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Abstra
t

A {+,×}-
ir
uit 
ounts a given multivariate polynomial f , if its values on 0-1 inputs are the same

as those of f ; on other inputs the 
ir
uit may output arbitrary values. Su
h a 
ir
uit 
ounts the

number of monomials of f evaluated to 1 by a given 0-1 input ve
tor (with multipli
ities given by

their 
oe�
ients). A 
ir
uit de
ides f if it has the same 0-1 roots as f . We �rst show that some

multilinear polynomials 
an be exponentially easier to 
ount than to 
ompute them, and 
an be

exponentially easier to de
ide than to 
ount them. Then we give general lower bounds on the size

of 
ounting 
ir
uits.
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1. Introdu
tion

In this paper we 
onsider 
omputational 
omplexity of multivariate polynomials with nonnega-

tive integer 
oe�
ients:

f(x1, . . . , xn) =
∑

e∈Nn

ce

n
∏

i=1

xeii , (1)

where ce ∈ N = {0, 1, 2, . . .}, and x0i = 1. Produ
ts
∏n

i=1 x
ei
i are monomials of f ; we will often omit

monomials whose 
oe�
ients ce are zero. The polynomial is multilinear, if ce = 0 for all e 6∈ {0, 1}n,
and is homogeneous of degree d, if e1 + · · ·+ en = d for all e with ce 6= 0.

A standard model of 
ompa
t representation of su
h polynomials (with nonnegative 
oe�
ients)

is that of monotone arithmeti
 
ir
uits, i.e. of {+,×}-
ir
uits. Su
h a 
ir
uit is a dire
ted a
y
li


graph with three types of nodes: input, addition (+), and multipli
ation (×). Input nodes have

fanin zero, and 
orrespond to variables x1, . . . , xn. All other nodes have fanin two, and are 
alled

gates. The size of a 
ir
uit is the number of gates in it.

Every {+,×}-
ir
uit synta
ti
ally produ
es a unique monotone polynomial F with nonnegative

integer 
oe�
ients in a natural way: the polynomial produ
ed at an input gate xi 
onsists of a

single monomial xi, and the polynomial produ
ed at a sum (produ
t) gate is the sum (produ
t) of

polynomials produ
ed at its inputs; we use distributivity to write a produ
t of polynomials as a

sum of monomials. The polynomial F produ
ed by the 
ir
uit itself is the polynomial produ
ed at

its output gate. Given a polynomial f(x1, . . . , xn), we say that the 
ir
uit
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Figure 1: A 
ir
uit of size 5 
ounting the polynomial f = 2xyz + 2xy + 2xz + 2yz, and
de
iding the polynomial g = xy + xz + yz. The 
ir
uit itself produ
es the polynomial F =
(x+ y)(y+ z)(x+ z) = 2xyz+ x2y+ xy2 + x2z + xz2 + y2z + yz2. Gate u is the output gate.

• 
omputes f , if F (a) = f(a) holds for all a ∈ N
n
, where N = {0, 1, 2, . . .};

• 
ounts f , if F (a) = f(a) holds for all a ∈ {0, 1}n;

• de
ides f , if F (a) = 0 exa
tly when f(a) = 0 holds for all a ∈ {0, 1}n.

In this paper we are mainly interested in {+,×}-
ir
uits 
ounting a given polynomial f . Su
h a


ir
uit needs only to 
orre
tly 
ompute the restri
tion f : {0, 1}n → N of f on 0-1 inputs. Note

that, if the polynomial f is moni
 (has no 
oe�
ients > 1) then, on every 0-1 input a ∈ {0, 1}n,
f(a) is the number of monomials of f satis�ed by (evaluated to 1 on) a. For example, in the 
ase

of the permanent polynomial

Pern(x) =
∑

h

n
∏

i=1

xi,h(i)

with the summation over all permutations h of [n] = {1, . . . , n}, the value Pern(a) is the number of
perfe
t mat
hings in the bipartite n× n graph Ga spe
i�ed by input a ∈ {0, 1}n×n

; nodes i and j
are adja
ent in Ga if and only if aij = 1. Thus, a 
ir
uit 
ounting Per outputs the number of perfe
t

mat
hings in Ga, whereas a 
ir
uit de
iding this polynomial merely tells us whether Ga 
ontains a

perfe
t mat
hing.

Remark 1. Let us stress that we only 
onsider monotone arithmeti
 
ir
uits. The reason is that


ounting {+,−,×}-
ir
uits are already omnipotent: they are as powerful as boolean {∨,∧,¬}-

ir
uits. This is be
ause ea
h boolean operation 
an be simulated over {0, 1}: x ∧ y by xy, ¬x by

1− x, and x ∨ y by x+ y − xy.

If a {+,×}-
ir
uit 
omputes, 
ounts or only de
ides a given polynomial f , what 
an then be

said about the stru
ture of the produ
ed by the 
ir
uit polynomial F?
If the 
ir
uit 
omputes f , then F = f must hold, that is, then the produ
ed polynomial F and

the target polynomial f must 
oin
ide as formal expressions, i.e. as sums of monomials (see, e.g.

Claim 10 below for simple a proof). In parti
ular, then mon(F ) = mon(f) must also hold, where

• mon(f) is the set of monomials appearing in f with nonzero 
oe�
ients.

This ensures that no �invalid� monomials 
an be formed during the 
omputation, and severely limits

the power of su
h 
ir
uits. In parti
ular, if the target polynomial f is multilinear (no variable has

degree larger than 1, then the 
ir
uit itself must be multilinear: the polynomials produ
ed at

inputs of ea
h produ
t gate must depend on disjoint sets of variables. This limitation is essentially

exploited in all lower bounds for monotone arithmeti
 
ir
uits, in
luding [17, 19, 10, 27, 22, 6, 24, 7℄.

In 
ounting 
ir
uits, mon(F ) = mon(f) needs not to hold, due to the multipli
ative idempoten
e

axiom x2 = x valid on 0-1 inputs. That is, here exponents (and hen
e, degrees of monomials) do

not mater (see Fig. 1). Still, it 
an be shown (see Lemma 5 below) that here we have a weaker, but

still strong enough property sup(F ) = sup(f), where

• sup(f) is the support of f , that is, the family of sets of variables of monomials in mon(f).
2



In de
iding 
ir
uits, even sup(F ) = sup(f) needs not to hold, due to the additional absorption

axiom x+ xy = x. In su
h 
ir
uits, we only have a weak property min(F ) = min(f), where

• min(f) ⊆ sup(f) is the family of all members of sup(f) whi
h are minimal in the sense than

they do not 
ontain any other members of sup(f); hen
e, min(f) forms an anti
hain.

De
iding {+,×}-
ir
uits are a
tually monotone boolean 
ir
uits, and we have the following relations


on
erning the minimum 
ir
uit size for every given polynomial (we will prove that both gaps 
an

be exponential):

De
iding 6 Counting 6 Computing.

To prove lower bounds for de
iding, and hen
e, also for 
ounting {+,×}-
ir
uits, one 
an use

lower-bounds arguments for monotone boolean 
ir
uits (see, e.g. [12, Chapt. 9℄ and the literature


ited herein), but these are not easy to apply. The reason here lies in a �dual 
hara
ter� of these

arguments: in order to obtain a large lower bound on the de
ision 
omplexity of a given polynomial

f , not only the set of monomials of the polynomial f itself but also that of the �dual� polynomial

f∗
must have some good stru
tural properties (see the dis
ussion before Theorem 8 below).

On the other hand, due to the limitations we mentioned above, lower bounds for {+,×}-
ir
uits

omputing a given polynomial are relatively easy to obtain, be
ause here we have a full knowledge

about the polynomial whi
h a 
ir
uit must produ
e. In parti
ular, there is then no need to 
onsider

dual polynomials. Counting {+,×}-
ir
uits allow more freedom, be
ause they 
an use x2 = x. In
this 
ase we only know the stru
ture of the support of the produ
ed polynomial, but not about its

monomials. So, it is natural to ask whether known lower bounds for exa
tly 
omputing {+,×}-

ir
uits 
an be extended to 
ounting 
ir
uits?

That they sometimes 
an be extended was demonstrated by Sengupta and Venkateswaran in

[18℄, where they show that an exponential lower bound of Jerrum and Snir [10℄ for {+,×}-
ir
uits

omputing the permanent polynomial Per 
an be adopted to yield the same lower bound for 
ir
uits

only 
ounting this polynomial. Still, at least three questions remained open:

1. Can 
ounting 
ir
uits be substantially smaller than 
omputing 
ir
uits?

2. Can de
iding 
ir
uits be substantially smaller than 
ounting 
ir
uits?

3. Can lower-bounds arguments for 
omputing {+,×}-
ir
uits, not just bounds for spe
i�
 poly-
nomials (like the permanent polynomial), be extended to {+,×}-
ounting 
ir
uits?

In this paper, we answer these questions a�rmatively.

2. Results

For a polynomial f , let C(f) denote the minimum size of a {+,×}-
ir
uit 
omputing f , C0/1(f)
the minimum size of su
h a 
ir
uit 
ounting f , and D(f) the minimum size of a {+,×}-
ir
uit
de
iding f . Note that, for every polynomial f , we have that

D(f) 6 C0/1(f) 6 C(f) .

We �rst show that the gaps C(f)/C0/1(f) as well as C0/1(f)/D(f) 
an be exponential. When doing

this, we will use known lower bound for the permanent polynomial.

Theorem 1 ([10, 18℄). If f = Pern, then C0/1(f) > n2n−1
.

3



This lower bound on C(f) was proved by Jerrum and Snir [10℄, and was extended to C0/1(f) by
Sengupta and Venkateswaran [18℄ (see also Corollary 1 below for a short proof of a weaker 2Ω(n)

lower bound).

We will also use the (simple) fa
t that it is not harder to 
ompute the so-
alled �lower� and

�higher� envelopes of polynomial than to 
ompute the polynomial itself. The lower envelope of a

polynomial f is a homogeneous polynomial fle 
onsisting of the monomials of f of smallest degree.

The higher envelope fhe is de�ned by taking monomials of largest degree. (As usually, the degree

of a monomial is the sum of exponents of its variables, and a polynomial is homogeneous, if all

its monomials have the same degree.) As observed already by Jerrum and Snir [10℄, every {+,×}-

ir
uit produ
ing a polynomial f 
an be easily transformed into a 
ir
uit produ
ing fle or fhe by
just dis
arding (if ne
essary) some of the sum-gates. Hen
e, we always have

C(f) > max {C(fhe),C(fle} . (2)

2.1. Gaps

To show that the gap C(f)/C0/1(f) 
an be exponential, we will show a stronger fa
t that both

gaps C0/1(fhe)/C0/1(f) and C0/1(fle)/C0/1(f) 
an be exponential. Re
all that, by (2), no su
h gap

is possible for 
omputing {+,×}-
ir
uits.
Theorem 2. There are multilinear polynomials f and g of n variables su
h that C0/1(f) = O(n)

and C0/1(g) = O(n3/2), but both C0/1(fhe) and C0/1(gle) are 2Ω(
√
n)
.

Remark 2. Together with (2), the theorem implies that the gap C(f)/C0/1(f) between the sizes of

{+,×}-
ir
uits 
omputing and 
ounting f 
an be exponential. Important in this result is that the

gap is obtained for multilinear polynomials: this shows that, under the presen
e of multipli
ative

idempoten
e x2 = x, non-multilinear 
ir
uits 
ounting multilinear polynomials 
an be mu
h more

e�
ient. In this 
onne
tion, let us mention that without this restri
tion (to multilinear polynomials)

a non-trivial gap follows from the 
lassi
al lower bound Ω(n log d) of Strassen [23℄, and Baur and

Strassen [2℄ on the size of arithmeti
 (not ne
essarily monotone) 
ir
uits 
omputing the polynomial

f = xd1 +xd2 + · · ·+xdn, whi
h 
an be trivially 
ounted by a {+,×}-
ir
uit F = x1+x2+ · · ·+xn of

size only n−1. But this example merely says that, under the presen
e of multipli
ative idempoten
e

x2 = x, rising to powers is redundant.

To show that the gap C0/1(f)/D(f) 
an also be exponential, it is enough to take any polynomial

g(x1, . . . , xn) su
h that C0/1(g) is exponential, and 
onsider the polynomial f = g + h where

h =
∑n

i=1 xi. If g(0, . . . , 0) = 0 then, on every 0-1 input a, we have that f(a) = 0 if and only if

h(a) = 0. So, f has a small de
ision 
omplexity: D(f) 6 D(h) 6 n. So, if the 
ounting 
omplexity

C0/1(f) of the extended polynomial f remains exponential, then the gap C0/1(f)/D(f) is exponential.
In parti
ular, one 
an establish su
h a gap by using the permanent polynomial g = Per (the only

small �te
hni
ality� here is to show that the 
ounting 
omplexity of f remains large).

Theorem 3. If f = Pern +
∑n

i,j=1 xij, then D(f) 6 n2
but C0/1(f) = 2Ω(n)

.

The polynomial used in this theorem is somewhat arti�
ial. A
tually, one 
an establish an

exponential gap using a more natural (and important) s-t path polynomial Pathn. This polynomial

has one variable xi,j for ea
h edge of a 
omplete undire
ted graph on n+ 2 nodes {s, 1, 2, . . . , n, t}.
Ea
h monomial of f 
orresponds to a simple dire
ted path from node s to node t:

Pathn(x) = xs,t +
n
∑

l=1

∑

i1,...,il
distinct

xs,i1xi1,i2 · · · xil−1,ilxil,t .
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On a 0-1 input a, Pathn(a) gives the number of s-t paths in the graph spe
i�ed by a. Jerrum and

Snir [10℄ have shown that every {+,×}-
ir
uit 
omputing f = Pathn must have exponential size,

i.e. that C(f) = 2Ω(n)
. We show that even {+,×}-
ir
uits 
ounting Path must have exponential

size.

Theorem 4. If f = Pathn, then D(f) = O(n3), but C0/1(f) > 2n
Ω(1)

.

2.2. Lower bounds

Re
all that, if a {+,×}-
ir
uit 
omputes a given polynomial f , then the produ
ed by the 
ir
uit

polynomial F must just 
oin
ide with f (as formal expressions). In 
ounting and de
iding 
ir
uits

we only have weaker 
onditions on F .
By the linearization of a polynomial f we will mean a multilinear polynomial f obtained from

f by removing all (nonzero) exponents from all monomials of f . For example, the linearization of

f = 2xy2 + 3x4y2 + 6y2z is f = 5xy + 6yz. It is 
lear that f(a) = f(a) holds for all a ∈ {0, 1}n.

Lemma 5. If a {+,×}-
ir
uit produ
ing a polynomial F 
ounts f , then F = f , and hen
e, also

sup(F ) = sup(f). A {+,×}-
ir
uit de
ides f if and only if min(F ) = min(f).

Our next stru
tural result is the following lemma. The support of a monomial is the set of

variables appearing in it with nonzero degree; the size of this set is the length of the monomial. A

produ
t gh of two polynomials is m-balan
ed, if the minimum length l of one these polynomials

satis�es m/3 < l 6 2m/3. A monomial p appears m-balan
ed in a produ
t gh of two polynomials,

if there are monomials r ∈ mon(g) and s ∈ mon(h) su
h that rs and p have the same support, and

the length l of r satis�es m/3 < l 6 2m/3. Note that here the order of polynomials in their produ
t

gh is important: the 
ondition is only on parts of monomials appearing in the �rst polynomial. In

parti
ular, if several monomials appear m-balan
ed in gh, then we know the bounds on the lengths

of their parts in one and the same of the two polynomials.

Lemma 6. Let m > 2, and let f a polynomial of 
ounting 
omplexity C0/1(f) = s.

(i) If every monomial of f has length at least m, then sup(f) is a union of at most s supports of

m-balan
ed produ
ts of polynomials.

(ii) There are s produ
ts gh of polynomials su
h that sup(gh) ⊆ sup(f), and every monomial of

f of length at least m appears m-balan
ed in at least one of these produ
ts.

Various versions of 
laim (i) (with degree of or the total number of variables in polynomials used

instead of their length) were observed by several authors in
luding Hya�l [9℄, Jerrum and Snir [10℄,

Valiant [27℄, and Raz and Yehudayo� [16℄. The advantage of 
laim (ii) is its wider appli
ability:

the polynomial f itself is allowed to have also short monomials, shorter than m.

Our next results are more expli
it lower bounds for 
ounting 
ir
uits. The r-th degree, #r(A),
of a family of sets A is the maximum number of sets in A 
ontaining a �xed r-element set:

#r(A) = max
|b|=r

|{a ∈ A : a ⊇ b}| .

In other words, the interse
tion of any #r(A) sets in A 
an have at most r elements. Note that

|A| = #0(A) > #1(A) > . . . > #r(A) = 1 > 0 = #r+1(A) .
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where r = max{|a| : a ∈ A}. Also, A ⊆ B implies #r(A) 6 #r(B). If A is a graph (viewed as a

set of edges), then #1(A) is the maximum degree of A. In general, #r(A) is related with |A| as
follows: if A is a family of m-element subsets on [n], then for every r 6 m we have that

|A|
(

m

r

)

6 #r(A) ·
(

n

r

)

.

This 
an be shown by 
ounting in two ways the number M of pairs (a, b), where a ∈ A, |b| = r and
a ⊇ b holds. By �rst �xing sets a ∈ A, we get that M is equal to the left-hand side. By �xing sets

b, and taking all possible m-element sets a 
ontaining b, we get that M is at most the right-hand

size.

As we mentioned in the introdu
tion, lower bounds for de
iding, and hen
e, also for 
ounting

{+,×}-
ir
uits, 
an be obtained using lower-bounds arguments for monotone boolean 
ir
uits (see,

e.g. [12, Chapt. 9℄ and the literature 
ited herein), but these are not easy to apply. The reason

here lies in a �dual 
hara
ter� of these arguments: in order to obtain a large lower bound of the

de
ision 
omplexity of a polynomial f given by (1), not only the set of monomials of f itself but

also that of its �dual� f∗
must have some good stru
tural properties. The dual f∗

of a polynomial

f =
∑

u⊆[n]

cu
∏

i∈u
xi is f∗ =

∏

u:cu>0

∑

i∈u
xi .

Note that, for every 0-1 input a = (a1, . . . , an), f(a) = 0 if and only if f∗(ā) 6= 0, where ā =
(1 − a1, . . . , 1 − an). This holds, be
ause every set in sup(f∗) interse
ts every set in sup(f). More

pre
isely, a general lower bound for de
iding {+,×}-
ir
uits is the following.
Theorem 7 ([11℄). Let f(x1, . . . , xn) be a polynomial, and 2 6 r, s 6 n be integers. Then for every

A ⊆ sup(f) and B ⊆ sup(f∗) su
h that #1(A) 6 |A|/2(s − 1), we have

D(f) > min

{ |A|
2(s− 1)r ·#r(A)

,
|B|

(r − 1)s ·#s(B)

}

.

As shown in [11℄ (see also [12, Chapt. 9℄), this 
riterion allows to obtain strong (super-

polynomial) lower bounds on D(f), and hen
e, also on C0/1(f) and C(f), for some expli
it polyno-

mials. The strength of this 
riterion lies in the possibility to arbitrarily 
hose both the parameters

r, s as well as sub-families A and B. The weakness, however, lies in its �dual nature� making it

not easy to apply: both |A|/#r(A) and |B|/#s(B) must be large. It is usually easy to ensure that

|A|/#r(A) is large. The problem, however, is with the dual set B, be
ause the set of monomials

of the dual polynomial f∗
may be rather �messy�, even though the polynomial f itself has a �ni
e�

stru
ture. Say, if f = Pern, then |A|/#r(A) = n!/(n − r)! is large enough already for A = sup(f).
But monomials of f∗


orrespond then to 
omplements of graphs without perfe
t mat
hings, and it

is di�
ult to ensure that |B|/#s(B) is also large for some family B of su
h graphs.

For 
ounting {+,×}-
ir
uits, we have a mu
h more handy lower-bounds 
riterion, avoiding the

need of dual polynomials. By the r-th degree, #r(f), of a polynomial f we will mean the r-th
degree #r(A) of its support A = sup(f). Thus, if f is multilinear, then #r(f) is the maximum

number of monomials of f 
ontaining a 
ommon fa
tor of degree r.

Theorem 8. Let f = g + h be a polynomial su
h that every monomial of g has at least m > 2
variables, and every monomial of h has fewer than m/3 variables. Then there is an integer r between

m/3 and 2m/3 su
h that

C0/1(f) >
|sup(g)|

#r(g) ·#m−r(g)
. (3)

6



There is yet another general lower-bounds 
riterion for monotone arithmeti
 
ir
uits, due to

Gashkov [6℄, and Gashkov and Sergeev [7℄. They 
all a polynomial f (k, l)-sparse, if

mon(gh) ⊆ mon(f) implies |mon(g)| 6 k or |mon(h)| 6 l.

They proved that C(f) + 1 > |mon(f)|/max{k3, l2} holds for every su
h polynomial. Note that

the bound is not trivial, be
ause the fa
t that |mon(g)| 6 k or |mon(h)| 6 l holds does not imply

that |mon(gh)| 6 kl must also hold (be
ause we have an �or�, not �and� here). To obtain a similar

lower bound for 
ounting 
ir
uits, we will modify their notion of �sparsity�.

Let, as before, min(f) ⊆ sup(f) denote the family of all members of sup(f) whi
h are minimal

in the sense than they do not 
ontain any other members of sup(f). Call a polynomial f (k, l)-free
if, for every two polynomials g and h,

sup(gh) ⊆ sup(f) implies |min(g)| 6 k or |min(h)| 6 l.

The reason to only require |min(g)| 6 k instead of |sup(g)| 6 k is that then it is (potentially) easier

to show that a given polynomial is (k, l)-free: |min(g)| 
an be mu
h smaller than |sup(g)|.

Theorem 9. Let 1 6 k 6 l be integers. For every (k, l)-free polynomial f , its support sup(f) is a

union of at most 2C0/1(f) supports sup(gh) of produ
ts gh of polynomials su
h that |min(gh)| 6 kl2.
In parti
ular,

C0/1(f) >
|min(f)|
2kl2

.

Remark 3. The proofs of Theorems 8 and 9 extend to C0/1(f) the arguments used in [6, 7, 13℄ to

lower-bound C(f). The main di�
ulty with the extension (stipulated by the idempoten
e axiom

x2 = x) is that, unlike the measure µ(f) = |mon(f)| (used to lower-bound C(f)), the measures

|sup(f)| and |min(f)| are no more �monotone � in the sense that µ(f) 6 µ(fg). To see this, take,

for example, f = x1 + x2 + · · · + xn and g = x1x2 · · · xn. Then |sup(f)| = n but |sup(fg)| = 1.

Remark 4. The proofs of Theorems 8 and 9 are based on the fa
t (Lemma 5) that, if a {+,×}-
ir
uit

ounts a polynomial f , then the produ
ed by the 
ir
uit polynomial F must satisfy sup(F ) = sup(f).
Thus, these bounds do not extend to monotone boolean 
ir
uits, where we only have a mu
h weaker

property min(F ) = min(f).

3. Some Appli
ations

Theorem 8 allows us to easily obtain strong lower bounds on C0/1(f) for many polynomials. Let

us demonstrate this on some of them. First, asso
iate with very set H of permutations h : [n] → [n]
the polynomial in n2

variables xi,j :

fH(x) =
∑

h∈H

n
∏

i=1

xi,h(i) .

For example, if H 
onsists of all permutations, then fH is the permanent polynomial Pern. If H

onsists of al 
y
li
 permutations, then the monomial of fH 
orrespond to Hamiltonian 
y
les in

Kn.
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Corollary 1. For every set H of permutations of [n], there is an r su
h that n/3 < r 6 2n/3 and

C0/1(f) >
|H|

(

n
r

)

n!
.

In parti
ular, C0/1(Pern) >
(

n
r

)

= 2Ω(n)
.

Proof. The polynomial fH has |H| monomials, ea
h spe
i�ed by a permutation h ∈ H of [n]. If

some r variables are �xed, this �xes r values of h. Hen
e, at most (n− r)! of the permutations 
an
take r pre-des
ribed values, implying that #r(f) 6 (n − r)!. Thus, Theorem 8 gives that C0/1(f)
is at least |H| divided by the maximum of r!(n− r)! over all n/3 < r 6 2n/3.

In some 
ases, Theorem 8 allows to even obtain almost optimal bounds. A partial t�(n,m, λ)
design is a family A of k-element subsets of {1, . . . , n} su
h that any t-element set is 
ontained in

at most λ of its members. We 
an asso
iate with ea
h su
h design A a multilinear polynomial

fA(x) =
∑

a∈A

∏

i∈a
xi .

Corollary 2. For every partial t�(n,m, λ) design A with m/3 6 t 6 2m/3, we have C0/1(fA) >
|A|/λ2

.

Proof. For all m/3 6 r 6 2m/3, we have that both r and m− r are at least m/3. Thus, the design
property implies that both #r(A) and #m−r(A) are at most λ, and the desired lower bound follows

dire
tly from Theorem 8.

There are many expli
it partial designs A with λ <<
√

|A|. For every of them, the 
ounting


omplexity of the polynomial fA is almost the same as the number of monomials. To give an

example, let n be a prime power, and let A 
onsist of all subsets a = {(i, h(i) : i ∈ GF(n)} of

the grid GF(n) × GF(n) 
orresponding to polynomials h(z) of degree at most d − 1 over GF(n).
Sin
e no two distin
t polynomials of degree < d 
an 
oin
ide on d points, we have that no two

monomials of f 
an share d variables in 
ommon, A is a partial 1-(n2, n, 1) design, and we obtain

nd = |A| 6 C0/1(fA) 6 nd+1
.

Theorem 9 is more di�
ult to apply than Theorem 8, but it may help for polynomials, on

whi
h the latter theorem fails. To demonstrate this, let A be a set of edges of a bipartite point-line

in
iden
e graph of a proje
tive plane PG(2, q), introdu
ed by Singer [20℄. The nodes on the left-side


orrespond to n = q2 + q + 1 points x, and those on the left-side to n lines L, and x and L are

adja
ent if x ∈ L. Sin
e every line L has |L| = q+ 1 points, and every point lies in q+ 1 lines, this

is a d-regular graph of degree d = q + 1 >
√
n. Moreover, the graph is K2,2-free (i.e. 
ontains no


omplete 2 × 2 subgraphs), be
ause every two point lie in only one line, and every two lines share

only one point. For the polynomial

fA(x) =
∑

uv∈A
xuxv ,

Theorem 8 
an only give a trivial lower bound C0/1(fA) > |A|/d2 = Ω(
√
n). Indeed, in this 
ase we

have m = 2, and hen
e, r = 1. But then both #r(fA) and #m−r(fA) are equal d >
√
n. On the

8



other hand, it is not di�
ult to verify that the K2,2-freeness of A implies that the polynomial fA is

(k, l)-free for k = l = 1. Thus, Theorem 9 yields an almost optimal lower bound

C0/1(fA) = Θ(n3/2) .

As a se
ond example, let us 
onsider the stru
turally mu
h simpler triangle polynomial of n = 3m2

variables with m3 = Θ(n3/2) monomials:

∆n(x, y, z) =
∑

i,j,k∈[m]

xikykjzij .

S
hnorr [17℄ has shown that C(∆n) = Θ(n3/2); this also follows from the lower bound of Gashkov

and Sergeev [7℄ mentioned above, be
ause the polynomial is (1, 1)-sparse: any triangle is uniquely

determined by any two of its edges.

Con
erning 
ounting 
ir
uit 
omplexity of f = ∆n, Theorem 8 
an only yield a trivial lower

bound C0/1(f) > m3/m = m2 = n/3, be
ause up to m triangles 
an share a 
ommon edge. Still,

Theorem 9 (with some more e�ort) allows us to obtain an almost optimal lower bound.

Corollary 3. If f = ∆n, then C0/1(f) = Θ(n3/2).

Proof. The upper bound C0/1(f) = O(m3) = O(n3/2) is trivial. To prove the lower bound C0/1(f) =
Ω(m3), we will use Theorem 9. Sin
e |sup(f)| = m3

, it is enough to show that f is (1, 1)-free. To
show this, assume that sup(gh) ⊆ sup(f) for some polynomials g and h su
h that |min(g)| > 2 and

|min(h)| > 2. Take any two sets a1, a2 ∈ min(g), and two sets b1, b2 ∈ min(h). Then all four unions

ai ∪ bj must be triangles (not just 
ontain a triangle). Moreover, a1 and a2, as well as b1 and b2
must be in
omparable under in
lusion.

Case 1: Some of the sets a1, a2, b1, b2 forms a triangle T , say a1 = T . Hen
e, b1 and b2 lie in

T , and a2 6⊆ T sin
e a1 and a2 must be in
omparable. Consider the triangles T1 = a2 ∪ b1 and

T2 = a2 ∪ b2. If |bi| > 2 for some i ∈ {1, 2}, then |Ti ∩ T | > |bi| > 2, implying that Ti = T , and
hen
e, also a2 ⊆ T , a 
ontradi
tion. So, b1 = {e1} and b2 = {e2} for some edges e1 6= e2. Sin
e

then |a2| > 2, the triangles T1 and T2 are uniquely determined by a2, implying that T1 = T2 must

be the same triangle. But this triangle shares two distin
t edges e1 and e2 with T , implying that

T1 = T , and hen
e also a2 ⊆ T , a 
ontradi
tion.

Case 2: None of the sets a1, a2, b1, b2 forms a triangle. In this 
ase, some of the sets must have

exa
tly two edges, say a1 = {e1, e2}. Sin
e a triangle is uniquely determined by any two of its edges,

we have that both unions a1 ∪ b1 and a1 ∪ b2 must form the same triangle T = {e1, e2, e3}. The

sets b1 and b2 must be in
omparable, and both of them must 
ontain the �missing� edge e3. Sin
e
none of these two sets 
an be a triangle, this implies that b1 = {e1, e3} and b2 = {e2, e3}. These

two sets also uniquely determine the same triangle T , implying that a2 ∪ b1 = a2 ∪ b2 = T . Thus,
a2 must 
ontain both missing edges e1 and e2 of T . But this means that a2 
ontains the set a1, a

ontradi
tion with a1 and a2 being in
omparable.

We now turn to the proofs of our main results.

4. Proof of Theorem 2

To show that the gap C(fhe)/C(f) 
an be exponential, 
onsider the following polynomial in

n = m2 +m variables:

Per∗(x, y) =
m
∏

i=1

m
∑

j=1

xijyj . (4)
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The relation to the permanent polynomial Per is that the 
oe�
ient of the monomial y1y2 · · · ym in

Per∗(x, y) is exa
tly Perm(x).
Now, let f(x, y) be the linearization of Per∗(x, y). That is, f(x, y) is a multilinear polynomial

obtained from Per∗(x, y) by removing all nonzero exponents from all monomials. Every monomial

of f has degree (sum of exponents) between m+ 1 and 2m, and the monomials

x1,j1x2,j2 · · · xm,jmy1y2 · · · ym

of degree 2m with all j1, . . . , jm distin
t are exa
tly the monomials of the polynomial

h(x, y) = Perm(x) · y1y2 · · · ym .

Thus, h = fhe is the higher envelope of f . Sin
e h(x, 1, . . . , 1) = Perm(x), Theorem 1 yields

C0/1(fhe) > C0/1(Perm) = 2Ω(m) = 2Ω(
√
n) .

On the other hand, sin
e exponents play no role on 0-1 inputs, we have that Per∗(a) = f(a)
holds for all 0-1 inputs a. Thus, the polynomial f 
an be 
ounted by the 
ir
uit given by the

de�nition (4) of Per∗. This gives the desired upper bound C0/1(f) = O(m2) = O(n).
To show that the gap C(gle)/C(g) 
an also be exponential, 
onsider the following polynomial in

n = m2
variables xij given by the formula:

Isoln(x) =

m
∏

i=1

2m
∏

j=m+1

( 2m
∑

k=m+1

xik

)( m
∑

l=1

xlj

)

. (5)

The monomials of this polynomial are obtained as follows. We interpret the variables xij as edges
of a 
omplete bipartite m×m graph I×J with parts I = {1, . . . ,m} and J = {m+1, . . . , 2m}. To
get a monomial of Isol, we take, for ea
h node i ∈ I exa
tly one edge xik in
ident with i, and take,

for ea
h node j ∈ J exa
tly one edge xlj in
ident with j. So, every variable has degree at most 2.
Note that on every 0-1 input a ∈ {0, 1}n, Isol(a) = 0 if and only if the graph spe
i�ed by a has an

isolated node.

Let g be the linearization of Isoln. Every monomial of g has degree between m and 2m, and the

monomials of degree m 
orrespond to perfe
t mat
hings. Thus, the lower envelope gle of g is just

the permanent polynomial, i.e. gle = Perm. By Theorem 1, C(gle) = 2Ω(m)
.

On the other hand, sin
e exponents play no role on 0-1 inputs, we have that Isol(a) = g(a) holds
for all 0-1 inputs a. Thus, the polynomial g 
an be 
ounted by the 
ir
uit given by the de�nition

(5) of Isol. This gives the desired upper bound C0/1(g) = O(m3) = O(n3/2).

5. Proof of Theorem 4

Re
all that the s-t path polynomial f = Pathn has one variable xi,j for ea
h edge of a 
omplete

undire
ted graph on n + 2 nodes {s, 1, . . . , n, t}. Ea
h monomial of f 
orresponds to a simple

dire
ted path from node s to node t.
The upper bound D(f) = O(n3) of the de
ision 
omplexity of f = Pathn follows from the

Bellman�Ford dynami
 programming algorithm [3, 5℄. The 
ir
uit is 
onstru
ted re
ursively by

taking F1,j = xs,j for all j ∈ [n] ∪ {t}, and using the re
ursion Fl+1,j = Fl,j +
∑

i 6=j Fl,i × xi,j
for j ∈ [n] ∪ {t}. Monomials of Fl,j 
orrespond to walks from node s to node j passing through

10



at most l edges; one edge may be passed more than on
e, and ea
h pass 
ounts. The output is

the polynomial F = Fn+1,t. Sin
e every s-t walk 
ontains a simple s-t path, and sin
e in de
iding

{+,×}-
ir
uits we 
an use the absorption axiom x + xy = x, the 
ir
uit 
orre
tly de
ides Pathn.

Thus D(Pathn) = O(n3).
Our goal is now to show that every {+,×}-
ir
uit 
ounting the s-t path polynomial must have

exponential size. We do not have a dire
t proof of this lower bound. Instead, we will derive this

result indire
tly by using some known redu
tions and lower bounds.

Say that a {+,×}-
ir
uit de
ides f with threshold T , if for every a ∈ {0, 1}n, F (a) > T holds

pre
isely when f(a) > 1. Here, the threshold T = T (n) may depend on the number n of variables,

but not on the input. Note that de
iding {+,×}-
ir
uits de
ide with threshold T = 1. Let Dthr(f)
denote the smallest size of a {+,×}-
ir
uit de
iding f with some threshold T .

As de�ned by Valiant [26℄, and Skyum and Valiant [21℄, a polynomial f(x1, . . . , xn) is a mono-

tone proje
tion of a polynomial g(y1, . . . , ym) if there exists an assignment σ : {y1, . . . , ym} →
{x1, . . . , xn, 0, 1} su
h that f(x1, . . . , xn) = g(σ(y1), . . . , σ(ym)). It is 
lear that then Dthr(f) 6

Dthr(g).
The r-
lique polynomial, Cliquen,r, has

(

n
2

)

variables xe, one for ea
h edge e of Kn, and has one

monomial

∏

e⊆S xe for every subset S ⊆ [n] of size |S| = r. Results of Valiant [25℄ imply that,

for every 1 6 r 6 n, Cliquen,r is a monotone proje
tion of the Hamiltonian s-t path polynomial

Hamm for m = nO(1)
; as noted by Alon and Boppana [1℄, already m = 25n2

is enough in this 
ase.

On the other hand, it is known that, for r about

√
n, the 
lique polynomial f = Cliquen,r requires

Dthr(f) > 2n
Ω(1)

[8, 15, 11℄; see, e.g. [12, Se
t. 9.8℄ for a simpler proof. (In fa
t, this result holds

for more general 
ir
uits where arbitrary monotone real valued fun
tions g : R2 → R 
an be used

as gates.) Sin
e Cliquen,r is a monotone proje
tion of Hamm, we have that

Dthr(Hamm) > Dthr(Cliquen,r) = 2n
Ω(1)

.

It remains therefore to show that

C0/1(Pathm) > Dthr(Hamn) for m = nO(1)
.

This 
an be shown using a standard redu
tion of Path to Ham. Let p = (n + 1) log n. Given an

input graph G on n+2 nodes {s, 1, 2, . . . , n, t}, repla
e ea
h edge (u, v) by a graph on 2p+2 nodes
(u, v and 2p new nodes) 
ontaining exa
tly 2p paths of length p + 1 between u and v. This way,

every s-t path of length l in G gives (2p)l s-t paths in the resulting graph G′
. This graph has

m = O(pn2) = O(n3 log n) nodes.
If G has a Hamiltonian s-t path (of length n+ 1), then the graph G′

has at least T := (2p)n+1

s-t paths. If G has no Hamiltonian path, then the longest s-t path has at most n edges, and hen
e,

at most n − 1 inner nodes. The number of s-t paths of length 6 n is bounded from above by

n · nn−1 = nn
. So, in this 
ase, G′


an have at most (2p)n · nn = l · nn/2p = T/n s-t paths. We

have thus shown that every {+,×}-
ir
uit 
ounting Pathm for m = Θ(pn2) = Θ(n3 log n) de
ides
Hamn with threshold T = (2p)n+1

.

6. Proof of Lemma 5

Let f(x1, . . . , xn) be a polynomial in whi
h ea
h variable xi has degree at most ti, and let Si ⊆ N

be arbitrary subsets of sizes |Si| > ti + 1, i = 1, . . . , n.

11



Claim 10 (Folklore). The polynomial f is uniquely determined by its values on S1 ×S2 × · · · ×Sn.

Proof. Indu
tion on n. For n = 1, the 
laim is simply the assertion that a non-zero polynomial of

degree t1 in one variable 
an have at most t1 distin
t roots. For the indu
tion step, expand the

polynomial f by the variable xn:

f(x1, . . . , xn) =

tn
∑

i=0

fi(x1, . . . , xn−1) · xin .

For ea
h point a ∈ S1 × · · · × Sn−1,

f(a, xn) =

tn
∑

i=0

fi(a) · xin

is a polynomial of degree at most tn in one variable, and hen
e, all its 
oe�
ients fi(a), i =
0, 1, . . . , tn 
an be re
overed knowing the values f(a, b) for all b ∈ Sn+1. Knowing the values fi(a)
for all a ∈ S1 × · · · × Sn−1 we 
an, by the indu
tion hypothesis, re
over the polynomials fi, and
hen
e, the original polynomial f .

Now let f and h be two polynomials on the same set of n variables su
h that f(a) = h(a), and
hen
e, also f(a) = h(a) holds for all a ∈ {0, 1}n. (Re
all that f is obtained from f by removing all

nonzero exponents.) Sin
e the polynomials f and h are multilinear, Claim 10 with all Si = {0, 1}
yields f = h (they must 
oin
ide as multilinear polynomials), and hen
e, also sup(f) = sup(h) must
hold as well.

Let us now prove the se
ond 
laim of Lemma 5: if f and h are polynomials on the same set

of variables, then f and h have the same 0-1 roots if and only if min(f) = min(h). The �if� part

is trivial, be
ause f(a) > 0 happens pre
isely when p(a) = 1 for some monomial p ∈ min(f). To

prove the �only if� dire
tion, assume that f and h have the same 0-1 roots. Our goal is to show

that then min(f) = min(h) must hold.
Assume 
ontrariwise that there is a monomial p ∈ mon(f) whose set of variables Xp belongs

to min(f) but not to min(h). If Xq 6⊆ Xp holds for all monomials q of h, then we 
an set all

variables in Xp to 1 and the rest to 0. On the resulting assignment a = ap, we will have h(a) = 0
but f(a) > p(a) > 1, a 
ontradi
tion. Thus, there must be a monomial q ∈ min(h) su
h that

Xq ⊂ Xp; the in
lusion must be proper, be
ause Xp 6∈ min(h). But then on the input aq, we will
have f(aq) = 0 but h(aq) > q(aq) > 1, a 
ontradi
tion again.

7. Proof of Lemma 6

We will need the following two simple and well-known fa
ts.

A subadditive weighting of a 
ir
uit is an assignment of nonnegative numbers (weights) to its

gates su
h that the weight of a gate does not ex
eed the sum of the weights of its inputs.

Claim 11 (Folklore). If the output gate gets weight m, and every leaf gets weight at most 2m/3,
then there is a gate of weight larger than m/3 and at most 2m/3.

Proof. By starting at the output gate, and traversing the 
ir
uit by always 
hoosing the input of

larger weight, we 
an �nd a gate v of weight > 2m/3 su
h that both its inputs u and w have

weights at most 2m/3. By the subadditivity of weighting, at least one of the gates u and w have

then weight larger than (2m/3)/2 = m/3 and at most 2m/3.
12
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Figure 2: A 
ir
uit and two its parse sub-
ir
uits produ
ing, respe
tively, the monomials xz2 and xy.

Claim 12 (Folklore). For every gate u in a {+,×}-
ir
uit produ
ing a polynomial F , the polynomial


an be written as F = PQ+R, where P is the polynomial produ
ed at u.

(We use 
apital letters for polynomials only to stress that they are produ
ed by 
ir
uits.)

Proof. If we repla
e the gate u by a new variable y, the resulting 
ir
uit produ
es a polynomial

of the form yH + R for some polynomial H, where R does not 
ontain y (albeit H may 
ontain).

It remains to substitute all o

urren
es of the variable y with the polynomial P produ
ed at the

gate u.

Proof of Lemma 6(i). For a polynomial f , let l(f) denote the minimum number of variables in a

monomial of f . Hen
e, a produ
t gh of two polynomials is m-balan
ed, if m/3 < l(g) 6 2m/3. We

have to show that, if l(f) > m for m > 2, then sup(f) is a union of at most s = C0/1(f) supports
of m-balan
ed produ
ts of polynomials.

To prove this 
laim, �x a {+,×}-
ir
uit of size s = C0/1(f) 
ounting f . De�ne the weight

of a gate u as l(P ), where P = Pu is the polynomial produ
ed at u. Hen
e, the output gate

has weight at least m > 2, and ea
h input gate has weight 1 (whi
h is 6 2m/3 sin
e m > 2).
Sin
e this weighting is subadditive, Claim 11 gives us a gate u with m/3 < l(P ) 6 2m/3. By

Claim 12, we 
an write the produ
ed by our 
ir
uit polynomial F as a sum F = PQ+ R. Hen
e,
sup(f) = sup(F ) = sup(PQ) ∪ sup(R), where the produ
t PQ is m-balan
ed.

The polynomial R is obtained from F by removing some monomials. If R is empty, then we are

done. Otherwise, the polynomial R 
an be produ
ed by a 
ir
uit with one gate fewer (gate u is set

to 
onstant 0, and disappears). Moreover, mon(R) ⊆ mon(F ) implies that l(R) > l(F ) > m still

holds. So, we 
an repeat the same argument for the polynomial R, until the empty polynomial R
is obtained.

Proof of Lemma 6(ii). We will now apply Claim 11 not to the entire 
ir
uit but to some its sub-


ir
uits. A parse-sub
ir
uit of a 
ir
uit F is obtained by setting to 0 one of the two inputs of ea
h

sum gate. Su
h a sub
ir
uit F′

an also be de�ned indu
tively as follows. The output gate of F

is in
luded in F′
. If a gate u is already in
luded in F′

, and if u is a sum gate, then exa
tly one of

the inputs to u are in
luded in F′
. If u is a produ
t gate, then both its inputs are in
luded in F′

(see Fig. 2). Note that ea
h parse-sub
ir
uit produ
es exa
tly one monomial in a natural way, and

that ea
h monomial of the polynomial produ
ed by the entire 
ir
uit is produ
ed by at least one

parse-sub
ir
uit.

Now let F be a 
ir
uit of size s = C0/1(f) 
ounting f , and F be the polynomial produ
ed by F.
By Lemma 5, we have that sup(f) = sup(F ). For every monomial p of F of length at least m, take

some parse-sub
ir
uit Fp produ
ing p, and use Claim 11 to �nd a gate u in Fp su
h that the part

p′ of p produ
ed at u in Fp has length l satisfying m/3 < l 6 2m/3. By Claim 12, we 
an write the
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polynomial F as a sum F = PQ+R, where P is the polynomial produ
ed at gate u (in the entire


ir
uit). Hen
e, p appears m-balan
ed in the produ
t Ru = PQ. Sin
e we have at most s produ
ts
Ru, and sin
e mon(Ru) ⊆ mon(F ) implies sup(Ru) ⊆ sup(f), we are done.

8. Proof of Theorems 8 and 3

De�ne the join of two families of sets B and C as the family

B ∗ C = {b ∪ c : b ∈ B, c ∈ C}

of all possible unions. Note that the support of a produ
t gh of two polynomials is the join of the

supports of g and h. Note also that, if no set of B interse
ts any set of C, then we have an upper

bound |A| 6 #|b|(A) · #|c|(A) on the size of the join A = B ∗ C holding for all b ∈ B and c ∈ C.
This holds be
ause then |B| = |B ∗ {c}| 6 #|c|(A), and similarly |C| = |{b} ∗ C| 6 #|b|(A). If,

however, sets in B and in C interse
t, then it may happen that |B| ≫ |B ∗ {c}|. Still, also then we

have a reasonable upper bound.

Lemma 13. Let B ∗ C be a join of two families, and B ∗ C ⊆ A. Suppose that every set in B ∗ C
has size at least m, and that B or C has a set of size r. Then

|B ∗ C| 6 #r(A) ·#m−r(A) .

Proof. Assume w.l.o.g. that the family B 
ontains a set b of size |b| = r, and let Ab = {b} ∗C ⊆ A.
Asso
iate with every a ∈ Ab the family

Ca = {c ∈ C : b ∪ c = a} .

These families give a partition of C into |Ab| pairwise disjoint subfamilies. Sin
e all sets in Ab


ontain the set b of size |b| = r, we have that

|Ab| 6 #r(A) .

On the other hand, for ea
h a ∈ Ab, all sets in Ca, and hen
e, also all sets in B ∗Ca 
ontain the set

a \ b of size |a \ b| > m− r, implying that

|B ∗ Ca| 6 #m−r(A)

holds for all a ∈ Ab. Now, every set b′ ∪ c′ in B ∗ C belongs to B ∗ Ca for a = b ∪ c′. So,

|B ∗ C| 6
∑

a∈Ab

|B ∗ Ca| 6
∑

a∈Ab

#m−r(A)

6 |Ab| ·#m−r(A) 6 #r(A) ·#m−r(A) .

Proof of Theorem 8. Let f = g+ h be a polynomial su
h that l(g) > m > 2, and l(h) < m/3; here,
as before, l(f) denotes the minimum number of variables in a monomial of f . By Lemma 6(ii), there

are s = C0/1(f) produ
ts PQ of polynomials su
h that sup(PQ) ⊆ sup(f), and every monomial of

g appears m-balan
ed in at least one of these produ
ts.

Claim 14. If sup(PQ) ⊆ sup(f), and if at least one monomial of g appears m-balan
ed in PQ,

then sup(PQ) ⊆ sup(g) and |sup(PQ)| 6 #r(g) ·#m−r(g) for some m/3 < r 6 2m/3.

14
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Figure 3: For an edge e = (u, v), the polynomial Qe produ
ed after e is the polynomial Qe = Qv

produ
ed after the gate v, if v = u + w is a sum gate, and is Qe = QvPw, if v = u × w is a

produ
t gate, where Pw is the polynomial produ
ed before the gate w.

Proof. To show the in
lusion sup(PQ) ⊆ sup(g), assume 
ontrariwise that there are a, a′ ∈ sup(P )
and b, b′ ∈ sup(Q) su
h that a ∪ b ∈ sup(g), m/3 < |a| 6 2m/3 but a′ ∪ b′ ∈ sup(h). Sin
e |b′| = l
for some l < m/3, the union a ∪ b′ has size l < m/3 < |a ∪ b′| 6 2m/3 + l < m, and hen
e, 
annot

belong to sup(f), a 
ontradi
tion with sup(PQ) ⊆ sup(f). Thus, sup(PQ) must lie entirely within

sup(g), as 
laimed.

To show the upper bound on |sup(PQ)|, let A = sup(g), B = sup(P ) and C = sup(Q).
Sin
e l(g) > m, and sup(PQ) ⊆ sup(g), we have that every set in B ∗ C = sup(PQ) has at

least m elements. On the other hand, sin
e some monomial of g appears m-balan
ed in PQ,
some set in B must have r elements, for some m/3 < r 6 2m/3. For this r, Lemma 13 yields

|A ∗B| = |sup(PQ)| 6 #r(A) ·#m−r(A), as desired.

Thus, every monomial of g belongs to at least one of s produ
ts PQ of polynomials su
h that

|sup(PQ)| 6 #r(g) · #m−r(g) for some m/3 < r 6 2m/r. By taking su
h an r maximizing

#r(g) ·#m−r(g), the desired lower bound s > |sup(g)|/#r(g) ·#m−r(g) follows.

Proof of Theorem 3. Re
all that our polynomial f has the form f = g + h with g = Pern and

h =
∑

i,j∈[n] xij . Hen
e, l(g) = n and l(h) = 1 < n/3. By Theorem 8, there is an integer r between

n/3 and 2n/3 su
h that C0/1(f) > |sup(g)|/#r(g) ·#m−r(g) > n!/r!(n− r)! = 2Ω(n)
. On the other

hand, on every 0-1 input a, we have that f(a) = 0 if and only if h(a) = 0, be
ause g(0, . . . , 0) = 0.
Hen
e, the 
ir
uit h de
ides f , implying that D(f) = D(h) 6 n2

.

9. Proof of Theorem 9

By Claim 12, we know that, for every gate u in a given {+,×}-
ir
uit F, the produ
ed by the


ir
uit polynomial F 
an be written as F = PuQu +R, where Pu is the polynomial produ
ed at u,
Qu is the polynomial produ
ed �after� the gate u, and R is the polynomial produ
ed by the 
ir
uit

after the gate u is repla
ed with 
onstant 0. For our argument, it will be 
onvenient to introdu
e

the notion of a polynomial Qe produ
ed after an edge e = (u, v) (see Fig. 3):

Qe =

{

Qv if v = u+ w,

QvPw if v = u× w.

A set E of edges of F is a 
ut, if every input-output path in F 
ontains an edge in E.

Claim 15. If E is a 
ut, then mon(F ) is a union of mon(PuQe) over all edges e = (u, v) in E.

Proof. Take a monomial p of the produ
ed polynomial F , and let Fp be any parse-sub
ir
uit pro-

du
ing p. Sin
e E forms a 
ut, the graph Fp must 
ontain some edge e = (u, v) ∈ E. Then the

monomial p has the form p = p′p′′ where p′ is the monomial produ
ed by the subgraph of Fp rooted

in u. Thus p′ belongs to the polynomial Pu produ
ed in F before the edge e, and p′′ belongs to the
polynomial Qe produ
ed after the edge e. Hen
e, p belongs to PuQe, as desired.
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Proof of Theorem 9. Let F be a {+,×}-
ir
uit of size s = C0/1(f) 
ounting f , and let F be the

polynomial produ
ed by F. By Lemma 5, we know that sup(F ) = sup(f). Hen
e, the polynomial

F is also (k, l)-free. We �rst transform the 
ir
uit F to a 
ir
uit F′
as follows. For every produ
t

gate v = u × w in F, one of whose inputs, say u, is small in that |min(Pu)| 6 l holds, we remove

the edge (u, v) and repla
e v by a unary (fanin-1) gate v = Pu×w of �s
alar� multipli
ation by this

�xed (small) polynomial Pu. If both inputs produ
e small polynomials, then we eliminate only one

of them. It is 
lear that F′
produ
es the same polynomial F . In parti
ular, sup(F ′) = sup(f) holds

as well.

Say that an edge e = (u, v) of F′
is light, if |min(PuQe)| 6 kl2. To �nish the proof of the �rst


laim in Theorem 9, it is enough, by Claim 15, to show that every input-output path in F′
must


ontain at least one light edge.

To show this, take an arbitrary input-output path in F′
, and let e = (u, v) be the last edge

along this path su
h that |min(Pu)| 6 k; hen
e, |min(Pv)| > k. Su
h an edge must exist be
ause

|min(xi)| = 1 6 k, and sin
e we 
an assume that |min(F )| > k (for otherwise the theorem would

trivially hold). Together with min(PvQv) ⊆ min(F ) and |min(Pv)| > k, the (k, l)-freeness of F
implies that

|min(Qv)| 6 l .

If v is a sum gate, then Qe = Qv, and hen
e, also |min(Qe)| 6 l. So, the edge e is light in this 
ase:

|min(PuQe)| 6 |min(Pu)| · |min(Qe)| 6 kl .

So, assume that v is a produ
t gate. Let u and w be the inputs to v in the original 
ir
uit F. Sin
e
|min(Pu)| 6 k 6 l, we have that |min(Pw)| 6 l must hold as well, for otherwise the edge e = (u, v)

ould not exist in F′

(would be already eliminated when going from F to F′
). Hen
e,

|min(Qe)| = |min(PwQv)| 6 l2 .

So, the edge e is light also in this 
ase:

|min(PuQe)| 6 |min(Pu)| · |min(Qe)| 6 kl2 .

Sin
e the total number of edges in F′
is at most 2s, we have thus shown that the support sup(F ′) =

sup(f) is a union of at most 2s families sup(PQ) with |min(PQ)| 6 kl2. Sin
e every minimal set of

a union of two families must be minimal in at least one of these families, this implies that min(f) is

ontained in (albeit not ne
essarily equal to) the union of the families min(PQ). Hen
e, the desired
lower bound s > |min(f)|/2lk2.

10. Con
lusion and Open Problems

The weakness of monotone arithmeti
 
ir
uits, i.e. of {+,×}-
ir
uits, 
omputing a given poly-

nomial f is stipulated by the fa
t that the produ
ed by the 
ir
uit polynomial F must just (synta
-

ti
ally) 
oin
ide with f . In parti
ular, then mon(F ) = mon(f) must hold. On the other pole are

{+,×}-
ir
uits just de
iding f . These are, in fa
t, monotone boolean 
ir
uits, where the idempo-

ten
e axiom x2 = x as well as the absorption axiom x + xy = x 
an be used, and hen
e, here we

only have a weaker property min(F ) = min(f). While proving lower bounds in the latter (boolean)

model is a relatively di�
ult task, the severe restri
tion of the former (arithmeti
) model makes

this task mu
h easier.
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Cir
uits x+ x = x x2 = x x+ xy = x Property

Computing − − − F = f

Counting − X − F = f

Approximating X X − sup(F ) = sup(f)

Tropi
al X − X Min(F ) = Min(f)

De
iding/Boolean X X X min(F ) = min(f)

Table 1: Summary of whi
h axioms are allowed (X) in whi
h kind of {+,×}-
ir
uits. The last 
olumn indi
ates what

property the produ
ed by a 
ir
uit polynomial F must satisfy; here f is the linearization of f obtained by removing

all nonzero exponents. Tropi
al 
ir
uits are 
ir
uits with x ⊕ y = min(x, y) and x ⊗ y = x + y fun
tions as gates.

Finally, Min(f) is the set of all monomials of f that 
ontain no other monomial of f as a proper fa
tor. The property

Min(F ) = Min(f) holds only if f is multilinear [10, 13℄.

In this paper we 
onsidered an intermediate model of 
ounting {+,×}-
ir
uits. In this 
ase, it

is required that the values of F must 
oin
ide with those of f on only 0-1 inputs: on other inputs,

the values may be di�erent. Thus, 
ounting 
ir
uits are {+,×}-
ir
uits that are allowed to use

the idempoten
e axiom x2 = x (but not the absorption axiom x + xy = x). These 
ir
uits have

an intermediate stru
tural property that sup(F ) = sup(f) must hold (Lemma 5). We have shown

that 
ounting 
ir
uits 
an be exponentially smaller than 
omputing 
ir
uits (Theorem 2), and that

de
iding 
ir
uits 
an be exponentially smaller than 
ounting 
ir
uits (Theorem 3).

A next natural question was whether lower-bounds arguments for the weak (
omputing) model


an be extended to work also for the intermediate (
ounting) model? We have shown that su
h

an extension is possible for two lower-bounds arguments (Theorems 8�9). In fa
t, our proofs

of these bounds hold for {+,×}-
ir
uits that only �approximate� a given polynomial f in that

sup(F ) = sup(f) holds for the produ
ed by the 
ir
uit polynomial F (
oe�
ients play no role in

our arguments). Approximating 
ir
uits 
an use both idempoten
e axioms x+ x = x and x2 = x.
(Table 1 summarizes the axioms allowed in various types of 
ir
uits.) So, these bounds also hold

for {∪, ∗}-
ir
uits 
onstru
ting a given family A ⊆ 2X of subsets of a (�xed) �nite set. Inputs are

single element sets {x} with x ∈ X, and gates are set-theoreti
 union (∪) and join (∗) of families.

A spe
ial 
ase of Theorem 8 (for h = 0) gives that, if every set in A has at least m > 2 elements,

then there is an integer m/3 < r 6 2m/3 su
h that every {∪, ∗}-
ir
uit 
onstru
ting A must have

at least |A|/#r(A) ·#m−r(A) gates.
A �
omplementary� in a sense to 
ounting {+,×}-
ir
uits model, also lying between 
omput-

ing {+,×}-
ir
uits and de
iding {+,×}-
ir
uits, is that of tropi
al 
ir
uits, i.e. {min,+}-
ir
uits.
These are {+,×}-
ir
uits, where the sum is interpreted as min{x, y}, and the produ
t as x + y.
Su
h a 
ir
uit 
omputes a given polynomial f of n variables, if F̂ (a) = f̂(a) holds for all a ∈ N

n
,

where f̂ is the �tropi
alization� of f :

f(x) =
∑

e∈Nn

ce

n
∏

i=1

xeii turns to f̂(x) = min
e∈Nn

ce 6=0

n
∑

i=1

eixi .

For example, if f = xy2 + 3y2z3, then f̂ = min{x + 2y, 2y + 3z}. Tropi
al 
ir
uits are important,

be
ause many dynami
 programming algorithms for minimization problems are just re
ursively


onstru
ted tropi
al 
ir
uits.
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The di�eren
e from 
ounting {+,×}-
ir
uits is that now the absorption axiom x + xy = x
is allowed, but the idempoten
e axiom x2 = x is not (x + x 6= x unless x = 0). As shown

in [10, 13℄, lower bounds for 
omputing {+,×}-
ir
uits hold also for tropi
al 
ir
uits, as long as

the target polynomial f is multilinear: in this 
ase we have that T(f) > C(fle), where T(f) is

the minimum size of a tropi
al 
ir
uit 
omputing f . In parti
ular, for polynomials whi
h are

multilinear and homogeneous (all monomials have the same number of variables), tropi
al 
ir
uits

are no more powerful than 
omputing {+,×}-
ir
uits. Still, for non-homogeneous polynomials,

tropi
al 
ir
uits 
an be exponentially more powerful than even 
ounting {+,×}-
ir
uits. In fa
t,

both gaps C0/1(f)/T(f) and T(f)/C0/1(f) 
an be exponential, meaning that tropi
al and 
ounting

{+,×}-
ir
uits are in
omparable.

Proposition 16. There are multilinear polynomials f and g of n variables su
h that both C0/1(f)/T(f)

and T(g)/C0/1(g) are 2Ω(
√
n)
.

Proof. To show the �rst gap, 
onsider the permanent polynomial f = Perm+
∑m

i,j=1 xij on n = m2

variables. Theorem 3 gives C0/1(f) = 2Ω(m)
. But T(f) 6 m2 = n be
ause f 
an be 
omputed by a

tropi
al 
ir
uit F =
∑

i,j xij whose tropi
alization is F̂ = mini,j(xij): sin
e variables 
annot take

negative values, the minimum will be a
hieved on a single variable. Thus, C0/1(f)/T(f) = 2Ω(m)
.

To show the se
ond gap, take the multilinear polynomial g 
onsidered in the proof of Theorem 2.

The polynomial g is the linearization of the polynomial Isoln on n = m2
variables given by (5), and

has C0/1(g) = O(n3/2). On the other hand, every monomial of g has degree between m and 2m,

and the monomials of degree m 
orrespond to perfe
t mat
hings. Thus, the lower envelope gle of
g is just the permanent polynomial, i.e. gle = Perm. Sin
e C(Perm) > C0/1(Perm) = 2Ω(m)

(see

Corollary 1) and T(g) > C(gle), the desired lower bound T(g) = 2Ω(m)
follows.

As we mentioned above, T(f) > C(fle) holds for every multilinear polynomial f . Thus, if the

lower envelope fle requires large monotone arithmeti
 
ir
uits, then the polynomial f itself requires

large tropi
al 
ir
uits. This, however, does not hold for polynomials whose lower envelopes have

small {+,×}-
ir
uits. An important example in this respe
t is the s-t path polynomial f = Pathn.

Even though we have C(f) = 2Ω(n)
[10℄, the lower envelope of f 
onsist of just one variable xs,t,

implying that C(fle) = 0. And indeed, the Bellman�Ford algorithm (see Se
t. 5) gives T(f) =
O(n3).

Problem 1. Does T(f) = Ω(n3) hold for f = Pathn?

This would show that the Bellman�Ford algorithm is optimal, if only Min and Plus operations


an be used. It is worth to mention that the optimality of the other prominent dynami
 program-

ming algorithm�that of Floyd�Warshall [4, 28℄ for the all-pairs shortest paths problem�is already

known. The 
orresponding to this problem �polynomial� fn is a
tually a set of s-t path polyno-

mials Pathn for all 
hoi
es of the sour
e and target nodes s and t. Thus, unlike for Pathn, every


ir
uit for fn must already have Ω(n2) distin
t output gates. The Ford�Warshall algorithm gives

T(fn) = O(n3). On the other hand, Kerr [14℄ has shown that also T(fn) = Ω(n3) holds.
In Se
t. 5, we have shown that the monotone 
ounting 
omplexity of Pathn is exponential in

n. But, unlike bounds given in Se
t. 3, our proof for Path indire
t and is based on two rather non-

trivial known results: the fa
t that the 
lique polynomial Clique requires exponential monotone real


ir
uits, and is a proje
tion of the Hamiltonian s-t path polynomial Ham.

Problem 2. Give a dire
t proof of C0/1(f) = 2n
Ω(1)

for f = Pathn.
18



Finally, it would be interesting to extend to the 
ase of 
ounting {+,×}-
ir
uits one of the �rst
lower-bounds arguments for 
omputing {+,×}-
ir
uits suggested by S
hnorr in [17℄. Namely, he

proved that C(f) > |mon(f)| − 1 holds, if the polynomial f is separated in the following sense: for

every two monomials p 6= q of f , their produ
t pq does not 
ontain any third monomial r 6∈ {p, q}
of f as a fa
tor (see also [13, Se
t. 8℄ for a somewhat simpler proof). This 
riterion allows to

easily prove strong lower bounds for some polynomials. For example, using it, one 
an easily show

that C(f) >
(n
r

)

− 1 holds for the r-
lique polynomial f = Cliquen,r. This polynomial is separated,

be
ause the union of no two r-
liques (sets of edges of 
omplete subgraphs of Kn with r nodes) 
an

ontain a third r-
lique.

Problem 3. Can S
hnorr's argument for C(f) be extended to C0/1(f)?
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