

i(π) = m + 1 + emax
i different subfunctions represented on level ℓ + 1

in G and we are done.

Until now we have seen that the width of G′ is not larger than the width of G. In the rest
of the proof we show that G′ is not larger than G. We say that a variable z has already been
tested on a level p in a ρ-QOBDD if z is at a position p′, p′ < p, in ρ. Our proof idea is to
use the accounting method in the following way. First, we show that for the first v-variable
there is at most one additional node in G′ for every u-variable tested after this v-variable in
π. For all other v-variables vj there are at most two more vj-nodes in G′ than in G for every
u-variable at a position after vj in π. On the other hand, for every u-variable uj at least

17

two uj-nodes can be saved in G′ for every v-variable but the first one at a position before
uj in π. For the first v-variable in π only one uj-node can be saved. Altogether, G′ cannot
be larger than G. Now, we make the ideas more precise. We start with the following fact.

Fact 3 Two non-constant subfunctions obtained from F by replacing only u- and v-variables

cannot be equal if the number of u-variables set to 1 are different.

Iff z is the variable at a position p in a variable ordering, we call the level p also z-level.
Next, we look at the number of nodes in G labeled by a vertex variable vj at a position p
in π where the number of u-variables at a position p′ in π is gj , p′ < p and gj < m. (Note
that by Proposition 1 for gj = m the number of nodes labeled by such a variable cannot be
different in G and G′.) Remember ep

i (τ) is the number of incomplete edges at position p in
a variable ordering τ . Note that the number of incomplete edges is the same on the vj-levels
in G and G′ since the suborderings of the v-variables are the same in π and π′.

Claim 1 There are at most 2(m−gj) more vj-nodes in G′ than in G. For the first v-variable

vj1 in the variable orderings π and π′ the difference can even be at most (m − gj1).

Proof. We start to estimate the number of vj-nodes in G′. It is not difficult to see that for
each fresh or complete edge on the vj -level only one node labeled by vj and for an incomplete
edge on the vj -level two vj-nodes are necessary. One further vj-node represents the constant
function 0. Next, we prove that the number of vj-nodes in G is at least (gj + 1) + ep

i (π) −
(m − gj). Using the notation from the proof of Lemma 2 we can describe the considered

subfunctions represented at a vj-node in G by tuples
(

uone,
[

f ′
uone

, . . . , f ′
uone+m−gj

])

. If

an edge function v′ ∨ v′′ is incomplete and v′ is the variable already tested, there are two
subfunctions of this edge function: the constant function 1 and the function v′′. Note that
subfunctions of different incomplete edge functions on a level p may not be independent
because their first essential vertex variable can be the same. Therefore, we have to be very
careful not to count QOBDD nodes more than once. To give an example of subfunctions
which are not independent we consider two edge functions vi ∨ vk and vi ∨ vℓ, where vi has
already been tested. There are only two possibilities: both subfunctions are 1 or one is vk

and the other one is vℓ. Therefore, we define an injective mapping from the incomplete edge
functions fi, i ≤ gj , into the set {1, . . . , gj} in a straightforward way: fi is mapped to i. As
a result we can count two vj-nodes for each incomplete edge in {f1, . . . , fgj }. The reason is
that there are at least two subfunctions (i, [∗]), 1 ≤ i ≤ gj, represented at a vj-node in G
if fi is incomplete. At least ep

i (π) − (m − gj) edge functions in {f1, . . . , fgj } are incomplete.
Altogether, using Fact 3 we have shown that there are at least (gj + 1) + ep

i (π) − (m − gj)
vj-nodes in G and the difference of the number of vj-nodes in G and G′ is at most (m +
ep

i (π) + 1) − ((gj + 1) + ep
i (π) − (m − gj)) = 2(m − gj).

Since there cannot be incomplete edges if no vertex variable has yet been tested, the
difference between the number of vj1 -nodes in G and G′ is at most m − gj1 . 2

In the rest of the proof we compare the number of nodes labeled by a u-variable in G
and G′. Let kj be the number of v-variables that are before the variable uj in π. To finish
the proof it is sufficient to show that in G′ there are at least 2kj − 1 nodes labeled by uj

less than in G.

Claim 2 There are at least 2kj − 1 less uj-nodes in G′ than in G, where kj is the number

of v-variables that are before uj in π.

18

Proof. There are j uj-nodes in G′. We have to prove that there are at least j + (2kj − 1)
uj-nodes in G. As before we describe subfunctions represented at a uj-node in G as tuples
(

uone,
[

f ′
uone

, . . . , f ′
uone+m−(j−1)

])

, where 0 ≤ uone ≤ j − 1. If all vertex variables before uj

in π are set to 1, the resulting subfunctions in the second part of the tuples can only be
the constant subfunction 1 and fresh edge functions. We have j different uj-nodes for the
j different values for uone and replacing all vertex variables before uj by 1. It remains to
prove that there are 2kj −1 further uj-nodes in G. The problem is not to count subfunctions
more than once. In the following an edge function fi belongs to the tuples (uone, [∗]), or
uone-tuples for short, iff uone ≤ i ≤ uone + m − (j − 1). Inversely, we say that uone-tuples
contain an edge function fi iff uone ≤ i ≤ uone + m − (j − 1). By abuse of notation, we
also say that an edge belongs to a tuple or a tuple contains an edge. Since by assumption
each vertex is incident to at least two edges, we can define an injective mapping from the kj

vertex variables that are before uj in π to edge functions for which the corresponding vertex
variable is essential. Let V V = {vi1 , . . . , vikj

} be the set of the vertex variables before uj in

π and let fjℓ
be the chosen edge function for viℓ

, 1 ≤ ℓ ≤ kj . Our aim is to prove that for
every chosen edge function (except possibly fm) there are at least two further subfunctions.
We consider two cases.

If j = 1, we consider for each chosen edge function fjℓ
the following partial assignments:

- all vertex variables in V V without the vertex variables which are essential for fjℓ
are set

to 1, the latter to 0,
- all vertex variables in V V \ {viℓ

} are set to 0, viℓ
is set to 1.

It is not difficult to see that for each chosen edge the assignments lead to two different
subfunctions. It remains to prove that we do not count any subfunction more than once
for different chosen edge functions. Two vertex variables cannot be both essential for two
different edge functions because multiple edges are not allowed. Moreover, each vertex has
degree at least two and each edge function is chosen for at most one vertex variable in V V .
Therefore, we can conclude that there are altogether at least 2kj − 1 further nodes labeled
by uj and we are done. (For kj > 1, there are even at least 2kj further uj-nodes.)

If j > 1, each edge function fi, i < m, belongs to at least two different kind of tuples,
fm belongs only to (j − 1)-tuples. Now, we consider for each chosen edge function (except
possibly fm) two different kind of tuples which contain the investigated edge function. Let fjℓ

belong to uone-tuples. We consider partial assignments to the variables where the variables
u1, . . . , uj−1 are set in such a way that the number of u-variables set to 1 is uone and all
vertex variables in V V without the vertex variables which are essential for fjℓ

are set to 1,
the latter to 0. Similarly to the case that j is equal to 1, we can conclude that there are
altogether at least 2kj − 1 further nodes labeled by uj and we are done. 2

Appendix C: Proof of Lemma 4

Let G be the quasi-reduced π-QOBDD representing the function F on the u-, v-, and w-
variables, and let G′ be the quasi-reduced π′-QOBDD for F . First, we prove that the width
of G′ is not larger than G. The proof follows the line of the proof of Lemma 3 and we use the
same notation for the description of subfunctions as in the proofs of Lemma 2 and Lemma
3. Let ℓ be the position of the variable w1 in π. Proposition 1 implies directly that only the
number of nodes on a level ℓ′, ℓ′ > ℓ, in the variable ordering π and π′, respectively, could
be different in G and G′. Let emax

i be the maximal number of incomplete edges at a level ℓ′,

19

ℓ′ > ℓ, in π. The maximal width on a level ℓ′, ℓ′ > ℓ in G′ is m + emax
i + 1. Therefore, our

aim is to prove that level ℓ + 1 contains at least m + emax
i + 1 nodes in G. If the number of

u-variables set to 1 is 0, the corresponding subfunctions of F are the constant function 0.
Hence, it is sufficient to prove that level ℓ + 1 in G contains at least m + emax

i different non-
constant subfunctions. Obviously, an edge function that is incomplete at a level ℓ′, ℓ′ > ℓ,
cannot be complete at a level ℓ′′, where ℓ′′ ≤ ℓ′. Thus there are at least emax

i edges at level
ℓ + 1 that are not complete, therefore eℓ+1

i (π) + eℓ+1
f (π) ≥ emax

i . In the following we make
a case inspection depending whether the edge fm is still fresh or not at level ℓ + 1 in π.

- If the edge function fm is fresh at level ℓ+1 in G, there are at least eℓ+1
i (π)+eℓ+1

c (π)+1
subfunctions (∗, [1]) on level ℓ + 1 in G. Furthermore, for the incomplete edge functions
at level ℓ + 1 there are at least eℓ+1

i (π) + 1 subfunctions (∗, [vi]), where vi is the second
essential vertex variable of an incomplete edge function at level ℓ + 1 in π. Finally, there
are 2eℓ+1

f (π) − 1 subfunctions (j, [fj]), j < m, and (j − 1, [fj]), j ≤ m, on level ℓ + 1 in
G, where fj is an arbitrary fresh edge function at level ℓ + 1. Therefore, altogether there
are at least m + eℓ+1

i (π) + eℓ+1
f (π) + 1 > m + emax

i different non-constant subfunctions
represented on level ℓ + 1 in G and we are done.

- If the edge function fm is not fresh at level ℓ+1 in G, there are at least eℓ+1
i (π)+eℓ+1

c (π)
subfunctions (∗, [1]) on level ℓ + 1. Moreover, there are altogether at least eℓ+1

i (π) sub-
functions (∗, [vi]), where vi is the second essential vertex variable of an incomplete edge
function at level ℓ + 1. Finally, there are 2eℓ+1

f (π) subfunctions (j, [fj]) and (j − 1, [fj]),
on level ℓ+1 in G, where fj is an arbitrary fresh edge function at level ℓ+1. Altogether,
there are at least m + eℓ+1

i (π) + eℓ+1
f (π) ≥ m + emax

i different non-constant subfunctions
represented on level ℓ + 1 in G and we are done.

Altogether, we have seen that π′-OBDDw(F) is not larger than π-OBDDw(F).
In the rest of the proof we show that G′ is not larger than G. We start with a description

of the subfunctions of F where at least all u-variables have been replaced by constants.
Remember that for any edge function that can still be addressed we only have to know
whether at least one of its essential vertex variables has been set to 1 or which of its essential
vertex variables could still be set to 1. Let f ′

q denote the corresponding subfunction of fq.
If uone is the number of u-variables set to 1 and wone is the number of w-variables set to 1,
the tuple

(

uone − wone,
[

f ′
uone

])

describes a subfunction of F , where uone ≥ wone. We can
identify the tuples with the corresponding subfunctions and vice versa. The first component
of a tuple is called the distance value. Obviously, two non-constant subfunctions represented
on the same level cannot be the same if the distance values are different. Furthermore, they
cannot be the same if the corresponding subfunctions in the second components of the tuples
are different. Therefore, two non-constant subfunctions described as (r, [fj1]) and (r, [fj2]),
j1 6= j2, cannot be equal because different edges are incident to different sets of vertices.

First, we remark that the number of w-nodes in G′ representing F is minimal with
respect to all variable orderings with the u-variables in the beginning. Remember, ℓ is the
first position of a w-variable in π. By Proposition 1 only the number of nodes labeled by a
v-variable at a position p, where p > ℓ, can be different in G and G′. Let vi be a variable at
position pi in π, pi > ℓ, and let gi be the number of w-variables at a position less than pi in
π. Next, we consider two cases for these v-variables.

Claim 3 If the number of incomplete and complete edges epi

i (π) + epi
c (π) at position pi in

π is at most m − gi, then the number of vi-nodes in G′ is at most as large as in G.

Proof. Since the suborderings of the v-variables are not different in π and π′, the number
of incomplete edges is the same on the vj-levels in G and G′. Let p′

i be the position of vi in

20

π′. We can conclude that the number of vi-nodes in G′ is m + 1 + e
p′

i

i (π′) = m + 1 + epi

i (π).
In the following we classify the subfunctions represented at a vi-node in G in four classes.

i) There is one vi-node representing the constant function 0 in G, where all u-variables are
set to 0.

ii) For each fresh edge fj at position pi there exists at least one vi-node in G representing
a subfunction (∗, [fj]).

iii) Since by assumption the number epi

i (π) + epi
c (π) of incomplete and complete edges at

position pi is at most m − gi, we know that there are at least epi

i (π) + epi
c (π) different

subfunctions (∗, [1]).
iv) Let ik be the number of incomplete edges at position pi whose second essential vertex

variable in the variable ordering is vk. Since ik is at most epi

i (π) and therefore at most
m − gi, there exist at least ik nodes labeled by vi in G that represent a subfunction
(∗, [vk]). Moreover, non-constant subfunctions (∗, [vk′]) and (∗, [vk′′]) for different vertices
vk′ and vk′′ cannot be the same.

Obviously, subfunctions from different classes cannot be the same. Therefore, we can con-
clude that the number of vi-nodes in G is at least 1 + epi

f (π) + (epi

i (π) + epi
c (π)) + epi

i (π) =

m + 1 + epi

i (π) = m + 1 + e
p′

i

i (π′). 2

Now, let vi1 be the first v-variable in π for which the number of incomplete and complete
edges e

pi1

i (π) + e
pi1
c (π) at position pi1 in π is larger than the number m − gi1 of w-variables

after vi1 in π. Since the number of incomplete and complete edges and the number of already
tested w-variables are increasing, we know that this requirement is also satisfied for all v-
variables at a position larger than pi1 in π. Let vi2 , . . . , vik

be these v-variables.

As we have already mentioned before the number of vj-nodes in G′ is m + 1 + e
p′

j

i (π′) =
m + 1 + e

pj

i (π) since the subordering of the v-variables does not change from π to π′. Now,
we look at the vj-nodes in G. We may assume that gj, j ∈ {i1, . . . , ik}, is larger than 2
because otherwise it can easily be shown that there are at least as many vj -nodes in G as
in G′. As before we classify the subfunctions represented at a vj-node in four classes.

i) There is one vj-node representing the constant function 0 in G.
ii) For each fresh edge fℓ at position pj there exists at least one vj-node in G representing

a subfunction (∗, [fℓ]).
iii) Since by assumption the number e

pj

i (π) + e
pj
c (π) of complete and incomplete edges at

position pj is larger than m − gj , there are at least m − gj + 1 vj-nodes representing
different subfunctions (∗, [1]).

iv) Let nj′ be the number of incomplete edges at position pj whose second essential vertex
variable in the variable ordering „pi is vj′ . (We call these edges incomplete vj′ -edges for
short.) There exist at least min(nj′ , m − gj + 1) nodes labeled by vj in G that represent
a subfunction (∗, [vj′]).

If for all incomplete vj′ -edges, there exist at least nj′ nodes labeled by vj representing a
subfunction (∗, [vj′]) in G, the difference between the number of vj-nodes in G and G′ is at
most gj − 1. If not, the difference is at most (gj − 1) + (gj − 2). (Note, that we have used
the fact that there cannot be more than m − 1 incomplete vj′ -edges.) Our aim is to show
that there are at least as many additional w-nodes in G as additional v-nodes necessary in
G′. We are faced with two problems. We have to guarantee that we count only additional
w-nodes. Moreover, we have to be very careful not to count the additional w-nodes more
than once. In order to do so, we make use of an advanced accounting method.

21

We start with the solution to the first problem. We need m − ℓ′ + 1 nodes labeled by
w1, . . . , wm−ℓ′+1 that represent a subfunction (ℓ′, [1]) in G′, ℓ′ ∈ {1, . . . , m}. Furthermore,
there are m − 1 w-nodes representing a subfunction (0, [1]) in G′. In G there are m − ℓ′ + 1
w-nodes that represent a subfunction (ℓ′, [fℓ′]) or (ℓ′, [1]) in G (depending on the position
of the first essential vertex variable for the edge function fℓ′). Moreover, there are m − 1
w-nodes that represent one of the subfunctions (0, [f1]) or (0, [1]) (again depending on the
position of the first essential vertex variable for f1). In the following in order to compensate
for the additional v-nodes necessary in G′, we count none of these w-nodes.

Next, we attack the second problem. Since for each vertex there are at least two incident
edges and the input graph for OLA is connected, we can define an injective mapping from
the vertices vi1 , . . . , vik

to the set of edges incident to these vertices without considering
the edge function f1. To be more precise, a vertex is mapped to one of its incident edges.
Let fc1 , . . . , fck

be the set E′ of the chosen edges. A chosen edge fcj is fresh at position
pij if vij is the first essential vertex variable for fij in π. Otherwise, fcj is incomplete and
vij is the second essential vertex variable. Now, we prove that there are at least gij −
1 further w-nodes in G. There exist one wr-node, 1 < r ≤ cj , representing one of the
subfunctions

(

cj − r + 1,
[

fcj

])

and
(

cj − r + 1,
[

vij

])

and gij − cj w-nodes representing
(

0,
[

fcj

])

or
(

0,
[

vij

])

. (Here, we assume that cj is not larger than gij but the bounds can
easily be adapted.) The following observation is crucial to guarantee that the w-nodes are not

counted more than once. For different edge functions fcj′ and fcj′′ subfunctions
(

∗,
[

fcj′

])

and
(

∗,
[

fcj′′

])

are different. Moreover, nodes labeled by a w-variable that represent a

subfunction
(

∗,
[

vij

])

are only counted for the vertex variable vij . Furthermore, we do not

count again nodes representing subfunctions
(

cj ,
[

fcj

])

. Therefore, we have gij −1 additional
w-nodes for each vertex vij . Next, we are looking for gij − 2 further w-nodes for each
vertex vij . If cj 6= m, then there exists one wr-node, 2 < r ≤ cj , representing one of
the subfunctions

(

cj − r + 2,
[

fcj

])

and
(

cj − r + 2,
[

vij

])

and gij − cj w-nodes representing
(

1,
[

fcj

])

or
(

1,
[

vij

])

. Altogether, we have shown that there are gij − 2 further w-nodes
for vij if cj 6= m. Finally, we investigate the special case that cj is equal to m. Here, the
problem is that we cannot find gij − 2 further w-nodes in a similar way as in the other
cases. Hence, we use another idea in order to prove that there are at least as many nodes
in G as in G′. Until now we have already proved that there are m − (gij − 1) + 1 vij -nodes
representing subfunctions (∗, [1]) and the constant function 0 and gij − 1 further w-nodes.

It is sufficient to prove that there are at least e
pij

i (π) further nodes. Our aim is to show that
for each edge incomplete at level pij there is a further node in G that has not been counted
before. For this reason we classify the edges which are incomplete at position pij into two
classes, edges which are already incomplete at position ℓ and edges which are still fresh at
position ℓ. (Remember that ℓ is the position of the first w-variable w1 in π.) Until now we
have only counted w1-nodes representing subfunctions (cj′ , [fcj′]) or (cj′ , [1]), 1 ≤ j′ ≤ k.
Therefore, for each edge in the first class we have one further node labeled by w1. Obviously,
a fresh edge remains fresh until its first essential vertex variable is tested and for each edge
fresh at position ℓ but incomplete at position pij in π, its first essential vertex variable is
at a position between ℓ and pij . For the vertex variables in {vi1 , . . . , vik

} we have not yet
taken into account nodes that represent subfunctions (∗, [fq]) for fresh edges fq up to now.
As a result, if there is no v-variable besides {vi1 , . . . , vik

} at a position between ℓ and pij ,
we can conclude that for each edge in the second class, incomplete at the vij -level but fresh
at position ℓ, there is at least one further node labeled by a vertex variable and we are done.
Otherwise, let vi be the first v-variable at a position larger ℓ in π. It is easy to see that

22

edges fresh at position ℓ are also fresh at position pi. We know that epi

i (π) + epi
c (π) is at

most m − gi because vi 6= vi1 and we can conclude that gi is less than m. The reason is
that for gi = m the number of fresh edges at position pi would be m which means that all
w-variables would be before the vertex variables in π and the size of G would be too large
anyway. Therefore, for all fresh edges fq at position pi except possibly fm there are at least
two different subfunctions (∗, [fq]) with different distance values represented at a vi-node.
Furthermore, there is at least one further vij -node representing a subfunction (m−gij , [fm])
or (m − gij , [vij]) depending whether vij is the first or second essential vertex variable for
fm. We have not counted such a vij -node before because we have only counted vij -nodes
representing subfunctions that belong to class i) or iii) up to now. Altogether, we have at

least e
pij

i (π) further nodes which we have not counted before and we are done.

23

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

