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Abstrat

A {+,×}-iruit ounts a given multivariate polynomial f , if its values on 0-1 inputs are the same

as those of f ; on other inputs the iruit may output arbitrary values. Suh a iruit ounts the

number of monomials of f evaluated to 1 by a given 0-1 input vetor (with multipliities given by

their oe�ients). A iruit deides f if it has the same 0-1 roots as f . We �rst show that some

multilinear polynomials an be exponentially easier to ount than to ompute them, and an be

exponentially easier to deide than to ount them. Then we give general lower bounds on the size

of ounting iruits.
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1. Introdution

In this paper we onsider omputational omplexity of multivariate polynomials with nonnega-

tive integer oe�ients:

f(x1, . . . , xn) =
∑

e∈Nn

ce

n
∏

i=1

xeii , (1)

where ce ∈ N = {0, 1, 2, . . .}, and x0i = 1. Produts
∏n

i=1 x
ei
i are monomials of f ; we will often omit

monomials whose oe�ients ce are zero. The polynomial is multilinear, if ce = 0 for all e 6∈ {0, 1}n,
and is homogeneous of degree d, if e1 + · · ·+ en = d for all e with ce 6= 0.

A standard model of ompat representation of suh polynomials (with nonnegative oe�ients)

is that of monotone arithmeti iruits, i.e. of {+,×}-iruits. Suh a iruit is a direted ayli

graph with three types of nodes: input, addition (+), and multipliation (×). Input nodes have

fanin zero, and orrespond to variables x1, . . . , xn. All other nodes have fanin two, and are alled

gates. The size of a iruit is the number of gates in it.

Every {+,×}-iruit syntatially produes a unique monotone polynomial F with nonnegative

integer oe�ients in a natural way: the polynomial produed at an input gate xi onsists of a

single monomial xi, and the polynomial produed at a sum (produt) gate is the sum (produt) of

polynomials produed at its inputs; we use distributivity to write a produt of polynomials as a

sum of monomials. The polynomial F produed by the iruit itself is the polynomial produed at

its output gate. Given a polynomial f(x1, . . . , xn), we say that the iruit
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Figure 1: A iruit of size 5 ounting the polynomial f = 2xyz + 2xy + 2xz + 2yz, and
deiding the polynomial g = xy + xz + yz. The iruit itself produes the polynomial F =
(x+ y)(y+ z)(x+ z) = 2xyz+ x2y+ xy2 + x2z + xz2 + y2z + yz2. Gate u is the output gate.

• omputes f , if F (a) = f(a) holds for all a ∈ N
n
, where N = {0, 1, 2, . . .};

• ounts f , if F (a) = f(a) holds for all a ∈ {0, 1}n;

• deides f , if F (a) = 0 exatly when f(a) = 0 holds for all a ∈ {0, 1}n.

In this paper we are mainly interested in {+,×}-iruits ounting a given polynomial f . Suh a

iruit needs only to orretly ompute the restrition f : {0, 1}n → N of f on 0-1 inputs. Note

that, if the polynomial f is moni (has no oe�ients > 1) then, on every 0-1 input a ∈ {0, 1}n,
f(a) is the number of monomials of f satis�ed by (evaluated to 1 on) a. For example, in the ase

of the permanent polynomial

Pern(x) =
∑

h

n
∏

i=1

xi,h(i)

with the summation over all permutations h of [n] = {1, . . . , n}, the value Pern(a) is the number of
perfet mathings in the bipartite n× n graph Ga spei�ed by input a ∈ {0, 1}n×n

; nodes i and j
are adjaent in Ga if and only if aij = 1. Thus, a iruit ounting Per outputs the number of perfet

mathings in Ga, whereas a iruit deiding this polynomial merely tells us whether Ga ontains a

perfet mathing.

Remark 1. Let us stress that we only onsider monotone arithmeti iruits. The reason is that

ounting {+,−,×}-iruits are already omnipotent: they are as powerful as boolean {∨,∧,¬}-
iruits. This is beause eah boolean operation an be simulated over {0, 1}: x ∧ y by xy, ¬x by

1− x, and x ∨ y by x+ y − xy.

If a {+,×}-iruit omputes, ounts or only deides a given polynomial f , what an then be

said about the struture of the produed by the iruit polynomial F?
If the iruit omputes f , then F = f must hold, that is, then the produed polynomial F and

the target polynomial f must oinide as formal expressions, i.e. as sums of monomials (see, e.g.

Claim 10 below for simple a proof). In partiular, then mon(F ) = mon(f) must also hold, where

• mon(f) is the set of monomials appearing in f with nonzero oe�ients.

This ensures that no �invalid� monomials an be formed during the omputation, and severely limits

the power of suh iruits. In partiular, if the target polynomial f is multilinear (no variable has

degree larger than 1, then the iruit itself must be multilinear: the polynomials produed at

inputs of eah produt gate must depend on disjoint sets of variables. This limitation is essentially

exploited in all lower bounds for monotone arithmeti iruits, inluding [17, 19, 10, 27, 22, 6, 24, 7℄.

In ounting iruits, mon(F ) = mon(f) needs not to hold, due to the multipliative idempotene

axiom x2 = x valid on 0-1 inputs. That is, here exponents (and hene, degrees of monomials) do

not mater (see Fig. 1). Still, it an be shown (see Lemma 5 below) that here we have a weaker, but

still strong enough property sup(F ) = sup(f), where

• sup(f) is the support of f , that is, the family of sets of variables of monomials in mon(f).
2



In deiding iruits, even sup(F ) = sup(f) needs not to hold, due to the additional absorption

axiom x+ xy = x. In suh iruits, we only have a weak property min(F ) = min(f), where

• min(f) ⊆ sup(f) is the family of all members of sup(f) whih are minimal in the sense than

they do not ontain any other members of sup(f); hene, min(f) forms an antihain.

Deiding {+,×}-iruits are atually monotone boolean iruits, and we have the following relations

onerning the minimum iruit size for every given polynomial (we will prove that both gaps an

be exponential):

Deiding 6 Counting 6 Computing.

To prove lower bounds for deiding, and hene, also for ounting {+,×}-iruits, one an use

lower-bounds arguments for monotone boolean iruits (see, e.g. [12, Chapt. 9℄ and the literature

ited herein), but these are not easy to apply. The reason here lies in a �dual harater� of these

arguments: in order to obtain a large lower bound on the deision omplexity of a given polynomial

f , not only the set of monomials of the polynomial f itself but also that of the �dual� polynomial

f∗
must have some good strutural properties (see the disussion before Theorem 8 below).

On the other hand, due to the limitations we mentioned above, lower bounds for {+,×}-iruits
omputing a given polynomial are relatively easy to obtain, beause here we have a full knowledge

about the polynomial whih a iruit must produe. In partiular, there is then no need to onsider

dual polynomials. Counting {+,×}-iruits allow more freedom, beause they an use x2 = x. In
this ase we only know the struture of the support of the produed polynomial, but not about its

monomials. So, it is natural to ask whether known lower bounds for exatly omputing {+,×}-
iruits an be extended to ounting iruits?

That they sometimes an be extended was demonstrated by Sengupta and Venkateswaran in

[18℄, where they show that an exponential lower bound of Jerrum and Snir [10℄ for {+,×}-iruits
omputing the permanent polynomial Per an be adopted to yield the same lower bound for iruits

only ounting this polynomial. Still, at least three questions remained open:

1. Can ounting iruits be substantially smaller than omputing iruits?

2. Can deiding iruits be substantially smaller than ounting iruits?

3. Can lower-bounds arguments for omputing {+,×}-iruits, not just bounds for spei� poly-
nomials (like the permanent polynomial), be extended to {+,×}-ounting iruits?

In this paper, we answer these questions a�rmatively.

2. Results

For a polynomial f , let C(f) denote the minimum size of a {+,×}-iruit omputing f , C0/1(f)
the minimum size of suh a iruit ounting f , and D(f) the minimum size of a {+,×}-iruit
deiding f . Note that, for every polynomial f , we have that

D(f) 6 C0/1(f) 6 C(f) .

We �rst show that the gaps C(f)/C0/1(f) as well as C0/1(f)/D(f) an be exponential. When doing

this, we will use known lower bound for the permanent polynomial.

Theorem 1 ([10, 18℄). If f = Pern, then C0/1(f) > n2n−1
.
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This lower bound on C(f) was proved by Jerrum and Snir [10℄, and was extended to C0/1(f) by
Sengupta and Venkateswaran [18℄ (see also Corollary 1 below for a short proof of a weaker 2Ω(n)

lower bound).

We will also use the (simple) fat that it is not harder to ompute the so-alled �lower� and

�higher� envelopes of polynomial than to ompute the polynomial itself. The lower envelope of a

polynomial f is a homogeneous polynomial fle onsisting of the monomials of f of smallest degree.

The higher envelope fhe is de�ned by taking monomials of largest degree. (As usually, the degree

of a monomial is the sum of exponents of its variables, and a polynomial is homogeneous, if all

its monomials have the same degree.) As observed already by Jerrum and Snir [10℄, every {+,×}-
iruit produing a polynomial f an be easily transformed into a iruit produing fle or fhe by
just disarding (if neessary) some of the sum-gates. Hene, we always have

C(f) > max {C(fhe),C(fle} . (2)

2.1. Gaps

To show that the gap C(f)/C0/1(f) an be exponential, we will show a stronger fat that both

gaps C0/1(fhe)/C0/1(f) and C0/1(fle)/C0/1(f) an be exponential. Reall that, by (2), no suh gap

is possible for omputing {+,×}-iruits.
Theorem 2. There are multilinear polynomials f and g of n variables suh that C0/1(f) = O(n)

and C0/1(g) = O(n3/2), but both C0/1(fhe) and C0/1(gle) are 2Ω(
√
n)
.

Remark 2. Together with (2), the theorem implies that the gap C(f)/C0/1(f) between the sizes of

{+,×}-iruits omputing and ounting f an be exponential. Important in this result is that the

gap is obtained for multilinear polynomials: this shows that, under the presene of multipliative

idempotene x2 = x, non-multilinear iruits ounting multilinear polynomials an be muh more

e�ient. In this onnetion, let us mention that without this restrition (to multilinear polynomials)

a non-trivial gap follows from the lassial lower bound Ω(n log d) of Strassen [23℄, and Baur and

Strassen [2℄ on the size of arithmeti (not neessarily monotone) iruits omputing the polynomial

f = xd1 +xd2 + · · ·+xdn, whih an be trivially ounted by a {+,×}-iruit F = x1+x2+ · · ·+xn of

size only n−1. But this example merely says that, under the presene of multipliative idempotene

x2 = x, rising to powers is redundant.

To show that the gap C0/1(f)/D(f) an also be exponential, it is enough to take any polynomial

g(x1, . . . , xn) suh that C0/1(g) is exponential, and onsider the polynomial f = g + h where

h =
∑n

i=1 xi. If g(0, . . . , 0) = 0 then, on every 0-1 input a, we have that f(a) = 0 if and only if

h(a) = 0. So, f has a small deision omplexity: D(f) 6 D(h) 6 n. So, if the ounting omplexity

C0/1(f) of the extended polynomial f remains exponential, then the gap C0/1(f)/D(f) is exponential.
In partiular, one an establish suh a gap by using the permanent polynomial g = Per (the only

small �tehniality� here is to show that the ounting omplexity of f remains large).

Theorem 3. If f = Pern +
∑n

i,j=1 xij, then D(f) 6 n2
but C0/1(f) = 2Ω(n)

.

The polynomial used in this theorem is somewhat arti�ial. Atually, one an establish an

exponential gap using a more natural (and important) s-t path polynomial Pathn. This polynomial

has one variable xi,j for eah edge of a omplete undireted graph on n+ 2 nodes {s, 1, 2, . . . , n, t}.
Eah monomial of f orresponds to a simple direted path from node s to node t:

Pathn(x) = xs,t +
n
∑

l=1

∑

i1,...,il
distinct

xs,i1xi1,i2 · · · xil−1,ilxil,t .
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On a 0-1 input a, Pathn(a) gives the number of s-t paths in the graph spei�ed by a. Jerrum and

Snir [10℄ have shown that every {+,×}-iruit omputing f = Pathn must have exponential size,

i.e. that C(f) = 2Ω(n)
. We show that even {+,×}-iruits ounting Path must have exponential

size.

Theorem 4. If f = Pathn, then D(f) = O(n3), but C0/1(f) > 2n
Ω(1)

.

2.2. Lower bounds

Reall that, if a {+,×}-iruit omputes a given polynomial f , then the produed by the iruit

polynomial F must just oinide with f (as formal expressions). In ounting and deiding iruits

we only have weaker onditions on F .
By the linearization of a polynomial f we will mean a multilinear polynomial f obtained from

f by removing all (nonzero) exponents from all monomials of f . For example, the linearization of

f = 2xy2 + 3x4y2 + 6y2z is f = 5xy + 6yz. It is lear that f(a) = f(a) holds for all a ∈ {0, 1}n.

Lemma 5. If a {+,×}-iruit produing a polynomial F ounts f , then F = f , and hene, also

sup(F ) = sup(f). A {+,×}-iruit deides f if and only if min(F ) = min(f).

Our next strutural result is the following lemma. The support of a monomial is the set of

variables appearing in it with nonzero degree; the size of this set is the length of the monomial. A

produt gh of two polynomials is m-balaned, if the minimum length l of one these polynomials

satis�es m/3 < l 6 2m/3. A monomial p appears m-balaned in a produt gh of two polynomials,

if there are monomials r ∈ mon(g) and s ∈ mon(h) suh that rs and p have the same support, and

the length l of r satis�es m/3 < l 6 2m/3. Note that here the order of polynomials in their produt

gh is important: the ondition is only on parts of monomials appearing in the �rst polynomial. In

partiular, if several monomials appear m-balaned in gh, then we know the bounds on the lengths

of their parts in one and the same of the two polynomials.

Lemma 6. Let m > 2, and let f a polynomial of ounting omplexity C0/1(f) = s.

(i) If every monomial of f has length at least m, then sup(f) is a union of at most s supports of

m-balaned produts of polynomials.

(ii) There are s produts gh of polynomials suh that sup(gh) ⊆ sup(f), and every monomial of

f of length at least m appears m-balaned in at least one of these produts.

Various versions of laim (i) (with degree of or the total number of variables in polynomials used

instead of their length) were observed by several authors inluding Hya�l [9℄, Jerrum and Snir [10℄,

Valiant [27℄, and Raz and Yehudayo� [16℄. The advantage of laim (ii) is its wider appliability:

the polynomial f itself is allowed to have also short monomials, shorter than m.

Our next results are more expliit lower bounds for ounting iruits. The r-th degree, #r(A),
of a family of sets A is the maximum number of sets in A ontaining a �xed r-element set:

#r(A) = max
|b|=r

|{a ∈ A : a ⊇ b}| .

In other words, the intersetion of any #r(A) sets in A an have at most r elements. Note that

|A| = #0(A) > #1(A) > . . . > #r(A) = 1 > 0 = #r+1(A) .

5



where r = max{|a| : a ∈ A}. Also, A ⊆ B implies #r(A) 6 #r(B). If A is a graph (viewed as a

set of edges), then #1(A) is the maximum degree of A. In general, #r(A) is related with |A| as
follows: if A is a family of m-element subsets on [n], then for every r 6 m we have that

|A|
(

m

r

)

6 #r(A) ·
(

n

r

)

.

This an be shown by ounting in two ways the number M of pairs (a, b), where a ∈ A, |b| = r and
a ⊇ b holds. By �rst �xing sets a ∈ A, we get that M is equal to the left-hand side. By �xing sets

b, and taking all possible m-element sets a ontaining b, we get that M is at most the right-hand

size.

As we mentioned in the introdution, lower bounds for deiding, and hene, also for ounting

{+,×}-iruits, an be obtained using lower-bounds arguments for monotone boolean iruits (see,

e.g. [12, Chapt. 9℄ and the literature ited herein), but these are not easy to apply. The reason

here lies in a �dual harater� of these arguments: in order to obtain a large lower bound of the

deision omplexity of a polynomial f given by (1), not only the set of monomials of f itself but

also that of its �dual� f∗
must have some good strutural properties. The dual f∗

of a polynomial

f =
∑

u⊆[n]

cu
∏

i∈u
xi is f∗ =

∏

u:cu>0

∑

i∈u
xi .

Note that, for every 0-1 input a = (a1, . . . , an), f(a) = 0 if and only if f∗(ā) 6= 0, where ā =
(1 − a1, . . . , 1 − an). This holds, beause every set in sup(f∗) intersets every set in sup(f). More

preisely, a general lower bound for deiding {+,×}-iruits is the following.
Theorem 7 ([11℄). Let f(x1, . . . , xn) be a polynomial, and 2 6 r, s 6 n be integers. Then for every

A ⊆ sup(f) and B ⊆ sup(f∗) suh that #1(A) 6 |A|/2(s − 1), we have

D(f) > min

{ |A|
2(s− 1)r ·#r(A)

,
|B|

(r − 1)s ·#s(B)

}

.

As shown in [11℄ (see also [12, Chapt. 9℄), this riterion allows to obtain strong (super-

polynomial) lower bounds on D(f), and hene, also on C0/1(f) and C(f), for some expliit polyno-

mials. The strength of this riterion lies in the possibility to arbitrarily hose both the parameters

r, s as well as sub-families A and B. The weakness, however, lies in its �dual nature� making it

not easy to apply: both |A|/#r(A) and |B|/#s(B) must be large. It is usually easy to ensure that

|A|/#r(A) is large. The problem, however, is with the dual set B, beause the set of monomials

of the dual polynomial f∗
may be rather �messy�, even though the polynomial f itself has a �nie�

struture. Say, if f = Pern, then |A|/#r(A) = n!/(n − r)! is large enough already for A = sup(f).
But monomials of f∗

orrespond then to omplements of graphs without perfet mathings, and it

is di�ult to ensure that |B|/#s(B) is also large for some family B of suh graphs.

For ounting {+,×}-iruits, we have a muh more handy lower-bounds riterion, avoiding the

need of dual polynomials. By the r-th degree, #r(f), of a polynomial f we will mean the r-th
degree #r(A) of its support A = sup(f). Thus, if f is multilinear, then #r(f) is the maximum

number of monomials of f ontaining a ommon fator of degree r.

Theorem 8. Let f = g + h be a polynomial suh that every monomial of g has at least m > 2
variables, and every monomial of h has fewer than m/3 variables. Then there is an integer r between

m/3 and 2m/3 suh that

C0/1(f) >
|sup(g)|

#r(g) ·#m−r(g)
. (3)
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There is yet another general lower-bounds riterion for monotone arithmeti iruits, due to

Gashkov [6℄, and Gashkov and Sergeev [7℄. They all a polynomial f (k, l)-sparse, if

mon(gh) ⊆ mon(f) implies |mon(g)| 6 k or |mon(h)| 6 l.

They proved that C(f) + 1 > |mon(f)|/max{k3, l2} holds for every suh polynomial. Note that

the bound is not trivial, beause the fat that |mon(g)| 6 k or |mon(h)| 6 l holds does not imply

that |mon(gh)| 6 kl must also hold (beause we have an �or�, not �and� here). To obtain a similar

lower bound for ounting iruits, we will modify their notion of �sparsity�.

Let, as before, min(f) ⊆ sup(f) denote the family of all members of sup(f) whih are minimal

in the sense than they do not ontain any other members of sup(f). Call a polynomial f (k, l)-free
if, for every two polynomials g and h,

sup(gh) ⊆ sup(f) implies |min(g)| 6 k or |min(h)| 6 l.

The reason to only require |min(g)| 6 k instead of |sup(g)| 6 k is that then it is (potentially) easier

to show that a given polynomial is (k, l)-free: |min(g)| an be muh smaller than |sup(g)|.

Theorem 9. Let 1 6 k 6 l be integers. For every (k, l)-free polynomial f , its support sup(f) is a

union of at most 2C0/1(f) supports sup(gh) of produts gh of polynomials suh that |min(gh)| 6 kl2.
In partiular,

C0/1(f) >
|min(f)|
2kl2

.

Remark 3. The proofs of Theorems 8 and 9 extend to C0/1(f) the arguments used in [6, 7, 13℄ to

lower-bound C(f). The main di�ulty with the extension (stipulated by the idempotene axiom

x2 = x) is that, unlike the measure µ(f) = |mon(f)| (used to lower-bound C(f)), the measures

|sup(f)| and |min(f)| are no more �monotone � in the sense that µ(f) 6 µ(fg). To see this, take,

for example, f = x1 + x2 + · · · + xn and g = x1x2 · · · xn. Then |sup(f)| = n but |sup(fg)| = 1.

Remark 4. The proofs of Theorems 8 and 9 are based on the fat (Lemma 5) that, if a {+,×}-iruit
ounts a polynomial f , then the produed by the iruit polynomial F must satisfy sup(F ) = sup(f).
Thus, these bounds do not extend to monotone boolean iruits, where we only have a muh weaker

property min(F ) = min(f).

3. Some Appliations

Theorem 8 allows us to easily obtain strong lower bounds on C0/1(f) for many polynomials. Let

us demonstrate this on some of them. First, assoiate with very set H of permutations h : [n] → [n]
the polynomial in n2

variables xi,j :

fH(x) =
∑

h∈H

n
∏

i=1

xi,h(i) .

For example, if H onsists of all permutations, then fH is the permanent polynomial Pern. If H
onsists of al yli permutations, then the monomial of fH orrespond to Hamiltonian yles in

Kn.
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Corollary 1. For every set H of permutations of [n], there is an r suh that n/3 < r 6 2n/3 and

C0/1(f) >
|H|

(

n
r

)

n!
.

In partiular, C0/1(Pern) >
(

n
r

)

= 2Ω(n)
.

Proof. The polynomial fH has |H| monomials, eah spei�ed by a permutation h ∈ H of [n]. If

some r variables are �xed, this �xes r values of h. Hene, at most (n− r)! of the permutations an
take r pre-desribed values, implying that #r(f) 6 (n − r)!. Thus, Theorem 8 gives that C0/1(f)
is at least |H| divided by the maximum of r!(n− r)! over all n/3 < r 6 2n/3.

In some ases, Theorem 8 allows to even obtain almost optimal bounds. A partial t�(n,m, λ)
design is a family A of k-element subsets of {1, . . . , n} suh that any t-element set is ontained in

at most λ of its members. We an assoiate with eah suh design A a multilinear polynomial

fA(x) =
∑

a∈A

∏

i∈a
xi .

Corollary 2. For every partial t�(n,m, λ) design A with m/3 6 t 6 2m/3, we have C0/1(fA) >
|A|/λ2

.

Proof. For all m/3 6 r 6 2m/3, we have that both r and m− r are at least m/3. Thus, the design
property implies that both #r(A) and #m−r(A) are at most λ, and the desired lower bound follows

diretly from Theorem 8.

There are many expliit partial designs A with λ <<
√

|A|. For every of them, the ounting

omplexity of the polynomial fA is almost the same as the number of monomials. To give an

example, let n be a prime power, and let A onsist of all subsets a = {(i, h(i) : i ∈ GF(n)} of

the grid GF(n) × GF(n) orresponding to polynomials h(z) of degree at most d − 1 over GF(n).
Sine no two distint polynomials of degree < d an oinide on d points, we have that no two

monomials of f an share d variables in ommon, A is a partial 1-(n2, n, 1) design, and we obtain

nd = |A| 6 C0/1(fA) 6 nd+1
.

Theorem 9 is more di�ult to apply than Theorem 8, but it may help for polynomials, on

whih the latter theorem fails. To demonstrate this, let A be a set of edges of a bipartite point-line

inidene graph of a projetive plane PG(2, q), introdued by Singer [20℄. The nodes on the left-side

orrespond to n = q2 + q + 1 points x, and those on the left-side to n lines L, and x and L are

adjaent if x ∈ L. Sine every line L has |L| = q+ 1 points, and every point lies in q+ 1 lines, this

is a d-regular graph of degree d = q + 1 >
√
n. Moreover, the graph is K2,2-free (i.e. ontains no

omplete 2 × 2 subgraphs), beause every two point lie in only one line, and every two lines share

only one point. For the polynomial

fA(x) =
∑

uv∈A
xuxv ,

Theorem 8 an only give a trivial lower bound C0/1(fA) > |A|/d2 = Ω(
√
n). Indeed, in this ase we

have m = 2, and hene, r = 1. But then both #r(fA) and #m−r(fA) are equal d >
√
n. On the
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other hand, it is not di�ult to verify that the K2,2-freeness of A implies that the polynomial fA is

(k, l)-free for k = l = 1. Thus, Theorem 9 yields an almost optimal lower bound

C0/1(fA) = Θ(n3/2) .

As a seond example, let us onsider the struturally muh simpler triangle polynomial of n = 3m2

variables with m3 = Θ(n3/2) monomials:

∆n(x, y, z) =
∑

i,j,k∈[m]

xikykjzij .

Shnorr [17℄ has shown that C(∆n) = Θ(n3/2); this also follows from the lower bound of Gashkov

and Sergeev [7℄ mentioned above, beause the polynomial is (1, 1)-sparse: any triangle is uniquely

determined by any two of its edges.

Conerning ounting iruit omplexity of f = ∆n, Theorem 8 an only yield a trivial lower

bound C0/1(f) > m3/m = m2 = n/3, beause up to m triangles an share a ommon edge. Still,

Theorem 9 (with some more e�ort) allows us to obtain an almost optimal lower bound.

Corollary 3. If f = ∆n, then C0/1(f) = Θ(n3/2).

Proof. The upper bound C0/1(f) = O(m3) = O(n3/2) is trivial. To prove the lower bound C0/1(f) =
Ω(m3), we will use Theorem 9. Sine |sup(f)| = m3

, it is enough to show that f is (1, 1)-free. To
show this, assume that sup(gh) ⊆ sup(f) for some polynomials g and h suh that |min(g)| > 2 and

|min(h)| > 2. Take any two sets a1, a2 ∈ min(g), and two sets b1, b2 ∈ min(h). Then all four unions

ai ∪ bj must be triangles (not just ontain a triangle). Moreover, a1 and a2, as well as b1 and b2
must be inomparable under inlusion.

Case 1: Some of the sets a1, a2, b1, b2 forms a triangle T , say a1 = T . Hene, b1 and b2 lie in

T , and a2 6⊆ T sine a1 and a2 must be inomparable. Consider the triangles T1 = a2 ∪ b1 and

T2 = a2 ∪ b2. If |bi| > 2 for some i ∈ {1, 2}, then |Ti ∩ T | > |bi| > 2, implying that Ti = T , and
hene, also a2 ⊆ T , a ontradition. So, b1 = {e1} and b2 = {e2} for some edges e1 6= e2. Sine

then |a2| > 2, the triangles T1 and T2 are uniquely determined by a2, implying that T1 = T2 must

be the same triangle. But this triangle shares two distint edges e1 and e2 with T , implying that

T1 = T , and hene also a2 ⊆ T , a ontradition.

Case 2: None of the sets a1, a2, b1, b2 forms a triangle. In this ase, some of the sets must have

exatly two edges, say a1 = {e1, e2}. Sine a triangle is uniquely determined by any two of its edges,

we have that both unions a1 ∪ b1 and a1 ∪ b2 must form the same triangle T = {e1, e2, e3}. The

sets b1 and b2 must be inomparable, and both of them must ontain the �missing� edge e3. Sine
none of these two sets an be a triangle, this implies that b1 = {e1, e3} and b2 = {e2, e3}. These

two sets also uniquely determine the same triangle T , implying that a2 ∪ b1 = a2 ∪ b2 = T . Thus,
a2 must ontain both missing edges e1 and e2 of T . But this means that a2 ontains the set a1, a
ontradition with a1 and a2 being inomparable.

We now turn to the proofs of our main results.

4. Proof of Theorem 2

To show that the gap C(fhe)/C(f) an be exponential, onsider the following polynomial in

n = m2 +m variables:

Per∗(x, y) =
m
∏

i=1

m
∑

j=1

xijyj . (4)

9



The relation to the permanent polynomial Per is that the oe�ient of the monomial y1y2 · · · ym in

Per∗(x, y) is exatly Perm(x).
Now, let f(x, y) be the linearization of Per∗(x, y). That is, f(x, y) is a multilinear polynomial

obtained from Per∗(x, y) by removing all nonzero exponents from all monomials. Every monomial

of f has degree (sum of exponents) between m+ 1 and 2m, and the monomials

x1,j1x2,j2 · · · xm,jmy1y2 · · · ym

of degree 2m with all j1, . . . , jm distint are exatly the monomials of the polynomial

h(x, y) = Perm(x) · y1y2 · · · ym .

Thus, h = fhe is the higher envelope of f . Sine h(x, 1, . . . , 1) = Perm(x), Theorem 1 yields

C0/1(fhe) > C0/1(Perm) = 2Ω(m) = 2Ω(
√
n) .

On the other hand, sine exponents play no role on 0-1 inputs, we have that Per∗(a) = f(a)
holds for all 0-1 inputs a. Thus, the polynomial f an be ounted by the iruit given by the

de�nition (4) of Per∗. This gives the desired upper bound C0/1(f) = O(m2) = O(n).
To show that the gap C(gle)/C(g) an also be exponential, onsider the following polynomial in

n = m2
variables xij given by the formula:

Isoln(x) =

m
∏

i=1

2m
∏

j=m+1

( 2m
∑

k=m+1

xik

)( m
∑

l=1

xlj

)

. (5)

The monomials of this polynomial are obtained as follows. We interpret the variables xij as edges
of a omplete bipartite m×m graph I×J with parts I = {1, . . . ,m} and J = {m+1, . . . , 2m}. To
get a monomial of Isol, we take, for eah node i ∈ I exatly one edge xik inident with i, and take,

for eah node j ∈ J exatly one edge xlj inident with j. So, every variable has degree at most 2.
Note that on every 0-1 input a ∈ {0, 1}n, Isol(a) = 0 if and only if the graph spei�ed by a has an

isolated node.

Let g be the linearization of Isoln. Every monomial of g has degree between m and 2m, and the

monomials of degree m orrespond to perfet mathings. Thus, the lower envelope gle of g is just

the permanent polynomial, i.e. gle = Perm. By Theorem 1, C(gle) = 2Ω(m)
.

On the other hand, sine exponents play no role on 0-1 inputs, we have that Isol(a) = g(a) holds
for all 0-1 inputs a. Thus, the polynomial g an be ounted by the iruit given by the de�nition

(5) of Isol. This gives the desired upper bound C0/1(g) = O(m3) = O(n3/2).

5. Proof of Theorem 4

Reall that the s-t path polynomial f = Pathn has one variable xi,j for eah edge of a omplete

undireted graph on n + 2 nodes {s, 1, . . . , n, t}. Eah monomial of f orresponds to a simple

direted path from node s to node t.
The upper bound D(f) = O(n3) of the deision omplexity of f = Pathn follows from the

Bellman�Ford dynami programming algorithm [3, 5℄. The iruit is onstruted reursively by

taking F1,j = xs,j for all j ∈ [n] ∪ {t}, and using the reursion Fl+1,j = Fl,j +
∑

i 6=j Fl,i × xi,j
for j ∈ [n] ∪ {t}. Monomials of Fl,j orrespond to walks from node s to node j passing through

10



at most l edges; one edge may be passed more than one, and eah pass ounts. The output is

the polynomial F = Fn+1,t. Sine every s-t walk ontains a simple s-t path, and sine in deiding

{+,×}-iruits we an use the absorption axiom x + xy = x, the iruit orretly deides Pathn.

Thus D(Pathn) = O(n3).
Our goal is now to show that every {+,×}-iruit ounting the s-t path polynomial must have

exponential size. We do not have a diret proof of this lower bound. Instead, we will derive this

result indiretly by using some known redutions and lower bounds.

Say that a {+,×}-iruit deides f with threshold T , if for every a ∈ {0, 1}n, F (a) > T holds

preisely when f(a) > 1. Here, the threshold T = T (n) may depend on the number n of variables,

but not on the input. Note that deiding {+,×}-iruits deide with threshold T = 1. Let Dthr(f)
denote the smallest size of a {+,×}-iruit deiding f with some threshold T .

As de�ned by Valiant [26℄, and Skyum and Valiant [21℄, a polynomial f(x1, . . . , xn) is a mono-

tone projetion of a polynomial g(y1, . . . , ym) if there exists an assignment σ : {y1, . . . , ym} →
{x1, . . . , xn, 0, 1} suh that f(x1, . . . , xn) = g(σ(y1), . . . , σ(ym)). It is lear that then Dthr(f) 6

Dthr(g).
The r-lique polynomial, Cliquen,r, has

(

n
2

)

variables xe, one for eah edge e of Kn, and has one

monomial

∏

e⊆S xe for every subset S ⊆ [n] of size |S| = r. Results of Valiant [25℄ imply that,

for every 1 6 r 6 n, Cliquen,r is a monotone projetion of the Hamiltonian s-t path polynomial

Hamm for m = nO(1)
; as noted by Alon and Boppana [1℄, already m = 25n2

is enough in this ase.

On the other hand, it is known that, for r about

√
n, the lique polynomial f = Cliquen,r requires

Dthr(f) > 2n
Ω(1)

[8, 15, 11℄; see, e.g. [12, Set. 9.8℄ for a simpler proof. (In fat, this result holds

for more general iruits where arbitrary monotone real valued funtions g : R2 → R an be used

as gates.) Sine Cliquen,r is a monotone projetion of Hamm, we have that

Dthr(Hamm) > Dthr(Cliquen,r) = 2n
Ω(1)

.

It remains therefore to show that

C0/1(Pathm) > Dthr(Hamn) for m = nO(1)
.

This an be shown using a standard redution of Path to Ham. Let p = (n + 1) log n. Given an

input graph G on n+2 nodes {s, 1, 2, . . . , n, t}, replae eah edge (u, v) by a graph on 2p+2 nodes
(u, v and 2p new nodes) ontaining exatly 2p paths of length p + 1 between u and v. This way,

every s-t path of length l in G gives (2p)l s-t paths in the resulting graph G′
. This graph has

m = O(pn2) = O(n3 log n) nodes.
If G has a Hamiltonian s-t path (of length n+ 1), then the graph G′

has at least T := (2p)n+1

s-t paths. If G has no Hamiltonian path, then the longest s-t path has at most n edges, and hene,

at most n − 1 inner nodes. The number of s-t paths of length 6 n is bounded from above by

n · nn−1 = nn
. So, in this ase, G′

an have at most (2p)n · nn = l · nn/2p = T/n s-t paths. We

have thus shown that every {+,×}-iruit ounting Pathm for m = Θ(pn2) = Θ(n3 log n) deides
Hamn with threshold T = (2p)n+1

.

6. Proof of Lemma 5

Let f(x1, . . . , xn) be a polynomial in whih eah variable xi has degree at most ti, and let Si ⊆ N

be arbitrary subsets of sizes |Si| > ti + 1, i = 1, . . . , n.
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Claim 10 (Folklore). The polynomial f is uniquely determined by its values on S1 ×S2 × · · · ×Sn.

Proof. Indution on n. For n = 1, the laim is simply the assertion that a non-zero polynomial of

degree t1 in one variable an have at most t1 distint roots. For the indution step, expand the

polynomial f by the variable xn:

f(x1, . . . , xn) =

tn
∑

i=0

fi(x1, . . . , xn−1) · xin .

For eah point a ∈ S1 × · · · × Sn−1,

f(a, xn) =

tn
∑

i=0

fi(a) · xin

is a polynomial of degree at most tn in one variable, and hene, all its oe�ients fi(a), i =
0, 1, . . . , tn an be reovered knowing the values f(a, b) for all b ∈ Sn+1. Knowing the values fi(a)
for all a ∈ S1 × · · · × Sn−1 we an, by the indution hypothesis, reover the polynomials fi, and
hene, the original polynomial f .

Now let f and h be two polynomials on the same set of n variables suh that f(a) = h(a), and
hene, also f(a) = h(a) holds for all a ∈ {0, 1}n. (Reall that f is obtained from f by removing all

nonzero exponents.) Sine the polynomials f and h are multilinear, Claim 10 with all Si = {0, 1}
yields f = h (they must oinide as multilinear polynomials), and hene, also sup(f) = sup(h) must
hold as well.

Let us now prove the seond laim of Lemma 5: if f and h are polynomials on the same set

of variables, then f and h have the same 0-1 roots if and only if min(f) = min(h). The �if� part

is trivial, beause f(a) > 0 happens preisely when p(a) = 1 for some monomial p ∈ min(f). To

prove the �only if� diretion, assume that f and h have the same 0-1 roots. Our goal is to show

that then min(f) = min(h) must hold.
Assume ontrariwise that there is a monomial p ∈ mon(f) whose set of variables Xp belongs

to min(f) but not to min(h). If Xq 6⊆ Xp holds for all monomials q of h, then we an set all

variables in Xp to 1 and the rest to 0. On the resulting assignment a = ap, we will have h(a) = 0
but f(a) > p(a) > 1, a ontradition. Thus, there must be a monomial q ∈ min(h) suh that

Xq ⊂ Xp; the inlusion must be proper, beause Xp 6∈ min(h). But then on the input aq, we will
have f(aq) = 0 but h(aq) > q(aq) > 1, a ontradition again.

7. Proof of Lemma 6

We will need the following two simple and well-known fats.

A subadditive weighting of a iruit is an assignment of nonnegative numbers (weights) to its

gates suh that the weight of a gate does not exeed the sum of the weights of its inputs.

Claim 11 (Folklore). If the output gate gets weight m, and every leaf gets weight at most 2m/3,
then there is a gate of weight larger than m/3 and at most 2m/3.

Proof. By starting at the output gate, and traversing the iruit by always hoosing the input of

larger weight, we an �nd a gate v of weight > 2m/3 suh that both its inputs u and w have

weights at most 2m/3. By the subadditivity of weighting, at least one of the gates u and w have

then weight larger than (2m/3)/2 = m/3 and at most 2m/3.
12
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Figure 2: A iruit and two its parse sub-iruits produing, respetively, the monomials xz2 and xy.

Claim 12 (Folklore). For every gate u in a {+,×}-iruit produing a polynomial F , the polynomial

an be written as F = PQ+R, where P is the polynomial produed at u.

(We use apital letters for polynomials only to stress that they are produed by iruits.)

Proof. If we replae the gate u by a new variable y, the resulting iruit produes a polynomial

of the form yH + R for some polynomial H, where R does not ontain y (albeit H may ontain).

It remains to substitute all ourrenes of the variable y with the polynomial P produed at the

gate u.

Proof of Lemma 6(i). For a polynomial f , let l(f) denote the minimum number of variables in a

monomial of f . Hene, a produt gh of two polynomials is m-balaned, if m/3 < l(g) 6 2m/3. We

have to show that, if l(f) > m for m > 2, then sup(f) is a union of at most s = C0/1(f) supports
of m-balaned produts of polynomials.

To prove this laim, �x a {+,×}-iruit of size s = C0/1(f) ounting f . De�ne the weight

of a gate u as l(P ), where P = Pu is the polynomial produed at u. Hene, the output gate

has weight at least m > 2, and eah input gate has weight 1 (whih is 6 2m/3 sine m > 2).
Sine this weighting is subadditive, Claim 11 gives us a gate u with m/3 < l(P ) 6 2m/3. By

Claim 12, we an write the produed by our iruit polynomial F as a sum F = PQ+ R. Hene,
sup(f) = sup(F ) = sup(PQ) ∪ sup(R), where the produt PQ is m-balaned.

The polynomial R is obtained from F by removing some monomials. If R is empty, then we are

done. Otherwise, the polynomial R an be produed by a iruit with one gate fewer (gate u is set

to onstant 0, and disappears). Moreover, mon(R) ⊆ mon(F ) implies that l(R) > l(F ) > m still

holds. So, we an repeat the same argument for the polynomial R, until the empty polynomial R
is obtained.

Proof of Lemma 6(ii). We will now apply Claim 11 not to the entire iruit but to some its sub-

iruits. A parse-subiruit of a iruit F is obtained by setting to 0 one of the two inputs of eah

sum gate. Suh a subiruit F′
an also be de�ned indutively as follows. The output gate of F

is inluded in F′
. If a gate u is already inluded in F′

, and if u is a sum gate, then exatly one of

the inputs to u are inluded in F′
. If u is a produt gate, then both its inputs are inluded in F′

(see Fig. 2). Note that eah parse-subiruit produes exatly one monomial in a natural way, and

that eah monomial of the polynomial produed by the entire iruit is produed by at least one

parse-subiruit.

Now let F be a iruit of size s = C0/1(f) ounting f , and F be the polynomial produed by F.
By Lemma 5, we have that sup(f) = sup(F ). For every monomial p of F of length at least m, take

some parse-subiruit Fp produing p, and use Claim 11 to �nd a gate u in Fp suh that the part

p′ of p produed at u in Fp has length l satisfying m/3 < l 6 2m/3. By Claim 12, we an write the
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polynomial F as a sum F = PQ+R, where P is the polynomial produed at gate u (in the entire

iruit). Hene, p appears m-balaned in the produt Ru = PQ. Sine we have at most s produts
Ru, and sine mon(Ru) ⊆ mon(F ) implies sup(Ru) ⊆ sup(f), we are done.

8. Proof of Theorems 8 and 3

De�ne the join of two families of sets B and C as the family

B ∗ C = {b ∪ c : b ∈ B, c ∈ C}

of all possible unions. Note that the support of a produt gh of two polynomials is the join of the

supports of g and h. Note also that, if no set of B intersets any set of C, then we have an upper

bound |A| 6 #|b|(A) · #|c|(A) on the size of the join A = B ∗ C holding for all b ∈ B and c ∈ C.
This holds beause then |B| = |B ∗ {c}| 6 #|c|(A), and similarly |C| = |{b} ∗ C| 6 #|b|(A). If,

however, sets in B and in C interset, then it may happen that |B| ≫ |B ∗ {c}|. Still, also then we

have a reasonable upper bound.

Lemma 13. Let B ∗ C be a join of two families, and B ∗ C ⊆ A. Suppose that every set in B ∗ C
has size at least m, and that B or C has a set of size r. Then

|B ∗ C| 6 #r(A) ·#m−r(A) .

Proof. Assume w.l.o.g. that the family B ontains a set b of size |b| = r, and let Ab = {b} ∗C ⊆ A.
Assoiate with every a ∈ Ab the family

Ca = {c ∈ C : b ∪ c = a} .

These families give a partition of C into |Ab| pairwise disjoint subfamilies. Sine all sets in Ab

ontain the set b of size |b| = r, we have that

|Ab| 6 #r(A) .

On the other hand, for eah a ∈ Ab, all sets in Ca, and hene, also all sets in B ∗Ca ontain the set

a \ b of size |a \ b| > m− r, implying that

|B ∗ Ca| 6 #m−r(A)

holds for all a ∈ Ab. Now, every set b′ ∪ c′ in B ∗ C belongs to B ∗ Ca for a = b ∪ c′. So,

|B ∗ C| 6
∑

a∈Ab

|B ∗ Ca| 6
∑

a∈Ab

#m−r(A)

6 |Ab| ·#m−r(A) 6 #r(A) ·#m−r(A) .

Proof of Theorem 8. Let f = g+ h be a polynomial suh that l(g) > m > 2, and l(h) < m/3; here,
as before, l(f) denotes the minimum number of variables in a monomial of f . By Lemma 6(ii), there

are s = C0/1(f) produts PQ of polynomials suh that sup(PQ) ⊆ sup(f), and every monomial of

g appears m-balaned in at least one of these produts.

Claim 14. If sup(PQ) ⊆ sup(f), and if at least one monomial of g appears m-balaned in PQ,

then sup(PQ) ⊆ sup(g) and |sup(PQ)| 6 #r(g) ·#m−r(g) for some m/3 < r 6 2m/3.
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Figure 3: For an edge e = (u, v), the polynomial Qe produed after e is the polynomial Qe = Qv

produed after the gate v, if v = u + w is a sum gate, and is Qe = QvPw, if v = u × w is a

produt gate, where Pw is the polynomial produed before the gate w.

Proof. To show the inlusion sup(PQ) ⊆ sup(g), assume ontrariwise that there are a, a′ ∈ sup(P )
and b, b′ ∈ sup(Q) suh that a ∪ b ∈ sup(g), m/3 < |a| 6 2m/3 but a′ ∪ b′ ∈ sup(h). Sine |b′| = l
for some l < m/3, the union a ∪ b′ has size l < m/3 < |a ∪ b′| 6 2m/3 + l < m, and hene, annot

belong to sup(f), a ontradition with sup(PQ) ⊆ sup(f). Thus, sup(PQ) must lie entirely within

sup(g), as laimed.

To show the upper bound on |sup(PQ)|, let A = sup(g), B = sup(P ) and C = sup(Q).
Sine l(g) > m, and sup(PQ) ⊆ sup(g), we have that every set in B ∗ C = sup(PQ) has at

least m elements. On the other hand, sine some monomial of g appears m-balaned in PQ,
some set in B must have r elements, for some m/3 < r 6 2m/3. For this r, Lemma 13 yields

|A ∗B| = |sup(PQ)| 6 #r(A) ·#m−r(A), as desired.

Thus, every monomial of g belongs to at least one of s produts PQ of polynomials suh that

|sup(PQ)| 6 #r(g) · #m−r(g) for some m/3 < r 6 2m/r. By taking suh an r maximizing

#r(g) ·#m−r(g), the desired lower bound s > |sup(g)|/#r(g) ·#m−r(g) follows.

Proof of Theorem 3. Reall that our polynomial f has the form f = g + h with g = Pern and

h =
∑

i,j∈[n] xij . Hene, l(g) = n and l(h) = 1 < n/3. By Theorem 8, there is an integer r between

n/3 and 2n/3 suh that C0/1(f) > |sup(g)|/#r(g) ·#m−r(g) > n!/r!(n− r)! = 2Ω(n)
. On the other

hand, on every 0-1 input a, we have that f(a) = 0 if and only if h(a) = 0, beause g(0, . . . , 0) = 0.
Hene, the iruit h deides f , implying that D(f) = D(h) 6 n2

.

9. Proof of Theorem 9

By Claim 12, we know that, for every gate u in a given {+,×}-iruit F, the produed by the

iruit polynomial F an be written as F = PuQu +R, where Pu is the polynomial produed at u,
Qu is the polynomial produed �after� the gate u, and R is the polynomial produed by the iruit

after the gate u is replaed with onstant 0. For our argument, it will be onvenient to introdue

the notion of a polynomial Qe produed after an edge e = (u, v) (see Fig. 3):

Qe =

{

Qv if v = u+ w,

QvPw if v = u× w.

A set E of edges of F is a ut, if every input-output path in F ontains an edge in E.

Claim 15. If E is a ut, then mon(F ) is a union of mon(PuQe) over all edges e = (u, v) in E.

Proof. Take a monomial p of the produed polynomial F , and let Fp be any parse-subiruit pro-

duing p. Sine E forms a ut, the graph Fp must ontain some edge e = (u, v) ∈ E. Then the

monomial p has the form p = p′p′′ where p′ is the monomial produed by the subgraph of Fp rooted

in u. Thus p′ belongs to the polynomial Pu produed in F before the edge e, and p′′ belongs to the
polynomial Qe produed after the edge e. Hene, p belongs to PuQe, as desired.
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Proof of Theorem 9. Let F be a {+,×}-iruit of size s = C0/1(f) ounting f , and let F be the

polynomial produed by F. By Lemma 5, we know that sup(F ) = sup(f). Hene, the polynomial

F is also (k, l)-free. We �rst transform the iruit F to a iruit F′
as follows. For every produt

gate v = u × w in F, one of whose inputs, say u, is small in that |min(Pu)| 6 l holds, we remove

the edge (u, v) and replae v by a unary (fanin-1) gate v = Pu×w of �salar� multipliation by this

�xed (small) polynomial Pu. If both inputs produe small polynomials, then we eliminate only one

of them. It is lear that F′
produes the same polynomial F . In partiular, sup(F ′) = sup(f) holds

as well.

Say that an edge e = (u, v) of F′
is light, if |min(PuQe)| 6 kl2. To �nish the proof of the �rst

laim in Theorem 9, it is enough, by Claim 15, to show that every input-output path in F′
must

ontain at least one light edge.

To show this, take an arbitrary input-output path in F′
, and let e = (u, v) be the last edge

along this path suh that |min(Pu)| 6 k; hene, |min(Pv)| > k. Suh an edge must exist beause

|min(xi)| = 1 6 k, and sine we an assume that |min(F )| > k (for otherwise the theorem would

trivially hold). Together with min(PvQv) ⊆ min(F ) and |min(Pv)| > k, the (k, l)-freeness of F
implies that

|min(Qv)| 6 l .

If v is a sum gate, then Qe = Qv, and hene, also |min(Qe)| 6 l. So, the edge e is light in this ase:

|min(PuQe)| 6 |min(Pu)| · |min(Qe)| 6 kl .

So, assume that v is a produt gate. Let u and w be the inputs to v in the original iruit F. Sine
|min(Pu)| 6 k 6 l, we have that |min(Pw)| 6 l must hold as well, for otherwise the edge e = (u, v)
ould not exist in F′

(would be already eliminated when going from F to F′
). Hene,

|min(Qe)| = |min(PwQv)| 6 l2 .

So, the edge e is light also in this ase:

|min(PuQe)| 6 |min(Pu)| · |min(Qe)| 6 kl2 .

Sine the total number of edges in F′
is at most 2s, we have thus shown that the support sup(F ′) =

sup(f) is a union of at most 2s families sup(PQ) with |min(PQ)| 6 kl2. Sine every minimal set of

a union of two families must be minimal in at least one of these families, this implies that min(f) is
ontained in (albeit not neessarily equal to) the union of the families min(PQ). Hene, the desired
lower bound s > |min(f)|/2lk2.

10. Conlusion and Open Problems

The weakness of monotone arithmeti iruits, i.e. of {+,×}-iruits, omputing a given poly-

nomial f is stipulated by the fat that the produed by the iruit polynomial F must just (synta-

tially) oinide with f . In partiular, then mon(F ) = mon(f) must hold. On the other pole are

{+,×}-iruits just deiding f . These are, in fat, monotone boolean iruits, where the idempo-

tene axiom x2 = x as well as the absorption axiom x + xy = x an be used, and hene, here we

only have a weaker property min(F ) = min(f). While proving lower bounds in the latter (boolean)

model is a relatively di�ult task, the severe restrition of the former (arithmeti) model makes

this task muh easier.
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Ciruits x+ x = x x2 = x x+ xy = x Property

Computing − − − F = f

Counting − X − F = f

Approximating X X − sup(F ) = sup(f)

Tropial X − X Min(F ) = Min(f)

Deiding/Boolean X X X min(F ) = min(f)

Table 1: Summary of whih axioms are allowed (X) in whih kind of {+,×}-iruits. The last olumn indiates what

property the produed by a iruit polynomial F must satisfy; here f is the linearization of f obtained by removing

all nonzero exponents. Tropial iruits are iruits with x ⊕ y = min(x, y) and x ⊗ y = x + y funtions as gates.

Finally, Min(f) is the set of all monomials of f that ontain no other monomial of f as a proper fator. The property

Min(F ) = Min(f) holds only if f is multilinear [10, 13℄.

In this paper we onsidered an intermediate model of ounting {+,×}-iruits. In this ase, it

is required that the values of F must oinide with those of f on only 0-1 inputs: on other inputs,

the values may be di�erent. Thus, ounting iruits are {+,×}-iruits that are allowed to use

the idempotene axiom x2 = x (but not the absorption axiom x + xy = x). These iruits have

an intermediate strutural property that sup(F ) = sup(f) must hold (Lemma 5). We have shown

that ounting iruits an be exponentially smaller than omputing iruits (Theorem 2), and that

deiding iruits an be exponentially smaller than ounting iruits (Theorem 3).

A next natural question was whether lower-bounds arguments for the weak (omputing) model

an be extended to work also for the intermediate (ounting) model? We have shown that suh

an extension is possible for two lower-bounds arguments (Theorems 8�9). In fat, our proofs

of these bounds hold for {+,×}-iruits that only �approximate� a given polynomial f in that

sup(F ) = sup(f) holds for the produed by the iruit polynomial F (oe�ients play no role in

our arguments). Approximating iruits an use both idempotene axioms x+ x = x and x2 = x.
(Table 1 summarizes the axioms allowed in various types of iruits.) So, these bounds also hold

for {∪, ∗}-iruits onstruting a given family A ⊆ 2X of subsets of a (�xed) �nite set. Inputs are

single element sets {x} with x ∈ X, and gates are set-theoreti union (∪) and join (∗) of families.

A speial ase of Theorem 8 (for h = 0) gives that, if every set in A has at least m > 2 elements,

then there is an integer m/3 < r 6 2m/3 suh that every {∪, ∗}-iruit onstruting A must have

at least |A|/#r(A) ·#m−r(A) gates.
A �omplementary� in a sense to ounting {+,×}-iruits model, also lying between omput-

ing {+,×}-iruits and deiding {+,×}-iruits, is that of tropial iruits, i.e. {min,+}-iruits.
These are {+,×}-iruits, where the sum is interpreted as min{x, y}, and the produt as x + y.
Suh a iruit omputes a given polynomial f of n variables, if F̂ (a) = f̂(a) holds for all a ∈ N

n
,

where f̂ is the �tropialization� of f :

f(x) =
∑

e∈Nn

ce

n
∏

i=1

xeii turns to f̂(x) = min
e∈Nn

ce 6=0

n
∑

i=1

eixi .

For example, if f = xy2 + 3y2z3, then f̂ = min{x + 2y, 2y + 3z}. Tropial iruits are important,

beause many dynami programming algorithms for minimization problems are just reursively

onstruted tropial iruits.
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The di�erene from ounting {+,×}-iruits is that now the absorption axiom x + xy = x
is allowed, but the idempotene axiom x2 = x is not (x + x 6= x unless x = 0). As shown

in [10, 13℄, lower bounds for omputing {+,×}-iruits hold also for tropial iruits, as long as

the target polynomial f is multilinear: in this ase we have that T(f) > C(fle), where T(f) is

the minimum size of a tropial iruit omputing f . In partiular, for polynomials whih are

multilinear and homogeneous (all monomials have the same number of variables), tropial iruits

are no more powerful than omputing {+,×}-iruits. Still, for non-homogeneous polynomials,

tropial iruits an be exponentially more powerful than even ounting {+,×}-iruits. In fat,

both gaps C0/1(f)/T(f) and T(f)/C0/1(f) an be exponential, meaning that tropial and ounting

{+,×}-iruits are inomparable.

Proposition 16. There are multilinear polynomials f and g of n variables suh that both C0/1(f)/T(f)

and T(g)/C0/1(g) are 2Ω(
√
n)
.

Proof. To show the �rst gap, onsider the permanent polynomial f = Perm+
∑m

i,j=1 xij on n = m2

variables. Theorem 3 gives C0/1(f) = 2Ω(m)
. But T(f) 6 m2 = n beause f an be omputed by a

tropial iruit F =
∑

i,j xij whose tropialization is F̂ = mini,j(xij): sine variables annot take

negative values, the minimum will be ahieved on a single variable. Thus, C0/1(f)/T(f) = 2Ω(m)
.

To show the seond gap, take the multilinear polynomial g onsidered in the proof of Theorem 2.

The polynomial g is the linearization of the polynomial Isoln on n = m2
variables given by (5), and

has C0/1(g) = O(n3/2). On the other hand, every monomial of g has degree between m and 2m,

and the monomials of degree m orrespond to perfet mathings. Thus, the lower envelope gle of
g is just the permanent polynomial, i.e. gle = Perm. Sine C(Perm) > C0/1(Perm) = 2Ω(m)

(see

Corollary 1) and T(g) > C(gle), the desired lower bound T(g) = 2Ω(m)
follows.

As we mentioned above, T(f) > C(fle) holds for every multilinear polynomial f . Thus, if the

lower envelope fle requires large monotone arithmeti iruits, then the polynomial f itself requires

large tropial iruits. This, however, does not hold for polynomials whose lower envelopes have

small {+,×}-iruits. An important example in this respet is the s-t path polynomial f = Pathn.

Even though we have C(f) = 2Ω(n)
[10℄, the lower envelope of f onsist of just one variable xs,t,

implying that C(fle) = 0. And indeed, the Bellman�Ford algorithm (see Set. 5) gives T(f) =
O(n3).

Problem 1. Does T(f) = Ω(n3) hold for f = Pathn?

This would show that the Bellman�Ford algorithm is optimal, if only Min and Plus operations

an be used. It is worth to mention that the optimality of the other prominent dynami program-

ming algorithm�that of Floyd�Warshall [4, 28℄ for the all-pairs shortest paths problem�is already

known. The orresponding to this problem �polynomial� fn is atually a set of s-t path polyno-

mials Pathn for all hoies of the soure and target nodes s and t. Thus, unlike for Pathn, every

iruit for fn must already have Ω(n2) distint output gates. The Ford�Warshall algorithm gives

T(fn) = O(n3). On the other hand, Kerr [14℄ has shown that also T(fn) = Ω(n3) holds.
In Set. 5, we have shown that the monotone ounting omplexity of Pathn is exponential in

n. But, unlike bounds given in Set. 3, our proof for Path indiret and is based on two rather non-

trivial known results: the fat that the lique polynomial Clique requires exponential monotone real

iruits, and is a projetion of the Hamiltonian s-t path polynomial Ham.

Problem 2. Give a diret proof of C0/1(f) = 2n
Ω(1)

for f = Pathn.
18



Finally, it would be interesting to extend to the ase of ounting {+,×}-iruits one of the �rst
lower-bounds arguments for omputing {+,×}-iruits suggested by Shnorr in [17℄. Namely, he

proved that C(f) > |mon(f)| − 1 holds, if the polynomial f is separated in the following sense: for

every two monomials p 6= q of f , their produt pq does not ontain any third monomial r 6∈ {p, q}
of f as a fator (see also [13, Set. 8℄ for a somewhat simpler proof). This riterion allows to

easily prove strong lower bounds for some polynomials. For example, using it, one an easily show

that C(f) >
(n
r

)

− 1 holds for the r-lique polynomial f = Cliquen,r. This polynomial is separated,

beause the union of no two r-liques (sets of edges of omplete subgraphs of Kn with r nodes) an
ontain a third r-lique.

Problem 3. Can Shnorr's argument for C(f) be extended to C0/1(f)?
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