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Abstract

We show that AC0 circuits of depth d and size m have at most 2−Ω(k/(log m)d−1) of their
Fourier mass at level k or above. Our proof builds on a previous result by H̊astad (SICOMP,
2014) who proved this bound for the special case k = n. Our result improves the seminal result
of Linial, Mansour and Nisan (JACM, 1993) and is tight up to the constants hidden in the Ω
notation.

As an application, we improve Braverman’s celebrated result (CACM, 2011). Braverman
showed that any r(m, d, ε)-wise independent distribution ε-fools AC0 circuits of size m and
depth d, for

r(m, d, ε) = O(log(m/ε))2d2+7d+3 .

Our improved bounds on the Fourier tails of AC0 circuits allows us to improve this estimate to

r(m, d, ε) = O(log(m/ε))3d+3 .

In contrast, an example by Mansour (appearing in Luby and Velickovic - Algorithmica, 1996)
shows that there is a log(m)d−1 ·log(1/ε)-wise independent distribution that does not ε-fool AC0

circuits of size m and depth d. Hence, our result is tight up to the factor 3 in the exponent.
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1 Introduction

In this paper we discuss Boolean circuits in which every gate computes an unbounded fan-in OR or
AND function of its inputs, and every leaf is marked with a literal from x1, . . . , xn,¬x1, . . . ,¬xn.
The number of gates in the circuit is called the circuit size and is denoted by m. The longest path
in the circuit is called the circuit depth and is denoted by d.

The study of bounded depth circuits (where d is constant) was one of the most exciting areas
in computational complexity in the 1980s. Perhaps the most notable achievement was the tight
exp(n1/(d−1)) size lower bound for the parity function in this model, proven by H̊astad [H̊as86],
following the work of [Ajt83], [FSS84] and [Yao85].1 H̊astad introduced the switching lemma, which
uses random restrictions to decrease the depth of AC0 circuits by one. The main idea was the
following - AC0 circuits with size m and depth d become constant w.h.p. under random restrictions
keeping each variable alive with probability p = 1/O(log(m))d−1. In contrast, the parity function
does not become a constant with probability at least 0.5 as long as pn ≥ 1. Since the restricted
circuit should compute the restricted function, we reach a contradiction for m = exp(o(n1/(d−1))).

In an inspiring paper, Linial, Mansour and Nisan [LMN93] showed that AC0 circuits can be

learned in quasipolynomial time, nlog(n)d , using random samples, under the uniform distribution.
They combined H̊astad’s switching lemma with Fourier analysis, to show that AC0 circuits may
be well approximated (in L2 norm) by low degree polynomials, namely polynomials of degree
O(log(n)d). Boppana [Bop97] improved their bound on the degree to O(log(n)d−1), which is optimal
for constant error. The existence of an approximating low degree polynomial implies a learning
algorithm from random examples. For polynomial size DNFs (depth 2 circuits), Mansour [Man95]
showed that only nO(log logn) out of the

(
n

≤logn

)
monomials are needed to approximate the DNF,

and achieved a nO(log logn) time learning algorithm using membership queries via the Goldreich-
Levin [GL89], Kushilevitz-Mansour [KM93] method.

The main technical result in [LMN93] was a bound on the Fourier tails of AC0 circuits. They
showed that for a circuit f of size m and depth d∑

S⊆[n]:|S|≥k

f̂(S)2 ≤ m · 2−Ω(k1/d) ,

where the LHS is called the Fourier weight at level at least k of f . This was improved by H̊astad
[H̊as01] to ∑

S⊆[n]:|S|≥k

f̂(S)2 ≤ max{2−Ω((k/ logm)1/(d−1)), 2−Ω(k/ log(m)d−1)} ,

which is tight for k ≤ log(m)d, however not for larger values of k. Indeed, quite recently H̊astad
[H̊as14] and Impagliazzo, Matthews and Paturi [IMP12] showed that any AC0 circuit f agrees with

parity on at most a 1/2 + 2−Ω(n/ log(m)d−1) fraction of the inputs, i.e., f̂([n]) ≤ 2−Ω(n/ log(m)d−1).

1.1 Our Results

Based on the main lemma of [H̊as14], we extend this result for all k ∈ [0, n] and show the following.

Theorem 1.1 (Main Theorem). Let f be an AC0 circuit with depth d and size m, then∑
S:|S|≥k

f̂(S)2 ≤ 2 · 2−Ω(k/ log(m)d−1) .

1Lower bounds for the DNF-size of the parity function were long known [Lup61] and are much less involved.
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A few things to note. Increasing k from 0 to n, the first time that Theorem 1.1 is meaningful is at
k = O(log(m)d−1), which is roughly the same as in [LMN93] (and exactly the same as in [H̊as01]).
However, for values larger than this threshold, the decay in our bound is much faster, and in
particular for m = poly(n) we get 2−n/poly log(n) at level k = Ω(n) as opposed to 2−Ω((n/ logn)1/(d−1))

by [H̊as01]. In addition, while [H̊as14] and [IMP12] give bounds on individual f̂(S)2, we give bounds
on the sum of exp(n) such squares (e.g. for k = n/2).

We point out that the results of [H̊as14], [IMP12] and ours are quite surprising considering
that most proofs for AC0 circuits follow by induction on the depth d; reducing the depth by 1 in
each step using H̊astad’s switching lemma. Our main theorem is equivalent to saying that degree
O(log(m)d−1 log(1/ε)) polynomials ε-approximates an AC0 circuit of sizem and depth d, as opposed
to O(log(m/ε)d) by [LMN93]. It seems at first glance that one must pay a factor of log(m/ε) for
each step in the induction to ensure error at most ε, giving degree at least log(m/ε)d−1. However,
H̊astad and Impagliazzo et al. manage to avoid that. H̊astad performs random restrictions, with
parameter p = 1/O(logm) that does not depend on ε. This only guarantee that the switching
will succeed with probability 1 − 1/poly(m), as opposed to probability of 1 − ε/m in the original
proof of [LMN93]. However, in the cases where the restrictions “fail”, H̊astad fixes D additional
variables using a decision tree of depth D. Under these additional fixings, the probability that the
switching does not succeed reduces to m · 2−D. We show that the parameters p and D translate
into a multiplicative 1/p term and an additive D term in the degree, correspondingly. Choosing D
to be roughly log(m/ε) and applying induction gives the desired dependency on m and ε.

Theorem 1.1 shows that the Fourier tails above level k decreases exponentially in k. In Section 4
we show that such behavior is related to three other properties of concentration. We establish many
connections between these four properties, and show that three of them are essentially equivalent.
We think that these connections are of independent interest.2 As a result of these connections, we
show that for any AC0 circuit of size m and depth d the spectral norm of f at level k is at most∑

S:|S|=k

|f̂(S)| ≤ O(log(m)d−1)k . (1)

In Section 5, we prove that Equation (1) implies the following two known results:

1. Correlation bounds for the Majority function. If f is a size m depth d circuit, then Pr[f(x) =

MAJ(x)] ≤ 1
2 + O(log(m)d−1)√

n
. Our result holds for log(m)d−1 = O((n/ log n)1/3), which is an

artifact of the proof. This result was originally proved by O’donnell and Wimmer [OW07] for
the entire range of parameters.

2. AC0 circuits cannot distinguish between fair coins and coins with bias at most 1
O(log(m)d−1)

.

This result was previously proved by Cohen, Ganor and Raz [CGR14], improving the results
of Aaronson [Aar10], and Shaltiel and Viola [SV10].

1.2 Applications to Pseudorandomness and Learning

Since the result of [LMN93] had many applications, our main theorem improves some of them as well.

k-wise independence fools AC0 circuits. The most significant improvement is to the work
of Braverman [Bra11] who proved a longstanding conjecture, showing that poly-logarithmic inde-
pendent distributions fool (polynomial size) AC0 circuits. To be more precise, Braverman showed

2In fact, some of these connections have been already used in [Tal14], in the context of De Morgan formulae.
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that any k-wise independent distribution, where k = log(m/ε)2d2+7d+3, ε-fools circuits of size m and
depth d. In addition, it was long known [LV96] that k must be larger than log(m)d−1 log(1/ε); oth-
erwise there is a k-wise independent distribution that is ε-distinguishable from the uniform distribu-
tion by a depth d, size m circuit. Our theorem improves Braverman’s bounds to k = log(m/ε)3d+3,
which comes much closer to matching the lower bound from [LV96]. In particular, our result is
non-trivial for polynomial size circuits of depth d ≤ 0.3 log(n)/ log log(n). Since NC1 circuits can
be calculated by AC0 circuits of depth O(log(n)/ log log(n)) and polynomial size, giving a non
trivial PRG for d = O(log(n)/ log log(n)) is a major open challenge. While the dependence of k on
m and d is close to optimal, we conjecture that the dependence on ε could be much better.

Conjecture 1.2. Any k-wise independence ε-fools circuits of size m and depth d, for

k = log(m)O(d) log(1/ε) .

k-wise independence fools DNFs. We improve in Section 7 the earlier result of Bazzi [Baz09],
who showed that log(m/ε)2-wise independence fools DNFs of size m. We improve the dependence
on ε and get that log(m) log(m/ε)-wise suffices. Note that by [LV96] this is optimal for ε ≤ 1/mΩ(1).
The range ε ≥ 1/mo(1) is still not tightly understood.

PRGs for AC0 and DNFs. We improve the results of De et al. [DETT10] and of Trevisan and
Xue [TX13] which gives the best known PRGs for DNFs and AC0 circuits respectively. We leave
verifying the details here to the reader.

Sparse polynomial approximations of AC0 circuits. We show in Corollary 4.8 that any
AC0 circuit f of size m and depth d can be ε-approximated in L2 by a polynomial p(x) of sparsity

log(m)O(log(m)d−1 log(1/ε)), improving the results of [LMN93] and [Man95]. As the inner product on
k = log(m)d−1 variables can be realized by a size poly(m) depth d circuit, and requires at least

Ω(2k) coefficients in order to Ω(1) approximate in L2, one cannot achieve sparsity 2o(log(m)d−1).

A table summarizing all of the improvements mentioned above is presented in Figure 1.

2 Preliminaries

We denote by [n] = {1, . . . , n}. We denote by log and ln the logarithms in bases 2 and e, respectively.

For f : {−1, 1} → R we denote by ‖f‖p =
(
Ex∈{−1,1}n [|f(x)|p]

)1/p
.

Theorem 2.1 (The generalized binomial theorem). Let |x| < 1, and k ∈ N, then
∑∞

n=0

(
k+n−1
k−1

)
· xn =

1
(1−x)k

.

Multiplying both sides by xk one get the following corollary.

Corollary 2.2. Let |x| < 1, and k ∈ N then
∑∞

d=k

(
d−1
k−1

)
· xd = xk

(1−x)k
.

2.1 Restrictions

Definition 2.3 (Restriction). Let f : {−1, 1}n → {−1, 1} be a Boolean function. A restriction ρ
is a vector of length n of elements from {−1, 1, ∗}. We denote by f |ρ : {−1, 1}n → {−1, 1} the
function f restricted according to ρ, defined by

f |ρ(x) = f(y), where yi =

{
xi, ρi = ∗
ρi, otherwise

.
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Task Ref. Bound

k-wise ind. fooling DNFs [Baz09] k = O(log(m/ε)2)
This Work k = O(log(m/ε) log(m))
Lower Bound k ≥ log(m) log(1/ε)

k-wise ind. fooling AC0 [Bra11] k = O(log(m/ε)d
2+3d log(m)d

2+4d+3)
This Work k = O(log(m/ε)d log(m)2d+3)
Lower Bound k ≥ log(m)d−1 log(1/ε)

sparse polynomial [Man95] sparsity = (m/ε)O(log log(m/ε) log(1/ε))

approximating DNFs in L2 This Work sparsity = mO(log log(m) log(1/ε))

sparse polynomial [LMN93] sparsity = 2O(log(n) log(m/ε)d)

approximating AC0 in L2 [H̊as01] sparsity = 2O(log(n) log(m/ε)d−2 log(m) log(1/ε))

This Work sparsity = 2O(log log(m) log(m)d−1 log(1/ε))

Lower Bound sparsity ≥ 2Ω(log(m)d−1)

PRGs for DNFs [DETT10] seed = O(log n+ log2(m/ε) log log(m/ε))
This Work seed = O(log n+ log(m/ε) log(m) log logm)

PRGs for AC0 [TX13] seed = Õ(log(m/ε)d+4)

This Work seed = Õ(log(m/ε)d+3)

Figure 1: Summary of Applications

When fixing only one bit to a constant, we will denote the restricted function by f |xi=b.

Definition 2.4 (p-Random Restriction). A p-random restriction is a restriction as in Definition 2.3
that is sampled in the following way. For every i ∈ [n], independently with probability p set ρi =
∗ and with probability 1−p

2 set ρi to be −1 and 1, respectively. We denote this distribution of
restrictions by Rp.

2.2 Fourier Analysis of Boolean Functions

Any function f : {−1, 1}n → R has a unique Fourier representation:

f(x) =
∑
S⊆[n]

f̂(S) ·
∏
i∈S

xi ,

where the coefficients f̂(S) ∈ R are given by f̂(S) = Ex[f(x) ·
∏
i∈S xi]. Parseval’s identity states

that
∑

S f̂(S)2 = Ex[f(x)2] = ‖f‖22, and in the case that f is Boolean (i.e., f : {−1, 1}n → {−1, 1}),
all are equal to 1. The Fourier representation is the unique multilinear polynomial which agrees
with f on {−1, 1}n. We denoted by deg(f) the degree of this polynomial, which also equals
max{|S| : f̂(S) 6= 0}. We denote by

Wk[f ] ,
∑

S⊆[n],|S|=k

f̂(S)2

the Fourier weight at level k of f . Similarly, we denote W≥k[f ] ,
∑

S⊆[n],|S|≥k f̂(S)2. The trun-

cated Fourier expansion of degree k of f is simply f≤k(x) =
∑
|S|≤k f̂(S)

∏
i∈S xi. By Parseval,

‖f − f≤k‖22 = W≥k+1[f ]. The following fact relates the Fourier coefficients of f and f |ρ, where ρ
is a p-random restriction.
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Fact 2.5 (Proposition 4.17, [O’D14]). Let f : {−1, 1}n → R, let S ⊆ [n], and p > 0, then

E
ρ∼Rp

[
f̂ |ρ(S)

]
= f̂(S)p|S|

and
E

ρ∼Rp

[
f̂ |ρ(S)2

]
=
∑
U⊆[n]

f̂(U)2 · Pr
ρ∼Rp

[{i ∈ U : ρ(i) = ∗} = S]

Summing the last equation over all sets S of size d gives the following corollary.

Fact 2.6. Denote by Bin(k, p) a binomial random variable with parameters k, p, then

E
ρ∼Rp

[
Wd[f |ρ]

]
=

n∑
k=d

Wk[f ] ·Pr[Bin(k, p) = d]

Definition 2.7 (Fourier Sparsity, Spectral Norm). We define the sparsity of f : {−1, 1}n → R as
sparsity(f) , |{S : f̂(S) 6= 0}|; the spectral norm of f as L1(f) ,

∑
S |f̂(S)|; and the spectral norm

of the k-th level of f as L1,k(f) ,
∑

S:|S|=k |f̂(S)|.

Fact 2.8 (Ex. 1.11, [O’D14]). Let f : {−1, 1}n → {−1, 1} with deg(f) = d, then

1. ∀S : |f̂(S)| = kS · 2−d where kS ∈ Z.

2. sparsity(f) ≤ 22d

3. L1(f) ≤ 2d.

2.3 Influence Moments

In this section we introduce derivatives and influences of sets of variables. A different definition
to the influence of a set was made in [KKL88]. There, the influence of a set J was defined to
be the probability that under a uniform restriction of Jc to constants, the function’s value is still
undetermined. We choose a different variant, which has a much nicer Fourier expression.

We start with the standard definition of discrete derivatives and influences of Boolean functions.

Definition 2.9 (Discrete Derivative, Influence). Let f : {−1, 1}n → R and i ∈ [n]. The i-th discrete
derivative operator Di maps the function f to the function Dif : {−1, 1}n → R defined by

Dif(x) =
f(x(i 7→1))− f(x(i 7→−1))

2
.

where x(i 7→b) = (x1, . . . , xi−1, b, xi+1, . . . , xn). The influence of coordinate i on f is defined as

Infi(f) = E
x

[(Dif(x))2] .

The generalization to sets of more than one variable is the following.

Definition 2.10 (Discrete Derivative and Influence of a Set). Let f : {−1, 1}n → R and T ⊆ [n],
and write T = {j1, . . . , jk}. The T -th (discrete) derivative operator, DT , maps the function f to
the function DT f : {−1, 1}n → R defined by

DT f(x) = Dj1Dj2 . . . Djkf(x) .

The influence of subset T on f is defined as

InfT (f) = E
x

[
(DT f(x))2

]
.
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The following claim implies that DT is well defined, i.e. that the function DT f does not depend
on the order of indices we chose, and gives equivalent formulations for the function DT f .

Claim 2.11.

DT f(x) =
1

2|T |

∑
z∈{−1,1}T

f(x(T 7→z)) ·
∏
i∈T

zi =
∑
S⊇T

f̂(S) ·
∏
i∈S\T

xi

where x(T 7→z) is the vector in {−1, 1}n whose i-th coordinate equals zi whenever i ∈ T , and xi
otherwise.

The proof uses a straightforward inductive argument, and is given for completeness in Ap-
pendix A. Note that if f : {−1, 1}n → {−1, 1}, then the T -th derivative of f is 2−|T | granular, i.e.
DT f(x) is an integer multiple of 2−|T |. This holds since DT f(x) is a sum of integers divided by
2|T |. The following claim follows from Parseval’s identity and the previous claim.

Claim 2.12.
InfT (f) =

∑
S⊇T

f̂(S)2

Definition 2.13 (Total Degree-k Influence). The total degree-k influence is defined as

Infk(f) ,
∑

T :|T |=k

InfT (f) .

Claim 2.12 gives the following Fourier expression for the total degree-k influence:

Infk(f) =
∑

S:|S|≥k

f̂(S)2 ·
(
|S|
k

)
=
∑
d≥k

Wd[f ] ·
(
d

k

)
. (2)

We state the following simple lemma expressing Infk(f) in terms of W≥d[f ] instead of Wd[f ].

Lemma 2.14. Infk(f) =
∑

d≥k W≥d[f ] ·
(
d−1
k−1

)
for all k ∈ N.

Proof. We perform some algebraic manipulations on Equation (2):

Infk(f) =
∑
d≥k

Wd[f ] ·
(
d

k

)
=
∑
d≥k

(
W≥d[f ]−W≥d+1[f ]

)
·
(
d

k

)

= W≥k[f ] +
∑
d≥k+1

W≥d[f ] ·
((

d

k

)
−
(
d− 1

k

))

= W≥k[f ] +
∑
d≥k+1

W≥d[f ] ·
(
d− 1

k − 1

)

=
∑
d≥k

W≥d[f ] ·
(
d− 1

k − 1

)

3 Exponentially Small Tails for AC0

We generalize the proof of H̊astad ([H̊as14]), who showed that the correlation between the parity

function and any AC0 circuit of depth d and size m is at most 2−Ω(n/ log(m)d−1). This bound is tight
up to constants in the exponent, as shown by an example in [H̊as14], and improves upon previous
bounds from [LMN93, H̊as01].

We will use two simple Lemmas which explains the behaviour of Fourier tails with respect to
random restrictions, and arbitrary restrictions.
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Lemma 3.1 ([LMN93]). For any f : {−1, 1}n → R, k ∈ N ∪ {0} and p ∈ [0, 1]

W≥k[f ] ≤ 2 E
ρ

[
W≥bkpc[f |ρ]

]
Proof. Let k ∈ N ∪ {0} and p ∈ [0, 1]. We have

E
ρ∼Rp

[
W≥bkpc[f |ρ]

]
=
∑
`≥bkpc

W`[f ] ·Pr[Bin(`, p) ≥ bkpc] (Fact 2.6)

≥
∑
`≥k

W`[f ] ·Pr[Bin(`, p) ≥ bkpc]

≥
∑
`≥k

W`[f ] · 1/2 (median(Bin(`, p)) ≥ b`pc ≥ bkpc, [KB80])

= 1/2 ·W≥k[f ].

The second lemma, taken from [IK14], states that if, for some bit, we have Fourier tail bounds
for both restrictions fixing that bit to either +1 or −1, then we have Fourier tail bounds for the
unrestricted function.

Lemma 3.2 ([IK14]). Let f : {−1, 1}n → R and i ∈ [n], then

W≥k[f ] ≤ 1

2
W≥k−1[f |xi=−1] +

1

2
W≥k−1[f |xi=1].

Proof. Rearranging the Fourier expression for f gives

f(x) =
∑
S⊆[n]

f̂(S)
∏
j∈S

xj =
∑

S⊆[n]\{i}

(
f̂(S) + f̂(S ∪ {i}) · xi

)∏
j∈S

xj .

By the uniqueness of the Fourier transform we see that f̂ |xi=b(S) = f̂(S) + b · f̂(S ∪ {i}) for
b ∈ {−1, 1}, and S ⊆ [n] \ {i}. Hence,

f̂ |xi=1(S)2 + ̂f |xi=−1(S)2 = 2
(
f̂(S)2 + f̂(S ∪ {i})2

)
.

Summing over all sets S ⊆ [n] \ {i} of size at least k − 1 gives

W≥k−1[f |xi=1] + W≥k−1[f |xi=−1] = 2 ·
∑

S⊆[n]\{i}:
|S|≥k−1

f̂(S)2 + f̂(S ∪ {i})2 ≥ 2 ·
∑
T⊆[n]:
|T |≥k

f̂(T )2 .

In order to generalize the last lemma, we introduce the following definition, which is very similar
to the definition of a decision tree, except we are not making any decision.

Definition 3.3 (Restriction Tree). A Restriction Tree is a rooted directed binary tree such that
each internal node is labeled by a variable from x1, . . . , xn and has two outgoing edges: one marked
with 1 and one marked with −1. The leaves of the tree are not labeled. Each leaf in the tree,
`, corresponds to a restriction τ` on the variables x1, . . . , xn in the most natural way: we fix the
variables along the path from the root to ` according to the values on the path edges.

Using induction, Lemma 3.2 implies (informally) that if, for some restriction tree, we have
Fourier tail bounds for restrictions corresponding to all paths in the tree, then we have Fourier tail
bounds for the unrestricted function. The exact statement follows.

7



Lemma 3.4. Let f : {−1, 1}n → R be a function, and let T be a restriction tree of depth ≤ D such
that for any leaf `, under the corresponding restriction W≥k[f |τ` ] ≤ ε, then W≥k+D[f ] ≤ ε.

Proof. Apply induction on the depth of the restriction tree. For depth 0 this obviously holds. For
depth D, consider both subtrees which are rooted by the children of the original root. If the root
queries xi, these are restriction trees for {x : xi = 1} and {x : xi = −1}, and we may apply the
induction hypothesis on the each subtree to get W≥k+(D−1)[f |xi=1] ≤ ε and W≥k+(D−1)[f |xi=−1] ≤
ε. Finally, applying Lemma 3.2 gives W≥k+D[f ] ≤ ε

2 + ε
2 = ε.

Our proof relies on the main lemma in H̊astad’s work [H̊as14]. We begin with a definition from
[H̊as14] and the statement of his main lemma.

Definition 3.5 (Common Partial Decision Tree). A set of functions (gi)
m
i=1 has a common s-partial

decision tree of depth D, if there is a restriction tree of depth D such that at each leaf ` of this
restriction tree, each function gi, restricted by τ`, is computable by an ordinary decision tree of
depth s.

Lemma 3.6 ([H̊as14], Lemma 3.8). Let (fi)
m
i=1 be a collection of depth-2 circuits each of bottom fan-

in t. Let ρ be a random restriction from Rp. Then the probability that (fi|ρ)mi=1 is not computable
by a common log(2m)-partial decision tree of depth D is at most m · (24pt)D.

We are ready to prove the Fourier tail bounds for AC0. We define the effective size of an AC0

circuit as the number of gates in the circuit which are of distance at least 2 from the inputs. We
assume the circuits have alternating gates at odd and even depths.

Theorem 3.7. Let f be an AC0 circuit of depth d, effective size m, and bottom fan-in t, then

W≥k[f ] ≤ 8d−1 · 2−k/(20t(96 log(2m))d−2).

Proof. We prove by induction on d. The base case d = 2 was proved by Mansour [Man95], who
showed that DNFs with bottom fan-in t have

W≥k[f ] ≤ 4 · 2−k/20t .

For the induction step, we apply a p-random restriction with p = 1/48t. Consider the gates at
distance 2 from the inputs: f1, . . . , fm. These gates compute functions given by depth-2 circuits
with bottom fan-in ≤ t. Setting D = bkp/2c and using Lemma 3.6 gives that with probability at
least 1 − m · 2−D ≥ 1 − 2log(m)−D over the random restrictions, (fi|ρ)mi=1 can be computed by a
common log(2m)-partial decision tree of depth D. In this case, we say that the restriction ρ is good.
Using Lemma 3.1 we have W≥k[f ] ≤ 2 · Eρ[W

≥bkpc[f |ρ]]. Since W≥bkpc[f |ρ] is a random variable
bounded in [0, 1] we have

W≥k[f ] ≤ 2 · E
ρ∼Rp

[W≥bkpc[f |ρ]]

= 2 · E
ρ∼Rp

[
W≥bkpc[f |ρ] | ρ is good

]
· Pr
ρ∼Rp

[ρ is good]

+ 2 · E
ρ∼Rp

[
W≥bkpc[f |ρ] | ρ is bad

]
· Pr
ρ∼Rp

[ρ is bad]

≤ 2 · E
ρ∼Rp

[
W≥bkpc[f |ρ] | ρ is good

]
+ 2 · Pr

ρ∼Rp
[ρ is bad]

where Prρ[ρ is bad] ≤ 2log(m)−bk/96tc ≤ 2log(2m)−k/96t. Using the following simple claim, we get
Prρ[ρ is bad] ≤ 2 · 2−k/(96t log(2m)).
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Claim 3.8. If X ≤ 1 and X ≤ 2a−b, where a ≥ 1, then X ≤ 21−b/a.

Proof of Claim 3.8. If b ≤ a then the conclusion is trivial since X ≤ 1 ≤ 21−b/a. Otherwise
b > a ≥ 1 and we have a− b ≤ (a− b)/a, thus X ≤ 2a−b ≤ 2(a−b)/a as required.

We are left to analyze E[W≥bkpc[f |ρ] | ρ is good]. Fix some ρ which is good, we will bound
W≥bkpc[f |ρ] for this specific ρ. By the definition of good restrictions, we have a common log(2m)-
partial decision tree of depth D = bkp/2c computing (fi|ρ)mi=1. For each leaf ` of the common
partial decision tree, let τ` be the restriction defined by the path leading to this leaf. We have
that fi|ρ|τ` for i = 1, . . . ,m can be expressed as a decision tree of depth ≤ log(2m), hence as a
CNF/DNF formula of width log(2m). This means that applying the restriction ρ ◦ τ`, the circuit
f collapses to a depth d− 1 AC0 circuit with bottom fan-in t′ ≤ log(2m) and effective size at most

m.3 By the induction hypothesis, for any k′ we have W≥k′ [f |ρ|τ` ] ≤ 8d−2 · 2−Ω(k′/(t′ log(2m)d−3)).
Setting k′ = bkpc −D ≥ bkp/2c ≥ k

96t − 1 and applying Lemma 3.4 we have

W≥bkpc[f |ρ] ≤ max
`

W≥k′ [f |ρ|τ` ] ≤ 8d−2 · 2−k′/(20t′·(96 log(2m))d−3) ≤ 8d−2 · 2 · 2−k/(20t(96 log(2m))d−2) ,

and

W≥k[f ] ≤ 4 · 8d−2 · 2−k/(20t(96 log(2m))d−2) + 4 · 2−k/(96t log(2m)) ≤ 8d−1 · 2−k/(20t(96 log(2m))d−2) .

Theorem 3.9 (Theorem 1.1, restated). Let f be an AC0 circuit of depth d and size m, for m > 1,

then W≥k[f ] ≤ 2 · e−k/(cd log(m)d−1) where cd = log2(e) · 3d · 20 · 96d−1 · 2d−1 ≤ 230d.

Proof. Let f be a function computed by an AC0 circuit of depth d and m gates. We add a dummy
layer of fan-in 1 gates in between the inputs and the layer next to them. Thus, f is realized by an
AC0 circuit of depth d+ 1, effective size m and bottom fan-in 1. Plugging this into Theorem 3.7
gives W≥k[f ] ≤ 23d−k/(20·96d−1·log(2m)d−1). Hence, by Claim 3.8 we get

W≥k[f ] ≤ 2 · 2−k/(3d·20·96d−1·log(2m)d−1) .

Changing the base of the exponent from 2 to e we get

W≥k[f ] ≤ 2 · e−k/(log2(e)·3d·20·96d−1·log(2m)d−1) ≤ 2 · e−k/(log2(e)·3d·20·96d−1·2d−1·log(m)d−1),

where we used log(2m) ≤ 2 log(m) for m > 1.

4 Connections between Fourier Spectrum Attributes of Boolean
Functions

In this section we show connections between four attributes of Boolean functions, and establish
equivalence between three of them. The properties, each relative to a parameter t, are the following:

• ESFT: Exponentially small Fourier tails.

∀k : W≥k[f ] ≤ e−Ω(k/t)

3We only introduce new gates with distance 1 from the inputs - which does not increase the “effective size”.
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• SLTP: Switching lemma type property / degree shrinkage

∀d, p : Pr
ρ∼Rp

[deg(f |ρ) = d] ≤ O(pt)d

• L1: Bounded spectral norm of the kth level.

∀k :
∑
|S|=k

|f̂(S)| ≤ O(t)k

• InfK: Bounded total degree-k influence.

∀k : Infk[f ] ≤ O(t)k .

In Lemmas 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, we show the following connections:

ESFT ks 4.3

4.4
+3

KS

4.1 4.2
��

SLTP

4.6
��

InfK
4.5 +3 L1

We remark that Lemma 4.6 is due to Mansour [Man95], and Lemma 4.4 is due to Linial et al.
[LMN93]. Note that L1 does not imply any other property, because one can take for example the
parity function, which has the L1 property with t = 1. However, this function has very large Fourier
tails, very high degree under random restriction, and

(
n
k

)
total degree-k influence. Anything that

implies SLTP and L1 needs f to be Boolean. Other relations generalize to bounded real-valued
functions.

In the remainder of this section we state Lemmas 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 more accurately and
prove them.

Lemma 4.1. Let t > 0, C > 0, if W≥d[f ] ≤ C · e−d/t for all d, then Infk[f ] ≤ C · tk for all k.

Proof. We shall prove for C = 1, the proof generalizes for all C. Denote a := e−1/t. Using
Lemma 2.14 we bound the total degree-k influence:

Infk(f) =
∑
d≥k

W≥d[f ] ·
(
d− 1

k − 1

)
≤
∑
d≥k

ad ·
(
d− 1

k − 1

)
Using Corollary 2.2 with x := a gives

Infk(f) ≤ ak

(1− a)k
=

1

(1/a− 1)k
=

1(
e1/t − 1

)k ≤ 1

(1/t)k
= tk

where in the last inequality we used the fact that ex − 1 ≥ x for all x ∈ R.

The reverse relation holds too.

Lemma 4.2. Let t > 0, C > 0, if Infk[f ] ≤ C · tk for all k, then W≥d[f ] ≤ C · e · t · e−(d−1)/et for
all d.
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Proof. We shall prove for C = 1, the proof generalizes for all C. By Lemma 2.14, W≥d[f ] ·
(
d−1
k−1

)
≤

Infk[f ] ≤ tk. Hence W≥d[f ] ≤ tk/
(
d−1
k−1

)
. We can pick any k to optimize this bound. Picking

k = b(d− 1)/etc+ 1 we get

W≥d[f ] ≤ tk/
(
d− 1

k − 1

)k−1

≤ t · e−(k−1) ≤ e · t · e−(d−1)/et .

In our previous work, the following relation was established.

Lemma 4.3 ([Tal14]). Let t, C > 0, and f : {−1, 1}n → {−1, 1}, if W≥k[f ] ≤ C · e−k/t for all k,
then Prρ∼Rp [deg(f |ρ) = d] ≤ C · (4pt)d for all p, d.

We give a slightly shorter proof, using the total degree-d influence.

Proof. We shall prove for C = 1, the proof generalizes for all C. The proof goes by showing that

E
ρ

[Wd[f |ρ]] ≤ (pt)d (3)

and
E
ρ

[Wd[f |ρ]] ≥ 4−d ·Pr
ρ

[deg(f |ρ) = d] . (4)

Equation (4) is true since

E
ρ

[Wd[f |ρ]] ≥ E
ρ

[Wd[f |ρ]|deg(f |ρ) = d] ·Pr
ρ

[deg(f |ρ) = d] .

and the (random) Boolean function f |ρ has Fourier mass at least 4−d if deg(f |ρ) = d, by the
granularity of low degree functions - Fact 2.8.

We are left to prove Equation (3). Using Fact 2.6, we have

E
ρ

[Wd[f |ρ]] =

n∑
k=d

Wk[f ]

(
k

d

)
pd(1− p)k−d ≤ pd

n∑
k=d

Wk[f ]

(
k

d

)
= pd · Infd[f ] ≤ (pt)d ,

where in the last inequality we used Lemma 4.1.

Lemma 4.4 ([LMN93], restated slightly). Let t > 0, C > 0, and f : {−1, 1}n → [−1, 1], if for all
d ∈ N, p ∈ (0, 1), Prρ∼Rp [deg(f |ρ) ≥ d] ≤ C (tp)d; then for any k, W≥k[f ] ≤ 2e · C · e−k/te.

The proof is given in [LMN93]; we give it here for completeness.

Proof. Pick p = 1/et, then by Lemma 3.1, and the fact that W≥bkpc[f |ρ] is always at most 1 and
equals 0 whenever deg(f |ρ) < bkpc, we get

W≥k[f ] ≤ 2 E
ρ

[
W≥bkpc[f |ρ]

]
≤ 2 E

ρ
[Pr[deg(f |ρ) ≥ bkpc]] ≤ 2C(1/e)bk/etc .

Lemma 4.5. If f is Boolean, then L1,k[f ] ≤ 2k · Infk[f ].

Proof. It is easy to see from Claim 2.11 that for any subset T ⊆ [n],

E
x

[DT f(x)] = E
x

∑
S⊇T

f̂(S)
∏
i∈S\T

xi

 = f̂(T ) .

Recall that if f is Boolean, thenDT f(x) is 2−|T | granular, and we have ∀x : |DT f(x)| ≤ 2|T |(DT f(x))2.
Hence,

|f̂(T )| = |E
x

[DT f(x)]| ≤ E
x

[|DT f(x)|] ≤ 2|T |E
x

[(DT f(x))2] = 2|T |InfT (f) .

Summing over all sets of size k completes the proof.
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Remark: It is necessary that f is Boolean in Lemma 4.5, since otherwise we can have the function

ft,k(x) =
∑

S⊆[n],|S|=k

1√(
n
|S|
)
e|S|/2t

∏
i∈S

xi

which maps {−1, 1}n to R, has W≥k[ft,k] = Wk[ft,k] = e−k/t, and Infk[ft] ≤ tk, but

L1,k[ft] =

√(
n

k

)
e−k/2t ≥

( n

ke1/t

)k/2
,

is much larger than O(t)k for n = ω(kt2e1/t).

Lemma 4.6 ([Man95]). Let t > 0, and f : {−1, 1}n → {−1, 1}, if for all d, p, Prρ∼Rp [deg(f |ρ) =
d] ≤ C(pt)d, then ∀k : L1,k[f ] ≤ 2C(4t)k.

Proof. We shall prove for C = 1, the proof generalizes for all C. We first prove that for any function
f : {−1, 1}n → R, p ∈ [0, 1], k ∈ N we have L1,k(f) ≤ 1

pk
Eρ∼Rp [L1,k[f |ρ]].

L1,k[f ] =
∑

S:|S|=k

|f̂(S)| =
∑

S:|S|=k

∣∣∣∣ 1

pk
E

ρ∼Rp

[
f̂ |ρ(S)

]∣∣∣∣ (Fact 2.5)

≤
∑

S:|S|=k

1

pk
E

ρ∼Rp

[
|f̂ |ρ(S)|

]
=

1

pk
E

ρ∼Rp

 ∑
S:|S|=k

|f̂ |ρ(S)|


=

1

pk
E

ρ∼Rp
[L1,k[f |ρ]] . (5)

Next, we show that for f : {−1, 1}n → {−1, 1}, if there exists t > 0 such that for all d, p,
Pr[deg(f |ρ) = d] ≤ (pt)d, then Eρ∼Rp [L1[f |ρ]] ≤ 2 for p = 1/4t. Conditioning on deg(f |ρ) = d and
using Fact 2.8, we have L1[f |ρ] ≤ 2d. Hence,

E
ρ∼Rp

[L1[f |ρ]] =
n∑
d=0

E
ρ∼Rp

[L1[f |ρ]| deg(f |ρ) = d] ·Pr[deg(f |ρ) = d] ≤
n∑
d=0

2d · (1/4)d ≤ 2 . (6)

Plugging Equation (6) in Equation (5) with p = 1/4t we get

L1,k[f ] ≤ 1

pk
E

ρ∼Rp
[L1,k[f |ρ]] ≤

1

pk
E

ρ∼Rp
[L1[f |ρ]] ≤ (4t)k · 2 .

The next lemma is relevant to the learnability results given in [Man95] and [LMN93].

Lemma 4.7. Let t > 0 and C be some positive constant, if W≥k[f ] ≤ C · e−k/t for all k, then f is
ε-concentrated on at most tO(t log(1/ε)) Fourier coefficients.

Here, by ε-concentrated on r coefficients we mean that there exist r subsets of [n], {S1, . . . , Sr},
which captures 1− ε of the Fourier mass of f , i.e.

∑r
i=1 f̂(Si)

2 ≥ 1− ε.

Proof. We shall prove for C = 1, the proof generalizes for all constant C. Let w := t · ln(2/ε).
First it is enough to consider Fourier coefficients of sets of size ≤ w, since all the sum of squares
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of Fourier coefficients of larger sets is at most ε/2. Now
∑

S:|S|≤w |f̂(S)| =
∑w

i=0 L1,i[f ]. Using
Lemmas 4.1 and 4.5 we get

w∑
i=0

L1,i[f ] ≤
w∑
i=0

2iti ≤ tw2w+1 .

Letting F = {S : |S| ≤ w, |f̂(S)| ≥ ε/2
tw2w+1 } we get by Parseval’s identity that∑

S∈F
f̂(S)2 = 1−

∑
|S|>w

f̂(S)2 −
∑

|S|≤w,S /∈F

f̂(S)2 ,

where we already noted that
∑
|S|>w f̂(S)2 ≤ ε/2. To bound the last term∑

|S|≤w,S /∈F

f̂(S)2 ≤ max{|f̂(S)| : |S| ≤ w, S /∈ F} ·
∑
|S|≤w

|f̂(S)| ≤ ε/2 .

Hence,
∑

S∈F f̂(S)2 ≥ 1 − ε. It remain to figure out the size of F . Since every coefficient in F
contributes at least ε/2

tw2w+1 to the sum
∑w

i=0 L1,i[k], and this sum is at most tw2w+1 we get that

the size of F is at most 2(tw2w+1)2/ε = O(t)2t ln(1/ε), which completes the proof.

Immediate from Theorem 3.9, Lemmas 4.1, 4.3, 4.5, and 4.7 we get the following corollary.

Corollary 4.8. Let f be computed by an AC0 circuit of depth d and at most m gates, then

1. For all k, p, Prρ∼Rp [deg(f |ρ) = k] ≤ 2 · (4p · cd log(m)d−1)k.

2. For all k, Infk[f ] ≤ 2 · (cd log(m)d−1)k.

3. For all k, L1,k[f ] =
∑

S:|S|=k |f̂(S)| ≤ 2 · (2cd log(m)d−1)k.

4. f is ε-concentrated on at most O(log(m)d−1)O(log(m)d−1 log(1/ε)) = 2O(log log(m) log(m)d−1 log(1/ε))

Fourier coefficients.

5 Short Proofs for Known Results

In this section we show how Corollary 4.8 gives simple proofs for two theorems. The first states
that (almost) balanced symmetric functions, and in particular the Majority function, cannot be
well approximated by a small AC0 circuit.

Theorem 5.1. Let g : {−1, 1}n → {−1, 1} be a symmetric function on n variables. Let f :
{−1, 1}n → {−1, 1} be depth d size m circuit, and assume that

cd log(m)d−1 ≤ (n/100 ln(n))1/3

then

Cor(f, g) , |E
x

[f(x)g(x)]| ≤ |ĝ(∅)|+
√

2 + 8cd log(m)d−1

√
n

13



Proof. Since g is a symmetric Boolean function, for all S ⊆ [n], ĝ(S)2 ·
(
n
|S|
)

=
∑

T :|T |=|S| ĝ(T )2 ≤ 1.

Hence, |ĝ(S)| ≤ 1√
( n|S|)

. Let ` be some parameter we shall set later, then

|E
x

[f(x)g(x)]| ≤
∑
S

|f̂(S)ĝ(S)| = |f̂(∅)ĝ(∅)|+
∑̀
k=1

∑
S:|S|=k

|f̂(S)ĝ(S)|+
∑

S:|S|>`

|f̂(S)ĝ(S)| . (7)

We bound each of the three terms in the RHS of Equation (7). The first term is at most |ĝ(∅)|. For
the third term we use Cauchy-Schwartz, Theorem 3.7, and Parseval’s identity (

∑
S:|S|>` ĝ(S)2 ≤ 1),

to get ∑
S:|S|>`

|f̂(S)ĝ(S)| ≤
√ ∑
S:|S|>`

f̂2(S)
∑

S:|S|>`

ĝ(S)2 ≤
√

2 · e−`/(cd log(m)d−1) .

Picking ` := ln(n) · cd log(m)d−1 this is smaller than
√

2/n. For the second term in the RHS of
Equation (7), we use the estimates on L1,k(f) and |ĝ(S)|, to get

∑
S:|S|=k

|ĝ(S)f̂(S)| ≤ 1√(
n
k

) · ∑
S:|S|=k

|f̂(S)| ≤ 2 · (2cd log(m)d−1)k√(
n
k

) ≤ 2 ·

(
2cd log(m)d−1√

n/k

)k
.

We denote by Dk := 2 ·
(

2cd log(m)d−1√
n/k

)k
. The ratio between two consecutive terms Dk and Dk+1

for k + 1 ≤ ` is at most

2cd log(m)d−1

√
n

√
(k + 1)k+1

kk
≤ 2cd log(m)d−1

√
n

√
e · (k + 1) ≤ 2cd log(m)d−1

√
n

√
e · ` ≤ 1

2
,

where we used the choice of ` and the assumption cd log(m)d−1 ≤
(

n
100 lnn

)1/3
for the last inequality

to hold. We get that the sum
∑

1≤|S|≤` |f̂(S)ĝ(S)| is at most D1 +D2 + . . .+D` ≤ 2D1. Overall,
we get

E
x

[f(x)g(x)] ≤ |ĝ(∅)|+
√

2 + 8cd log(m)d−1

√
n

.

We remark that although our proof is Fourier analytical, it differs from the standard argument
that is used to bound the correlation of AC0 circuits with parity for example. The standard
argument shows that two functions are o(1) correlated by proving that one is 1− o(1) concentrated
on the low levels of the Fourier spectrum while the other is 1 − o(1) concentrated on the high
levels. Here, however, if we take g to be the Majority vote function, and f to be a poly(n) size
AC0 circuit, then both f and g are 0.99-concentrated on the first O(poly log(n)) levels of their
Fourier spectrum. We deduce the small correlation by showing that f must be very imbalanced on
those levels, which is captured by having small L1,k norm. In contrast, the Majority function is
symmetric - its Fourier mass on level k is equally spread on the different coefficients. Combining
these two properties guarantees small correlation.

Theorem 5.2. Let f : {−1, 1}n → {−1, 1} be a depth d size m circuit, and let p ∈ [0, 1] then f
distinguishes between unbiased coins and coins with bias p with advantage ≤ 4cdp log(m)d−1.

Proof. We can assume pcd log(m)d−1 ≤ 1/4, since otherwise the result is trivial. For −1 ≤ p ≤ 1, a
p-biased coin is a random variable which gets 1 with probability (1 + p)/2 and −1 with probability
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(1− p)/2, i.e. its expectation is p. Let Un be the distribution of n independent 0-biased coins, and
B(n, p) be the distribution of n independent p-biased coins. We have

Distinguishability(f) =

∣∣∣∣ E
x∼Un

[f(x)]− E
x∼B(p,n)

[f(x)]

∣∣∣∣ =

∣∣∣∣∣f̂(∅)−
∑
S

f̂(S)p|S|

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
S 6=∅

f̂(S)p|S|

∣∣∣∣∣∣ ≤
n∑
k=1

pk
(

2cd log(m)d−1
)k

≤ p
(

2cd log(m)d−1
) n∑
k=1

21−k ≤ 2p
(

2cd log(m)d−1
)
.

6 Improving Braverman’s Analysis

Definition 6.1. Denote by tail(m, d, k) the maximal W≥k[F ] over all AC0 circuits F of size ≤ m
and depth ≤ d.

By Theorem 3.9, tail(m, d, k) ≤ 2 ·e−k/(cd log(m)d−1). For convenience, we use the cruder estimate

tail(m, d, k) ≤ 2 ·2−k/(cd log(m)d−1) in the next two sections. Braverman’s Theorem can be rephrased
as follows (we show that this is indeed the case in Appendix B).

Theorem 6.2 ([Bra11]). Let s1, s2 ≥ logm be any parameters. Let F be a Boolean function
computed by a circuit of depth d and size m. Let µ be an r-independent distribution where

r = r(s1, s2, d) = 2((s1 log(m))d + s2)

then
|E
µ

[F ]− E[F ]| < ε(s1, s2, d),

where ε(s1, s2, d) = 0.82s1 · (6m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2)

Picking s1 := 5 log(12m/ε) and s2 :=
(
cd+3 log(m3)d+2

)
· 8 · (s1 log(m))d · log(m) we get the

following corollary.

Theorem 6.3. r(m, d, ε)-independence ε-fools AC0 circuits of depth d and size m, where

r(m, d, ε) = 2((s1 log(m))d + s2) ≤ 4s2

= 32 · cd+3 · (5 log(12m/ε))d · 3d+2 · log(m)2d+3

≤ O(log(m/ε))d · log(m)2d+3 .

7 Improving Bazzi’s Analysis

Bazzi [Baz09] showed thatO(log(m/ε)2) independence fools AC0. We show thatO(log(m/ε) log(m))
independence suffices. For ε ≤ 1/mΩ(1) this bound is tight, due to the example of Mansour from
[LV96].

Theorem 7.1 ([Baz09], [Raz09]). Let F be a DNF with m terms. Let t be some parameter, then
F is m3 · tail(m, 2, (k − 3t)/2) +m2−t fooled by any k-wise independence.

Picking t := log(2m/ε) and k := 3t+ 2c2 log(m) log(4m3/ε) = O(log(m) log(m/ε)) , we get that
k-wise independence ε-fools DNFs with m terms since

m3 · tail(2,m, (k − 3t)/2) +m2−t ≤ m3 · 2 · 2
−c2 log(m) log(4m3/ε)

c2 log(m) +
ε

2
≤ ε .
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A Equivalent Expressions for The T -th Discrete Derivatives

Claim (Claim 2.11, restated).

DT f(x) =
1

2|T |

∑
z∈{−1,1}T

f(x(T 7→z)) ·
∏
i∈T

zi =
∑
S⊇T

f̂(S) ·
∏
i∈S\T

xi

where x(T 7→z) is the vector in {−1, 1}n whose i-th coordinate equals zi whenever i ∈ T , and xi
otherwise.

Proof. We prove by induction on the size of T . For T = ∅ the claim trivially holds. For T =
{j1, . . . , jk}, let T ′ = {j2, . . . , jk} and g = DT ′f , then DT f = Dj1DT ′f = Dj1g. By the definition
of the j1-th derivative, we have

DT f(x) =
g(x(j1 7→1))− g(x(j1 7→−1))

2
.
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By the induction hypothesis, this equals

DT f(x) =
1

2
·
(
DT ′f(x(j1 7→1))−DT ′f(x(j1 7→−1))

)
=

1

2

1

2k−1

 ∑
z′∈{−1,1}T ′

f

((
x(j1 7→1)

)(T ′ 7→z′)
) ∏
i∈T ′

z′i −
∑

z′∈{−1,1}T ′
f

((
x(j1 7→−1)

)(T ′ 7→z′)
) ∏
i∈T ′

z′i


=

1

2k

∑
z∈{−1,1}T

f(x(T 7→z))
∏
i∈T

zi .

As for the second item, by induction, g(x) =
∑

S⊇T ′ f̂(S) ·
∏
i∈S\T ′ xi. Thus,

DT f(x) =
g(x(j1 7→1))− g(x(j1 7→−1))

2
=

1

2

∑
S⊇T ′

f̂(S) ·
∏
i∈S\T

xi ·

{
1− (−1), j1 ∈ T ′

1− 1, otherwise

=
∑
S⊇T

f̂(S) ·
∏
i∈S\T

xi .

B Rephrasing Braverman’s Result

Lemma B.1 (Lemma 8, [Bra11]). Let ν be any probability distribution on {0, 1}n. For a circuit of
depth d and size m computing a function F , for any s, there is a degree r = (s · log(m))d polynomial
f and a Boolean function Eν computable by a circuit of depth ≤ d+ 3 and size O(m2r) such that

1. Prν [Eν(x) = 1] < 0.82s ·m, and

2. whenever Eν = 0, f(x) = F (x).

Proposition B.2 (Proposition 9, [Bra11]). In Lemma B.1, for s ≥ log(m), ‖f‖∞ < (2m)deg(f)−2 =

(2m)(s log(m))d−2

Lemma B.3 (Rephrasing of Lemma 10, [Bra11]). Let F be computed by a circuit of depth d and
size m. Let s1, s2 be two parameters with s1 ≥ log(m). Let µ be any probability distribution on
{0, 1}n, and U{0,1}n be the uniform distribution on {0, 1}n. Set

ν :=
1

2

(
µ+ U{0,1}n

)
.

Let Eν be the function from Lemma 8 with s = s1. Set F ′ = F ∨ Eν . Then, there is a polynomial
f ′ of degree rf = (s1 · logm)d + s2, such that

1. Prµ[F 6= F ′] < 2 · 0.82s1 ·m

2. PrU [F 6= F ′] < 2 · 0.82s1 ·m

3. ‖F ′ − f ′‖22 ≤ 0.82s1 · (4m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2), and

4. f ′(x) = 0 whenever F ′(x) = 0.
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Proof. The first two properties follow from Lemma B.1 directly, since

Pr
µ

[Eν = 1],Pr
Un

[Eν = 1] ≤ 2 ·Pr
ν

[Eν = 1] ≤ 2 · 0.82s1m .

Let f be the degree (s1 log(m))d approximation of F from Lemma B.1. By Proposition B.2,

‖f‖∞ < (2m)(s1·logm)d−2 < 22(s1 logm)d log(m)−2 .

Let Ẽν be the truncated Fourier expansion of Eν of degree s2. We have

‖Eν − Ẽν‖22 ≤ tail(m3, d+ 3, s2) .

Let
f ′ := f · (1− Ẽν)

Then f ′ = 0 whenever F ′ = 0 (since (F ′ = 0) =⇒ (Eν = 0, F = 0) =⇒ (f = 0) =⇒ (f ′ = 0)).
It remains to estimate ‖F ′ − f ′‖22:

‖F ′ − f ′‖22 ≤ 2 · ‖F ′ − f · (1− Eν)‖22 + 2 · ‖f · (1− Eν)− f ′‖22
= 2 · ‖Eν‖22 + 2 · ‖f · (Eν − Ẽν)‖22
≤ 2 ·Pr[Eν = 1] + 2 · ‖f‖2∞ · ‖Eν − Ẽν‖22
≤ 0.82s1 · (4m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2),

which completes the proof.

Theorem B.4 (Rephrasing of Main Theorem, [Bra11]). Let s1, s2 ≥ logm be any parameters. Let
F be a Boolean function computed by a circuit of depth d and size m. Let µ be an r-independent
distribution where

r = r(s1, s2, d) = 2((s1 log(m))d + s2)

then
|E
µ

[F ]− E[F ]| ≤ ε(s1, s2, d),

where ε(s1, s2, d) = 0.82s1 · (6m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2)

Proof of Theorem B.4. Denote by ε1 := 0.82s1 · (2m) and

ε2 := 0.82s1 · (4m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2) .

Applying Lemma B.3 with parameters s1 and s2 gives

‖F ′ − f ′‖22 ≤ ε2 .

Now take f ′` := 1 − (1 − f ′)2. Then f ′` ≤ 1 and f ′` = 0 whenever F ′ = 0, hence f ′` ≤ F ′. To
estimate E[F ′(x)− f ′`(x)] we note that F ′(x)− f ′`(x) equals 0 whenever F ′ = 0, and is equal to

F ′(x)− f ′`(x) = (1− f ′(x))2 = (F ′(x)− f ′(x))2

whenever F ′ = 1. We get
E[F ′(x)− f ′`(x)] ≤ ‖F ′ − f ′‖22 ≤ ε2 .

In addition, deg(f ′`(x)) ≤ 2(s2 + (s1 · log(m))d).
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To finish the proof, if µ is a
(

2 · (s2 + (s1 log(m))d)
)

-wise independent distribution then

E
µ

[F (x)] ≥ E
µ

[F ′(x)]− ε1 ≥ E
µ

[f ′`(x)]− ε1 =∗ E[f ′`(x)]− ε1

= E[F ′(x)]−E[F ′(x)− f ′`(x)]− ε1 ≥ E[F ′(x)]− ε2 − ε1 ≥ E[F (x)]− ε2 − ε1

where we used in * the fact that deg(f ′`) ≤ 2(s2 + (s1 log(m))d) and µ is deg(f ′`)-wise independent.
In a similar way, one can show Eµ[F (x)] ≤ E[F (x)] + ε1 + ε2. Combining both cases we get

|E
µ

[F ]− E[F ]| ≤ ε1 + ε2 = ε(s1, s2, d) .
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