
Tight Bounds on The Fourier Spectrum of AC0

Avishay Tal∗

January 9, 2017

Abstract

We show that AC0 circuits on n variables with depth d and size m have at most
2−Ω(k/ logd−1m) of their Fourier mass at level k or above. Our proof builds on a previous
result by H̊astad (SICOMP, 2014) who proved this bound for the special case k = n.
Our result improves the seminal result of Linial, Mansour and Nisan (JACM, 1993)
and is tight up to the constants hidden in the Ω notation.

As an application, we improve Braverman’s celebrated result (JACM, 2010). Braver-
man showed that any r(m, d, ε)-wise independent distribution ε-fools AC0 circuits of
size m and depth d, for

r(m, d, ε) = O(log(m/ε))2d2+7d+3 .

Our improved bounds on the Fourier tails of AC0 circuits allows us to improve this
estimate to

r(m, d, ε) = O(log(m/ε))3d+3 .

In contrast, an example by Mansour (appearing in Luby and Velickovic’s paper - Algo-
rithmica, 1996) shows that there is a logd−1(m) · log(1/ε)-wise independent distribution
that does not ε-fool AC0 circuits of size m and depth d. Hence, our result is tight up
to the factor 3 in the exponent.

∗Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot
76100, Israel. avishay.tal@weizmann.ac.il. Supported by an Adams Fellowship of the Israel Academy
of Sciences and Humanities, by an ISF grant and by the I-CORE Program of the Planning and Budgeting
Committee.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 174 (2014)

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Applications to Pseudorandomness and Learning 3
1.3 Organization . 5

2 Preliminaries 5
2.1 Restrictions . 5
2.2 Fourier Analysis of Boolean Functions . 6

3 Exponentially Small Fourier Tails for Bounded Depth Circuits 7

4 Applications to Pseudorandomness 10
4.1 Improving Braverman’s Analysis . 10
4.2 Improving Bazzi’s Analysis . 10

5 On Fourier Concentration, Switching Lemmas and Influence Moments 10
5.1 Influence Moments . 11
5.2 Connections between Four Fourier Concentration Properties 12
5.3 Theorem 1.2 . 16

6 Short Proofs for Known Results 17
6.1 Bounded-Depth Circuits Cannot Approximate Majority 17
6.2 The Coin-Problem . 18

7 A New Proof for H̊astad’s Switch-Many Lemma 18
7.1 The Canonical Decision Tree . 19
7.2 Restriction Tree for Multiple DNFs . 19

A Equivalent Expressions for the T -th Discrete Derivatives 25

B Rephrasing Braverman’s Result 26

C Improving the Analysis of De, Etesami, Trevisan and Tulsiani 28

D Improving the Generator of Trevisan and Xue 30

1 Introduction

In this paper we discuss Boolean circuits in which every gate computes an unbounded
fan-in OR or AND function of its inputs, and every leaf is marked with a literal from
x1, . . . , xn,¬x1, . . . ,¬xn. The number of gates in the circuit is called the circuit size and is
denoted by m. The longest path in the circuit is called the circuit depth and is denoted by
d. AC0 is the class of functions that can be realized by Boolean circuits of constant depth
and polynomial size. (We also call Boolean circuits of polynomial size and constant depth
AC0 circuits).

The study of bounded depth circuits flourished in the 1980s, culminating in the tight
exp(Ω(n1/(d−1))) size lower bound for Boolean circuits of depth d computing the parity func-
tion [Ajt83, FSS84, Yao85, H̊as86].1 The main idea behind this lower bound was the fol-
lowing - Boolean circuits with size m and depth d become constant with high probability
under random restrictions keeping each variable alive with probability p = 1/O(logm)d−1.
In contrast, the parity function does not become a constant with probability at least 0.5
as long as pn ≥ 1. Since the restricted circuit should compute the restricted function, we
reach a contradiction if m = exp(o(n1/(d−1))). The main idea is carried through a sequence
of d−1 steps, where in each step the circuit depth is decreased by one with high probability,
by applying H̊astad’s switching lemma [H̊as86].

In their seminal paper, Linial, Mansour, and Nisan [LMN93] showed that AC0 circuits

can be learned in quasipolynomial time, nO(logd n), using random samples, under the uni-
form distribution. They combined H̊astad’s switching lemma with Fourier analysis, to show
that AC0 circuits may be well approximated (in L2 norm) by low degree polynomials,
namely polynomials of degree O(logd n). Boppana [Bop97] improved their bound on the
degree to O(logd−1 n), which is optimal for constant error. The existence of an approxi-
mating low degree polynomial implies a learning algorithm for AC0 circuits, using random
examples. For polynomial size DNFs (depth 2 circuits), Mansour [Man95] showed that
only nO(log logn) out of the

(
n

≤O(logn)

)
monomials are needed to approximate the DNF, and

achieved a nO(log logn) time learning algorithm for DNFs, using membership queries, via the
Goldreich-Levin [GL89], Kushilevitz-Mansour [KM93] method.

The main technical result in [LMN93] was a bound on the Fourier tails of Boolean circuits.
Namely, for any circuit f of size m and depth d,∑

S⊆[n]:|S|≥k

f̂(S)2 ≤ m · 2−Ω(k1/d) ,

where the LHS is called the Fourier tail of f at level k. This was later improved by H̊astad
[H̊as01] to ∑

S⊆[n]:|S|≥k

f̂(S)2 ≤ max{2−Ω((k/ logm)1/(d−1)), 2−Ω(k/ logd−1(m))} ,

which is tight for k ≤ O(logd(m)), however not for larger values of k. Recently, H̊astad
[H̊as14] and Impagliazzo, Matthews, and Paturi [IMP12] showed that any Boolean circuit f
agrees with parity on at most a 1/2 + 2−n/O(logm)d−1

fraction of the inputs. In other words,
they showed that |f̂([n])| ≤ 2−n/O(logm)d−1

.

1Lower bounds for the DNF-size of the parity function were known long before [Lup61].

1

1.1 Our Results

Based on the main lemma of [H̊as14], we extend the results of [H̊as14, IMP12] for all k ∈ [0, n]
and show the following.

Theorem 1.1 (Main Theorem). Let f be an Boolean circuit with depth d and size m. Then,∑
S:|S|≥k

f̂(S)2 ≤ 2 · 2−k/O(logm)d−1

.

A few things to note first. Increasing k from 0 to n, the first time that Theorem 1.1 is
meaningful is at k = Θ(logd−1(m)), which is only marginally better than in [LMN93] and
exactly the same as in [Bop97, H̊as01]. Nonetheless, for larger values, our bound decreases
much faster, and in particular for m = poly(n) we get a 2−n/poly log(n) tail at level k = Ω(n)

as opposed to a 2−Ω((n/ logn)1/(d−1)) tail by [H̊as01]. In addition, while [H̊as14] and [IMP12]
give bounds on an individual coefficient, |f̂(S)|, we give bounds on the sum of exp(Ω(n))
many squares of coefficients (e.g., for k = n/2).

We point out that the results of [H̊as14], [IMP12], and ours are quite surprising, con-
sidering the fact that most proofs for Boolean circuits follow by induction on the depth
d; performing d − 1 consecutive steps of H̊astad’s switching lemma. Our main theorem is
equivalent to saying that degree O(logd−1(m)· log(1/ε)) polynomials ε-approximates Boolean
circuits of size m and depth d, as opposed to degree O(logd(m/ε)) polynomials by [LMN93].
It seems at first glance that one must pay a factor of log(m/ε) for each step in the induction
to ensure error at most ε, thus resulting in degree at least logd−1(m/ε). However, H̊astad
and Impagliazzo et al. managed to avoid that. H̊astad performs random restrictions keep-
ing each variable alive with probability p = 1/O(logm) that does not depend on ε. This
only guarantee that the switching succeeds with probability 1 − 1/poly(m), as opposed to
probability of 1 − ε/m in the original proof of [LMN93]. However, in the cases where the
switching “fails”, H̊astad fixes D additional variables using a decision tree of depth D. Under
these additional fixings, the probability that the switching fails reduces to m ·2−D. We show
that the parameters p and D translate into a multiplicative term of 1/p and an additive
term of D in the degree, correspondingly. Choosing D to be roughly log(m/ε) and applying
induction gives the desired dependency on m and ε.

Theorem 1.1 shows that the Fourier tail above level k decreases exponentially fast in k.
In Section 5, we show that such behavior is related to three other properties of concentration.
We establish many connections between these four properties, and show that three of them
are essentially equivalent. We think that these connections are of independent interest.2 As
a result of these connections we establish the following theorem.

Theorem 1.2. Let f be an Boolean circuit with depth d and size m. Then,

1. For all k, p, if ρ is a p-random restriction, then Prρ[deg(f |ρ) ≥ k] ≤ O(p · logd−1(m))k.

2. For all k, ∑
S:|S|=k

|f̂(S)| ≤ O(logd−1(m))k . (1)

2In fact, some of these connections have been already used in the context of de Morgan formulae [Tal14].

2

3. f is ε-concentrated on at most 2O(log log(m)·logd−1(m)·log(1/ε)) Fourier coefficients.

In Section 6, we show that Equation (1) gives new proofs for the following known results:

• Correlation bounds for the Majority function. If f is a size m depth d circuit, then

Pr[f(x) = MAJ(x)] ≤ 1
2
+O(logd−1(m))√

n
. Our result holds for logd−1(m) = O((n/ log n)1/3),

which is an artifact of the proof. This result was originally proved by Smolensky [Smo93]
(see also [Fil10]) and by O’Donnell and Wimmer [OW07], for the entire range of pa-
rameters.

• Boolean circuits cannot distinguish between fair coins and coins with bias at most
1

O(logd−1(m))
. This result was previously proved by Cohen, Ganor and Raz [CGR14],

improving the results of Aaronson [Aar10], and Shaltiel and Viola [SV10].

1.2 Applications to Pseudorandomness and Learning

Since the result of [LMN93] had many applications, our main theorem improves some of
them as well.

k-wise independence fools bounded-depth circuits. The most significant improve-
ment is to the work of Braverman [Bra10] who proved a longstanding conjecture, showing that
poly-logarithmic independent distributions fool AC0 circuits. To be more precise, Braverman
showed that any k-wise independent distribution, where k = O(log(m/ε))2d2+7d+3, ε-fools
circuits of size m and depth d. In addition, it was long known [LV96] that k must be larger
than Ω(logd−1(m) · log(1/ε)); otherwise, there is a k-wise independent distribution that is
ε-distinguishable from the uniform distribution by a depth d, size m circuit. Our theorem
improves Braverman’s bounds to k = O (log(m/ε))3d+3, answering an open question posed
by Braverman on the affirmative. In particular, our result is non-trivial for polynomial size
circuits of depth d ≤ 0.3 log(n)/ log log(n). Since NC1 circuits can be computed by Boolean
circuits of depth O(log(n)/ log log(n)) and polynomial size, constructing a non trivial PRG
for all d = O(log(n)/ log log(n)) is a major open challenge. While the dependence of k on m
and d is close to optimal, we conjecture that the dependence on ε could be much better.3

Conjecture 1. Any k-wise independence ε-fools circuits of size m and depth d, for

k = (logm)O(d) · log(1/ε) .

k-wise independence fools DNFs. We improve in Section 4.2 the earlier result of Bazzi
[Baz09], who showed that O(log2(m/ε))-wise independence ε-fools DNFs of size m. We
improve the dependence on ε and get that O(log(m) · log(m/ε))-wise independence suffices.
Note that by [LV96] this is optimal for ε ≤ 1/mΩ(1). The range ε ≥ 1/mo(1) is still not
tightly understood.

3We have learned that subsequent to this work, Harsha and Srinivasan [HS16] proved this conjecture.

3

Task Ref. Bound

k-wise ind. fooling DNFs [Baz09] k = O(log2(m/ε))

This Work k = O(log(m/ε) · log(m))

Lower Bound k ≥ log(m) · log(1/ε)

k-wise ind. fooling AC0 [Bra10] k = O((log(m/ε))d
2+3d · (logm)d

2+4d+3)

This Work k = O
(
(log(m/ε))d · (logm)2d+3

)
Lower Bound k ≥ logd−1(m) · log(1/ε)

sparse polynomial [Man95] sparsity = (m/ε)O(log log(m/ε)·log(1/ε))

approximating DNFs in L2 This Work sparsity = mO(log log(m)·log(1/ε))

sparse polynomial [LMN93] sparsity = 2O(log(n)·logd(m/ε))

approximating AC0 in L2 [H̊as01] sparsity = 2O(log(n)·logd−2(m/ε)·log(m)·log(1/ε))

This Work sparsity = 2O(log log(m)·logd−1(m)·log(1/ε))

Lower Bound sparsity ≥ 2Ω(logd−1(m))

PRGs for DNFs [DETT10] seed = O(log n+ log2(m/ε) · log log(m/ε))

This Work seed = O(log n+ log(m/ε) · log(m) · log logm)

PRGs for AC0 [TX13] seed = Õ(logd+4(m/ε))

This Work seed = Õ(logd+1(m/ε) · log n)

Figure 1: Summary of Applications

PRGs for AC0 and DNFs. We improve the results of De et al. [DETT10] (see Ap-
pendix C) and of Trevisan and Xue [TX13] (see Appendix D) that give the best known
PRGs for DNFs and AC0 circuits respectively. In the PRG of De et al., we improve the
dependency of the seed-length in ε, as seen in Figure 1. Since Trevisan and Xue used De et
al.’s generator as a black-box in their construction, we also improve the seed length of their
PRG for AC0 circuits. We observe two more improvements in the Trevisan-Xue generator
to reduce the seed-length to Õ(logd+1(m/ε) · log(n)). This seed-length comes closer to the
barrier O(logd(m/ε)) noted by [TX13].

Sparse polynomial approximations of Boolean circuits. Theorem 1.2 shows that
any Boolean circuit f of size m and depth d can be ε-approximated in L2 by a polynomial
p(x) of sparsity (logm)O(logd−1(m)·log(1/ε)), improving the results of [LMN93] and [Man95].
As the inner product on k = logd−1m variables can be realized by a size poly(m) depth
d circuit, and requires at least Ω(2k) coefficients in order to Ω(1) approximate in L2, one

cannot achieve sparsity 2o(logd−1m).

4

A table summarizing all of the improvements mentioned above is presented in Figure 1.

1.3 Organization

In Section 2, we lay out some preliminary definitions and results that will be used in the rest
of the paper. In Section 3, we prove our main theorem, i.e. Theorem 1.1. In Section 4, we
improve Braverman’s and Bazzi’s results in the field of pseudorandomness. In Section 5, we
prove Theorem 1.2, by relating different notions of Fourier concentration. Then, in section 6,
we use Theorem 1.2 to deduce simpler proofs for two known results: the inapproximability
of the Majority function by bounded-depth circuits, and the indistinguishability of biased-
coins from uniform coins by bounded-depth circuits. In Section 7, we give a self-contained
new proof of the main lemma in the work of H̊astad [H̊as14], that plays a crucial role in
the proof of Theorem 1.1. This serves two purposes. First, it makes the main result in
our paper self-contained. Second, in our opinion, it gives a simpler proof of H̊astad’s main
lemma ([H̊as14]).

In the appendices, we revisit the works of Braverman [Bra10] (Appendix B), De et
al. [DETT10] (Appendix C), and Trevisan and Xue [TX13] (Appendix D) in the field of
pseudorandomness. We show how our main results (Theorem 1.1 and Theorem 1.2) improve
these results. Furthermore, we reduce the seed-length of the PRG of [TX13] even further
using several other observations.

2 Preliminaries

We denote by [n] = {1, . . . , n}. We denote by log and ln the logarithms in bases 2 and e,

respectively. For f : {−1, 1} → R we denote by ‖f‖p =
(
Ex∈{−1,1}n [|f(x)|p]

)1/p
.

2.1 Restrictions

Definition 2.1 (Restriction). Let f : {0, 1}n → {0, 1} be a Boolean function. A restriction
ρ is a vector of length n of elements from {0, 1, ∗}. We denote by f |ρ : {0, 1}n → {0, 1} the
function f restricted according to ρ, defined by

f |ρ(x) = f(y), where yi =

{
xi, ρi = ∗
ρi, otherwise

.

We say that the variable xi is fixed if ρi ∈ {0, 1}, and that xi is unassigned (or alive) if ρi = ∗.

Note that the function f |ρ is defined as a function with n variables, although it depends
only on the non-fixed variables. When fixing only one bit to a constant, we may denote the
restricted function by f |xi=b.

Definition 2.2 (p-Random Restriction). A p-random restriction is a restriction as in Def-
inition 2.1 that is sampled in the following way. For every i ∈ [n], independently, with
probability p set ρi = ∗ and with probability 1−p

2
set ρi to be −1 and 1, respectively. We

denote this distribution of restrictions by Rp.

5

2.2 Fourier Analysis of Boolean Functions

Any function f : {−1, 1}n → R has a unique Fourier representation:

f(x) =
∑
S⊆[n]

f̂(S) ·
∏
i∈S

xi ,

where the coefficients f̂(S) ∈ R are given by f̂(S) = Ex[f(x) ·
∏

i∈S xi]. Parseval’s identity

states that
∑

S f̂(S)2 = Ex[f(x)2] = ‖f‖2
2, and in the case that f is Boolean (i.e., f :

{−1, 1}n → {−1, 1}), all are equal to 1. The Fourier representation is the unique multilinear
polynomial which agrees with f on {−1, 1}n. We denoted by deg(f) the degree of this
polynomial, which also equals max{|S| : f̂(S) 6= 0}. We denote by

Wk[f] ,
∑

S⊆[n],|S|=k

f̂(S)2

the Fourier weight at level k of f . Similarly, we denote W≥k[f] ,
∑

S⊆[n],|S|≥k f̂(S)2. The

truncated Fourier expansion of degree k of f is simply f≤k(x) =
∑
|S|≤k f̂(S)

∏
i∈S xi. By

Parseval, ‖f − f≤k‖2
2 = W≥k+1[f]. The following fact relates the Fourier coefficients of f

and f |ρ, where ρ is a p-random restriction.4

Fact 2.3 (Proposition 4.17, [O’D14]). Let f : {−1, 1}n → R, S ⊆ [n], and p > 0. Then,

E
ρ∼Rp

[
f̂ |ρ(S)

]
= f̂(S)p|S|

and
E

ρ∼Rp

[
f̂ |ρ(S)2

]
=
∑
U⊆[n]

f̂(U)2 · Pr
ρ∼Rp

[{i ∈ U : ρ(i) = ∗} = S] .

Summing the last equation over all sets S of size d gives the following corollary.

Fact 2.4. Denote by Bin(k, p) a binomial random variable with parameters k and p. Then,

E
ρ∼Rp

[
Wd[f |ρ]

]
=

n∑
k=d

Wk[f] ·Pr[Bin(k, p) = d]

Definition 2.5 (Fourier Sparsity, Spectral Norm). We define the sparsity of f : {−1, 1}n →
R as sparsity(f) , |{S : f̂(S) 6= 0}|; the spectral norm of f as L1(f) ,

∑
S |f̂(S)|; and the

spectral norm of the k-th level of f as L1,k(f) ,
∑

S:|S|=k |f̂(S)|.

We state the following known fact regarding the Fourier sparsity, spectral norm and
granularity of low degree Boolean functions.

Fact 2.6 (Ex. 1.11, [O’D14]). Let f : {−1, 1}n → {−1, 1} with deg(f) = d. Then,

1. ∀S : |f̂(S)| = kS · 2−d where kS ∈ Z.

2. sparsity(f) ≤ 22d

3. L1(f) ≤ 2d.

4Note that f̂ |ρ(S) = 0 if ρ fixes one of the variables in S.

6

3 Exponentially Small Fourier Tails for Bounded Depth

Circuits

We generalize the proof of H̊astad ([H̊as14]), who showed that the correlation between the

parity function and any Boolean circuit of depth d and size m is at most 2−Ω(n/ logd−1(m)).
This bound is tight up to the constants in the exponent, as shown by an example in [H̊as14],
and improves upon previous bounds from [LMN93, H̊as01].

We will use two simple lemmata which explain the behavior of Fourier tails with respect
to random restrictions, and arbitrary restrictions.

Lemma 3.1 ([LMN93]). For any f : {−1, 1}n → R, k ∈ N ∪ {0} and p ∈ [0, 1],

W≥k[f] ≤ 2 · E
ρ∼Rp

[
W≥bkpc[f |ρ]

]
.

Proof. Let k ∈ N ∪ {0} and p ∈ [0, 1]. We have

E
ρ∼Rp

[
W≥bkpc[f |ρ]

]
=
∑
`≥bkpc

W`[f] ·Pr[Bin(`, p) ≥ bkpc] (Fact 2.4)

≥
∑
`≥k

W`[f] ·Pr[Bin(`, p) ≥ bkpc]

≥
∑
`≥k

W`[f] · 1/2 (median(Bin(`, p)) ≥ b`pc ≥ bkpc, [KB80])

= 1/2 ·W≥k[f].

The second lemma, taken from [IK14], states that if, for some bit, we have Fourier tail
bounds for both restrictions fixing that bit to either +1 or −1, then we have Fourier tail
bounds for the unrestricted function.

Lemma 3.2 ([IK14]). Let f : {−1, 1}n → R and i ∈ [n]. Then,

W≥k[f] ≤ 1

2
·W≥k−1[f |xi=−1] +

1

2
·W≥k−1[f |xi=1].

In order to generalize the last lemma, we introduce the following definition, which is very
similar to the definition of a decision tree, except we are not making any decision!

Definition 3.3 (Restriction Tree). A restriction tree is a rooted directed binary tree such
that each internal node is labeled by a variable from x1, . . . , xn and has two outgoing edges:
one marked with 1 and one marked with −1. The leaves of the tree are not labeled. Each leaf
in the tree, `, corresponds to a restriction τ` on the variables x1, . . . , xn in the most natural
way: we fix the variables along the path from the root to the leaf ` according to the values on
the path edges.

Using induction, Lemma 3.2 implies (informally) that if, for some restriction tree, we have
Fourier tail bounds for restrictions corresponding to all root-leaf paths in the tree, then we
have Fourier tail bounds for the unrestricted function as well. The exact statement follows.

7

Lemma 3.4. Let f : {−1, 1}n → R be a function, and let T be a restriction tree of depth
≤ D such that for any leaf `, under the corresponding restriction W≥k[f |τ`] ≤ ε. Then,
W≥k+D[f] ≤ ε.

Proof. Apply induction on the depth of the restriction tree. For depth 0 this obviously holds.
For depth D, consider both subtrees that are rooted by the children of the original root. If
the root queries xi, these are restriction trees for {x : xi = 1} and {x : xi = −1}, and
we may apply the induction hypothesis on each subtree to get W≥k+(D−1)[f |xi=1] ≤ ε and
W≥k+(D−1)[f |xi=−1] ≤ ε. Finally, applying Lemma 3.2 gives W≥k+D[f] ≤ ε

2
+ ε

2
= ε.

Our proof relies on the main lemma in H̊astad’s work [H̊as14]. We begin with a definition
from [H̊as14] and the statement of his main lemma.

Definition 3.5 (Common Partial Decision Tree). A set of functions (gi)
m
i=1 has a common

s-partial decision tree of depth D, if there is a restriction tree of depth D such that at each
leaf ` of this restriction tree, each function gi, restricted by τ`, is computable by an ordinary
decision tree of depth s.

Lemma 3.6 ([H̊as14], Lemma 3.8). Let (fi)
m
i=1 be a collection of depth-2 circuits, each of

bottom fan-in t. Let ρ be a random restriction from Rp. Then the probability that (fi|ρ)mi=1 is
not computable by a common log(2m)-partial decision tree of depth D is at most m · (24pt)D.

In Appendix 7 we give a new proof for Lemma 3.6 (with constant 49 instead of 24)
following the proof approach of [Raz95], [Bea94] and [Tha09] for the original switching
lemma.

We are ready to prove the Fourier tail bounds for Boolean circuits. We define the effective
size of a Boolean circuit as the number of gates in the circuit at distance 2 or more from the
inputs.

Theorem 3.7. Let f be a Boolean circuit of depth d, effective size m, and bottom fan-in t.

Then, W≥k[f] ≤ 8d−1 · 2−k/(20t(96 log(2m))d−2).

Proof. We prove by induction on d. The base case d = 2 was proved by Mansour [Man95],
who showed that DNFs with bottom fan-in t have

W≥k[f] ≤ 4 · 2−k/20t .

For the induction step, we apply a p-random restriction with p = 1/48t. Consider the
gates at distance 2 from the inputs: f1, . . . , fm′ , for m′ ≤ m. These gates compute functions
given by depth-2 circuits with bottom fan-in ≤ t. Setting D = bkp/2c and using Lemma 3.6
gives that with probability at least 1−m · 2−D ≥ 1− 2log(m)−D over the random restrictions,
(fi|ρ)m

′

i=1 can be computed by a common log(2m)-partial decision tree of depthD. In this case,
we say that the restriction ρ is good. Using Lemma 3.1 we have W≥k[f] ≤ 2·Eρ[W

≥bkpc[f |ρ]].

8

Since W≥bkpc[f |ρ] is a random variable bounded in [0, 1] we have

W≥k[f] ≤ 2 · E
ρ∼Rp

[W≥bkpc[f |ρ]]

= 2 · E
ρ∼Rp

[
W≥bkpc[f |ρ] | ρ is good

]
· Pr
ρ∼Rp

[ρ is good]

+ 2 · E
ρ∼Rp

[
W≥bkpc[f |ρ] | ρ is bad

]
· Pr
ρ∼Rp

[ρ is bad]

≤ 2 · E
ρ∼Rp

[
W≥bkpc[f |ρ] | ρ is good

]
+ 2 · Pr

ρ∼Rp

[ρ is bad] ,

where Prρ[ρ is bad] ≤ 2log(m)−bk/96tc ≤ 2log(2m)−k/96t. Using the following simple claim, we
get Prρ[ρ is bad] ≤ 2 · 2−k/(96t log(2m)).

Claim 3.8. If 0 ≤ X ≤ 1 and X ≤ 2a−b, where a ≥ 1, then X ≤ 21−b/a.

Proof. Since 0 ≤ X ≤ 1 and a ≥ 1, we have X ≤ X1/a, and X1/a is at most 21−b/a.

We are left to analyze E[W≥bkpc[f |ρ] | ρ is good]. Fixing ρ to be some specific good re-
striction, we will bound W≥bkpc[f |ρ] for this specific ρ. By the definition of good restrictions,

we have a common log(2m)-partial decision tree of depth D = bkp/2c computing (fi|ρ)m
′

i=1.
For each leaf ` of the common partial decision tree, let τ` be the restriction defined by the
path leading to this leaf. We have that fi|ρ|τ` for i = 1, . . . ,m′ can be expressed as a de-
cision tree of depth ≤ log(2m), hence as a CNF/DNF formula of bottom fan-in at most
log(2m). This means that applying the restriction ρ ◦ τ`, the circuit f collapses to a depth
d− 1 Boolean circuit with bottom fan-in t′ ≤ log(2m) and effective size at most m.5 By the

induction hypothesis, for any k′ we have W≥k′ [f |ρ|τ`] ≤ 8d−2 · 2−Ω(k′/(t′ logd−3(2m))). Setting
k′ = bkpc −D ≥ bkp/2c ≥ k

96t
− 1 and applying Lemma 3.4 we have

W≥bkpc[f |ρ] ≤ max
`

W≥k′ [f |ρ|τ`] ≤ 8d−2 ·2−k′/(20t′·(96 log(2m))d−3) ≤ 8d−2 ·21−k/(20t(96 log(2m))d−2) ,

and

W≥k[f] ≤ 4 · 8d−2 · 2−k/(20t(96 log(2m))d−2) + 4 · 2−k/(96t log(2m)) ≤ 8d−1 · 2−k/(20t(96 log(2m))d−2) .

Theorem 3.9 (Theorem 1.1, restated). Let f be an Boolean circuit of depth d and size

m > 1. Then, W≥k[f] ≤ 2 · 2−k/(cd logd−1(m)) where cd = 60d · 192d−1 ≤ 216d. Equivalently,

W≥k[f] ≤ 2 · e−k/(c′d logd−1(m)) where c′d = log2(e) · 60d · 192d−1 ≤ 2 · 216d.

Proof. Let f be a function computed by a Boolean circuit of depth d and m gates. We add a
dummy layer of fan-in 1 gates in between the inputs and the layer next to them. Thus, f is
realized by an Boolean circuit of depth d+ 1, effective size m and bottom fan-in 1. Plugging
this into Theorem 3.7 gives W≥k[f] ≤ 23d−k/(20·96d−1·logd−1(2m)). Hence, by Claim 3.8, we get

W≥k[f] ≤ 2 · 2−k/(3d·20·96d−1·logd−1(2m)) ≤ 2 · 2−k/(60d·96d−1·2d−1·logd−1(m)) ,

where we used log(2m) ≤ 2 log(m) for m > 1.

5We only introduce new gates with distance 1 from the inputs - which does not increase the effective size.

9

4 Applications to Pseudorandomness

4.1 Improving Braverman’s Analysis

Definition 4.1. Denote by tail(m, d, k) the maximal W≥k[F] over all Boolean circuits F of
size ≤ m and depth ≤ d.

By Theorem 3.9, tail(m, d, k) ≤ 2·2−k/(cd logd−1(m)). Braverman’s Theorem can be rephrased
as follows (we show that this is indeed the case in Appendix B).

Theorem 4.2 ([Bra10]). Let s1, s2 ≥ logm be any parameters. Let F be a Boolean function
computed by a circuit of depth d and size m. Let µ be an r-independent distribution where

r = r(s1, s2, d) = 2((s1 · logm)d + s2)

then
|E
µ

[F]− E[F]| < ε(s1, s2, d),

where ε(s1, s2, d) = 0.82s1 · (6m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2)

Picking s1 := 5 log(12m/ε) and s2 :=
(
cd+3 log(m3)d+2

)
· 8 · (s1 · logm)d · log(m) we get

the following corollary.

Theorem 4.3. r(m, d, ε)-independence ε-fools Boolean circuits of depth d and size m, where

r(m, d, ε) = 2((s1 · logm)d + s2) ≤ 4s2

= 32 · cd+3 · (5 log(12m/ε))d · 3d+2 · (logm)2d+3

≤ O(log(m/ε))d · (logm)2d+3 .

4.2 Improving Bazzi’s Analysis

Bazzi [Baz09] showed that O(log2(m/ε)) independence ε-fools DNFs of size m. We show
that O(log(m/ε) · log(m)) independence suffices. For ε ≤ 1/mΩ(1) this bound is tight, due
to the example of Mansour from [LV96].

Theorem 4.4 ([Baz09], [Raz09]). Let F be a DNF with m terms, and t be some parameter.
Then, F is m3 · tail(m, 2, (k − 3t)/2) +m2−t fooled by any k-wise independence.

Picking t := log(2m/ε) and k := 3t + 2c2 log(m) log(4m3/ε) = O(log(m) log(m/ε)) , we
get that k-wise independence ε-fools DNFs with m terms since

m3 · tail(2,m, (k − 3t)/2) +m2−t ≤ m3 · 2 · 2
−c2 log(m) log(4m3/ε)

c2 log(m) +
ε

2
≤ ε .

5 On Fourier Concentration, Switching Lemmas and

Influence Moments

In this section, we connect different notions of Fourier concentration of Boolean functions. We
begin by introducing some new definitions, and then move to state and prove the connections
between the different notions. We end this Section, with the proof of Theorem 1.2, which is
a result of Theorem 1.1 and the connections established in this section.

10

5.1 Influence Moments

In this section we introduce derivatives and influences of sets of variables. A different def-
inition to the influence of a set was made in [KKL88]. There, the influence of a set J was
defined to be the probability that under a uniform restriction of J c to constants, the func-
tion’s value is still undetermined. We choose a different variant, which has a much nicer
Fourier expression.

We start with the standard definition of discrete derivatives and influences of Boolean
functions.

Definition 5.1 (Discrete Derivative, Influence). Let f : {−1, 1}n → R and i ∈ [n]. The
i-th discrete derivative operator Di maps the function f to the function Dif : {−1, 1}n → R
defined by

Dif(x) =
f(x(i 7→1))− f(x(i 7→−1))

2
.

where x(i 7→b) = (x1, . . . , xi−1, b, xi+1, . . . , xn). The influence of coordinate i on f is defined as

Infi(f) = E
x

[(Dif(x))2] .

The generalization to sets of more than one variable is the following.

Definition 5.2 (Discrete Derivative and Influence of a Set). Let f : {−1, 1}n → R and
T ⊆ [n], and write T = {j1, . . . , jk}. The T -th (discrete) derivative operator, DT , maps the
function f to the function DTf : {−1, 1}n → R defined by

DTf(x) = Dj1Dj2 . . . Djkf(x) .

The influence of subset T on f is defined as

InfT (f) = E
x

[
(DTf(x))2

]
.

The following claim gives equivalent formulations for the function DTf (and also implies
that DT is well defined, i.e., that DTf does not depend on the order of indices in T).

Claim 5.3.

DTf(x) =
1

2|T |

∑
z∈{−1,1}T

f(x(T 7→z)) ·
∏
i∈T

zi =
∑
S⊇T

f̂(S) ·
∏
i∈S\T

xi

where x(T 7→z) is the vector in {−1, 1}n whose i-th coordinate equals zi whenever i ∈ T , and
equals xi otherwise.

The proof uses a straightforward inductive argument, and is given for completeness in
Appendix A. Note that if f : {−1, 1}n → {−1, 1}, then the T -th derivative of f is 2−|T |

granular (i.e., DTf(x) is an integer times 2−|T |), since DTf(x) is a sum of integers divided
by 2|T |. The following claim follows from Parseval’s identity and the previous claim.

Claim 5.4. InfT (f) =
∑

S⊇T f̂(S)2

11

Definition 5.5 (Total Degree-k Influence). The total degree-k influence is defined as

Infk(f) ,
∑

T :|T |=k

InfT (f) .

Claim 5.4 gives the following Fourier expression for the total degree-k influence:

Infk(f) =
∑

S:|S|≥k

f̂(S)2 ·
(
|S|
k

)
=
∑
d≥k

Wd[f] ·
(
d

k

)
. (2)

We state the following simple lemma expressing Infk(f) in terms of W≥d[f] instead of Wd[f].

Lemma 5.6. Infk(f) =
∑

d≥k W≥d[f] ·
(
d−1
k−1

)
for all k ∈ N.

Proof. We perform some algebraic manipulations on Equation (2):

Infk(f) =
∑
d≥k

Wd[f] ·
(
d

k

)
=
∑
d≥k

(
W≥d[f]−W≥d+1[f]

)
·
(
d

k

)
= W≥k[f] +

∑
d≥k+1

W≥d[f] ·
((

d

k

)
−
(
d− 1

k

))
= W≥k[f] +

∑
d≥k+1

W≥d[f] ·
(
d− 1

k − 1

)
=
∑
d≥k

W≥d[f] ·
(
d− 1

k − 1

)

5.2 Connections between Four Fourier Concentration Properties

In this section we show connections between four attributes of Boolean functions, and es-
tablish equivalence between three of them. The properties, each relative to a parameter t,
are the following:

• ESFT: Exponentially small Fourier tails.

∀k : W≥k[f] ≤ e−Ω(k/t)

• SLTP: Switching lemma type property / degree shrinkage

∀d, p : Pr
ρ∼Rp

[deg(f |ρ) = d] ≤ O(pt)d

• L1: Bounded spectral norm of the k-th level.

∀k :
∑
|S|=k

|f̂(S)| ≤ O(t)k

12

• InfK: Bounded total degree-k influence.

∀k : Infk[f] ≤ O(t)k .

In Lemmata 5.7, 5.9, 5.10, 5.11, 5.12, 5.13, we show the following connections:

ESFT
5.10 --

5.7

��

SLTP
5.11

mm

5.13

��
InfK

5.9

JJ

5.12 // L1

We remark that Lemma 5.13 is due to Mansour [Man95], and Lemma 5.11 is due to
Linial et al. [LMN93]. Note that L1 does not imply any other property, because one can
take for example the parity function, which has the L1 property with t = 1. However, this
function has very large Fourier tails, very high degree under random restriction, and

(
n
k

)
total degree-k influence. Anything that implies SLTP and L1 needs f to be Boolean. Other
relations generalize to bounded real-valued functions.

In the remainder of this section we state Lemmata 5.7, 5.9, 5.10, 5.11, 5.12, 5.13 more
accurately and prove them.

Lemma 5.7. Let t > 0, C > 0. If W≥d[f] ≤ C · e−d/t for all d, then Infk[f] ≤ C · tk for all
k.

In the proof of Lemma 5.7, we use the following simple fact that follows from Newton’s
generalized binomial theorem.

Fact 5.8. Let |x| < 1, and k ∈ N. Then,
∑∞

d=k

(
d−1
k−1

)
· xd = xk

(1−x)k
.

Proof of Lemma 5.7. We shall prove for C = 1, the proof generalizes for all C. Denote
a := e−1/t. Using Lemma 5.6 we bound the total degree-k influence:

Infk(f) =
∑
d≥k

W≥d[f] ·
(
d− 1

k − 1

)
≤
∑
d≥k

e−d/t ·
(
d− 1

k − 1

)
=
∑
d≥k

ad ·
(
d− 1

k − 1

)
Using Fact 5.8 with x := a gives

Infk(f) ≤ ak

(1− a)k
=

1

(1/a− 1)k
=

1

(e1/t − 1)
k
≤ 1

(1/t)k
= tk

where in the last inequality we used the fact that ex − 1 ≥ x for all x ∈ R.

The reverse relation holds too, i.e. InfK implies ESFT.

Lemma 5.9. Let t > 0, C > 0. If Infk[f] ≤ C · tk for all k, then W≥d[f] ≤ C · e · t · e−(d−1)/et

for all d.

13

Proof. We shall prove for C = 1, the proof generalizes for all C. By Lemma 5.6, W≥d[f] ·(
d−1
k−1

)
≤ Infk[f] ≤ tk. Hence W≥d[f] ≤ tk/

(
d−1
k−1

)
. We can pick any k to optimize this bound.

Picking k = b(d− 1)/etc+ 1 we get

W≥d[f] ≤ tk/

(
d− 1

k − 1

)k−1

≤ t · e−(k−1) ≤ e · t · e−(d−1)/et .

In our previous work [Tal14], the following relation (ESFT implies SLTP) was estab-
lished.

Lemma 5.10 ([Tal14]). Let t, C > 0, and f : {−1, 1}n → {−1, 1}. If W≥k[f] ≤ C · e−k/t
for all k, then Prρ∼Rp [deg(f |ρ) = d] ≤ C · (4pt)d for all p, d.

We give a slightly shorter proof, using the total degree-d influence.

Proof. We shall prove for C = 1, the proof generalizes for all C. The proof goes by showing
that

E
ρ

[Wd[f |ρ]] ≤ (pt)d (3)

and
E
ρ

[Wd[f |ρ]] ≥ 4−d ·Pr
ρ

[deg(f |ρ) = d] . (4)

Equation (4) is true since

E
ρ

[Wd[f |ρ]] ≥ E
ρ

[Wd[f |ρ]| deg(f |ρ) = d] ·Pr
ρ

[deg(f |ρ) = d] .

and the (random) Boolean function f |ρ has Fourier mass at least 4−d if deg(f |ρ) = d, by the
granularity of low degree functions - Fact 2.6.

We are left to prove Equation (3). Using Fact 2.4, we have

E
ρ

[Wd[f |ρ]] =
n∑
k=d

Wk[f]

(
k

d

)
pd(1− p)k−d ≤ pd

n∑
k=d

Wk[f]

(
k

d

)
= pd · Infd[f] ≤ (pt)d ,

where in the last inequality we used Lemma 5.7.

Linial, Mansour and Nisan [LMN93] proved that SLTP implies ESFT.

Lemma 5.11 ([LMN93], restated slightly). Let t > 0, C > 0, and f : {−1, 1}n → [−1, 1].
If for all d ∈ N, p ∈ (0, 1), Prρ∼Rp [deg(f |ρ) ≥ d] ≤ C (tp)d, then for any k, W≥k[f] ≤
2e · C · e−k/te.

The proof is given in [LMN93]; we give it here for completeness.

Proof. Pick p = 1/et, then by Lemma 3.1, and the fact that W≥bkpc[f |ρ] is always at most
1 and equals 0 whenever deg(f |ρ) < bkpc, we get

W≥k[f] ≤ 2 E
ρ

[
W≥bkpc[f |ρ]

]
≤ 2 E

ρ
[Pr[deg(f |ρ) ≥ bkpc]] ≤ 2C(1/e)bk/etc .

The next lemma proves that InfK implies L1.

14

Lemma 5.12. If f is Boolean, then L1,k[f] ≤ 2k · Infk[f].

Proof. It is easy to see from Claim 5.3 that for any subset T ⊆ [n],

E
x

[DTf(x)] = E
x

∑
S⊇T

f̂(S)
∏
i∈S\T

xi

 = f̂(T) .

Recall that if f is Boolean, then DTf(x) is 2−|T | granular, which implies that ∀x : |DTf(x)| ≤
2|T |(DTf(x))2. Hence,

|f̂(T)| = |E
x

[DTf(x)]| ≤ E
x

[|DTf(x)|] ≤ 2|T |E
x

[(DTf(x))2] = 2|T |InfT (f) .

Summing over all sets T of size k completes the proof.

Remark: It is necessary that f is Boolean in Lemma 5.12, since otherwise we can have
the function

ft,k(x) =
∑

S⊆[n],|S|=k

1√(
n
k

)
ek/2t

∏
i∈S

xi

which maps {−1, 1}n to R, has W≥k[ft,k] = Wk[ft,k] = e−k/t, and Infk[ft] ≤ tk, but

L1,k[ft] =

√(
n

k

)
e−k/2t ≥

(n

ke1/t

)k/2
is much larger than O(t)k for n = ω(kt2e1/t).

Next, Mansour [Man95] proved that SLTP implies L1.

Lemma 5.13 ([Man95]). Let t > 0, and f : {−1, 1}n → {−1, 1}. If for all d, p, Prρ∼Rp [deg(f |ρ) =
d] ≤ C(pt)d, then ∀k : L1,k[f] ≤ 2C(4t)k.

Proof. We shall prove for C = 1, the proof generalizes for all C. We first prove that for any
function f : {−1, 1}n → R, p ∈ [0, 1], k ∈ N we have L1,k(f) ≤ 1

pk
Eρ∼Rp [L1,k[f |ρ]].

L1,k[f] =
∑

S:|S|=k

|f̂(S)| =
∑

S:|S|=k

∣∣∣∣ 1

pk
E

ρ∼Rp

[
f̂ |ρ(S)

]∣∣∣∣ (Fact 2.3)

≤
∑

S:|S|=k

1

pk
E

ρ∼Rp

[
|f̂ |ρ(S)|

]
=

1

pk
E

ρ∼Rp

 ∑
S:|S|=k

|f̂ |ρ(S)|


=

1

pk
E

ρ∼Rp

[L1,k[f |ρ]] . (5)

Next, we show that for f : {−1, 1}n → {−1, 1}, if there exists t > 0 such that for all
d, p, Pr[deg(f |ρ) = d] ≤ (pt)d, then Eρ∼Rp [L1[f |ρ]] ≤ 2 for p = 1/4t. Conditioning on
deg(f |ρ) = d and using Fact 2.6, we have L1[f |ρ] ≤ 2d. Hence,

E
ρ∼Rp

[L1[f |ρ]] =
n∑
d=0

E
ρ∼Rp

[L1[f |ρ]| deg(f |ρ) = d] ·Pr[deg(f |ρ) = d] ≤
n∑
d=0

2d ·
(

1
4

)d ≤ 2 . (6)

15

Plugging Equation (6) in Equation (5) with p = 1/4t we get

L1,k[f] ≤ 1

pk
E

ρ∼Rp

[L1,k[f |ρ]] ≤
1

pk
E

ρ∼Rp

[L1[f |ρ]] ≤ (4t)k · 2 .

The next lemma is relevant to the learnability results given in [Man95] and [LMN93].

Lemma 5.14. Let f be a Boolean function, let t ≥ 1 and C be some positive constant.
If W≥k[f] ≤ C · e−k/t for all k, then f is ε-concentrated on at most tO(t log(1/ε)) Fourier
coefficients.

Here, by ε-concentrated on r coefficients we mean that there exist r subsets of [n],
{S1, . . . , Sr}, which captures 1− ε of the Fourier mass of f , i.e.

∑r
i=1 f̂(Si)

2 ≥ 1− ε.

Proof. We shall prove for C = 1, the proof generalizes for all constant C. Let w := t · ln(2/ε).
First it is enough to consider Fourier coefficients of sets of size ≤ w, since the sum of squares
of Fourier coefficients of larger sets is at most ε/2. Now

∑
S:|S|≤w |f̂(S)| =

∑w
i=0 L1,i[f].

Using Lemmata 5.7 and 5.12 we get
w∑
i=0

L1,i[f] ≤
w∑
i=0

2iti ≤
(t≥1)

tw2w+1 .

Letting F = {S : |S| ≤ w, |f̂(S)| ≥ ε/2
tw2w+1} we get by Parseval’s identity that∑

S∈F

f̂(S)2 = 1−
∑
|S|>w

f̂(S)2 −
∑

|S|≤w,S /∈F

f̂(S)2 ,

where we already noted that
∑
|S|>w f̂(S)2 ≤ ε/2. To bound the last term∑

|S|≤w,S /∈F

f̂(S)2 ≤ max{|f̂(S)| : |S| ≤ w, S /∈ F} ·
∑
|S|≤w

|f̂(S)| ≤ ε/2 .

Hence,
∑

S∈F f̂(S)2 ≥ 1− ε. It remain to figure out the size of F . Since every coefficient in

F contributes at least ε/2
tw2w+1 to the sum

∑w
i=0 L1,i[k], and this sum is at most tw2w+1 we get

that the size of F is at most 2(tw2w+1)2/ε = O(t)2t ln(1/ε), which completes the proof.

5.3 Theorem 1.2

Immediate from Theorem 3.9, Lemmata 5.7, 5.10, 5.12, and 5.14 we get the following corol-
lary.

Theorem 5.15 (Thm. 1.2, restated). Let f be a Boolean circuit of depth d and size m > 1.
Then,

1. For all k, p, Prρ∼Rp [deg(f |ρ) = k] ≤ 2 · (4p · c′d logd−1(m))k.

2. For all k, Infk[f] ≤ 2 · (c′d logd−1(m))k.

3. For all k, L1,k[f] =
∑

S:|S|=k |f̂(S)| ≤ 2 · (2c′d logd−1(m))k.

4. f is ε-concentrated on at most O(logd−1m)O(logd−1(m) log(1/ε)) = 2O(log log(m) logd−1(m) log(1/ε))

Fourier coefficients.

16

6 Short Proofs for Known Results

In this section, we give simple proofs for two known results based on Theorem 5.15.

6.1 Bounded-Depth Circuits Cannot Approximate Majority

The next result states that nearly balanced symmetric functions, and in particular the Ma-
jority function, cannot be well approximated by a small and shallow circuit.

Theorem 6.1. Let g : {−1, 1}n → {−1, 1} be a symmetric function on n variables. Let
f : {−1, 1}n → {−1, 1} be depth d size m circuit, and assume that

c′d logd−1(m) ≤ (n/100 ln(n))1/3 .

Then,

Cor(f, g) ,
∣∣∣E
x

[f(x)g(x)]
∣∣∣ ≤ |ĝ(∅)|+

√
2 + 8c′d logd−1(m)√

n

Proof. Since g is a symmetric Boolean function, for all S ⊆ [n], ĝ(S)2·
(
n
|S|

)
=
∑

T :|T |=|S| ĝ(T)2 ≤
1. Hence, |ĝ(S)| ≤ 1√

(n
|S|)

. Let ` be some parameter we shall set later. Then,

∣∣∣E
x

[f(x)g(x)]
∣∣∣ ≤∑

S

|f̂(S)ĝ(S)| = |f̂(∅)ĝ(∅)|+
∑̀
k=1

∑
S:|S|=k

|f̂(S)ĝ(S)|+
∑
S:|S|>`

|f̂(S)ĝ(S)|.

(7)

We bound each of the three terms in the RHS of Equation (7). The first term is at most
|ĝ(∅)|. For the third term we use Cauchy-Schwartz, Theorem 3.9, and Parseval’s identity
(
∑

S:|S|>` ĝ(S)2 ≤ 1), to get

∑
S:|S|>`

|f̂(S)ĝ(S)| ≤
√ ∑

S:|S|>`

f̂(S)2
∑
S:|S|>`

ĝ(S)2 ≤
√

2 · e−`/(c′d logd−1(m)) .

Picking ` := ln(n) · c′d logd−1(m) this is smaller than
√

2/n. For the second term in the RHS
of Equation (7), we use the estimates on L1,k(f) and |ĝ(S)|, to get

∑
S:|S|=k

|ĝ(S)f̂(S)| ≤ 1√(
n
k

) · ∑
S:|S|=k

|f̂(S)| ≤ 2 · (2c′d logd−1(m))k√(
n
k

) ≤ 2 ·

(
2c′d logd−1(m)√

n/k

)k

.

We denote by Dk := 2 ·
(

2c′d logd−1(m)√
n/k

)k
. The ratio between two consecutive terms Dk+1/Dk

for k + 1 ≤ ` is at most

2c′d logd−1(m)√
n

√
(k + 1)k+1

kk
≤ 2c′d logd−1(m)√

n

√
e · (k + 1) ≤ 2c′d logd−1(m)√

n

√
e · ` ≤ 1

2
,

17

where we used the choice of ` and the assumption c′d logd−1(m) ≤
(

n
100 lnn

)1/3
for the last

inequality to hold. We get that the sum
∑

1≤|S|≤` |f̂(S)ĝ(S)| is at most D1 +D2 + . . .+D` ≤
2D1. Overall, we get

E
x

[f(x)g(x)] ≤ |ĝ(∅)|+
√

2 + 8c′d logd−1(m)√
n

.

We remark that although our proof is Fourier analytical, it differs from the standard
argument that is used to bound the correlation of bounded depth circuits with parity for
example. The standard argument shows that two functions are o(1) correlated by proving
that one is 1 − o(1) concentrated on the low levels of the Fourier spectrum while the other
is 1 − o(1) concentrated on the high levels. Here, however, if we take g to be the Majority
function, and f to be an AC0 circuit, then both f and g are 0.99-concentrated on the first
O(poly log(n)) levels of their Fourier spectrum. We deduce the small correlation by showing
that f must be very imbalanced on those levels, which is captured by having small L1,k norm.
In contrast, the Majority function is symmetric - its Fourier mass on level k is equally spread
on the different coefficients. Combining these two properties guarantees small correlation.

6.2 The Coin-Problem

Theorem 6.2. Let f : {−1, 1}n → {−1, 1} be a depth d size m circuit, and let p ∈ [0, 1].
Then, f distinguishes between unbiased coins and coins with bias p with advantage at most
6c′dp logd−1(m).

Proof. We can assume pc′d logd−1(m) ≤ 1/6, since otherwise the result is trivial. For −1 ≤
p ≤ 1, a p-biased coin is a random variable which gets 1 with probability (1 + p)/2 and
−1 with probability (1 − p)/2, i.e., this is a biased coin whose expectation is p. Let Un
be the distribution of n independent 0-biased coins, and B(n, p) be the distribution of n
independent p-biased coins. We have

Distinguishability(f) ,

∣∣∣∣ E
x∼Un

[f(x)]− E
x∼B(p,n)

[f(x)]

∣∣∣∣ =

∣∣∣∣∣∣f̂(∅)−
∑
S⊆[n]

f̂(S)p|S|

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
S 6=∅

f̂(S)p|S|

∣∣∣∣∣∣ ≤
n∑
k=1

pk · 2 ·
(
2c′d logd−1(m)

)k
≤ 2p ·

(
2c′d logd−1(m)

)
·
∞∑
k=1

(1/3)k−1 = 3p ·
(
2c′d logd−1(m)

)
.

7 A New Proof for H̊astad’s Switch-Many Lemma

In this section, we give a new proof for H̊astad’s [H̊as14] Switch-Many Lemma, i.e., Lemma 3.6.
The new proof follows Razborov’s [Raz95] approach, and its recent simplification by Thapen
[Tha09] for H̊astad’s original switching lemma [H̊as86].

18

Notation. We denote by R the set of all restrictions on n variables. For a sequence
of indices S ∈ [n]k with no repetitions, and a string σ ∈ {0, 1}k we denote by (S → σ)
the restriction which fixes Si to σi for i ∈ [k] and leaves all other variables free. For two
restrictions ρ, σ we denote by ρσ their composition. For a sequence S ∈ Σk over some
alphabet Σ, and two indices i and j such that 1 ≤ i ≤ j ≤ k, we denote by S[i : j] the
subsequence (Si, . . . , Sj), and by S[i] the element Si.

7.1 The Canonical Decision Tree

Let F be an r-DNF, i.e., an OR of ANDs where each AND has at most r input literals from
x1, . . . , xn,¬x1, . . . ,¬xn. Let ρ be a restriction. The canonical tree T (F, ρ) is defined by the
following decision procedure: Look through F for the first term C1, such that C1|ρ 6≡ 0. If no
such term exists, then halt and output 0. Otherwise, let A be the set of free variables in C1

under ρ. Query the variables in A and let π1, . . . , π|A| be their assignment. If the term C1 is
satisfied under the assignment (in particular if A = ∅), then halt and output 1 . Otherwise,
repeat the process with ρ(A→ (π1, π2, . . . , π|A|)) instead of ρ. We keep iterating until one of
the aforementioned halting conditions hold.

7.2 Restriction Tree for Multiple DNFs

Let F1, . . . , Fm be r-DNFs. We define the d-restriction-tree complexity of F1, . . . , Fm to be
the minimal depth of a restriction tree such that under the restriction defined by each leaf,
each DNF Fi is of canonical decision-tree-complexity at most d. We denote this complexity
by RTd({F1, . . . , Fm}).
Theorem 7.1.

Pr
ρ∼Rp

[RTd({F1|ρ, . . . , Fm|ρ}) ≥ k] ≤ mdk/(d+1)e ·
(

24pr

1− p

)k
The following is a corollary of Theorem 7.1.

Corollary 7.2. Let F1, . . . , Fm be r-DNFs. Let k, d be positive integers, 0 ≤ p ≤ 1, and
assume 2d+1 ≥ m. Then,

Pr
ρ∼Rp

[RTd({F1|ρ, . . . , Fm|ρ}) ≥ k] ≤ m · (49pr)k . (8)

Proof. We can assume without loss of generality that p < 1/49 since otherwise the RHS of
Eq. (8) is at least 1 and the LHS is always at most 1. We get

Pr
ρ∼Rp

[RTd({F1|ρ, . . . , Fm|ρ}) ≥ k] ≤ mdk/(d+1)e · (24pr/(1− p))k (Theorem 7.1)

≤ m1+k/(d+1) · (24pr/(1− p))k

= m ·
(
m1/(d+1) · 24pr

1− p

)k
≤ m ·

(
2 · 24pr

1− p

)k
(m ≤ 2d+1)

≤ m · (49pr)k . (1− p > 48/49)

19

We will prove Theorem 7.1 based on the approach of Thapen [Tha09] which simplified
Razborov’s [Raz95] and Beame’s [Bea94] proofs for the (original) switching lemma. The idea
of the proof is that in order to show that some event A happens with low probability, it is
sufficient to show that there exists some other event B (not necessarily disjoint of A) that
happens with probability much larger than A. For example, if Pr[B] ≥M ·Pr[A] (think of
M as some large factor) then since Pr[B] ≤ 1 it means that Pr[A] ≤ 1/M .

The following is the main lemma in this section, from which we deduce Theorem 7.1 quite
easily.

Lemma 7.3. Let S be the set of restrictions under which RTd({F1|ρ, . . . , Fm|ρ}) ≥ k. Then,
there is a 1:1 mapping

θ : S → R× [3r]k × {0, 1}k × {0, 1}k × [m]dk/d+1e

given by θ : ρ 7→ (ρσ, β, π, τ, I) where σ fixes exactly k additional variables that weren’t fixed
by ρ.

Proof of Theorem 7.1, assuming Lemma 7.3. For a (fixed) restriction ρ ∈ R we denote by
Pr[ρ] the probability to sample ρ when sampling a restriction from the distribution Rp. For
a (fixed) set of restrictions A ⊆ R we denote by Pr[A] the probability to sample a restriction
in A when sampling a restriction from the distribution Rp. Recall that by the definition of

Rp, we have Pr[ρ] = pa ·
(

1−p
2

)b+c
where a, b and c are the number of ∗’s, 0’s and 1’s in ρ

respectively.
For a fixed value of β, π, τ , and I, consider the set S ′ = Sβ,π,τ,I := {ρ ∈ S | ∃ρ′ : θ(ρ) =

(ρ′, β, π, τ, I)}. Since θ is 1:1 (Lemma 7.3), the first component θ1 : ρ 7→ ρσ is also 1:1
on the set S ′.6 This implies that Pr[θ1(S ′)] =

∑
ρ∈S′ Pr[θ1(ρ)]. By the definition of Rp,

for any ρ ∈ R and any σ that fixes k additional variables that were free in ρ, we have

Pr[ρσ] =
(

1−p
2p

)k
·Pr[ρ]. We get

1 ≥ Pr[θ1(S ′)] =
∑
ρ∈S′

Pr[θ1(ρ)] =
∑
ρ∈S′

Pr[ρ] ·
(

1− p
2p

)k
= Pr[S ′] ·

(
1− p

2p

)k
,

hence, Pr[S ′] ≤
(

2p
1−p

)k
. Taking a union bound over all possible β, π, τ, I we get, as desired,

Pr[S] ≤
∑
β,π,τ,I

Pr[Sβ,π,τI] ≤ (3r)k · 2k · 2k ·mdk/(d+1)e ·
(

2p

1− p

)k
.

Proof of Lemma 7.3. Let ρ ∈ S be a restriction such that RTd({F1|ρ, . . . , Fm|ρ}) ≥ k. We
describe in detail how to map ρ into (ρσ, β, π, τ, I), where σ ∈ R, β ∈ [3r]k, π ∈ {0, 1}k, τ ∈
{0, 1}k, and I ∈ [m]dk/(d+1)e. Then, we shall describe how to decode from (ρσ, β, π, τ, I) the
restriction ρ, showing that the mapping is 1:1.

6Since a collision in θ1 on S′ implies a collision in θ.

20

Encoding. We are going to choose a sequence of k variables that weren’t fixed by ρ, and
assign them values according to three adversarial strategies:

Global Strategy This strategy ensures that RTd({F1|ρ, . . . , Fm|ρ}) ≥ k. We will denote
its answers by π1, . . . , πk ∈ {0, 1}.

Local Strategy This will be the local adversary strategy based on one DNF we are focusing
on. We will denote its answers by τ1, . . . , τk ∈ {0, 1}.

Bread-Crumbs Strategy The objective of this strategy is to leave the necessary traces, so
that the mapping will be invertible. We will denote its answers by σ1, . . . , σk ∈ {0, 1}.

We consider the following iterative encoding process, which is divided into phases. Each
phase, except for maybe the last phase, contains at least d+1 steps. In each phase, t, we will
focus on one specific DNF out of F1, . . . , Fm, and identify a sequence of variables Tt of length
dt ≥ d+ 1 to be queried. The strings πt, τ t, σt ∈ {0, 1}dt will be the answers to the sequence
of queries Tt according to the Global, Local or Bread-Crumbs strategies, respectively.

At phase t = 1, 2, . . ., we consider the restriction ρt = ρ(T1 → π1) . . . (Tt−1 → πt−1). We
identify some DNF, Fit , whose canonical decision tree depth under ρt is dt ≥ d+1 (if no such
DNF exists, then we stop). We add it to I. Next, we run the canonical decision tree on Fit
and ρt, answering according to the local adversarial strategy which keeps Fit undetermined
after less than dt queries.

We initialize Tt := ∅ and τ t, σt to be empty-strings. In each step, we find the first term
T in Fit which is not equivalent to 0 under ρt(Tt → τ t). By the assumption that Fit has
canonical decision tree depth dt, we get that T is not equivalent to 1 either. Let A be the
non-empty set of variables whose literals appear in T and are unassigned by ρt. We order
the set A in some canonical order. For each xj ∈ A, let jind ∈ [r] be the index of the literal
containing xj in term T . We let jtype = 1 if xj is the last variable to be queried in the DNF
Fit , otherwise jtype = 2 if xj is the last variable in A, and otherwise jtype = 3. For each
xj ∈ A, according to the A’s order, we add (jind, jtype) to β. In addition, we query the local
adversary according to the variables in A under the restriction ρt · (Tt → τ t) and update τ t

to contain its new answers. We concatenate to σt the values to the variables in A that satisfy
T (these are the “bread-crumbs”). We update Tt := Tt ∪A, and continue with ρt · (Tt → τ t)
until querying dt variables.

After ending the phase, we ask the global adversary the sequence of queries in Tt (by the
order they were asked) and consider its sequence of answers as πt. We continue to the next
phase with ρt+1 = ρ(T1 → π1) . . . (Tt → πt) (i.e., we “discard” the answers to Tt according
to the local adversary and add the answers according to the global adversary). We stop the
encoding process after querying k variables overall, even if we are in the middle of a phase.

We show by induction that RTd({F1|ρt , . . . , Fm|ρt}) ≥ k −
∑t−1

i=1 di. This is trivially true
for t = 1 since this is equivalent to the assumption that ρ ∈ S. Assuming it is true for t,
we show that it is true for t+ 1. Since RTd({F1|ρt , . . . , Fm|ρt}) ≥ k −

∑t−1
i=1 di it means that

there exists a set of answers for Tt, namely πt, under which RTd({F1|ρt+1 , . . . , Fm|ρt+1}) ≥
k −

∑t−1
i=1 di − |Tt| = k −

∑t
i=1 di, which completes the induction.

Let p be the number of phases in the encoding process. By the above process, we get
that π = π1 . . . πp ∈ {0, 1}k, τ = τ 1 . . . τ p ∈ {0, 1}k, β ∈ [3r]k, σ := (T1 → σ1) . . . (Tp → σp)

21

fixes k additional variables to those fixed by ρ, and I is a sequence of p indices from [m].
In addition, p ≤ dk/(d+ 1)e since in each phase, except for maybe the last phase, we query
at least d + 1 variables and overall we query at most k variables. If less than dk/(d+ 1)e
phases exists, we may pad I with 1’s.

Decoding. We wish to show that θ is 1:1. Let (ρσ, β, π, τ, I) be an image of θ; we will
show how to decode ρ from this image. It is enough to show by induction on t = 1, . . . , p,
that we can recover T1, . . . , Tt, since this allows to reconstruct ρ by simply setting the values
of
⋃p
i=1 Ti to ∗ in ρσ.

Assuming we already recovered T1, . . . , Tt−1 correctly, we show how to decode Tt as well.
Knowing T1, . . . , Tt−1 allows the decoder to define ρ′t := ρ(T1 → π1) . . . (Tt−1 → πt−1)(Tt →
σt) . . . (Tp → σp) by replacing the assignment of T1, . . . , Tt−1 in ρσ according to π1, . . . , πt.
Using the set of indices I, we know it, i.e. the index of the DNF out of F1, . . . , Fm that
was considered by the encoding process at phase t. We show that the first term in Fit
under ρ′t which is not equivalent to 0 is the same as the first such term under ρt (recall that
ρt := ρ(T1 → π1) . . . (Tt−1 → πt−1)). Let i′ be the index of the first nonzero term in Fit under
ρt. Then, all terms prior to i′ were fixed to 0 under ρt and this remains true when we refine
ρt to ρ′t. In addition, since σt satisfies all the literals in term i′ which are unassigned by ρt
(except if we finished the entire encoding process while in the middle of processing this term,
in this case σt fixes some of the free variables to satisfy the literals and the rest remain free),
we get that the term with index i′ in Fit is not equivalent to 0 under ρ′t. Thus, we identified
the term i′ correctly. We collect indices from β until reaching type 1 or 2, which yields the
set of variables the encoder sets when processing term i′. We replace the assignment for
these variables to be according to τ instead of according to σ.

We continue this way by identifying the next term the encoder examined, and decode
the set of variables fixed in the encoding process, according to the information stored in β.
This allows us to continue decoding the set Tt which completes the proof.

Remark 7.4. We remark that the information we are avoiding to store7 is the index of the
term on which a certain DNF is not fixed under a restriction ρ. We are using the Bread-
Crumbs partial assignment σ to satisfy all the literals that are unassigned in this term, in
order to allow the identification of the term in the decoding process. Once the term is known,
we can encode/decode a variable using a number in [r] rather than a number in [n], which
is much more “inexpensive” to encode. Storing the index to the DNF we are considering at
each phase may seem “expensive”. However, we are recording such an index at most once in
every d+ 1 consecutive steps, making this reasonable.

Acknowledgement I wish to thank my advisor Ran Raz for many helpful discussions,
for his encouragement and his support. I thank Johan H̊astad and Roei Tell for helpful
discussions. I thank the anonymous referees for helpful comments.

7And we have good reasons to do so, since this will result in a non-effective switching lemma.

22

References

[Aar10] S. Aaronson. BQP and the polynomial hierarchy. In STOC, pages 141–150, 2010.

[AGHP92] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta. Simple construction of al-
most k-wise independent random variables. Random Structures and Algorithms,
3(3):289–304, 1992.

[Ajt83] M. Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic,

24:1–48, 1983.

[Baz09] L. M. J. Bazzi. Polylogarithmic independence can fool DNF formulas. SIAM J.
Comput., 38(6):2220–2272, 2009.

[Bea94] P. Beame. A switching lemma primer. 1994.

[Bop97] R. B. Boppana. The average sensitivity of bounded-depth circuits. Inf. Process.
Lett., 63(5):257–261, 1997.

[Bra10] M. Braverman. Polylogarithmic independence fools ac0 circuits. J. ACM,
57(5):28:1–28:10, 2010.

[CGR14] G. Cohen, A. Ganor, and R. Raz. Two sides of the coin problem. In APPROX-
RANDOM, pages 618–629, 2014.

[DETT10] A. De, O. Etesami, L. Trevisan, and M. Tulsiani. Improved pseudorandom gen-
erators for depth 2 circuits. In APPROX-RANDOM, pages 504–517, 2010.

[Fil10] Y. Filmus. Smolensky’s lower bound. Unpublished Manuscript, 2010.

[FSS84] M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1):13–27, apr 1984.

[GL89] O. Goldreich and L. A. Levin. A hardcore predicate for all one-way functions. In
STOC, pages 25–32, 1989.

[H̊as86] J. H̊astad. Almost optimal lower bounds for small depth circuits. In STOC,
pages 6–20, 1986.

[H̊as01] J. H̊astad. A slight sharpening of LMN. J. Comput. Syst. Sci., 63(3):498–508,
2001.

[H̊as14] J. H̊astad. On the correlation of parity and small-depth circuits. SIAM J. Com-
put., 43(5):1699–1708, 2014.

[HS16] P. Harsha and S. Srinivasan. On polynomial approximations to acˆ0. In Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM 2016, September 7-9, 2016, Paris, France, pages
32:1–32:14, 2016.

23

[IK14] R. Impagliazzo and V. Kabanets. Fourier concentration from shrinkage. In CCC,
pages 321–332, 2014.

[IMP12] R. Impagliazzo, W. Matthews, and R. Paturi. A satisfiability algorithm for AC0.
In SODA, pages 961–972, 2012.

[KB80] R. Kaas and J. M. Buhrman. Mean, median and mode in binomial distributions.
Statistica Neerlandica, 34(1):13–18, 1980.

[KKL88] J. Kahn, G. Kalai, and N. Linial. The influence of variables on Boolean functions.
In FOCS, pages 68–80, 1988.

[KM93] E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spec-
trum. SIAM J. Comput., 22(6):1331–1348, 1993.

[LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform
and learnability. J. ACM, 40(3):607–620, 1993.

[Lup61] O. Lupanov. Implementing the algebra of logic functions in terms of constant
depth formulas in the basis {&,∨,¬}. Dokl. Akad. Nauk. SSSR, 136:1041–1042,
1961. In Russian.

[LV96] M. Luby and B. Velickovic. On deterministic approximation of DNF. Algorith-
mica, 16(4/5):415–433, 1996.

[Man95] Y. Mansour. An O(nlog logn) learning algorithm for DNF under the uniform
distribution. J. Comput. Syst. Sci., 50(3):543–550, 1995.

[NN93] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. on Computing, 22(4):838–856, 1993.

[O’D14] R. O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[OW07] R. O’Donnell and K. Wimmer. Approximation by DNF: examples and coun-
terexamples. In ICALP, pages 195–206, 2007.

[Raz95] A. A. Razborov. Bounded arithmetic and lower bounds in boolean complexity. In
Feasible Mathematics II, volume 13 of Progress in Computer Science and Applied
Logic, pages 344–386. Birkhuser Boston, 1995.

[Raz09] A. A. Razborov. A simple proof of Bazzi’s theorem. TOCT, 1(1), 2009.

[Smo93] R. Smolensky. On representations by low-degree polynomials. In FOCS 1993,
pages 130–138, 1993.

[SV10] R. Shaltiel and E. Viola. Hardness amplification proofs require majority. SIAM
J. Comput., 39(7):3122–3154, 2010.

[Tal14] A. Tal. Shrinkage of de Morgan formulae from quantum query complexity. In
FOCS, pages 551–560, 2014.

24

[Tha09] N. Thapen. Notes on switching lemmas. Unpublished Manuscript, 2009.

[TX13] L. Trevisan and T. Xue. A derandomized switching lemma and an improved
derandomization of AC0. In CCC, pages 242–247, 2013.

[Yao85] A. C. Yao. Separating the polynomial hierarchy by oracles. In FOCS, pages 1–10,
1985.

A Equivalent Expressions for the T -th Discrete Deriva-

tives

Claim (Claim 5.3, restated).

DTf(x) =
1

2|T |

∑
z∈{−1,1}T

f(x(T 7→z)) ·
∏
i∈T

zi =
∑
S⊇T

f̂(S) ·
∏
i∈S\T

xi

where x(T 7→z) is the vector in {−1, 1}n whose i-th coordinate equals zi whenever i ∈ T , and
xi otherwise.

Proof. We prove by induction on the size of T . For T = ∅ the claim trivially holds. For
T = {j1, . . . , jk}, let T ′ = {j2, . . . , jk} and g = DT ′f , then DTf = Dj1DT ′f = Dj1g. By the
definition of the j1-th derivative, we have

DTf(x) =
g(x(j1 7→1))− g(x(j1 7→−1))

2
.

By the induction hypothesis, this equals

DTf(x) =
1

2
·
(
DT ′f(x(j1 7→1))−DT ′f(x(j1 7→−1))

)
=

1

2

1

2k−1

 ∑
z′∈{−1,1}T ′

f
((
x(j1 7→1)

)(T ′ 7→z′)
)∏
i∈T ′

z′i −
∑

z′∈{−1,1}T ′
f
((
x(j1 7→−1)

)(T ′ 7→z′)
)∏
i∈T ′

z′i


=

1

2k

∑
z∈{−1,1}T

f(x(T 7→z))
∏
i∈T

zi .

As for the second item, by induction, g(x) =
∑

S⊇T ′ f̂(S) ·
∏

i∈S\T ′ xi. Thus,

DTf(x) =
g(x(j1 7→1))− g(x(j1 7→−1))

2
=

1

2

∑
S⊇T ′

f̂(S) ·
∏
i∈S\T

xi ·

{
1− (−1), j1 ∈ T ′

1− 1, otherwise

=
∑
S⊇T

f̂(S) ·
∏
i∈S\T

xi .

25

B Rephrasing Braverman’s Result

Lemma B.1 ([Bra10, Lemma 8]). Let ν be any probability distribution on {0, 1}n. For
a circuit of depth d and size m computing a function F , for any s, there is a degree r =
(s · log(m))d polynomial f and a Boolean function Eν computable by a circuit of depth ≤ d+3
and size O(m2r) such that

1. Prν [Eν(x) = 1] < 0.82s ·m, and

2. whenever Eν = 0, f(x) = F (x).

Proposition B.2 ([Bra10, Prop. 9]). In Lemma B.1, for s ≥ log(m), ‖f‖∞ < (2m)deg(f)−2 =
(2m)(s log(m))d−2

Lemma B.3 ([Bra10, Rephrasing of Lemma 10]). Let F be computed by a circuit of depth
d and size m. Let s1, s2 be two parameters with s1 ≥ log(m). Let µ be any probability
distribution on {0, 1}n, and U{0,1}n be the uniform distribution on {0, 1}n. Set

ν :=
1

2

(
µ+ U{0,1}n

)
.

Let Eν be the function from Lemma 8 with s = s1. Set F ′ = F ∨ Eν . Then, there is a
polynomial f ′ of degree rf = (s1 · logm)d + s2, such that

1. Prµ[F 6= F ′] < 2 · 0.82s1 ·m

2. PrU [F 6= F ′] < 2 · 0.82s1 ·m

3. ‖F ′ − f ′‖2
2 ≤ 0.82s1 · (4m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2), and

4. f ′(x) = 0 whenever F ′(x) = 0.

Proof. The first two properties follow from Lemma B.1 directly, since

Pr
µ

[Eν = 1],Pr
Un

[Eν = 1] ≤ 2 ·Pr
ν

[Eν = 1] ≤ 2 · 0.82s1m .

Let f be the degree (s1 · logm))d approximation of F from Lemma B.1. By Proposition B.2,

‖f‖∞ < (2m)(s1·logm)d−2 < 22(s1 logm)d log(m)−2 .

Let Ẽν be the truncated Fourier expansion of Eν of degree s2. We have

‖Eν − Ẽν‖2
2 ≤ tail(m3, d+ 3, s2) .

Let
f ′ := f · (1− Ẽν)

26

Then f ′ = 0 whenever F ′ = 0 (since (F ′ = 0) =⇒ (Eν = 0, F = 0) =⇒ (f = 0) =⇒
(f ′ = 0)). It remains to estimate ‖F ′ − f ′‖2

2:

‖F ′ − f ′‖2
2 ≤ 2 · ‖F ′ − f · (1− Eν)‖2

2 + 2 · ‖f · (1− Eν)− f ′‖2
2

= 2 · ‖Eν‖2
2 + 2 · ‖f · (Eν − Ẽν)‖2

2

≤ 2 ·Pr[Eν = 1] + 2 · ‖f‖2
∞ · ‖Eν − Ẽν‖2

2

≤ 0.82s1 · (4m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2),

which completes the proof.

Theorem B.4 ([Bra10, Rephrasing of Main Theorem]). Let s1, s2 ≥ logm be any parame-
ters. Let F be a Boolean function computed by a circuit of depth d and size m. Let µ be an
r-independent distribution where

r = r(s1, s2, d) = 2((s1 · logm)d + s2)

then
|E
µ

[F]− E[F]| ≤ ε(s1, s2, d),

where ε(s1, s2, d) = 0.82s1 · (6m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2)

Proof of Theorem B.4. Denote by ε1 := 0.82s1 · (2m) and

ε2 := 0.82s1 · (4m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2) .

Applying Lemma B.3 with parameters s1 and s2 gives

‖F ′ − f ′‖2
2 ≤ ε2 .

Now take f ′` := 1 − (1 − f ′)2. Then f ′` ≤ 1 and f ′` = 0 whenever F ′ = 0, hence f ′` ≤ F ′.
To estimate E[F ′(x) − f ′`(x)] we note that F ′(x) − f ′`(x) equals 0 whenever F ′ = 0, and is
equal to

F ′(x)− f ′`(x) = (1− f ′(x))2 = (F ′(x)− f ′(x))2

whenever F ′ = 1. We get

E[F ′(x)− f ′`(x)] ≤ ‖F ′ − f ′‖2
2 ≤ ε2 .

In addition, deg(f ′`(x)) ≤ 2(s2 + (s1 · logm)d).

To finish the proof, if µ is a
(

2 · (s2 + (s1 · logm)d)
)

-wise independent distribution then

E
µ

[F (x)] ≥ E
µ

[F ′(x)]− ε1 ≥ E
µ

[f ′`(x)]− ε1 =∗ E[f ′`(x)]− ε1

= E[F ′(x)]− E[F ′(x)− f ′`(x)]− ε1 ≥ E[F ′(x)]− ε2 − ε1 ≥ E[F (x)]− ε2 − ε1

where we used in * the fact that deg(f ′`) ≤ 2(s2 + (s1 · logm)d) and µ is deg(f ′`)-wise inde-
pendent. In a similar way, one can show Eµ[F (x)] ≤ E[F (x)] + ε1 + ε2. Combining both
cases we get

|E
µ

[F]− E[F]| ≤ ε1 + ε2 = ε(s1, s2, d) .

27

C Improving the Analysis of De, Etesami, Trevisan

and Tulsiani

De et al. [DETT10] proved that any ε-biased distribution δ-fools depth-2 circuits (DNFs or
CNFs) of size m, for some ε = ε(δ,m). In fact, their work shows that generators of ε-biased
distributions are the best known pseudorandom generators fooling depth-2 circuits. We are
able to improve their analysis slightly, getting an optimal dependence between ε and δ.

Some notation is needed first. Throughout this section (and the next), we shall think of
Boolean functions as functions f : {0, 1}n → R (as opposed to f : {−1, 1}n → R). We can
identify each function f : {0, 1}n → R with a function f̃ : {−1, 1}n → R by f̃(y1, . . . , yn) =
f(1−y1

2
, . . . , 1−yn

2
) or equivalently f(x1, . . . , xn) = f̃((−1)x1 , . . . , (−1)xn). When talking about

the Fourier expansion of f , we mean the Fourier expansion of f̃ as defined in Section 2. In
this notation, f(x) =

∑
S⊆[n] f̂(S) · (−1)

∑
i∈S xi .

Next, we discuss DNFs and CNFs. Disjunctive normal forms (DNFs) are expres-
sions of the form F (x) =

∨m
i=1 ti(x) where each term ti(x) is an AND of some literals from

x1, . . . , xn,¬x1, . . . ,¬xn. If any term in F is an AND of at most w literals, then we say that
F is of width w, and we call F a w-DNF. Similarly conjunctive normal forms (CNFs) are
expressions of the form F (x) =

∧m
i=1 ci(x) where each clause ci is an OR of some literals. We

define w-CNFs similarly to w-DNFs. The size of a DNF (CNF, resp.) is the number of
terms (clauses, resp.) in it, i.e., m in the examples above.

Recall the definition of the spectral norm of a Boolean function L1(f) =
∑

S |f̂(S)| and

denote by L∗1(f) =
∑

S 6=∅ |f̂(S)|. We denote by Un the uniform distribution over {0, 1}n.
We cite a proposition and two lemmata from the work of De et al. [DETT10].

Proposition C.1 ([DETT10, Prop. 2.6]). Suppose f, f`, fu : {0, 1}n → R are three functions
such that for every x ∈ {0, 1}n we have f`(x) ≤ f(x) ≤ fu(x). Furthermore, assume
Ex∼Un [f(x) − f`(x)] ≤ δ and Ex∼Un [fu(x) − f(x)] ≤ δ. Let l = max(L∗1(f`), L

∗
1(fu)). Then,

any ε-biased probability distribution (δ + εl)-fools f .

Lemma C.2 ([DETT10, Lemma 4.3]). Let f : {0, 1}n → {0, 1} be a DNF with m terms
and g : {0, 1}n → R be such that: L1(g) ≤ l1, ‖f−g‖2

2 ≤ ε1 and g(x) = 0 whenever f(x) = 0.
Then, we can get f`, fu : {0, 1}n → R such that

• ∀x, f`(x) ≤ f(x) ≤ fu(x)

• Ex∼Un [fu(x)− f(x)] ≤ m · ε1 and Ex∼Un [f(x)− f`(x)] ≤ m · ε1.

• L1(f`), L1(fu) ≤ (m+ 1)(l1 + 1)2 + 1.

Lemma C.3 ([DETT10, Lemma 4.4]). Let f : {0, 1}n → {0, 1} be a DNF with m terms
and width-w. Suppose for every DNF with at most m terms and width-w, f1, there is a
function g1 : {0, 1}n → R such that: L1(g1) ≤ l2 and ‖f1 − g1‖2

2 ≤ ε2. Then, we can get
g : {0, 1}n → R such that L1(g) ≤ m · (l2 + 1), ‖f − g‖2

2 ≤ m2 · ε2 and g(x) = 0 whenever
f(x) = 0.

De et al. [DETT10] used Lemma C.3 with a bound on the width of the approximated
DNF. We will use Lemma C.3 without any assumption on the width.

The following is a corollary of Thm. 5.15.

28

Corollary C.4. Let f : {0, 1}n → {0, 1} be a DNF of size m and ε2 > 0. Then, there is a
function g1 : {0, 1}n → R such that E[(f − g1)2] ≤ ε2 and L1(g1) = 2O(logm·log logm·log(1/ε2)).

Proof. According to Thm. 5.15, there is a set F of coefficients such that |F| ≤ 2O(logm·log logm·log(1/ε2))

and
∑

S/∈F f̂(S)2 ≤ ε2. Hence, g1(x) =
∑

S∈F f̂(S) · (−1)
∑

i∈S xi is an approximation of f
with

E
x

[(f(x)− g1(x))2] =
∑
S/∈F

f̂(S)2 ≤ ε2 .

where we used Parseval’s identity. Since each Fourier coefficient is at most 1 in absolute
value L1(g1) =

∑
S∈F |f̂(S)| ≤ |F|, which completes the proof.

The following theorem is our refinement of [DETT10, Thm. 4.1].

Theorem C.5. Let f be a DNF formula with m terms. Then, f is δ-fooled by any ε-biased
distribution where ε = 2O(logm·log(m/δ)·log logm).

Proof. Set ε2 = δ/2m3 and ε1 = δ/2m. By applying Corollary C.4 for every DNF formula
of size m, f1, there exists a function g1 : {0, 1}n → R such that

• E[(f1 − g1)2] ≤ ε2

• L1(g1) ≤ 2O(logm·log logm·log(1/ε2)) = 2O(logm·log logm·log(m/δ))

We apply Lemma C.3 with width n (this is a trivial choice of width, since all DNFs on
n variables are of width at most n without loss of generality), ε2 = δ/2m3 and l2 =
2O(logm·log logm·log(m/δ)). Then, we get the existence of a function g : {0, 1}n → R such
that g(x) = 0 whenever f(x) = 0 and E[(g − f)2] ≤ m2ε2 = δ/2m. and L1(g) ≤
(l2 + 1) · m = 2O(logm·log logm·log(m/δ)). Then, we apply Lemma C.2 with g, ε1 = δ/2m
and l1 = L1(g) = 2O(logm·log logm·log(m/δ)) to get a sandwiching approximation of f by f` and
fu such that

• ∀x : f`(x) ≤ f(x) ≤ fu(x)

• Ex∼Un [fu(x)− f(x)] ≤ m · ε1 = δ/2 and Ex∼Un [f(x)− f`(x)] ≤ m · ε1 = δ/2.

• L1(fu), L1(f`) ≤ (l1 + 1)2 · (m+ 1) + 1 = 2O(logm·log logm·log(m/δ)).

Denote by l = (l1 + 1) · (m + 1) + 1. Applying Prop. C.1, we get that any ε = δ/(2l) =
2−O(logm·log logm·log(m/δ)) biased distribution γ-fools f , where γ = δ/2 + ε · l ≤ δ.

It is well-known from the works of [NN93, AGHP92] that ε-biased distributions on n bits
may be sampled using a O(log n+ log(1/ε))-seed length, which gives the following corollary.

Theorem C.6. There exists a polynomial time pseudorandom generator G of seed length
O(log n+ logm · log logm · log(m/δ)) that δ-fools all DNFs of size m on n variables.

Note that by de Morgan laws every DNF of size m is the negation of a CNF of size m,
and vice versa. Hence, any pseudorandom generator that fools DNFs also fools CNFs.

29

D Improving the Generator of Trevisan and Xue

In this section, we revisit the pseudorandom generator of Trevisan and Xue [TX13] that ε-
fools AC0 circuits of size M and depth d. We improve its seed-length from O(logd+3(M/ε) ·
log(n/ε)) to O(logd+1(M/ε) · log n) by two observations in addition to the improved analysis
of the generator of De et al. (see Thm. C.6).

We start by explaining the sampling process of Trevisan and Xue’s generator at a high-
level. The generator applies O(logd−1(M/ε) · log(n/ε)) pseudorandom restrictions iteratively,
where each pseudorandom restriction fixes each variable (that wasn’t already fixed) with
probability Θ(1/ logd−1(M/ε)). The seed length required per step is Õ(log4(M/ε)). Each
pseudo-random restriction consists of a pseudorandom process that selects which variables
to fix, in addition to a pseudorandom process that selects the values for these variables. The
heart of Trevisan and Xue’s analysis is a proof that the selection of which variables to fix
can be done by sampling recursively d times (one per depth) from any distribution that fools
CNFs with appropriate parameters. This is done by proving that any distribution that fools
CNFs, also fools H̊astad’s switching lemma [H̊as86] (see Lemma D.1 below).

Our improvement from seed-length Õ(logd+3(M/ε) · log(n/ε)) to Õ(logd+1(M/ε) · log n)
is a combination of three improvements:

• We get a factor of log(M/ε) improvement via a better analysis of the pseudorandom
generator of De et al. [DETT10] (see Section C). We get a better dependency on the
error parameter ε0 in Thm. C.6, compared to the corresponding theorem of [DETT10].
Since Trevisan and Xue use Thm. C.6 with error parameter ε0 = 1/2Θ(log2(M/ε)) that is
much smaller than any polynomial in ε/M , this improvement is effective.

• We get a factor of log(M/ε) improvement by applying the switching lemma for one
less step. We show that with high probability the circuit collapses to a depth-2 circuit
instead of collapsing to a bounded depth decision tree. Since we are able to fool depth-2
circuits by Thm. C.6, this is enough.8

• We replace a factor of log(n/ε) by a factor of log(n) by noting that one can continue
restricting variables until less than O(log(1/ε)) variables are alive, and then fix the
remaining variables using a O(log(1/ε))-wise independent distribution. In the original
analysis, one waited until all variables were fixed.

In the rest of the section, we will use the following notation (as suggested by Trevisan and
Xue [TX13]). A restriction may be defined (not uniquely) by two binary strings of length n:
θ ∈ {∗,�}n and β ∈ {0, 1}n, where for i ∈ [n],

ρ(i) =

{
β(i), θ(i) = �

∗, θ(i) = ∗
.

We shall identify a string w ∈ {0, 1}n(q+1) with a restriction as follows. We partition w to
(l, r) where l consists of the first qn bits of w, and r consists of the last n bits of w. We

8To get another Õ(log(M/ε)) improvement it is enough to construct PRGs for depth-3 circuits with seed-
length Õ(log3(M/ε)). Then, one can stop one step sooner (i.e. when reaching depth-3) and apply the PRG
for depth-3 on the remaining circuit.

30

further partition l ∈ {0, 1}nq to n blocks of q consecutive bits each. For block i ∈ [n], we
take θ(i) = ∗ iff all the q bits in the block equal 1. We take β = r and yield the restriction
defined by (θ, β).

If D is a distribution over {0, 1}(q+1)n, then (θ, β) ∼ D means that we sample w ∼ D as
a string of length (q + 1)n and use the aforementioned identification to get θ ∈ {∗,�}n and
β ∈ {0, 1}n. Note that sampling w ∈ {0, 1}n·(q+1) uniformly at random yields a restriction
ρ = (θ, β) distributed according to Rp for p = 2−q.

Lemma D.1 ([TX13, Lemma 7]). Let F be a CNF of size M and width t over n variables,
p0 = 2−q0 where q0 ∈ N, and D be a distribution over {0, 1}(q0+1)n that ε0-fools all CNFs of
size at most M · 2t·(q0+1). Then,

Pr
(θ,β)∼D

[DT(F |θ,β) > s] ≤ 2s+t+1 · (5p0t)
s + ε0 · 2(s+1)·(2t+logM),

where DT(f) denotes the depth of the smallest decision tree computing a function f .9

The following is a slight generalization of [TX13, Fact 9].

Fact D.2 ([TX13, Fact 9]). Let D1 be a distribution over {0, 1}n1 that ε1-fools CNFs of
size m on n1 variables. Let D2 be a distribution over {0, 1}n2 that ε2-fools CNFs of size m
on n2 variables. Let D1 ⊗D2 be the distribution over {0, 1}n1+n2 sampled by concatenating
independent samples from D1 and D2. Then, D1 ⊗D2 is a distribution that (ε1 + ε2)-fools
CNFs of size m on n1 + n2 variables.

Proof. Let F (X, Y) be a CNF of size m on n1 + n2 variables, where X consists of the first
n1 variables and Y consists of the last n2 variables. We have

E
x∼Un1 ,y∼Un2

[F (x, y)] = E
x∼Un1

[E
y∼Un2

[Fx(y)]]

where Fx(·) is the CNF F when the variables X are fixed to x. Note that Fx(·) is in itself
a CNF of size at most m on n2 variables. By assumption, for all values of x,

E
y∼Un2

[Fx(y)] = E
y∼D2

[Fx(y)]± ε2 . (9)

Similarly for any fixed assignment Y = y, we have

E
x∼Un1

[F (x, y)] = E
x∼D1

[F (x, y)]± ε1 . (10)

Combining Eqs. (9) and (10) gives

E
x∼Un1 ,y∼Un2

[F (x, y)] = E
x∼Un1

[
E

y∼D2

[Fx(y)]± ε2

]
= E

y∼D2

[E
x∼Un1

[F (x, y)]± ε2]

= E
y∼D2

[E
x∼D1

[F (x, y)]± ε1 ± ε2]

= E
x∼D1,y∼D2

[F (x, y)]± (ε1 + ε2) .

9Actually, Trevisan and Xue show the stronger result where DT(f) is replaced by the depth of the canon-
ical decision tree for f (see Section 7 for its definition). However, we do not benefit from this strengthening.

31

By induction, Fact D.2 implies the following corollary.

Corollary D.3. Let D be a distribution over {0, 1}n that ε-fools CNFs of size m. Let t ∈ N ,
and D⊗t be the distribution over {0, 1}n·t sampled by concatenating t independent samples
from D. Then, D⊗t is a distribution that (ε · t)-fools CNFs of size m on n · t variables.

In the following theorems we shall assume that the circuit size M is larger than the length
of the input n.

Theorem D.4 ([TX13, Thm. 11, “Derandomized Switching Lemma for AC0”, restated]).
Let C be circuit on n variables with size M , depth d and a top OR-gate. Let p = 2−q, where
q ∈ N, and s ∈ N be some positive parameter. Assume that there exists a pseudorandom
generator G with seed length r that ε0-fools CNFs of size M · 2s · 2s·(q+1) . Then, there exists
a pseudorandom selection generator G0 of seed length (d− 1) · r such that:

• Prθ∼G0,β∼U [F |θ,β is not an s-DNF of size ≤M · 2s]
≤M ·

(
22s+1 ·max{(5ps)s, (5/64)s}+ ε0 · 2(s+1)·(3s+logM)

)
.

• For each set of variables T ⊆ [n], the probability that all variables in T are fixed is at
most (1− pd−2/64)|T | + ε0 · (d− 1).

Proof. We shall start by adding a dummy layer next to the inputs that transforms the circuit
C into a circuit C ′ of size at most M · n, depth d + 1 and bottom fan-in 1. We construct
G0 by running (d − 1) iterative pseudorandom selections, using the generator of [DETT10]
in each iteration. By Fact D.2, the pair (θ, β) obtained by sampling θ ∼ G and β ∈ {0, 1}n
uniformly at random, ε0-fools CNFs of size M · 2s · 2s·(q+1). We denote by M1, . . . ,Md the
number of gates in the original circuit C at distance 1, . . . , d from the inputs, respectively.

The first iteration. For the first iteration of Lemma D.1, we pick p0 = 1/64 and t = 1.
The probability that under the pseudorandom restriction, one of the gates at distance 2 from
the inputs cannot be computed by a decision tree of depth s is at most

M1 ·
(
2s+1+1 · (5/64)s + ε0 · 2(s+1)(2+logM)

)
.

In the complement event, we may express each gate at distance 2 from the inputs both as
an s-DNF and as an s-CNF, so we can collapse this layer with the layer above it. This
simplification yields a circuit of depth d, fan-in s and does not introduce new gates at distance
2 or more from the inputs. The number of gates at distance 1 from the inputs is at most
M · 2s, since each depth-s decision tree is an s-DNF of size at most 2s (and similarly an
s-CNF of size at most 2s).

The other d − 2 iterations. At iteration i = 2, . . . , d − 1, we apply Lemma D.1 with
t = s and p0 = p. We get that under the pseudorandom restriction, the probability that
there exists a gate at distance 2 from the inputs that cannot be computed by a decision tree
of depth s is at most

Mi ·
(
2s+s+1 · (5ps)s + ε0 · 2(s+1)(2s+log(M ·2s))

)
.

32

We are using the fact that each gate at distance 2 from the inputs computes a CNF/DNF
of size at most M ·2s and bottom fan-in s, an invariant that is preserved during the iterative
process. Again, if a gate is computed by a decision tree of depth s then it is also computed by
an s-CNF and by an s-DNF of size at most 2s, and we may collapse the layers at distances
2 and 3 from the inputs.

Overall, after (d− 1)-iterations, with probability at least

1−M ·
(
2s+s+1 ·max{(5ps)s, (5/64)s}+ ε0 · 2(s+1)(3s+logM)

)
,

all “switchings” were successful and we got a circuit of depth-2, size at most M · 2s, bottom
fan-in s and a top OR gate, i.e. we got an s-DNF.

As for the second item of the theorem, observe that θ is selected by sampling d−1 binary
strings from G: one string w1 of length n · log2(64) (consisting of n blocks of log2(64) bits
each) and (d− 2) strings, w2, . . . , wd−1, of length n · q (consisting of n blocks of q bits each).
We denote the concatenation of these d − 1 strings by w. The i-th bit in θ is fixed (i.e.
θi = �) iff the i-th block in one of the d−1 strings contains a zero. Thus, the event θ(i) = �
may be expressed as an OR of 6+(d−2)q literals over w. The event that a set of T variables
is fixed may be expressed as a CNF of size |T | ≤ n in the bits of w. By Corollary D.3, the
distribution of w is ε0 · (d− 1)-pseudorandom for CNFs of size at most M · 2s · 2s(q+1) and
in particular to CNFs of size at most n. Thus,

Pr
w pseudo-random

[T is fixed under w] ≤ Pr
w random

[T is fixed under w] + ε0 · (d− 1)

= (1− pd−2/64)|T | + ε0 · (d− 1) .

Theorem D.5 ([TX13, Theorem 12, restated slightly]). Let C be a size M , depth d circuit,
and ε > 0. Then, there exists a pseudorandom generator G1 of seed length Õ(log3(M/ε))
such that:

• |Prρ∼G1,x∼Un [Cρ(x) = 1]−Pry∼Un [C(y) = 1]| < ε.

• Let p be the largest power of 1/2 less than 1/(64 log(8M/ε)). Then, each set of variables
T ⊆ [n] has probability at most (1− pd−2/64)|T | + ε0 · (d− 1) of being unassigned by ρ.

Proof. We initiate the generator from Thm. D.4 based on the generator from Thm. C.6. We
choose parameters so that the bound we get from Thm. D.4 is at most ε/2. Choosing s to
be a power of 2 between log(8M/ε) to 2 log(8M/ε), p = 1/64s and ε0 = 2−9s2 guarantees
that

M · (22s+1 ·max{(5ps)s, (5/64)s}+ ε0 · 2(s+1)·(3s+logM)) ≤ ε/2 .

The choice also guarantees that ε0 ≤ ε/2. In order to apply Thm. D.4 with these pa-
rameters, the generator G in Thm. C.6 should ε0-fool circuits of size M ′ = M · 2(q+2)s =
2O(log(M/ε) log log(M/ε)). Theorem C.6 guarantees that seed-length r = Õ(log(M ′)·log(M ′/ε0)) =
Õ(log3(M/ε)) is enough.

The generator in Thm. D.4, G0, selects a set of coordinates J = {i ∈ [n] : θ(i) = ∗}.
Thm. D.4 guarantees that with probability at least (1 − ε/2) over the choice of J and the
restriction of J c by random bits, C reduces to an s-DNF of size at most M · 2s. We then
assign values to the variables indexed by J according to De et al. generator, G. Overall, we

33

need seed-length (d− 1) · r+ r = dr, where the first term comes from sampling from G0 and
the second from sampling according to G.

For any fixed choice of θ we have:

Pr
y∼Un

[C(y) = 1] = Pr
x∼UJ ,z∼UJc

[C(x, z) = 1] = E
z

[Pr
x

[C(x, z) = 1]]

Hence also for G0 which is a distribution over selections θ the following holds

Pr
y∼Un

[C(y) = 1] = E
θ

E
z

[Pr
x

[C(x, z) = 1]]

For choices (θ, z) such that Cz(x) := C(x, z) is an s-DNF of size at most M · 2s, we have
Prx∼UJ

[C(x, z) = 1] = Prx∼G[C(x, z) = 1] ± ε0. In the case where Cz(x) is not an s-DNF
of size M · 2s we trivially have Prx∼UJ

[C(x, z) = 1] = Prx∼G[C(x, z) = 1]± 1. However, this
is a rare event that happens with probability at most ε/2. Overall, we have

Pr
y∼Un

[C(y) = 1] = E
θ

E
z

[Pr
x∼UJ

[C(x, z) = 1]] = E
θ

E
z

[Pr
x∼G

[C(x, z) = 1]]± (ε0 + ε/2) .

which completes the proof of the first item as ε0 ≤ ε/2.
Note that the generator G1 selects J and assigns values to the variables in J . It does not

assign any of the variables in J c. In this way, Trevisan and Xue change roles between the
fixed and alive parts of the restriction: starting with pseudorandom restriction where J c is
fixed randomly and J is kept alive, they end up with a pseudorandom restriction where J is
fixed pseudorandomly and J c is kept alive.

The second item follows by observing that a set of variables is fixed in Thm. D.4 iff it is
unassigned here.

Theorem D.6 ([TX13, Theorem 13, improved]). For every M,d, n, ε there is a polynomial
time computable ε-pseudorandom generator for circuits of size M and depth d on n variables,
whose seed length is Õ(logd+1(M/ε) · log n).

Proof. If d ≤ 2 we apply Thm. C.6. Otherwise, we may assume d ≥ 3. As in Thm. D.5, let
p be the largest power of 1/2 which is smaller than 1/(64 log(8M/ε)). Let p′ = pd−2/64. The
theorem follows by applying R = 3 ln(n)/p′ independent random restrictions from G1, each
with parameter ε/2R. Let t = log(2/ε), and let T ⊆ [n] be a set of size t. The probability
T remains totally unfixed after R iterations is at most

((1− p′)t + ε0 · (d− 1))3 ln(n)/p′

where recall that ε0 = 2−Ω(log2(M/ε)). We have (1− p′)t > 1− p′t ≥ 1− log(2/ε)
64 log(8/ε)

> 1/2, so

(1− p′)t + ε0 · (d− 1) ≤ (1− p′)t · (1 + 2ε0 · (d− 1)) ,

and we get

((1− p′)t + ε0 · (d− 1))3 ln(n)/p′ <
(
(1− p′)t · (1 + 2ε0 · (d− 1))

)3 ln(n)/p′

≤ e(−p′t)·3 ln(n)/p′ · e2ε0·(d−1)·3 ln(n)/p′ (1 + x ≤ ex)

= n−3t · eo(1) = O(n−3t) .

34

As there are only at most nt sets T of size t, applying union bound, with probability at most
O(n−2t) < ε/2 there exists a set of size t which is unassigned. In the complement event, there
are less than t variables alive, and we may sample from a t-wise independent distribution to
fool the remaining circuit. Overall the seed length is(

3 ln(n)

p′
· Õ(log3(M/ε)

)
+O (log(1/ε) · log n)) = Õ(logd+1(M/ε) · log n) .

35
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

