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Abstract

Linear Programs are abundant in practice, and tremendous effort has been put into
designing efficient algorithms for such problems, resulting with very efficient (polyno-
mial time) algorithms. A fundamental question is: what is the space complexity of
Linear Programming?

It is widely believed that (even approximating) Linear Programming requires a
large space. Specifically, it was shown that (approximating) Linear Programming is
P complete with a log-space reduction, thus showing that no(1)-space algorithms for
(approximating) Linear Programming are unlikely.

We show that (approximating) Linear Programming is likely to have a large space
complexity, even if we allow a preprocessing phase that takes the polyhedron as input
and runs in unbounded time and space. Specifically, we prove that (approximating)
Linear Programming with such “preprocessing” is P complete with a polylog space
and quasi-poly time reduction, thus showing that 2(logn)

o(1)
-space algorithms for Linear

Programming with “preprocessing” are unlikely.
We obtain our result using a recent work of Kalai, Raz and Rothblum, showing

that every language in P has a no-signalling multi-prover interactive proof with poly-
logarithmic communication complexity. To the best of our knowledge, this is the first
space hardness of approximation result proved by a PCP based argument.

1 Introduction

Linear Programs often arise in practice, and algorithms for Linear Programming are widely
deployed. There has been a major effort to construct fast algorithms for Linear Programming,
resulting with very efficient algorithms (e.g., [Dan51, Kha79, Kar84, DV04, BV04, KS06]).
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Recall that a linear program is a constrained optimization problem of the form:

maximize c · x
subject to Ax ≤ b; x ∈ Rd

where c ∈ Rd and b ∈ Rn are column vectors, and A is an n × d matrix. The vector c is
the objective function, and the set H = {x : A · x ≤ b} is the set of feasible points. If it is
non-empty, H is a convex polyhedron.

1.1 The Space Complexity of Linear Programming

The space complexity of Linear Programming was first studied in the late 70’s. Dobkin,
Lipton and Reiss [DLR79], followed by a work of Serna [Ser91], proved that approximating
Linear Programming is P-complete with a log-space reduction, thus proving that if Linear
Programming has a log-space algorithm, then any language L ∈ P would have a log-space
algorithm.1

For the special case of positive Linear Programming (where all the coefficients are pos-
itive), Luby and Nisan [LN93] gave a fast parallel approximation algorithm that runs in
poly-logarithmic time using a linear number of processors.

1.2 Our Results

We consider the problem of Linear Programming with preprocessing, where the algorithm
runs in two phases. In the first phase, the algorithm is given the polyhedron and it may
run in unbounded time and space. In the second phase, the algorithm is given the objective
function and it gives an output. We only measure the time and space complexity of the
second phase of the algorithm. We show that even in this (seemingly easier) setting, it is
unlikely that there exist small-space Linear Programming algorithms.

Specifically, we show that (approximating) Linear Programming with such “preprocess-
ing” is P complete with a polylog space and quasi-poly time reduction, thus showing that a
2(logn)

o(1)
-space algorithm for Linear Programming with “preprocessing” is unlikely.

To this end, we show that for every language L ∈ P, any instance x ∈ {0, 1}n can be
reduced to a Linear Program, with a fixed polyhedron that depends on n but otherwise is
independent of x,2 and only the objective function depends on x. The reduction runs in quasi-
poly time and polylog space. Moreover, the resulting Linear Program has the property that
if x is in the language L then the maximal value of the objective function on the polyhedron
is 1, whereas if x is not in the language L then the maximal value of the objective function
on the polyhedron is less than 2−polylog(n).

1Feige and Kilian [FK97] gave an alternative proof of this fact.
2The polyhedron also does not depend on the language L, only on its runtime.
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Our reduction uses the recent result of [KRR14], that shows that any language in P
has a multi-prover interactive proof with polylog communication complexity, which is secure
against no-signaling cheating provers.

1.3 Multi-Prover Interactive Proofs with No-Signaling Provers

Multi-prover interactive proofs (MIPs) were introduced by [BGKW88]. In such a proof
system a set of provers wish to convince a verifier of the validity of a statement. The verifier
sends each prover a query and each prover responds with an answer. An MIP has the
guarantee that if the statement is valid then the (honest) provers will convince the verifier
to accept with probability 1. On the other hand, if the statement is invalid then any set of
cheating provers will convince the verifier to accept only with negligible probability, assuming
they do not interact, and each prover sees only its own query (and does not see any of the
other queries). Babai, Fortnow and Lund [BFL90] showed that any language in NEXP has
an MIP (where the verifier runs in polynomial time).

The study of multi-prover interactive proofs (MIPs) that are secure against no-signaling
provers was motivated by the study of MIPs with provers that share entangled quantum
states. No-signaling provers are more powerful than classical as well as quantum provers.
Loosely speaking, no-signaling provers are allowed to use arbitrary strategies, as long as
their strategies cannot be used for communication between any two disjoint sets of provers.3

More specifically, in a no-signaling strategy the answer given by each prover is allowed to
depend on the queries to all other provers, as long as for any subset of provers S, and any
queries given to the provers in S, the distribution of the answers given by the provers in S
is independent of all the other queries. In particular, the answer of each prover can depend
on the queries to all other provers as a function, but not as a random variable.

More formally, fix any MIP consisting of k provers, and fix any set of cheating provers
{P ∗

1 , . . . , P
∗
k } who may see each other’s queries (and thus each answer may depend on the

queries sent to all the provers). The provers are said to be no-signaling if for every subset of
provers {P ∗

i }i∈S, and for every two possible query sets {qi}i∈[k] and {q′i}i∈[k] such that qi = q′i
for every i ∈ S, it holds that the distributions of answers {ai}i∈S and {a′i}i∈S are identical,
where {ai}i∈S is the the answers of the provers in S corresponding to the queries {qi}i∈[k],
and {a′i}i∈S is the answers of the provers in S corresponding to the queries {q′i}i∈[k].

No-signaling strategies were first studied in physics in the context of Bell inequalities
by Khalfin and Tsirelson [KT85] and Rastall [Ras85], and they gained much attention after
they were reintroduced by Popescu and Rohrlich [PR94]. MIPs that are secure against no-
signaling provers were extensively studied in the literature (see for example [Ton09, BLM+05,
AII06, KKM+08, IKM09, Hol09, Ito10]). It was known that they are contained in EXP, and
recently [KRR14] showed that they also contain EXP, thus giving a full characterization of
their exact power.

3By the physical principle that information cannot travel faster than light, a consequence of Einstein’s
special relativity theory, it follows that all the strategies that can be realized by provers that share entangled
quantum states are no-signaling strategies.
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Informal Theorem 1. [KRR14] For any language L computable in time t = t(n), there
exists an MIP that is secure against no-signaling cheating provers. The number of provers
and the communication complexity is polylog(t). The verifier runs in time n · polylog(t) (and
the provers run in time poly(t)). Moreover, the verifier only runs in time polylog(t) if he is
given oracle access to a (specific) encoding of x,4 where each entry of the encoding can be
computed from x in time Õ(n) and space O(log n).

In this work, we use this theorem for languages in P. Note that this theorem implies that
for languages in P the verifier runs in Õ(n) time and in polylog(n) space. Thus, we restate
the theorem as follows.

Theorem 2. [KRR14] If L ∈ P, then there exists an MIP for L with polylog(n) provers,
and with soundness error 2−polylog(n) against no-signaling strategies. The verifier runs in time
Õ(n) and space polylog(n) (and the provers run in polynomial time). Each query and answer
is of length polylog(n).

1.4 Our Results in More Detail

We use Theorem 2 to show a reduction from any language L ∈ P to a Linear Program.
Our reduction runs in quasi-poly time and polylog space. In particular, our reduction takes
an instance of size n and converts it into a linear program of size quasi-polynomial in n,
where the polyhedron is on quasi-polynomial number of variables (i.e., quasi-polynomial
dimensions). This polyhedron is fixed, independent of the instance x (and depends only on
its size n = |x|).5

Our Main Theorem. There exists a fixed family of polyhedrons H = {Ht}t∈N such that
the following holds: For every language L ∈ P computable by a Turing Machine with runtime
t = t(n), there exists a polylog space and quasi-poly time reduction, that converts any instance
x ∈ {0, 1}n into a Linear Program with the polyhedron Ht(n) (and an objective function that
depends on x), such that if x ∈ L then the maximum value of the objective function on
the polyhedron is 1, and if x ̸∈ L then the maximum value of the objective function on the
polyhedron is smaller than 2−polylog(n).

2 Preliminaries

2.1 Notation

For a vector a = (a1, . . . , ak) and a subset S ⊆ [k], we denote by aS the sequence of elements
of a that are indexed by indices in S, that is, aS = (ai)i∈S. In general, we denote by aS a
sequence of elements indexed by S, and we denote by ai the ith coordinate of a vector a.

4This encoding is the low-degree extension encoding. We refer the reader to [KRR14] for details.
5The polyhedron is also independent of the language L, and depends only on its time complexity.
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For a distribution A, we denote by a ∈R A a random variable distributed according to A
(independently of all other random variables).

2.2 Multi-Prover Interactive Proofs

Let L be a language and let x be an input of length n. In a one-round k-prover interactive
proof, k computationally unbounded provers, P1, . . . , Pk, try to convince a (probabilistic)
poly(n)-time verifier, V , that x ∈ L. The input x is known to all parties.

The proof consists of only one round. Given x and her random string, the verifier
generates k queries, q1, . . . , qk, one for each prover, and sends them to the k provers. Each
prover responds with an answer that depends only on her own individual query. That is, the
provers respond with answers a1, . . . , ak, where for every i we have ai = Pi(qi). Finally, the
verifier decides wether to accept or reject based on the answers that she receives (as well as
the input x and her random string).

We say that (V, P1, . . . , Pk) is a one-round multi-prover interactive proof system (MIP)
for L if the following two properties are satisfied:

1. Completeness: For every x ∈ L, the verifier V accepts with probability 1, after
interacting with P1, . . . , Pk.

2. Soundness: For every x ̸∈ L, and any (computationally unbounded, possibly cheat-
ing) provers P ∗

1 , . . . , P
∗
k , the verifier V rejects with probability ≥ 1−ϵ, after interacting

with P ∗
1 , . . . , P

∗
k , where ϵ is a parameter referred to as the error or soundness of the

proof system.

Important parameters of an MIP are the number of provers, the length of queries, the
length of answers, and the error.

2.3 No-Signaling MIPs

We consider a variant of the MIP model, where the cheating provers are more powerful. In
the MIP model, each prover answers her own query locally, without knowing the queries that
were sent to the other provers. The no-signaling model allows each answer to depend on all
the queries, as long as for any subset S ⊂ [k], and any queries qS for the provers in S, the
distribution of the answers aS, conditioned on the queries qS, is independent of all the other
queries.

Intuitively, this means that the answers aS do not give the provers in S information about
the queries of the provers outside S, except for information that they already have by seeing
the queries qS.

Formally, denote by D the alphabet of the queries and denote by Σ the alphabet of the
answers. For every q = (q1, . . . , qk) ∈ Dk, let Aq be a distribution over Σk. We think of Aq

as the distribution of the answers for queries q.
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We say that the family of distributions {Aq}q∈Dk is no-signaling if for every subset S ⊂ [k]
and every two sequences of queries q, q′ ∈ Dk, such that qS = q′S, the following two random
variables are identically distributed:

• aS, where a ∈R Aq

• a′S where a′ ∈R Aq′

An MIP, (V, P1, . . . , Pk) for a language L is said to have soundness ϵ against no-signaling
strategies (or provers) if the following (more general) soundness property is satisfied:

2. Soundness: For every x ̸∈ L, and any no-signaling family of distributions {Aq}q∈Dk ,
the verifier V rejects with probability ≥ 1 − ϵ, where on queries q = (q1, . . . , qk) the
answers are given by (a1, . . . , ak) ∈R Aq, and ϵ is the error parameter.

3 Our Main Result

In this section we prove our main result.

Theorem 3. There exists a fixed family of polyhedrons H = {Ht}t∈N such that the following
holds: For every language L ∈ P computable by a Turing Machine with runtime t = t(n),
there exists a polylog space and quasi-poly time reduction, that converts any instance x ∈
{0, 1}n into a Linear Program with the polyhedron Ht(n) (and an objective function that
depends on x), such that if x ∈ L then the maximum value of the objective function on
the polyhedron is 1, and if x ̸∈ L then the maximum value of the objective function on the
polyhedron is smaller than 2−polylog(n).

Proof. Let L be any language in P. By Theorem 2, the language L has anMIP, (V, P1, . . . , Pk),
where k = polylog(n), with communication complexity polylog(n) and soundness 2−polylog(n)

against no-signaling provers (where n is the instance size).

We define a reduction R that takes as input an instance x ∈ {0, 1}n and converts it
into a Linear Program, as follows: Consider all possible no-signaling families of distributions
of cheating provers in the MIP. For each such possible no-signaling family of distributions
{Aq}q∈Dk , denote by

pq,a = Pr
A∈RAq

[A = a].

Note that {Aq}q∈Dk is a no-signaling family of distributions if and only if the following
conditions are satisfied (the first two conditions hold if and only if each Aq is a distribution,
and the last condition holds if and only if these distributions are no-signaling):

1. For every q = (q1, . . . , qk) ∈ Dk and for every a ∈ Σk,

pq,a ≥ 0.
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2. For every q = (q1, . . . , qk) ∈ Dk, ∑
a∈Σk

pq,a = 1.

3. For every S ⊆ [k], for every q = (q1, . . . , qk) ∈ Dk and q′ = (q′1, . . . , q
′
k) ∈ Dk for which

qS = q′S, and for every aS ∈ ΣS, it holds that∑
a′:a′S=aS

pq,a′ =
∑

a′:a′S=aS

pq′,a′ .

Denote by pq the probability that V sends the provers queries q = (q1, . . . , qk) ∈ Dk.
The fact that (V, P1, . . . , Pk) is an MIP that is secure against no-signaling strategies (with
soundness 2−polylog(n) and perfect completeness), implies that if x /∈ L then∑

q

pq
∑

a:V (x,q,a)=1

pq,a ≤ 2−polylog(n),

and if x ∈ L then there exists a (classical) strategy for which∑
q

pq
∑

a:V (x,q,a)=1

pq,a = 1.

Thus, the reduction R converts x ∈ {0, 1}n into the Linear Program with the polyhedron
defined by:

pq,a ≥ 0, ∀q ∈ Dk and ∀a ∈ Σk. (1)∑
a∈Σk

pq,a = 1, ∀q ∈ Dk. (2)∑
a′:a′S=aS

pq,a′ =
∑

a′:a′S=aS

pq′,a′ , ∀S ⊆ [k], ∀q, q′ ∈ Dk s.t. qS = q′S, ∀aS ∈ ΣS. (3)

Note that this polyhedron is fixed and does not depend on the instance x. The objective
function is

max
{pq,a}

∑
q

pq
∑

a:V (x,q,a)=1

pq,a, (4)

where for every q, pq is a fixed value defined by the verifier in the underlying MIP, and
{pq,a} are the variables. Note that if x ∈ L then the maximum of this objective function on
the polyhedron is 1, whereas if x ̸∈ L then the maximum of this objective function on the
polyhedron is at most 2−polylog(n). Thus, determining whether x is in the language or not
reduces to approximating the objective function.

It remains to prove that the space complexity of R is polylog(n) (and hence the runtime
is at most quasi-poly(n)). Since the polyhedron is fixed, it suffices for the reduction R to
generate the objective function, as defined in Equation (4). Namely, R needs to compute pq
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for every q, and V (x, q, a) for every q and a. R computes pq by enumerating over all possible
random coin tosses of the MIP verifier. Note that the MIP verifier tosses at most polylog(n)
coins (this follows from the fact that the MIP verifier runs in polylog(n) time given oracle
access to an encoding of x, and this oracle can be implemented by a deterministic algorithm;
see Informal Theorem 1). This, together with the fact that the space complexity of V is
polylog(n), implies that the space complexity of R is polylog(n), as desired.

Acknowledgments. We thank Boaz Barak for illuminating discussions.
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