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Deterministically Factoring Sparse Polynomials into Multilinear
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Abstract

We present the first efficient deterministic algorithm for factoring sparse polynomials that
split into multilinear factors. Our result makes partial progress towards the resolution of the
classical question posed by von zur Gathen and Kaltofen in [GK85] to devise an efficient deter-
ministic algorithm for factoring (general) sparse polynomials. We achieve our goal by introducing
essential factorization schemes which can be thought of a relaxation of the regular factorization
notion.

1 Introduction

In this paper we study the problem of factorization of sparse polynomials.

1.1 Multivariate Polynomial Factorization

One of the fundamental problems in algebraic complexity is the problem of polynomial factoriza-
tion: given a polynomial P € F[xi,zo,...,x,]| over a field F, find its irreducible factors. Other
than being natural, the problem has many applications such as list decoding [Sud97, GS99] and
derandomization [KI04]. A large amount of research has been devoted to finding efficient algo-
rithms for this problem (see e.g. [GG99]) and numerous randomized algorithms were designed
[GKS85, Kal89, KT90, GG99, Kal03, Gat06]. However, the question of whether there exist deter-
ministic algorithms for this problem remains an interesting open question (see [GG99, Kay07]).

1.2 Sparse Polynomials

Let P € F[xy,xa,...,x,] be a n-variate polynomial over the field F. We denote by || P|| the sparsity
of P. That is, the number of non-zero monomials in P. Suppose that the individual degree of each
variable z; is bounded by d, then the above number can reach (d+1)". Our case of interest is when
|P|| < (d+ 1)". Indeed, in various applications [Zip79, GK85, BOT88, GJR10, SV10, SV11] the
desired regime is when || P|| = poly(n,d). Such polynomials are refereed to as sparse polynomials.
Coming up with an efficient deterministic factorization algorithm for sparse polynomials (given as a
list of monomials) is a classical open question posed by von zur Gathen and Kaltofen in [GK85]. An
inherent difficulty in tackling the problem lies within the fact that a factor of a sparse polynomial
need not be sparse. The following example demonstrates that a blow-up in the sparsity of a factor
can be super-polynomial over every field. A similar example appears as Example 5.1 in [GK85].
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Example 1.1. Let n > 1. Consider the polynomial f(z) = [] (2} — 1) which can be written as a

(2

i€[n]
product of g(z) = ] 1 +x+ ...+ 2! 1) and h(z) = ] (2 — 1).
i€[n] i€[n]
Observe that | P|| = ||h|| = 2™ while ||g|| = n", resulting in a quasi-polynomial blow-up.

Consequently, just writing down the irreducible factors as lists of monomials can take super-
polynomial time. In fact, the randomized algorithm of [GK85] assumes that the upper bound on
the sparsity of the factors is known. In light of this difficulty, a simpler problem was posed in that
same paper: Given m+ 1 sparse polynomials fi, fo, ... fm, g testif g = f1- fo-...- fin. This problem
is referred to as “testing sparse factorization”.

Over the last three decades this question has seen only a very partial progress. For the test-
ing version of the problem, Saha et al. [SSS13] presented an efficient deterministic algorithm
for the special case when the sparse polynomials are sums of univariate polynomials. Shpilka &
Volkovich [SV10] gave efficient deterministic factorization algorithms for multilinear sparse polyno-
mials (see Lemma 2.3 for more details). In this work, we make another step towards the resolution
of the problem. We consider the model of sparse polynomials that split into multilinear factors or
“multilinearly-split” for short. Formally, we say that a polynomial P is multilinearly-split if it can
be written as a product of multilinear polynomials.

Clearly, this model extends the one considered by Shpilka & Volkovich. Moreover, it can be seen
as a multivariate version of algebraically closed fields in the following sense. The only irreducible
univariate polynomials over algebraically closed fields are linear polynomials (i.e. az+f) since every
univariate polynomial splits into linear factors. However, this is not the case in the multivariate
setting. For example, the polynomial P(z,y) = x? 4 y is irreducible over any field. In our model,
the above phenomenon does not occur as every polynomial splits into multilinear factors. In
addition, our model evades the aforementioned inherent difficulty since a multilinear factor of a
sparse polynomial is itself a sparse polynomial (see Lemma 4.1 for more details). Below is our main
result:

Theorem 1 (Main). There exists a deterministic algorithm that given a s-sparse multilinearly-split
polynomial F' € Flxy,x9,...,x,] of degree d outputs its irreducible multilinear factors. The running
time of the algorithm is poly(n, d, s,p,£) when F =T, and poly(n,d, s,b) when F = Q and b is the
bit complexity of the coefficients in P.

The running time of our algorithm is essentially optimal, as we are invoking the state-of-the-art
deterministic factoring algorithm for a constant number of variables. We note that even for the
univariate case the best known deterministic factoring algorithm has a polynomial dependence on
the characteristic p. While in the randomized setting, the dependence is polynomial in logp. A lot
of effort was invested in trying to derandomize the factorization algorithm when the characteristic
of F is large (see e.g. [Sho91, GG99, GKL04, Kay07]).

1.3 Techniques

Let C be a class of polynomials and let fact(C) denote the class of factors of P € C. Suppose we want
to map n-variate polynomials from C to (other) polynomials with, potentially, a smaller number
of variables in a way that two distinct (composite) polynomials P,Q € C remain distinct under
the map. In particular, this implies that each irreducible polynomial in fact(C) must be mapped
into a non-constant polynomial. Moreover, a pair of non-similar, irreducible polynomials must be



mapped into a pair of non-similar polynomials. And, ideally, an irreducible polynomial should
remain irreducible. Those goals are achieved in [GK85, Kal85, Kal89, KT90] and other works by
considering a projection to a random low-dimensional space (i.e a line or a plane). The purpose
of the last two requirements is to ensure that factors from different images could not be combined
together. In other words, there is only one way to interpret a product of images under the map.
As preserving irreducibility deterministically is still an open question, we introduce a relaxation of
the original requirements with the hope that it would be easier to fulfill. We call it an essential
factorization scheme.

Consider a polynomial map {H}, = F!™) — F" with ¢t < n such that for every irreducible
P € fact(C) the composition P(H) might be reducible, yet results in a polynomial that contains an
irreducible “essential” factor gp which describes P uniquely. In addition, gp cannot be a factor of
any Q(H) if P # Q. Given that property of H, for any F' € C the polynomial F'(H) describes F
uniquely. Consequently, for any F, R € C we get that F = R <= F(H) = R(H). We formalize
this notion in Definition 3.1.

Observe that this reasoning can be extended to handle products of polynomials for C. That is,
Hle Fy. Consequently, if we could establish an essential factorization scheme for sparse polyno-
mials, we would solve the sparse factorization testing problem.

Unfortunately, we are not there yet for the entire set of sparse polynomials. In this paper,
we make a step towards this goal by establishing an essential factorization scheme for multilinear
sparse polynomials. In fact, our scheme has an additional property: given a factor, we can efficiently
decide whether or not it is an essential factor of some polynomial P. Moreover, we can efficiently
compute P from its essential factor gp. Consequently, in order to compute the irreducible factors of
multilinearly-split polynomial F'; we first compute the irreducible factor of F'(H) and then recover
the “original” factors of F. We note that since F'(H) is t-variate polynomial with ¢t < n, we can
carry out the factorization phase deterministically by a brute-force derandomization of the best
randomized algorithm while still being efficient. Formally, see Lemma 4.2

We show that our essential factorization scheme works for some other classes of multilinear
polynomials as well. Our construction can be seen as another link in the line of works [KKO05,
SV10, KSS14] that connect polynomial factoring and polynomial identity testing.

1.4 Organization

We start by some basic definitions and notation in Section 2. In Section 3, we formally introduce
essential factorization schemes and demonstrate their properties. In that same section, we also
construct such a scheme for classes of multilinear polynomials. Finally in Section 4, we present our
factoring algorithm for sparse multilinearly-split polynomials, thus proving our main theorem. We
conclude the paper with some remarks in Section 5.

2 Preliminaries

Let F denote a field, finite or otherwise, and let F denote its algebraic closure. We assume that
elements of F are represented in binary using some standard encoding. Moreover, we assume that
there is an algorithm that given an integer r, outputs in time poly(r) a set of r distinct elements
in F (or an extension field of F) each of which is represented in this encoding using O(logr) bits.



2.1 Polynomials

A polynomial P € Flxy,29,...,7,] depends on a variable x; if there are two inputs &, € F"
differing only in the i coordinate for which P(a) # P(3). We denote by var(P) the set of
variables that P depends on. We say that P is () and denote by it P ~ Q if P = ¢@Q for some
cel.

For a polynomial P(xy,...,xy,), a variable z; and a field element «, we denote with P|;,—, the
polynomial resulting from substituting « to x;. Similarly given a subset I C [n] and an assignment
a € F", we define P|;,—5, to be the polynomial resulting from substituting a; to x; for every i € I.

Definition 2.1. For P,Q € Flx1,x2,...,2,] and £ € [n] let Dy(P, Q) be the polynomial defined as

follows:
( P Ply—o )
Q Q’;w:[)
Note that Dy is a bilinear transformation. The following lemma from [SV11] gives a useful
property of Dy that is easy to verify.

A

DZ(Pa Q)(i) = (f) - (P ’ Q|xe=0 - P’rz=0 : Q)(j>

Lemma 2.2 ([SV11]). Let P,Q € Flxy1,x2,...,x,] be irreducible multilinear polynomials and let
¢ e var(P). Then Dy(Q,P)=0iff P| Q.

The next corollary from [SV10] shows that a multilinear sparse polynomial can be factored
efficiently. Moreover, all its factors are sparse.

Lemma 2.3 (Corollary from [SV10]). Given a multilinear polynomial P € Fx1,xa,. .., xy], there
is a poly(n, ||P||) time deterministic algorithm that outputs the irreducible factors, hy, ..., hy of P.
Furthermore, ||h1]| - [|h2| - ... ||h&]l = || P]|-

2.2 Commutator

The Commutator was originally defined in [SV10] where it was used to devised efficient factor-
ization algorithms for classes of multilinear polynomials. Later, it was also used in reconstruction
algorithms [GKL12, SV14] for arithmetic formulae. The following definitions are taken from [SV10].

Definition 2.4. Let f € Flx1,22,...,2y,] be a polynomial. We say that f is (x;,2;)-decomposable
if f can be written as f = g - h for polynomials g and h such that i € var(g) \ var(h) and j €
var(h) \ var(g).

Definition 2.5 (Commutator). Let f € Flx1,z2,...,2,] be a polynomial and let i,j € [n]. We

define the commutator between x; and xj as A f 2 flei=1,2,=1"flei=0,2;=0— flai=1,2;,=0" f |z;=0,2,=1-
The crucial property of the commutator is given by the lemma below.

Lemma 2.6 ([SV10]). Let i,j € var(f) then f is (z;, xj)-decomposable if and only if A;;f = 0.
The following observation connects between A;; and D;.

Observation 2.7. Aj;j(P) = D; (Plg,=1, Plz,—0).



2.3 Maps and Generators for Classes of Polynomials

In this section, we formally define the notion of generators and hitting sets for polynomials as well
as describe a few of their useful properties. For a further discussion see [SV09, SY10, KMSV13].

A map G = (G',...,G") : F4 — F" is a generator for the polynomial class C if for every non-
zero n-variate polynomial P € C, it holds that P(G) # 0. The image of the map G is denoted as
Im(G)=¢6 (?q). Ideally, ¢ should be very small compared to n. A set H C F" is a hitting set for a
polynomial class C, if for every non-zero polynomial P € C, there exists a € H, such that P(a) # 0.
A generator can also be viewed as a map containing a hitting set for C in its image. That is, for
every non-zero P € C, there exists a € Im (G) such that P(a) # 0. In identity testing, generators
and hitting sets play the same role. Given a generator one can easily construct a hitting set by
evaluating the generator on a large enough set of points. Conversely in [SV09], an efficient method
of constructing a generator from a hitting set was given.

Lemma 2.8 ([SV09]). Let |F| > n. Given a set H C F", there is an algorithm that runs in time
poly(|H|, n,log [F|) and constructs a map G(w) : F — F™ such that G(0) = 0, H C Im (G) with

t 2 [log |7—lH_ and the individual degrees of G' are bounded by n — 1. Moreover, for each @ € H,
its preimage, € F4 s.t. a = G(B), can be computed in time poly(|H|,n).

2.4 SV-Generator

The G, i generator was defined in [SV09] where it was shown that for certain values of k the
map G, j is generator for read-once polynomials. In [KMSV13] this was generalized to multilinear
read-k polynomials'. We will use the G, in our construction.

Definition 2.9 (SV-Generator [SV09]). Let ay,...,a, denote n distinct elements from a field F

and for i € [n] let L;y(x) = H#i % denote the corresponding Lagrange interpolant. For every
k € N, define

K k K
Gkt ks 215 2k) = | Y L)z, Y La(W)zg, -0 Y L(yy)2
j=1 j=1

=1

Let (G )i denote the ith component of Gn ks we refer to a; as the Lagrange constant associated
with this i component.

For intuition, it is helpful to view the action of Gy 1(y1,21) on a random element of F? as
selecting a random variable (via the value of y;) and a random value for that variable (via the
value of z1). This is not completely accurate because for values outside the Lagrange constants the
generator does not uniquely select a component. Since the SV-generator is a polynomial map, it
is natural to define the sum of two copies of the generator by their component-wise sum and to
furthermore view G, ;, as the sum of £ independent choices of variables and values. For this reason,
we take the convention that for two generators G; and Gs with the same output length that G; + Go
is the generator obtained by adding a sample from G; to an independent sample from G, and where
the seed variables are implicitly relabelled so as to be disjoint. With this convention in mind, the
SV-generator has a number of useful properties that follow immediately from its definition.

LA read-k polynomial is a polynomial computable by a formula where each variable appears at most k times.



Proposition 2.10 ([SV09, KMSV13]). Let k, k" be positive integers.
1. Gn,k(g,ﬁ) =0.

2. Gni(Yt - Uks 215 -5 26) lyp=ai = Gnk—1(Y1s -+, Yk—1, 21, - - -, 2k—1) + 2k - €, where &; is the
0-1-vector with a single 1 in position i and a; the it Lagrange constant.

8. Gup(Yts s Yk 215+ 26) + G (Y15 -+ s Yk k!> Zhpls - - - Dt k!)
= Gn,k+k’(y17 s Yktrk s 2Ly - e 7zk+k/)

The first item states that zero is in the image of the SV-generator. The second item shows
how to make a single output component (and no others) depend on a particular z;. The final item
shows that sums of independent copies of the SV-generator are equivalent to a single copy of the
SV-generator with the appropriate parameter k.

3 Essential Factorization Scheme

In this section, we formally define the notions of essential factors and essential factorization schemes.
For a class of polynomials C we denote by fact(C) = {P | 39, P - g € C} the class of factors of C.

Definition 3.1 (Essential Factorization Scheme). Let C be a class of polynomials over a field FF.
We say that a polynomial map {H}, = Ft") — F™ js an essential factorization scheme for C if
there exists (another) map Wy : Flxy, za, ..., x,] — Flz1, 29, ..., 2] such that given two irreducible
polynomials P, Q € fact(C):

1. U (P) is a non-constant, irreducible factor of P(H), called the essential factor of P.

2. Uy(P) ~¥n(Q) iff P~ Q.
3. If Yu(P) | Q(H) then Yu(P) | Vu(Q).

Let us discuss the definition. Let P € fact(C) be an irreducible factor of some F' € C. The
intuition is that the essential factor Wy (P) itself should contain “enough” information about P and
cannot appear as a factor of any other polynomial @ € fact(C). The next lemma shows that our
definition is sufficient in achieving our original goal. That is, ensuring that two distinct (composite)
polynomials F, R € C remain distinct.

Lemma 3.2 (Uniqueness from essential factorization). Let F,R € C be two polynomials (not
necessarily irreducible) and let H be as in the above definition. Then F = R iff F(H) = R(H).

Proof. The proof is by induction on deg(F') + deg(R). The base case is when both F' and R are
constant polynomials and the claim clearly follows. Now suppose wlog that F' is non-constant. By
the properties of H, F'(H) is also non-constant and since F(H) = R(H), R must be non-constant
aswell. Let F =P -...-Prand R=Q1-...-Q denote F’s and R’s factorization into irreducible
factors (possibly with repetitions), respectfully where P;, Q; € fact(C). We have that:

Pi(H)-... Pu(H) = F(H) = R(H) = Q(H) - Qy(H).

By definition, Uy (P1) | Pi(H). Therefore, by uniqueness of factorization, there exist j € [¢] such
that Wy (P1) | Q;(H), since Wy (P) is an irreducible polynomial. Combining Properties 2 and 3,

we get that P, = aQ; for some a # 0 € F. Now, consider: F’ 2 El and R' 2 %éj. It follows that
F'(H) = R'(H) when deg(F’) + deg(R') < deg(F') + deg(R). By the induction hypothesis F' = R’
and thus F = P'- P = Q- aQ; = R. O



3.1 Essential Factorization Schemes for Multilinear Polynomials

In this section, we show how to construction essential factorization schemes for classes of multilinear
polynomials that admit efficient identity testing algorithms. In fact, if we want to apply our results
for a class C, we require algorithms for a somewhat larger class.

Let C be a class of multilinear polynomials over the field F. From Lemma 2.3, it follows

that fact(C) = C. Let G,(w) 2 (Gh(w),...,Gr(w)) be a generator for polynomials of the form

n
D;(P,Q) where P,Q € C are irreducible, n-variate polynomials and i € [n]. We show that the
map H, 2 Gn(w) + Gp2(y1, Y2, 21, 22) is an essential factorization scheme for C. As was mentioned
earlier, this construction demonstrates another connection between polynomial factorization and
polynomial identity testing. We begin by specifying ¥y. To that end, we require the following
definition:

Definition 3.3 (Reviving). Let i € [n]. We call the operation:

11>

Ra;(P(Hp)) = P(Hp)

|y2 =ai,z2=w;—G%21=0

a revival of x;. By Proposition 2.10, the result of such a revival equals:
P(Gy (@), ..., Gy (@), 2, Gy (@), . .., G (w))

which can be seen as lifting the polynomial map substituted into x;. In other words, Ry, (P(Hy)) =

P;(Gn) - i + Po(Gn) when P = Pix; + Py. In fact, we can revive two variables x;,x; at a time by

considering Ry, »;(P(Hy)) = P(H,)|

y2:ai732:xi_g%7y1:aj721:1’j_g¥1.
We can now formally define essential factors.

Definition 3.4 (Essential Factor). Let P(H,) = f1- fo- -+ fm be the unique factorization of P(H,)
into irreducible factors. We define Wy(P), the essential factor of P, as f. such that for each x; €
var(P), we have that x; € var(Ry,(f.)). To avoid ambiguity we take Yy (P) to be the normalized f..

First, observe that applying R,, on P(H,) results in applying R,, on each f;. Therefore since
P is a multilinear polynomial there can be at most one factor f. that depends on z;, when revived.
Consequently, there can be at most one factor f. with the required property. However, this still
does not guarantee an existence of such a factor. We will show that such a factor always exists.

Lemma 3.5. Let P € fact(C) = C be an irreducible polynomial. Then ¥y (P) is well-defined.

Proof. As previously, let P(H,,) = f1- f2- - fm be the unique factorization of P(H,,) into irreducible
factors. First, we claim that for each x; € var(P) there exists k; € [m] such that z; € var(Rg, (fx,))-
By definition R,,(P(Hy,)) = P;(Gn) - i + Po(Gn) when P = Px; + Fy. Since P; = D;(P,1) we get
that the map G,, hits P; which implies that P(H,,) depends on z;, and the claim follows. To finish
the proof, we need to show that k; = k; for all z;, z; € var(P).

Assume for a contradiction and wlog that k1 = 1,ky = 2. As P is an irreducible polynomial,
A12(P) # 0 by Lemma 2.6. By Observation 2.7, the map G, hits Aj2(P). In other words, there

2The coefficient of the largest monomial according to the lexicographic order in 1.



exists f3 € Im (Gy) such that A12(P)(B) # 0 and P(x1,22,83,...,5,) depends of z; and x;. Let
5 € G~Y(B). Consider

P & Ry, oy (P(Hn))|ams = Pla1,22,G3(3), -, Gn(3)) = P(w1,2, 85, ., ).

By the choice of 3, the LHS depends on both x; and xj. On the other hand,

P(x1,22,B5, ..., Bn) = P = fi(w1,22, 83, Bn) - f2(x1, 32, B3y, Bn) -+ fn(@1, T2, B3y -, Bn)

so z; € var(f;) for i = 1,2 and by Lemma 2.6 A12(P)(/5) = 0, thus reaching a contradiction. O

As was established, Wy is well-defined and satisfies Property 1 of Definition 3.1. Note that
given a list of purported factors it is easy to identify the essential ones by reviving one variable at
a time and testing dependence. Since P(H) is a t(n)-variate polynomial of polynomial degree and
typically ¢(n) < n, dependence testing can be carried out efficiently by a computing the monomial
expansion of P(H). This also takes care of Property 3. We turn to showing that Wy satisfies
Property 2. The intuition is that the essential factor Wg(P) should contain all the information
about P since ¥y (P) encapsulates in itself all the variables of P.

Lemma 3.6. Let P,Q € C be two irreducible polynomials. Then Vy(P) ~ ¥y(Q) iff P ~ Q.

Proof. The first direction is trivial. For the other direction note that since Wy (P) and ¥ (Q) are
both normalized we actually have that f £ Uy (P) = Uy(Q). In other words, P(H,) = f - P’ and
QMH,) = f-Q'. For z; € var(P), we can write: P = Px; + Py, Q = Q;x; + Q. Consider the
revival of z; in both P(H,) and Q(H,,). By the definition of the essential factor x; € var(R,,(f)).
Therefore:

R, (P(Hp)) = (Pi(Gn) - 2i + Po(Gn)) = (fzxz + fO) “Ra; (P')

RIZ(Q(Hn)) = (Qi(Gn) - i + Qo(Gn)) = (le'z + fO) ‘R, (Q/)

where Ry, (f) = fiz; + fo. By setting z; = 0 we obtain:
Pz(gn) = fz : R%(P/) ) P()(gn) = fO : Rzz(P/)
Qi(Gn) = fi * Rai(Q') , Qo(Gn) = fo - Ray(Q).

And hence: D;(P,Q)(Gn) = Pi(Gpn) - Qo(Grn) — Qi(Grn) - Po(Gyn) = 0. Since G, hits D;(P, Q) we know
that D;(P, Q) = 0 to begin with. As P, @ are both irreducible, P ~ @ by Lemma 2.2. O

The following theorem summarizes this section.

Theorem 3.7. Let C be a class of multilinear polynomials over the field F and let G, (w) be a gener-
ator for the polynomials of the form D;(P, Q) where P,Q € C are irreducible, n-variate polynomials

and i € [n]. Then H, 2 Gn(0) + Gn2(y1, y2, 21, 22) is an essential factorization scheme for C. And
in particular, for all F;R€C: F = R <— F(H,) = R(H,).



4 Factoring Sparse Multilinearly-Split Polynomials

In this section we prove our main result - Theorem 1. First, we give the outline of the proof. We say
that a set H is an interpolating set for a class C if for every P € C the evaluations P|y determine P
uniquely. In particular, an interpolating set can serve as a hitting set since P =0 <= P|y =0.

Let H be the interpolating set for sparse polynomials given by Lemma 4.4. Our plan is to
evaluate each essential factor separately on H and then apply the reconstruction algorithm of
Lemma 4.4 to recover the original factors. However, there are couple of obstacles that stand in
our way. First of all, how do we get access to every essential factor separately? To overcome this
obstacle, we use H in conjunction with Theorem 3.7. Observe that H hits polynomials of the form
D;(P,Q) where P and @ are sparse. Therefore, it satisfies the conditions of Theorem 3.7 (invoking
Lemma 2.8). We then invoke Lemma 4.2 to factor our polynomial. As the new number of variables
is small, this step can be carried out efficiently. This leads us to a second obstacle: we only obtain
evaluation of the essential factors rather than there original factors.

Although by definition the essential factors contain “enough” information, this information
might still be insufficient for the reconstruction algorithm since in order to reconstruct a sparse
polynomial P the algorithm requires the values of P on H while we only have the values of a factor
of P at hand. For the second obstacle, we make our reconstruction algorithm more “resilient” to
information loss by extedning it to handle rational functions (Lemma 4.3).

We now move to the formal proof. To this end, we require the following results. The first result
states that a multilinear factor of sparse polynomial is itself a sparse polynomial. Example 1.1
demonstrates that this is not the case for general sparse polynomials.

Lemma 4.1 ([GKL12]). Let 0 # P, Q € Flx1,z2,. .., zy] be polynomials such that P is multilinear.
Then P | Q = |P| <@

The next result which is implicit in many factorization algorithms, exhibits an efficient factor-
ization algorithm for certain regime of parameters. In particular, for polynomials with constantly-
many variables and a polynomial degree. We note that this the state-of-the-art algorithm for this
regime of parameters.

Lemma 4.2 (Implicit [GG99, Kal89]). There exists a deterministic algorithm that given a t-variate,
degree d polynomial P over F outputs its irreducible multilinear factors. The running time of the
algorithm is (d,p,0)°® when F = F,e and (d, b)°®) when F = Q and b is the bit complexity of the
coefficients in P.

The following result converts a reconstruction algorithm for sparse polynomials into a recon-
struction algorithm for sparse rational functions, introducing only a polynomial overhead.

Lemma 4.3 ([CL11]). Let A be a deterministic algorithm that can reconstruct a s-sparse polynomial
P € Flzy,xo,...,x,] of degree d in time T(n,s,d,|H|) given the evaluations Ply. Let R,Q €
Flx1,xa,...,2,] be two coprime s-sparse polynomials of degree d and & € F™ such that Q(d) # 0.
Finally, let V CF be a subset of size 2d. Then there exists a deterministic algorithm B that given
the evaluations (R/Q)|v.4+o0 outputs R, Q" such that R’ = ¢R and Q' = ¢Q for some ¢ #0 € F in
time poly (|H|,n,d, T(n, s,d,|H|)) and uses the algorithm A as an oracle. If Q(5) = 0 the algorithm
fails.

We conclude the list with an efficient reconstruction algorithm for sparse polynomials.



Lemma 4.4 ([KS01]). Letn,s,d > 1. There exists a deterministic algorithm that in time poly(n, s, d)
outputs an interpolating set H such that given the evaluations Ply of a s-sparse polynomial P €
Flx1,za,...,2,] of degree d in time poly(n,s,d) the algorithm can reconstruct P.

We are ready to proceed with the proof of our main theorem (Theorem 1). Our algorithm
combines the above results. The description of the algorithm is given in Algorithm 1.

Input: s-sparse, multilinearly-split polynomial F' € Flx1,xo, ..., z,] of degree d
Output: The irreducible factors of F
1 Choose a subset {1} € V C F of size 2d ;
2 Invoke the algorithm in Lemma 4.4 with n,2s%,d = 2n to obtain an interpolating set H ;
Apply Lemma 2.8 on H' =V - H to obtain the map G /* note that H C H' C Im (G)
Set Hy, 2 G(1) + G() + Gna(7, 7)) ;
Use Lemma 4.2 to Factor P(H,). Let S be the set of the irreducible factors ;
Initialize F < () /* The set of all the essential factors x/
foreach f € S,i € [n] do
if x; € var(R,,(f)) /* Check by looking at the monomial expansion */
then
10 | E<+ EU{(Ra,(f),9)}
/* Reconstruct the original factors x/
11 foreach (f,i) € E, 5 € G"1(H) do

A _ _ A A A _ _ A A A
12 Set: fO(ua w) = f|zi:07fi(u7w) = f|x¢:1 - fO ;
13 Apply Lemma 4.3 jointly with the reconstruction algorithm from Lemma 4.4 on
fO(av B)/fl(ﬂwé) to obtain R/7 Ql' ;
14 On a success, output P = Q' - x; + R’ ;

*

/

w

© N o ok

Algorithm 1: Factoring algorithm for sparse multilinearly-split polynomials.

Proof. (of Theorem 1) We analyze Algorithm 1. For the running time, we get (n, s, d, p, £)°® when
F =F, and (n,s,d,b)°") when F = Q. By Lemmas 2.8 and 4.4 t = O(log, |H|) = O(log »(nsd)).
Therefore, if all the parameters are poly(n) we get the claimed running time.

We now move to the correctness. Let F = P, - P> -...- P, be F’s factorization into irreducible
factors (possibly with repetitions). By Lemma 4.1, each P; above is s-sparse. First, observe that
H (and consequently H') is a hitting set for D;(P, Q) where P,Q € F[xy,z2,...,x,] are s-sparse
multilinear polynomials. By Lemma 2.8, the map G () hits those polynomials. As G(0) = 0, the
same holds true for G(u) + G(w) as well. By Theorem 3.7, H,, is an essential factorization scheme
for s-sparse multilinear polynomials. Therefore, by the properties of Definition 3.1 each Wy (P;)
is a non-constant factor of F/(H) and Wy (P;) ~ Wy(Py) iff Pj ~ P,. Therefore, we can access all
Uy (P))-s by factoring F'(H) and reviving one variable at a time to distinguish essential factors from
the non—essentlal ones. Now, let f = Wy(P;) and P;(H,) = f - P;. By repeating the reasoning in
the proof of Lemma 3.6 we get:

[Pili(G(w) + G(w)) - i + [Pjlo(9(u) + () = Re, (P(Hn)) =
fa,@) - Ra, (P) = (filu, @)ai + fola, @)) - Re, (P))

:|
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and hence R
[Pli(G(w) + G(w)) = filt, @) - Ra: (F))
[Pilo(G(a) + G(w)) = fo(a, @) - Ra, (P)).
when P; = [Pj]; - x; + [Pj]o. Since [P}]; is a non-zero s-sparse polynomial, there exists ¢ € H such

that [Pj];(c) # 0. By Lemma 2.8 we can efficiently iterate over H to find 3 € G~!(o). Finally
observe that

fo(a, B)/ fi(a, B) = [Pilo(G(u) + &) / [Pi]i(G(u) + 7).
Therefore given access to fo(u, 3)/fi(u, ) the algorithm can query the polynomial [Pjlo/[Pj]i on
every point of the forms V - H + o as required by Lemma 4.3. Consequently, we can apply Lemma
4.3 jointly with the reconstruction algorithm from Lemma 4.4 to obtain R’ = ¢[P;]o, Q" = ¢[Pjl;
resulting in P = Q" - z; + R’ = ¢[P}]; - ; + ¢[Pj]o = c¢P; and we are done. O

5 Conclusions and Remarks

In this paper we give the first factorization algorithm for sparse polynomials that split into mul-
tilinear factors. The key ingredient in the algorithm is the Essential Factorization Schemes. We
hope that these schemes could be applied to handle richer classes of sparse polynomials.

A natural question to ask is whether it would possible to extend the algorithm to compute
multilinear factors of an arbitrary sparse polynomial. Another open question is to improve the
dependence on the characteristic from polynomial to polylogarithmic.

On a final note, Example 5.1 in [GK85] is followed by a question (quote): “Can the output
size for the factoring problem be actually more than quasi-polynomial in the input size?” Our
next example provides a positive answer to this question over fields with super-polylogarithmic
characteristics.

Example 5.1. Let p = 2k — 1 be an odd prime, F = F, and n,¢ > 1. Consider the polynomial

f(@) = (x1 + 22 + ...+ 2,)PT which can be written as a square of g(Z) = (1 + 2 + ... + )k,

Observe that f(7) = (2] +ab+...+2h) - (x1 +22+ ...+ x,) and therefore || f|| < n?. On the other
2-1

hand, gl = ("737) = @ (52 + (52)").
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