
On the Space Complexity of Linear Programming with
Preprocessing

Yael Tauman Kalai ∗ Ran Raz † Oded Regev ‡

Abstract

It is well known that Linear Programming is P-complete, with a log-space reduction.
In this work we ask whether Linear Programming remains P-complete, even if the
polyhedron (i.e., the set of linear inequality constraints) is a fixed polyhedron, for each
input size, and only the objective function is given as input. More formally, we consider
the following problem: maximize c · x, subject to Ax ≤ b;x ∈ Rd, where A, b are fixed
in advance and only c is given as an input.

We start by showing that the problem remains P-complete with a log-space reduc-
tion, thus showing that no(1)-space algorithms are unlikely. This result is proved by a
direct classical reduction.

We then turn to study approximation algorithms and ask what is the best approxi-
mation factor that could be obtained by a small space algorithm. Since approximation
factors are mostly meaningful when the objective function is non-negative, we restrict
ourselves to the case where x ≥ 0 and c ≥ 0. We show that (even in this possibly easier
case) approximating the value of max c ·x (within any polynomial factor) is P-complete

with a polylog space reduction, thus showing that 2(logn)o(1)-space approximation algo-
rithms are unlikely.

The last result is proved using a recent work of Kalai, Raz, and Rothblum, showing
that every language in P has a no-signaling multi-prover interactive proof with poly-
logarithmic communication complexity. To the best of our knowledge, our result gives
the first space hardness of approximation result proved by a PCP-based argument.

∗Microsoft Research. This work was done (in part) while the author was visiting the Simons Institute for
the Theory of Computing, supported by the Simons Foundation and by the DIMACS/Simons Collaboration
in Cryptography through NSF grant #CNS-1523467. Email: yael@microsoft.com
†Weizmann Institute of Science, Israel, and the Institute for Advanced Study, Princeton, NJ. Research

supported by the Israel Science Foundation grant No. 1402/14, by the I-CORE Program of the Planning and
Budgeting Committee and the Israel Science Foundation, by the Simons Collaboration on Algorithms and
Geometry, by the Fund for Math at IAS, and by the National Science Foundation grant No. CCF-1412958.
Email: ran.raz.mail@gmail.com
‡Courant Institute of Mathematical Sciences, New York University. Supported by the Simons Collab-

oration on Algorithms and Geometry and by the National Science Foundation (NSF) under Grant No.
CCF-1320188. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the NSF.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 170 (2014)

1 Introduction

Linear programs often arise in practice, and algorithms for Linear Programming are widely
deployed. There has been a major effort to construct fast algorithms for Linear Programming,
resulting with very efficient (polynomial time) algorithms (e.g., [Dan51, Kha79, Kar84, DV04,
BV04, KS06]).

Recall that a linear program is a constrained optimization problem of the form:

maximize c · x
subject to Ax ≤ b;x ∈ Rd

where c ∈ Rd and b ∈ Rn, and A is an n× d matrix. The vector c is the objective function,
and the set H = {x : A ·x ≤ b} is the set of feasible points. If it is non-empty, H is a convex
polyhedron.

1.1 The Space Complexity of Linear Programming

A fundamental question is: what is the space complexity of Linear Programming?
The space complexity of Linear Programming was first studied in the late 70’s. Dobkin,

Lipton, and Reiss [DLR79], followed by Serna [Ser91], proved that approximating Linear
Programming is P-complete with a log-space reduction, thus showing that no(1)-space algo-
rithms for (approximating) Linear Programming are unlikely. (See also Feige and Kilian’s
paper [FK97] for an alternative proof.)

For the special case of positive Linear Programming (where all variables in x, as well as
all the coefficients in c, A, b are non-negative), Luby and Nisan [LN93] gave a polynomial
time and polylog-space approximation algorithm.

1.2 Our Results

The above-mentioned results, by Dobkin, Lipton and Reiss [DLR79] and Serna [Ser91], show
that any language L ∈ P has a log-space reduction that converts any instance x∗ ∈ {0, 1}n
into a linear program of size poly(n), such that if x∗ ∈ L then the the maximum value of
the objective function on the polyhedron is 1, and if x∗ 6∈ L then the maximum value of the
objective function on the polyhedron is 0. The polyhedron of the resulting linear program is
not fixed and depends on x∗. In this work we ask whether a similar result can be obtained
when the polyhedron is some fixed polyhedron that depends only on the input size and the
running time, and doesn’t depend on the instance x∗ or the language L. A positive answer
implies that small-space algorithms for Linear Programming are unlikely, even if one allows
a preprocessing phase that takes the polyhedron as input and runs in unbounded time and
space. Similarly, a positive answer implies that parallel algorithms for this problem running
in polylog(n) time on a polynomial number of processors are unlikely.

Our first result shows that Linear Programming remains P-complete (with a log-space
reduction) even when the polyhedron is fixed: We show that any language L ∈ P has a

1

log-space reduction that converts any instance x∗ ∈ {0, 1}n into a linear program of size
poly(n), such that if x∗ ∈ L then the the maximum value of the objective function on the
polyhedron is at least 1, and if x∗ 6∈ L then the maximum value of the objective function
on the polyhedron is at most 0. The polyhedron of the resulting linear program is a fixed
polyhedron that depends on n but is otherwise independent of x∗,1 and only the objective
function depends on x∗. This shows that (for some polyhedrons) no(1)-space algorithms for
Linear Programming are unlikely, even if the polyhedron is fixed and is not part of the input.
This result is proved by a direct classical reduction, building on the techniques of [DLR79]
and [Ser91].

We then turn to study approximation algorithms and ask what is the best factor of
approximation that can be obtained by a small-space algorithm. We note that in the most
general case of Linear Programming, any gap (in the value of the program), say a gap
between 1 and 1 − ε, can be easily amplified to a gap between 1 and 0, by applying the
linear transformation f(z) = (z − (1 − ε))/ε on the objective function. Therefore, in order
for the approximation question to be meaningful, we restrict ourselves to the semi-positive
case, where x ≥ 0 and c ≥ 0. We believe that in the semi-positive case, gaps cannot be
easily amplified, and hence are much harder to establish, and that the semi-positive case is
a particularly interesting one from the point of view of hardness of approximation.

Our second result shows that in the semi-positive case (where x, c ≥ 0), and even when
the polyhedron is fixed, approximating Linear Programming is P-complete under a quasi-poly
time and polylog space reduction: We show that any language L ∈ P has a quasi-poly time
and polylog space reduction that converts any instance x∗ ∈ {0, 1}n into a linear program
of quasi-polynomial size, such that if x∗ ∈ L then the the maximum value of the objective
function on the polyhedron is 1, and if x∗ 6∈ L then the maximum value of the objective
function on the polyhedron is less than 2−polylog(n) . The polyhedron of the resulting linear
program is a fixed polyhedron that depends on n (and the running time) but is otherwise
independent of x∗ (and L), and only the objective function depends on x∗. This shows that

(for some polyhedrons) 2(logn)o(1)-space approximation algorithms for semi-positive Linear
Programming (within a quasi-polynomial factor) are unlikely, even if the polyhedron is fixed
and is not part of the input.

The proof of this second result uses the recent work of [KRR14], that shows that any
language in P has a multi-prover interactive proof with polylog communication complexity,
which is secure against no-signaling cheating provers.

We note that our first result can be modified to yield semi-positive instances, however the
resulting hardness of approximation factors are miniscule. We also note that if in addition
to x, c ≥ 0 we have that all coefficients in A, b are also larger or equal to 0 (i.e., the posi-
tive case), the above-mentioned result of Luby and Nisan [LN93] gives a fast polylog-space
approximation algorithm. In contrast, by our second result, if only x, c ≥ 0, a small space
approximation algorithm is unlikely.

1The polyhedron also does not depend on the language L, only on its runtime.

2

1.3 Organization of the Paper

We prove the first result in Section 2 and the second in Section 3.

2 A Classical Approach

Theorem 1. There exists a fixed family of polyhedrons H = {Ht}t∈N such that the following
holds: For every language L computable by a Turing Machine with polynomial runtime t =
t(n), there exists a log-space reduction, that converts any instance x∗ ∈ {0, 1}n into a linear
program with the polyhedron Ht(n) (and an objective function that depends on x∗), such that
if x∗ ∈ L then the maximum value of the objective function on the polyhedron is at least 1,
and if x∗ 6∈ L then the maximum value of the objective function on the polyhedron is at
most 0.

High-level idea. Our starting point is the results by Dobkin, Lipton and Reiss [DLR79]
and Serna [Ser91], that show that any language L, computable by a Turing Machine with
polynomial runtime t = t(n), has a log-space reduction that converts any instance x∗ ∈
{0, 1}n into a linear program of size poly(t(n)), such that if x∗ ∈ L then the the maximum
value of the objective function on the polyhedron is 1, and if x∗ 6∈ L then the maximum
value of the objective function on the polyhedron is 0. The polyhedron of the resulting linear
program is not fixed and does depend on x∗.

We show how to convert this linear program into a linear program with almost the same
value, and with an a priori fixed polyhedron that is independent of x∗ and L, and depends
only on the runtime t (and the length of x∗).

The main idea is to show that there exists a universal set of inequalities such that by
“switching off” some of them one can obtain any polyhedron. Then we show how one can
use the objective function to effectively “switch off” inequalities.

2.1 Linear Programming is P-Complete

Before we prove Theorem 1, we need to recall the reduction of [DLR79].

Theorem 2 ([DLR79]). Any language L computable by a Turing Machine with polynomial
runtime t = t(n), has a log-space reduction that converts any instance x∗ ∈ {0, 1}n into a
linear program LP:

maximize c · x
subject to Ax ≥ b,

such that the following holds:

1. All the coefficients in c, b and A are in {0, 1,−1}.

2. If x∗ ∈ L then the value of LP is 1, and if x∗ /∈ L then the value of LP is 0.

3

3. The number of variables in LP is d = t2(n), and the number of linear constraints is at
most 5d.

Proof. Fix any language L computable by a Turing machine with polynomial runtime t =
t(n). The log-space reduction that converts any x∗ ∈ {0, 1}n into a linear program LP, is
defined as follows.

Let C be a Boolean circuit of size t2(n) that takes as input x∗ ∈ {0, 1}n and outputs 1 if
and only if x∗ ∈ L. (Such a circuit can be built from the Turing machine computing L; see,
e.g., [AB09, Theorem 6.6].) Assume (without loss of generality) that the circuit C has only
NOT and AND gates. Denote the number of wires in C by d = t2(n). The linear program LP
consists of d variables, x1, . . . , xd, one variable for each wire of C. Denote the n input wires
by x1, . . . , xn, and denote the output wire by xd. The objective function of LP is

maxxd.

The linear constraints of LP are the following: For every i ∈ [d], we have the constraint
0 ≤ xi ≤ 1, that can be written as

xi ≥ 0

−xi ≥ −1.

For every i ∈ [n] (corresponding to an input wire), we have the constraint xi = x∗i , that can
be written as

xi ≥ x∗i (1)

−xi ≥ −x∗i . (2)

For every NOT gate in C, with output wire i and input wire j, we have the constraint
xi = 1− xj, that can be written as

xi + xj ≥ 1 (3)

−xi − xj ≥ −1. (4)

For every AND gate with output wire i and input wires j and k, we have the constraints
xi ≤ xj, xi ≤ xk, and xi ≥ xj + xk − 1. These constraints can be written as

xj − xi ≥ 0 (5)

xk − xi ≥ 0 (6)

xi − xj − xk ≥ −1. (7)

Note that all the coefficients (both in the objective function and in the linear constraints) are
in {0, 1,−1}, as desired. Note that the polyhedron consists of a single element, corresponding
to the value of the wires of C on input x∗. Thus, if x∗ ∈ L, then xd = 1, and hence the value
of LP is 1, and if x∗ /∈ L then xd = 0, and hence the value of LP is 0, as desired. Note that
the number of variables in LP is d = t2(n) and the number of linear constraints is ≤ 5d, as
desired.

4

2.2 Proof of Theorem 1

Proof. Our starting point is the proof of Theorem 2 (see Section 2.1) that for a language
L, computable by a Turing Machine with a polynomial runtime t = t(n), gives a log-space
reduction that converts any instance x∗ ∈ {0, 1}n into a linear program LP:

max c · x
s.t. Ax ≥ b.

We define a universal family of polyhedrons {Hd}, and show a log-space reduction that
converts the linear program LP into a linear program LP′, with the polyhedron Hd. The
polyhedron Hd depends on d, but is otherwise independent of x∗ and L.

Let
T = 24d. (8)

Let m = 5d. We will assume for simplicity and without loss of generality that d ≥ 10. The
linear program LP′ consists of 4dm+ 3m+ d variables: For every i ∈ [d], it has the variables
xi corresponding to xi in the original LP. For every i ∈ [d] and every j ∈ [m], it has the
variable yj,i, where each yj,i supposedly corresponds to the value of Aj,i · xi. In addition, for
every i ∈ [d] and every j ∈ [m], it contains auxiliary variables

zj,i,0, zj,i,1, zj,i,−1,

and for every j ∈ [m] it contains auxiliary variables

wj,0, wj,1, wj,−1.

These auxiliary variables are used to “turn off” some of the constraints.
We next define the polyhedron Hd to consist of the following inequalities:2

1. For every i ∈ [d] and j ∈ [m],

yj,i − zj,i,0 ≤ 0

yj,i − zj,i,1 ≤ xi

yj,i − zj,i,−1 ≤ −xi

zj,i,0 ≥ 0

zj,i,1 ≥ 0

zj,i,−1 ≥ 0

2We remark that the A part of the linear program LP produced by Theorem 2 is already independent of
the input x∗. Using this fact, we could slightly simplify our proof by avoiding Item 1 below. We choose not
to use this fact in order to keep the reduction more general, and also in order for the resulting polyhedron
to be more natural.

5

High-level idea. Intuitively, these six inequalities encode the single inequality yj,i ≤
Aj,i · xi, in a way that does not depend on Aj,i. More specifically, we use the objective
function to effectively “turn off” the inequalities yj,i − zj,i,` ≤ ` · xi, for ` 6= Aj,i.
This is done by keeping the variables {zj,i,`}` 6=Aj,i

free, by not including them in the
objective function, so that by choosing zj,i,` large enough these inequalities can be
trivially satisfied without affecting the objective function. On the other hand, we add
the term −T ·zj,i,Aj,i

to the objective function, so that even taking zj,i,Aj,i
exponentially

small, would add an exponential large penalty to the objective value. Thus, effectively
the remaining inequality yj,i − zj,i,Aj,i

≤ Aj,i · xi is almost equivalent to the inequality
yj,i ≤ Aj,i · xi.

2. For every j ∈ [m],

yj,1 + · · ·+ yj,d + wj,0 ≥ 0

yj,1 + · · ·+ yj,d + wj,1 ≥ 1

yj,1 + · · ·+ yj,d + wj,−1 ≥ −1

wj,0 ≥ 0

wj,1 ≥ 0

wj,−1 ≥ 0

High-level idea. Intuitively, these six inequalities encode the single inequality

yj,1 + · · ·+ yj,d ≥ bj,

in a way that does not depend on bj. More specifically, as before, this is done by
“turning off” the inequalities yj,1+· · ·+yj,d+wj,` ≥ ` for ` 6= bj, and using the objective
function to effectively restrict wj,bj to be exponentially small, and as a result the
equation yj,1+· · ·+yj,d+wj,bj ≥ bj is almost equivalent to the equation yj,1+· · ·+yj,d ≥
bj.

3. For every i ∈ [d],

0 ≤ xi ≤ 1

Note that the polyhedron Hd is indeed independent of LP, given d.
We next define the linear objective function of LP′. Intuitively, the objective function is

the same as that of LP, with additional terms that are used to “turn on” all the inequalities
in Hd that correspond to Ax ≥ b.

We define the linear objective function of LP′ to be

max
d∑

i=1

ci · xi − T ·
∑

i∈[d],j∈[m]

zj,i,Aj,i
− T ·

∑
j∈[m]

wj,bj . (9)

6

High-level idea. Intuitively, all the linear constraints that include a variable in {zj,i,`} 6̀=Aj,i
∪

{wj,`}` 6=bj are “turned off” since we are free to choose these variables to be as large as we
want, without affecting the objective function. Moreover, as we argue formally below, since
we chose T to be large enough (recall that we set T = 24d, see Equation (8)), the maximal
value of LP′ is obtained when zj,i,Aj,i

and wj,bj are exponentially small, and thus the value of
LP′ is exponentially close to the value of LP.

Formally, we argue that the values of the linear programs LP and LP′ are exponentially
close, as follows. We define another linear program LP′′. We prove that LP′′ has the same
value as LP′, and we prove that the values of LP′′ and LP are exponentially close.

The linear program LP′′ is defined as follows: The objective function of LP′′ is identical
to that of LP′ (Equation (9)), and the linear constraints consist of a subset of the linear
constraints of Hd. Specifically, LP′′ only contains the linear constraints in LP′ that are
“turned on”. In other words, LP′′ only contains the constraints in LP′ that do not contain
variables from the set

{zj,i,`}`6=Aj,i
∪ {wj,`}`6=bj .

In other words, the linear program LP′′ contains the following constraints:

1. For every i ∈ [d] every j ∈ [m],

yj,i − zj,i,Aj,i
≤ Aj,i · xi

zj,i,Aj,i
≥ 0

2. For every j ∈ [m],

yj,1 + · · ·+ yj,d + wj,bj ≥ bj

wj,bj ≥ 0.

3. For every i ∈ [d],

0 ≤ xi ≤ 1

We next prove that LP′ and LP′′ have the same value. Clearly the value of LP′′ is at least
as large as the value of LP′, since it has the same objective function and contains only a
subset of the constraints. On the other hand, the value of LP′′ is not larger than the value
of LP′, since any solution for LP′′ can be extended to a solution in Hd. This is the case since
by the definition of LP′′, any linear constraint in Hd that does not appear in LP′′ contains a
variable from

{zj,i,`}`6=Aj,i
∪ {wj,`}`6=bj .

Note that these variables do not appear in the objective function, and thus can be set to be
arbitrarily large, so as to satisfy the inequalities in LP′ that are not in LP′′, without affecting
the linear objective function.

7

It remains to argue that the value of LP′′ is exponentially close to the value of LP. To
this end, we first note that the value of LP′′ is at least as large as the value of LP, since by
setting all the auxiliary variables zj,i,Aj,i

and wj,bj in LP′′ to be 0, we obtain a linear program
that is equivalent to LP.

We next argue that if the value of LP′′ is v then the value of LP is at least v−2−d. To this
end, let (x, y, z, w) be a point in the polyhedron of LP′′ which yields the maximal value v.
We note that it must be the case that all the coordinates of z and all the coordinates of w
are of size at most 2−3d. This is the case since otherwise, the linear objective function of LP′′

on the point (x, y, z, w) obtains the value

d∑
i=1

ci · xi − T ·
∑

i∈[d],j∈[m]

zj,i,Aj,i
− T ·

∑
j∈[m]

wj,bj ≤ d− T · 2−3d < 0,

which we know is not the maximal value on the polyhedron, since the value of LP′′ is at least
as large as the value of LP, which is at least 0.

The fact that the coordinates of z and w are exponentially small implies that the point
(x, y, z, w) satisfies the constraint

Ax ≥ b− ε, (10)

for
ε :=

∑
zj,i,Aj,i

+
∑

wj,bj ≤ 2−2d.

We next argue that this implies that there exists x′ in the polyhedron of LP (i.e., Ax′ ≥ b),
such that for every i ∈ [d],

|xi − x′i| ≤ 2−d.

Recall that x1, . . . , xd correspond to the wires of a circuit C that takes as input x∗ ∈
{0, 1}n and outputs 1 if and only if x∗ ∈ L (see the proof of Theorem 2 in Section 2.1).
Recall that the n input wires are x1, . . . , xn, and the output wire is xd. Assume without loss
of generality that x1, . . . , xd are ordered in an order that agrees with the circuit, that is, for
every gate in the circuit, the variable that corresponds to the output of the gate appears
after all variables that correspond to the inputs for the gate. Denote by x′1, . . . , x

′
d the true

values of the wires of C on the input x∗ ∈ {0, 1}n, and note that for every i ∈ [n] we have
x′i = x∗i , and that the point x′ = (x′1, . . . , x

′
d) is in the polyhedron of LP (it is actually the

unique point in the polyhedron of LP).
We next argue that for every i ∈ [d],

|xi − x′i| ≤ 2i · ε.

This is proved by induction on i, using Equation (10) and by the definition of LP (see the
Proof of Theorem 2 in Section 2.1) as follows:

1. If i corresponds to an input of the circuit C, then by Equation (10), Equation (1) and
Equation (2), we have

|xi − x′i| ≤ ε .

8

2. If i corresponds to the output of a NOT gate with input wire j, then by Equation (10),
Equation (3) and Equation (4), and by the inductive hypothesis and the triangle in-
equality, and since x′i = (1− x′j) we have

|xi − x′i| ≤ |xi − (1− xj)|+ |(1− xj)− (1− x′j)|+ |(1− x′j)− x′i|

≤ ε + 2j · ε + 0 ≤ 2i · ε

3. If i corresponds to the output of an AND gate with input wires j, k (for simplicity
and without loss of generality, we assume j 6= k), then by Equation (10), Equation (5),
Equation (6), Equation (7) and by the inductive hypothesis and since 0 ≤ xi, xj, xk ≤ 1
and j, k < i, we have

(a) If x′i = 0 then either x′j = 0 or x′k = 0. Without loss of generality assume x′j = 0.
Thus,

xi − x′i = xi ≤ xj + ε ≤ x′j + 2j · ε + ε ≤ 0 + 2i · ε
and

xi − x′i = xi ≥ 0

(b) If x′i = 1 then x′j = x′k = 1. Thus,

xi − x′i = xi − 1 ≤ 0

and

xi−x′i ≥ (xj +xk−1−ε)−1 = (xj−x′j)+(xk−x′k)−ε ≥ −2j ·ε−2k ·ε−ε ≥ −2i ·ε

In particular, we proved that |xd − x′d| ≤ 2d · ε ≤ 2−d. Since the value of LP′′ is at most
xd and the value of LP is x′d, we proved that if the value of LP′′ is v then the value of LP is
at least v − 2−d.

Thus LP′′, and hence also LP′ satisfies that if x∗ ∈ L then the maximum value of the
objective function on the polyhedron is at least 1 − 2−d, and if x∗ 6∈ L then the maximum
value of the objective function on the polyhedron is at most 2−d. The gap between 1− 2−d

and 2−d can be easily amplified to a gap between 1 and 0, by applying a linear function on
the objective function, as described in the introduction.

3 A PCP-Based Approach

In this section, we consider the problem of approximating Linear Programming with a fixed
polyhedron. For us to be able to meaningfully talk about approximation, we restrict to
the case of semi-positive linear programs, i.e, when c, x ≥ 0. While the hardness result of
Section 2 can be adapted to this case, the resulting approximation factors are miniscule. In
this section we show hardness for approximation factors 2polylog(n) through a polylog space
and quasi-poly time reduction, thus showing that 2(logn)o(1)-space approximation algorithms
are unlikely.

9

Theorem 3. There exists a fixed family of polyhedrons H = {Ht}t∈N such that the following
holds: For every language L ∈ P computable by a Turing Machine with polynomial runtime
t = t(n), there exists a polylog space and quasi-poly time reduction, that converts any instance
x∗ ∈ {0, 1}n into a linear program with the polyhedron Ht(n), and an objective function
max c · x, such that x, c ≥ 0, and such that if x ∈ L then the maximum value of the objective
function on the polyhedron is 1, and if x 6∈ L then the maximum value of the objective
function on the polyhedron is smaller than 2−polylog(n).

The proof of Theorem 3 uses a recent result of Kalai, Raz and Rothblum (stated in The-
orem 5 below), showing that every language in P has a no-signaling multi-prover interactive
proof with poly-logarithmic communication complexity.

In Section 3.1 below, we provide the necessary background for proving Theorem 3, and
then in Section 3.2 we prove Theorem 3.

3.1 Preliminaries

3.1.1 Notation

For a vector a = (a1, . . . , ak) and a subset S ⊆ [k], we denote by aS the sequence of elements
of a that are indexed by indices in S, that is, aS = (ai)i∈S. In general, we denote by aS a
sequence of elements indexed by S, and we denote by ai the ith coordinate of a vector a.

For a distribution A, we denote by a ∈R A a random variable distributed according to A
(independently of all other random variables).

3.1.2 Multi-Prover Interactive Proofs

Multi-prover interactive proofs (MIPs) were introduced by [BGKW88]. In such a proof
system a set of provers wish to convince a verifier of the validity of a statement. Specifically,
let L be a language and let x be an input of length n. In a one-round k-prover interactive
proof, k computationally unbounded provers, P1, . . . , Pk, try to convince a (probabilistic)
poly(n)-time verifier, V , that x ∈ L. The input x is known to all parties.

The proof consists of only one round. Given x and her random string, the verifier
generates k queries, q1, . . . , qk, one for each prover, and sends them to the k provers. Each
prover responds with an answer that depends only on her own individual query. That is, the
provers respond with answers a1, . . . , ak, where for every i we have ai = Pi(qi). Finally, the
verifier decides whether to accept or reject based on the answers that she receives (as well
as the input x and her random string).

We say that (V, P1, . . . , Pk) is a one-round multi-prover interactive proof system (MIP)
for L if the following two properties are satisfied:

1. Completeness: For every x ∈ L, the verifier V accepts with probability 1, after
interacting with P1, . . . , Pk.

2. Soundness: For every x 6∈ L, and any (computationally unbounded, possibly cheat-
ing) provers P ∗1 , . . . , P

∗
k , the verifier V rejects with probability ≥ 1−ε, after interacting

10

with P ∗1 , . . . , P
∗
k , where ε is a parameter referred to as the error or soundness of the

proof system.

Other important parameters of an MIP include the number of provers, the length of queries,
the length of answers, and the error. One celebrated result in this line of work is that of
Babai, Fortnow, and Lund [BFL90] who showed that any language in NEXP has an MIP
with negligible soundness.

3.1.3 No-Signaling MIPs

We consider a variant of the MIP model, where the cheating provers are more powerful. In
the MIP model, each prover answers her own query locally, without knowing the queries that
were sent to the other provers. The no-signaling model allows each answer to depend on all
the queries, as long as for any subset S ⊂ [k], and any queries qS for the provers in S, the
distribution of the answers aS, conditioned on the queries qS, is independent of all the other
queries.

Intuitively, this means that the answers aS do not give the provers in S information about
the queries of the provers outside S, except for information that they already have by seeing
the queries qS.

Formally, denote by D the alphabet of the queries and denote by Σ the alphabet of the
answers. For every q = (q1, . . . , qk) ∈ Dk, let Aq be a distribution over Σk. We think of Aq

as the distribution of the answers for queries q.
We say that the family of distributions {Aq}q∈Dk is no-signaling if for every subset S ⊂ [k]

and every two sequences of queries q, q′ ∈ Dk, such that qS = q′S, the following two random
variables are identically distributed:

• aS, where a ∈R Aq, and

• a′S, where a′ ∈R Aq′ .

An MIP (V, P1, . . . , Pk) for a language L is said to have soundness ε against no-signaling
strategies (or provers) if the following (more general) soundness property is satisfied:

2. Soundness: For every x 6∈ L, and any no-signaling family of distributions {Aq}q∈Dk ,
the verifier V rejects with probability ≥ 1 − ε, where on queries q = (q1, . . . , qk) the
answers are given by (a1, . . . , ak) ∈R Aq, and ε is the error parameter.

The study of multi-prover interactive proofs (MIPs) that are secure against no-signaling
provers was motivated by the study of MIPs with provers that share entangled quantum
states. No-signaling provers are more powerful than entangled provers, since no-signaling
provers are allowed to use arbitrary strategies, as long as their strategies cannot be used
for communication between any two disjoint sets of provers. By the physical principle that
information cannot travel faster than light, a consequence of Einstein’s special relativity
theory, it follows that all the strategies that can be realized by provers that share entangled
quantum states are no-signaling strategies.

11

No-signaling strategies were first studied in physics in the context of Bell inequalities
by Khalfin and Tsirelson [KT85] and Rastall [Ras85], and they gained much attention after
they were reintroduced by Popescu and Rohrlich [PR94]. MIPs that are secure against no-
signaling provers were extensively studied in the literature (see for example [Ton09, BLM+05,
AII06, KKM+08, IKM09, Hol09, Ito10]). It was known that they are contained in EXP, and
recently [KRR14] showed that they also contain EXP, thus giving a full characterization of
their exact power.

Informal Theorem 4 ([KRR14]). For any language L computable in time t = t(n), there
exists an MIP with soundness error 2−polylog(t) against no-signaling cheating provers. The
number of provers and the communication complexity is polylog(t). The verifier runs in time
n · polylog(t) (and the provers run in time poly(t)). Moreover, the verifier only runs in time
polylog(t) if he is given oracle access to a (specific) encoding of x,3 where each entry of the
encoding can be computed deterministically from x in time Õ(n) and space O(log n).

In this work, we use this theorem for languages in P. Note that this theorem implies that
for languages in P the verifier runs in Õ(n) time and in polylog(n) space. Thus, we restate
the theorem as follows.

Theorem 5 ([KRR14]). If L ∈ P, then there exists an MIP for L with polylog(n) provers,
and with soundness error 2−polylog(n) against no-signaling strategies. The verifier runs in
time Õ(n), space polylog(n), and tosses at most polylog(n) coins (and the provers run in
polynomial time). Each query and answer is of length polylog(n).

We use Theorem 5 to show a reduction from any language L ∈ P to a linear program.
Our reduction runs in quasi-poly time and polylog space. In particular, our reduction takes
an instance of size n and converts it into a linear program of size quasi-polynomial in n,
where the polyhedron is on quasi-polynomial number of variables (i.e., quasi-polynomial
dimensions). This polyhedron is fixed, independent of the instance x (and depends only on
its size n = |x|).4

3.2 Proof of Theorem 3

Proof. Let L be any language in P. By Theorem 5, the language L has an MIP, (V, P1, . . . , Pk),
where k = polylog(n), with communication complexity polylog(n) and soundness 2−polylog(n)

against no-signaling provers (where n is the instance size).
We define a reduction R that takes as input an instance x ∈ {0, 1}n and converts it

into a linear program, as follows: Consider all possible no-signaling families of distributions
of cheating provers in the MIP. For each such possible no-signaling family of distributions
{Aq}q∈Dk , denote by

pq,a = Pr
A∈RAq

[A = a].

3This encoding is the low-degree extension encoding. We refer the reader to [KRR14] for details.
4The polyhedron is also independent of the language L, and depends only on its time complexity.

12

Note that {Aq}q∈Dk is a no-signaling family of distributions if and only if the following
conditions are satisfied (the first two conditions hold if and only if each Aq is a distribution,
and the last condition holds if and only if these distributions are no-signaling):

1. For every q = (q1, . . . , qk) ∈ Dk and for every a ∈ Σk,

pq,a ≥ 0.

2. For every q = (q1, . . . , qk) ∈ Dk, ∑
a∈Σk

pq,a = 1.

3. For every S ⊆ [k], for every q = (q1, . . . , qk) ∈ Dk and q′ = (q′1, . . . , q
′
k) ∈ Dk for which

qS = q′S, and for every aS ∈ ΣS, it holds that∑
a′:a′S=aS

pq,a′ =
∑

a′:a′S=aS

pq′,a′ .

Denote by pq the probability that V sends the provers queries q = (q1, . . . , qk) ∈ Dk.
The fact that (V, P1, . . . , Pk) is an MIP that is secure against no-signaling strategies (with
soundness 2−polylog(n) and perfect completeness), implies that if x /∈ L then5∑

q

pq
∑

a:V (x,q,a)=1

pq,a ≤ 2−polylog(n),

and if x ∈ L then there exists a (classical) strategy for which∑
q

pq
∑

a:V (x,q,a)=1

pq,a = 1.

Thus, the reduction R converts x ∈ {0, 1}n into the linear program with the polyhedron
defined by:

pq,a ≥ 0, ∀q ∈ Dk and ∀a ∈ Σk. (11)∑
a∈Σk

pq,a = 1, ∀q ∈ Dk. (12)∑
a′:a′S=aS

pq,a′ =
∑

a′:a′S=aS

pq′,a′ , ∀S ⊆ [k], ∀q, q′ ∈ Dk s.t. qS = q′S, ∀aS ∈ ΣS. (13)

Note that this polyhedron is fixed and does not depend on the instance x. The objective
function is

max
{pq,a}

∑
q

pq
∑

a:V (x,q,a)=1

pq,a, (14)

5Here we assume for simplicity that the verifier’s decision is a function only of the input x, the queries
q, and the answers a, and not of the verifier’s randomness. This is indeed the case for the verifier given by
Theorem 5 (and in fact can always be assumed without loss of generality).

13

where for every q, pq is a fixed value defined by the verifier in the underlying MIP, and
{pq,a} are the variables. Note that if x ∈ L then the maximum of this objective function on
the polyhedron is 1, whereas if x 6∈ L then the maximum of this objective function on the
polyhedron is at most 2−polylog(n). Thus, determining whether x is in the language or not
reduces to approximating the objective function.

It remains to prove that the space complexity of R is polylog(n) (and hence the runtime
is at most quasi-poly(n)). Since the polyhedron is fixed, it suffices for the reduction R to
generate the objective function, as defined in Equation (14).6 Namely, R needs to compute
pq for every q, and V (x, q, a) for every q and a. R computes pq by enumerating over all
possible random coin tosses of the MIP verifier (recall that the MIP verifier tosses at most
polylog(n) coins). This, together with the fact that the space complexity of V is polylog(n),
implies that the space complexity of R is polylog(n), as desired.

Acknowledgments. We thank Boaz Barak for illuminating discussions.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: A modern approach.
Cambridge University Press, Cambridge, 2009.

[AII06] David Avis, Hiroshi Imai, and Tsuyoshi Ito. On the relationship between convex
bodies related to correlation experiments with dichotomic observables. Journal
of Physics A: Mathematical and General, 39(36), 39(36):11283, 2006.

[BFL90] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential
time has two-prover interactive protocols. In 31st Annual Symposium on Foun-
dations of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990,
Volume I, pages 16–25. IEEE Computer Society, 1990.

[BGKW88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover
interactive proofs: How to remove intractability assumptions. In Proceedings of
the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, pages 113–131, 1988.

[BLM+05] Jonathan Barrett, Noah Linden, Serge Massar, Stefano Pironio, Sandu Popescu,
and David Roberts. Nonlocal correlations as an information-theoretic resource.
Physical Review A, 71(022101), 71(2):022101, 2005.

[BV04] Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random
walks. J. ACM, 51(4):540–556, 2004.

[Dan51] G. B. Dantzig. Maximization of linear function of variables subject to linear
inequalities. pages 339–347, 1951.

6We remark that the inequalities describing the polyhedron can easily be computed in polylog(n) space.

14

[DLR79] David P. Dobkin, Richard J. Lipton, and Steven P. Reiss. Linear programming
is log-space hard for P. Inf. Process. Lett., 8(2):96–97, 1979.

[DV04] John Dunagan and Santosh Vempala. A simple polynomial-time rescaling al-
gorithm for solving linear programs. In Proceedings of the 36th Annual ACM
Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004,
pages 315–320, 2004.

[FK97] Uriel Feige and Joe Kilian. Making games short (extended abstract). In
Frank Thomson Leighton and Peter W. Shor, editors, Proceedings of the Twenty-
Ninth Annual ACM Symposium on the Theory of Computing, El Paso, Texas,
USA, May 4-6, 1997, pages 506–516. ACM, 1997.

[Hol09] Thomas Holenstein. Parallel repetition: Simplification and the no-signaling case.
Theory of Computing, 5(1):141–172, 2009.

[IKM09] Tsuyoshi Ito, Hirotada Kobayashi, and Keiji Matsumoto. Oracularization and
two-prover one-round interactive proofs against nonlocal strategies. In IEEE
Conference on Computational Complexity, pages 217–228, 2009.

[Ito10] Tsuyoshi Ito. Polynomial-space approximation of no-signaling provers. In
ICALP (1), pages 140–151, 2010.

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373–396, 1984.

[Kha79] L. G. Khachiyan. A polynomial algorithm in linear programming. In Doklady
Akademia Nauk SSSR, pages 1093–1096, 1979.

[KKM+08] Julia Kempe, Hirotada Kobayashi, Keiji Matsumoto, Ben Toner, and Thomas
Vidick. Entangled games are hard to approximate. In FOCS, pages 447–456,
2008.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computa-
tions: the power of no-signaling proofs. In Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 485–494,
2014.

[KS06] Jonathan A. Kelner and Daniel A. Spielman. A randomized polynomial-time
simplex algorithm for linear programming. In Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006,
pages 51–60, 2006.

[KT85] Leonid A. Khalfin and Boris S. Tsirelson. Quantum and quasi-classical analogs
of Bell inequalities. In In Symposium on the Foundations of Modern Physics,
pages 441–460, 1985.

15

[LN93] Michael Luby and Noam Nisan. A parallel approximation algorithm for positive
linear programming. In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal,
editors, Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing, May 16-18, 1993, San Diego, CA, USA, pages 448–457. ACM, 1993.

[PR94] Sandu Popescu and Daniel Rohrlich. Quantum nonlocality as an axiom. Foun-
dations of Physics, 24(3):379–385, 1994.

[Ras85] Peter Rastall. Locality, Bell’s theorem, and quantum mechanics. Foundations
of Physics, 15(9):963–972, 1985.

[Ser91] Maria J. Serna. Approximating linear programming is log-space complete for P.
Inf. Process. Lett., 37(4):233–236, 1991.

[Ton09] Ben Toner. Monogamy of non-local quantum correlations. Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Science,
465(2101):59–69, 2009.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

