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Abstract

The problem of constructing explicit functions which cannot be approximated by low degree
polynomials has been extensively studied in computational complexity, motivated by applica-
tions in circuit lower bounds, pseudo-randomness, constructions of Ramsey graphs and locally
decodable codes. Still, most of the known lower bounds become trivial for polynomials of super-
logarithmic degree. Here, we suggest a new barrier explaining this phenomenon. We show that
many of the existing lower bound proof techniques extend to nonclassical polynomials, an ex-
tension of classical polynomials which arose in higher order Fourier analysis. Moreover, these
techniques are tight for nonclassical polynomials of logarithmic degree.

1 Introduction

Polynomials play a fundamental role in computer science with important applications in algorithm
design, coding theory, pseudo-randomness, cryptography and complexity theory. They are also
instrumental in proving lower bounds, as many lower bounds techniques first reduce the computa-
tional model to a computation or an approximation by a low degree polynomial, and then continue
to show that certain hard functions cannot be computed or approximated by low degree polynomi-
als. Motivated by these applications, the problem of constructing explicit functions which cannot
be computed or approximated (in certain ways) by low degree polynomials has been widely explored
in computational complexity. However, most techniques to date apply only to relative low degree
polynomials. In this paper, we focus on understanding this phenomenon, when the polynomials
are defined over fixed size finite fields. In this regime, many lower bound techniques become trivial
when the degree grows beyond logarithmic in the number of variables. We propose a new barrier
explaining the lack of ability to prove strong lower bounds for polynomials of super-logarithmic
degree. The barrier is based on nonclassical polynomials, an extension of standard (classical) poly-
nomials which arose in higher order Fourier analysis. We show that several existing lower bound
techniques extend to nonclassical polynomials, for which the logarithmic degree bound is tight.
Hence, to prove stronger lower bounds, one should either focus on techniques which distinguish
classical from nonclassical polynomials, or consider functions which are hard also for nonclassical
polynomials.
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Nonclassical polynomials. Nonclassical polynomials were introduced by Tao and Ziegler [TZ11]
in their works on the inverse theorem for the Gowers uniformity norms. To introduce these, it will
be beneficial to first consider classical polynomials. Fix a prime finite field IF,,, where we consider
p to be a constant. A function f :F) — F) is a degree d polynomial if it can be written as a linear
combination of monomials of degree at most d. An equivalent definition is that f is annihilated by
taking any d + 1 directional derivatives. That is, for a direction i € F) define the derivative of f
in direction h as Dy f(z) = f(x + h) — f(x). Then, f is a polynomial of degree at most d iff

Dhl--'th+1f50 Vhl,...,hd+1€F§.

Nonclassical polynomials extend this definition to a larger class of objects. Let T = R/Z denote
the torus. For a function f : F) — T, define its directional derivative in direction h € F); as before,
as Dy f(x) = f(x + h) — f(z). Then, we define f to be a nonclassical polynomial of degree at most
d if it is annihilated by any d 4+ 1 derivatives,

Dhl...th+leO Vhl,...,hd_;,_lEFg.

While not immediately obvious, the class of nonclassical polynomials contains the classical poly-
nomials. Let |-|: F, — {0,...,p — 1} C Z denote the natural embedding. If f : F) — F, is a
classical polynomial of degree d then |f(z)|/p (mod 1) is a nonclassical polynomial of degree d. It
turns out that as long as d < p, these capture all the nonclassical polynomials. However, for d > p
nonclassical polynomials strictly extend classical polynomials of the same degree. For example, the
following is a nonclassical polynomial of degree p:

2 |zl

p2

flz) =
See Section 2 for more details on nonclassical polynomials.

Correlation bounds for polynomials. We first consider the problem of constructing explicit
boolean functions which cannot be approximated by low-degree polynomials. For simplicity, we
focus on polynomials defined over Fy, but note that the results below extend to any constant prime
finite field. This problem was studied by Razborov [Raz87] and Smolensky [Smo87] in the context
of proving lower bounds for ACY(®) circuits (and more generally, bounded depth circuits with
modular gates modulo a fixed prime). Consider for example the function MOD3 : {0,1}" — {0, 1},
which outputs 1 if the sum of the bits is zero modulo 3, and outputs 0 otherwise. The probability it
outputs 0 is 2/3. They showed that low degree polynomials over [Fy cannot improve this significantly.
If f:F5 — IF5 be a polynomial of degree d then

Proc(o) [f(z) = MODy(x)] < > +0 <jﬁ> .

This is sufficient to prove that the MODj3 function cannot be computed by sub-exponential AC? ()
circuits. However, one would like to prove that it cannot even be slightly approximated. Such
a result would be a major step towards constructing pseudorandom generators for AC?(®) cir-
cuits [Nis91, NW94], a well known open problem in circuit complexity. It turns out that the
Razborov-Smolensky bound is tight for very large degrees, as there exist polynomials of degree
d = Q(y/n) which approximate the MODj3 function with probability 0.99, say. However, it seems to
be far from tight for d < v/n, which suggests that an alternative proof technique may be needed.



Viola and Wigderson [VWO08] proved stronger inapproximability results for degrees d < logn.
These are better described if one considers the correlation of f with the sum of the bits modulo 3.
In the following, let w3 = exp(27i/3) be a cubic root of unity. They showed that if f : F} — Fo is
a polynomial of degree d then

Epeqoape [(—1)/@ugrte-tan] < gm0/t

The technique of [VWO08] proves exponential correlation bounds for constant degrees, but decays
quickly and becomes trivial at d = O(logn). Our first result is that this is because of a good reason.
Their technique is based on derivatives, and hence this fact extends to nonclassical polynomials.
Moreover, it is tight for nonclassical polynomials. In the following, let e : T — C* be defined as
e(z) = exp(2miz).

Theorem 1.1 (Correlation bounds with modular sums for nonclassical polynomials (informal)).
Let f :Fy — T be a nonclassical polynomial of degree d. Then

Erefo,1)n [e(f(a:))wgﬁ"*m"} < 9—(n/4%)

Moreover, for any € > 0 there exists a nonclassical polynomial f : Fy — T of degree O(log(n/e))
such that

Erefo,1)n [6(f(a:))w§1+"'+$n] >1—¢.

So, the Viola-Wigderson technique is bounded for degrees smaller than O(logn), because it
extends to nonclassical polynomials of that degree, for which it is tight. We note that the modulus
3 in Theorem 1.1 can be replaced with any fixed odd modulus.

Another boolean function which was shown by Razborov and Smolensky [Raz87, Smo87] to be
hard for ACY(@) circuits is the majority function MAJ : 5 — Fo. The proof relies on the following
key fact. If f:F} — Fq is a degree d polynomial then

Pracioap Lfla) = MAJ(@) < 5 +0 (). 1)

Equivalently, this can be presented as a correlation bound

xr x d
Bacgonp [(-)/-0M0] <0 ().

vn
This is known to be tight for degree d = 1 (as say x; has correlation 2(1/y/n) with the majority
function) and also for d = Q(y/n), since there exist polynomials of that degree which approximate
well the majority function, or any symmetric function for that matter. However, it is not known
if these bounds are tight for degrees 1 <« d < /n. We study this question for nonclassical

polynomials. We show that there are nonclassical polynomials of degree O(logn) with a constant
correlation with the majority function.

Theorem 1.2 (Correlation bounds with majority for nonclassical polynomials (informal)). There
exists a nonclassical polynomial f : Fy — T of degree O(logn) such that

[E [e(@)(DMM@] | = aq).

So, the Razborov-Smolensky technique separates classical from nonclassical polynomials, since
classical polynomials of degree O(logn) have negligible correlation with the majority function, while
as we show above, this is false for nonclassical polynomials.



Exact computation by polynomials. A related problem to correlation bounds is that of exact
computation with good probability. For classical polynomials the two problems are equivalent, but
this is not the case for nonclassical polynomials. Given a nonclassical polynomial f : Fy — T, we
can ask what is the probability that f is equal to a boolean function, say the majority function.
To do so, we identify naturally Fo with {0,1/2} C T, and consider MAJ : F§ — {0,1/2}. We show

the following result, which gives a partial answer to the question.

Theorem 1.3 (Exact computation of majority by nonclassical polynomials (informal)). Let f :
F5 — T be a nonclassical polynomial of degree d. Then,

P ) = MAI@) < Lo (2
r o[ f(x) = x = — .
z€{0,1} =9 \/’E

We believe that the bound is not tight, and that, unlike for correlation bounds, nonclassical
polynomials should not be able to exactly compute boolean functions better than classical polyno-
mials. Specifically, we ask the following problem.

Open Problem 1.4. Let f : F§ — T be a nonclassical polynomial of degree d. Show that

Prcqoue o) = MAI@] < 3+ 0 ().

Weak representation of the OR function. We next move to the problem of weak represen-
tation of the OR function. Let p1,...,p, be distinct primes and let m = p;...p,. The goal is to
construct a low degree polynomial f € Z,,[x1,...,zy] such that f(0") = 0 but f(z) # 0 for all
nonzero z € {0,1}". Such polynomials stand at the core of some of the best constructions of Ramsey
graphs [FW81, Gro00, Gop14]! and locally decodable codes [Yek08, Efr09, DGY11, BDL14, DH13],
and were further investigated in [Smo87, Bar92, BT91, BG92, BBR94, BT98]. There are currently
exponential gaps between the best constructions and lower bounds. Barrington, Beigel and Rudich
[BBR94] showed that there exist polynomials of degree O(n'/") that weakly represent the OR
function. The best lower bound is Q(log"/ =Y n), due to Barrington and Tardos [BT98].

The definition of weak representation can be equivalently defined (via the Chinese Remainder
Theorem) as follows. There exist polynomials f; : F, — Fy, for ¢ = 1,...,r such that f1(0") =
... = f»(0™) = 0 but for any nonzero = € {0,1}", there exists an i for which f;(x) # 0. This
definition can be naturally extended to nonclassical polynomials, where we consider f; : Fj. — T.
We show that the Barrington-Tardos lower bound extends to nonclassical polynomials, and it is
tight up to polynomial factors.

Theorem 1.5 (Weak representation of OR for nonclassical polynomials (informal)). Let p1,...,p,
be distinct primes, and f; : Fy. — T be nonclassical polynomials which weakly represent the OR
function. Then

max deg(f;) > Q(log"/" n).

Moreover, for any fized prime p, there exists a nonclassical polynomial f : ¥ — T of degree
O(logn) which weakly represents the OR function.

Thus, the proof technique of Barrington-Tardos cannot extend beyond degree O(logn), as it
applies to nonclassical polynomials as well, for which the O(logn) bound holds even for prime
modulus. We note that unlike in the case of Theorem 1.1, where the lower bound proof of [VWO0S]

'The current record is due to [BRSWO06] which uses different techniques.



extended naturally to nonclassical polynomials, extending the lower bound technique of [BT98| to
nonclassical polynomials requires several nontrivial modifications of the original proof.

As an aside, in the classical setting, we present an improvement in the degree of a symmetric
polynomial that weakly represents OR. This improves the result in [BBR94] in the growing modulus
case and constructs a polynomial whose degree is modulus independent. For more details, see
Appendix A.

Pseudorandom generators for low degree polynomials. Consider for simplicity polynomials
over Fp. A distribution D over F3 is said to fool polynomials of degree d with error ¢, if for any
polynomial f : Fy — Fo of degree at most d, we have

[Proplf(x) = 0] - Proesy[f(z) = 0] <c.

Distributions which fool linear functions (e.g. d = 1) are called small bias generators, and optimal
constructions of them (up to polynomial factors) were given in [NN93, AGHP92], with seed length
O(logn/e). A sequence of works [BV07, Lov09, Vio09] showed that small bias generators can
be combined to yield generators for larger degree polynomials. The best construction to date is
by Viola [Vio09], who showed that the sum of d independent small bias generators with error
approximately 2 fools degree d polynomials with error €. Thus, his construction has seed length
0O(2%1og(1/e) +dlogn), and becomes trivial for d = Q(logn). It is not clear whether it is necessary
to require the small bias generators to have smaller error than the required error for the degree d
polynomials, and this is the main source for the loss in parameters when considering large degrees.

There is a natural extension of these definitions to nonclassical polynomials. If f : F§ — T is a
nonclassical polynomial of degree d, then we require that

[Esple(f ()] - Everyle(f(2))]] <.

The proof technique of Viola is based on derivatives, and we note here (without proof) that it
extends to nonclassical polynomials in a straightforward way. We suspect that it is tight for
nonclassical polynomials, however we were unable to show that. Thus, we raise the following open
problem.

Open Problem 1.6. Fix e > 0,d > 1. Does there exist a small bias generator with error > €2d,
such that the sum of d independent copies of the generator does not fool degree d nonclassical
polynomials with error e?

1.1 Organisation

We start with some preliminaries in Section 2. In Section 3, we prove the bounds on approximation
of modular sums by nonclassical polynomials. Next, in Section 4, we analyze the approximation
of the majority function by nonclassical polynomials in the correlation model and the exact com-
putation model. We prove the results on the weak representation of the OR function in Section 5.
We describe in Appendix A an improvement in the degree of classical polynomials which weakly
represent the OR function.

Acknowledgement. We thank Parikshit Gopalan for fruitful discussions that led to the result
on the classical OR representation in Appendix A. The first author would also like to thank his
advisor, David Zuckerman, for his guidance and encouragement.



2 Preliminaries

Let N = {1,2,...} denote the set of positive integers. For n € N, let [n] := {1,2,...,n}. Let
T = R/Z denote the torus. This is an abelian group under addition. Let e : T — C* be defined by
e(r) = exp(2mix).

Nonclassical polynomials. Let F), be a prime finite field. Given a function f : F) — T, its
directional derivative in direction h € ¥ is Dy, f : Fj) = T', given by

Dy f(z) = f(z+h) — f(x).
Polynomials are defined as functions which are annihilated by repeated derivatives.

Definition 2.1 (Nonclassical polynomials). A function f : F — T is a polynomial of degree at
most d if Dpy ... Dp, [ =0 for any ha, ... ha1 € F). The degree of f is the minimal d for which
this holds.

Classic polynomials satisfy this definition. Let |- | denote the natural map from F, to
{0,1,...,p =1} CZ. If P:F) — Fpis a (standard) polynomial of degree d, then f(z) = [P(x)|/p
(mod 1) is a nonclassical polynomial of degree d. For degrees d < p, it turns out that these are
the only possible polynomials. However, when d > p, there are more polynomials than just these
arising from the classical ones, from which the term nonclassical polynomials arise. A complete
characterization of nonclassical polynomials was developed by Tao and Ziegler [TZ11]. They showed
that a function f : F" — T is a polynomial of degree < d if and only if it has the following form:

[z Tn) =a+ Z Crpsenkl DI ol (mod 1)
e Ty) = L .
0<er,men<p—Tk>0:3 s+ (p—1)k<d p

Here, o € T and ¢, ¢,k € {0,1,...,p — 1} are uniquely determined. The coefficient « is called
the shift of f, and the largest k for which ¢, ., # 0 for some eq,..., e, is called the depth of
f. Classical polynomials correspond to polynomials with O shift and 0 depth. In this work, we
assume without loss of generality that all polynomials have shift 0. Define U, ;, := L.7/7 which is
a subgroup of T. Then, the image of polynomials of depth k — 1 lie in U, . We prove the following
lemma which shows that nonclassical polynomials can be “translated” to classical polynomials of
a somewhat higher degree, at least if we restrict our attention to boolean inputs.

Lemma 2.2. Let f: F) — T be a polynomial of degree d and depth < k —1. Let ¢ : Upp — F,
be any function. Then there exists a classical polynomial g : ¥} — ), of degree at most (p* — 1)d,
such that

g(x) = o(f(x))  Voe{0,1}"

Proof. By the characterization of nonclassical polynomials, we have

Cejlz1|® ... |zp |
o) = 3
87]’

where the sum is over e = (e1,...,e,) with e; € {0,...,p— 1}, 1 < j < k such that > e; + (p —
1)(j — 1) < d. We only care about the evaluation of f on the boolean hypercube, which allows for



some simplifications. For any x € {0,1}" we have |x1[°* ... |z,|*" = [],c; 2; where I = {i : ¢; # 0}.

Thus, we can define an integer polynomial P(x) = >; ¢} [];c; #i such that

P(z)
pk

f(z) = (mod 1) Vo e {0,1}",

where ¢ = Ze:{i:ei;éo}:I Zj p*~Ic. ;. In particular, note that P has degree at most d. We may
further simplify P(x) = Mi(z) + ... + M;(z), where each M; is a monomial of the form [[;.; z;,
and monomials may be repeated (indeed, the monomial [ [, ; #; is repeated ¢} times). Hence

fla) = M)+ o M) ed 1) e e {0, 1))

We care about the first & digits in base p of P(x) = )  M;(z). These can be captured via the
symmetric polynomials, using the fact that M;(z) € {0,1} for all x € {0,1}".
The ¢-th symmetric polynomial in z = (21,...,2), for 1 < ¢ < ¢, is a classical polynomial of

degree ¢ defined as
Sz)= Y [l
Sclt],|S|=¢tieS

When z € {0,1}!, it follows by Lucas theorem [Luc78] that the i-th digit of z; + ...+ 2; in base p
is given by S,i(2) (mod p).

So, define a polynomial Q : IF“’pC — F, such that Q(ao,...,ar—1) = ¢ a;p’/p*) for all
ag,...,axg—1 € {0,...,p — 1}, and polynomials R; : Fj — F, for i = 0,...,k —1 by Ri(z) =
Syi(My(z),..., Mi(x)). Note that deg(R;) < p'd. Define g(z) = Q(Ro(x),..., Rg—1(x)). Then we
have that

g(x) = ¢(f(x))  Voe{0,1}"

To conclude, we need to bound the degree of g. As monomials in @) raise each variable to degree
at most p — 1, we have deg(g) < (p — 1) Y. deg(R;) < (p*F — 1)d. O

Gowers uniformity norms. Let F': F" — C. The (multiplicative) derivative of F' in direction

h € F" is given by (ApF)(z) = F(x + h)F(z). One can verify that if f : F* — T and F = e(f)
then ApF = e(Dpf). The d-th Gowers uniformity norm || - ||y« is defined as

1F 7o := By howern [Bay - A, Fla))Y2

Observe that || F||y1 = |Eg[F(z)]|, which is a semi-norm. For d > 2, the Gowers uniformity norm
turns out to indeed be a norm (but we will not need that). The following lists the properties of the
Gowers uniformity norm that we would need. For a proof and further details, see [Gow01].

o Let f:F" — T and F = e(f). Then 0 < ||F||ya < 1, where ||F|;« = 1 if and only if f is a
polynomial of degree < d — 1.

o If f: F" — T is a polynomial of degree < d—1 then ||Fe(f)||ya = || F||ya for any F : F" — C.
o If F(z1,...,2y) = Fi(z1) ... Fu(zy) then || Fllye = |F1llya - - | Fnllu,-
e (Gowers-Cauchy-Schwarz) For any F': F" — C and any d > 1,

0 < [|Fllon < NFllp2 < .. <[ F[gra-



3 Approximating modular sums by polynomials

Viola and Wigderson [VWO08] proved that low-degree polynomials over Fo cannot correlate to the
sum modulo m, as long as m is odd. Their proof technique is based on the Gowers uniformity
norm. As such, it extends naturally to nonclassical polynomials. We capture that by the following
theorem. In the following, let w,, = exp(27i/m) be a primitive m-th root of unity.

Theorem 3.1 (Extension of [VWO08] to nonclassical polynomials). Let f : Fy — T be a polynomial
of degree < d. Let m € N be odd. Then for any a € {1,...,m — 1},

Eoeqoay [e(f(2)) - wil 4] < exp(—en/4)
where ¢ = ¢,, > 0.

Proof. Let F(z) = e(f(x)) - w,%f”“*'“”“). By the properties of the Gowers uniformity norm,

n
B [F@) < [1Fllya = o™ Flya = [Tl llva = lle(a) e,

where g : Fo — T is given by ¢(0) = 0,g(1) = a/m. A routine calculation shows that

a’/m ifhlz...:hd:Ll‘:O
Dhl...thg(x):{—a’/m ifhy=...=hg=1z=1
0 otherwise
where @’ = 29! is nonzero modulo m. Hence ||e(g )HUd =(1—-2"%4+2"%cos(2na’/m) <1—-27%.

Q(1/m?) and
EF) < (1- 27000 /m?)"" < exp(—en/a)
where ¢ = Q(1/m?). O

This proof technique gives trivial bounds for d > logn. Here, we show that this is for a good
reason, as there are nonclassical polynomials of degree O(logn) which well approximate the sum
modulo m.

Theorem 3.2. Let m € N be odd and fix a € {1,...,m — 1}. For any € > 0 there exists a
polynomial f : F5 — T of degree log ("+m) + O(1) such that

Evctony [e(f(@) - uff )] =14 u
where |u| < €.

Proof. Let k > 1 to be specific later. Let r € {0,...,m — 1} be such that » = a2* (mod m) and
let A="= a2 € Z. Define f:F} — T as

A(lz1| + .-+ |zn))
2k

fz) =

Note that f is a polynomial of degree < k. For z € {0,1}", if #1 + ... + x, = pm + ¢ where
q€{0,...,m— 1}, then

(mod 1).

Alpm+q) _rp+3t aqg  aq

flx) = o oF = +9 (mod 1),




where 0 < 0, < (n +m)/2*. We choose k > log (”tm) + c for some universal constant c so that
le(6;) — 1| < e for all x. Hence

B [e(f(@)) -wim )] — 1] = [Ele(6:) = 1] < Efle(8:) — 1] < =

4 Approximating majority by nonclassical polynomials
The majority function MAJ : F§ — Fy is defined as

_ 0 i DT [ <ny2
MAJ(z) = { 1 otherwise

We first show that is correlates well with a nonclassical polynomial of degree O(logn).

Theorem 4.1. There is a nonclassical polynomial f : Fy — T of degree logn + 1 such that

[E (-1 @e(f(@))]] 2 e,
where ¢ > 0 1s an absolute constant.

Proof. We assume n even for the proof. The proof is similar for odd n. Let A = |ay/n] for a > 0
to be specified later. Let k be the smallest integer such that 2¥ > n. Set

ARy il = n/2)

fla) = P,

Note that deg(f) = logn + 1. Now,
E [ (—1)MM@e(f(x))]
_ 271?25 <7Z> e (A(z' —n/2) /2’f) P i_gﬂ <’Z> e (A(z' —n/2) /2’f)
8 () ) B () e ()
— 9. 2_":2/21 (n/Z”_ j) sin (27rAj/2k> 42" <n72)

where in the last equation ¢ = /—1. Let C = 27" Z;Lfl (n/’;fj) sin (27 Aj/2%), so that
|E [(—1)MAJ(I)e(f(:U))H > 2C. We will show that C' > Q(1). Let b > 0 be a constant to be

specified later. We bound

c>2" Z (n/2n j) sin (27rAj/2k) — exp(—2b?),

J=1



where the error term follows from the Chernoff bound. We set a = 1/8b. For all 1 < j < by/n we
have 27 Aj/2% < 7/4. Applying the estimate sin(x) > /2 which holds for all 0 < x < 7/4, we
obtain that

s b\/ﬁ n
> __ .9 j — —2b%).
R TING ; (n/2 - j>] exp(=207)

Now, if b is a large enough constant, standard bounds on the binomial coefficients give that
bvn
n
27" | =Q .
> (s, )i= 00

Hence, we obtain that
C > Q(1/b) — exp(—2b?).

If b is chosen a large enough constant, this shows that C' > Q(1) as claimed. O]

We next show that the Razborov-Smolensky technique generalizes to nonclassical polynomials
when we require the polynomial to exactly compute MAJ. Recall that we identify Fy with {0,1/2} C
T and consider MAJ : F§ — {0,1/2}.

Theorem 4.2. Let f : Fy — T be a nonclassical polynomial of degree d and depth < k. Then,

k
Pr.cioapelf(o) = MAI@) < 5 +0 (22)

Proof. Let ¢ : Ugp — Fa be defined as ¢(0) = 0, ¢(1/2) = 1 and choose arbitrarily ¢(x) for
x € U \ {0,1/2}. Applying Lemma 2.2, there exists a classical polynomial g : F§ — Fo such that
g(x) = p(f(z)) for all x € F%, where deg(g) < (2¥ — 1)d. In particular,

Prierp[g(z) = MAJ(2)] > Praepy [f(z) = MAJ(2)].

Hence, we can apply the Razborov-Smolensky [Raz87, Smo87] bound to g and conclude that

_ <t deg(g)
Pr(f(z) = MAJ(z)] < —i—O( n >

[\

5 Weak representation of the OR function

A set of classical polynomials f; : Fj. — F;, is said to weakly represent the OR function if they all
map 0™ to zero, and for any other point in the boolean hypercube, at least one of them map it to
a nonzero value. This definition extends naturally to nonclassical polynomials.

Definition 5.1. Let p1,...,pr be distinct primes. A set of polynomials f; : Fy. — T weakly
represent the OR function if

o« f1(07) = ... = f(0") =0.
o For any x € {0,1}"\ 0", there exists some i such that f;(x) # 0.

10



It is well known that a single classical polynomial f : F) — F), which weakly represents the OR
function, must have degree at least n/(p — 1). This is since f(z)?~! computes the OR function
on {0,1}", and hence its multi-linearization (obtained by replacing any power z’, e; > 1 with ;)
must be the unique multi-linear extension of the OR function, which has degree n.

We first show that there is a nonclassical polynomial of degree O(logn) which weakly represents
the OR function.

Lemma 5.2. There exists a polynomial f : ¥y — T of degree O(p Hogp n|) which weakly represents
the OR function.

Proof. Let k > 1 be minimal such that p* > n. Define f(z) = W This is a polynomial of
degree 1 + (p — 1)(k — 1). Clearly f(0™) =0 and f(z) # 0 for any x € {0,1}"\ 0™. O

We show that allowing for multiple nonclassical polynomials can only improve this simple con-
struction by a polynomial factor.

Theorem 5.3. Let pi,...,p, be distinct primes, and let p = max(p1,...,py). Let f; : Fp. — T be
polynomials which weakly represent the OR function. Then at least one of the polynomials must
have degree Q((log, n)'/r).

The proof is an adaptation of the result of Barrington and Tardos [BT98|, who proved similar
lower bounds for classical polynomials. We start by showing that a low degree polynomial f with
f£(0) = 0 must have another point = with f(z) = 0.

Claim 5.4. Let f : F — T be a polynomial of degree d and depth < k — 1 such that f(0) = 0. If
n > (p* — 1)d then there exists x € {0,1}"\ 0" such that f(z) = 0.

We note that the bound on n is fairly tight, as f(z) = (21 + ...+ 2,)/p* (mod 1) violates the
conclusion of the claim whenever n < p*.

Proof. Let ¢ : Uy, — Fp be given by ¢(0) =0, p(x) =1 for all x # 0. Applying Lemma 2.2, there
exists a classical polynomial g : Fjy — ), of degree < (p* — 1)d such that g(x) = 0 if f(z) = 0, and
g(xz) = 11if f(z) # 0, for all x € {0,1}™. If f(0™) = 0 but f(z) # 0 for all nonzero z € {0,1}",
then g computes the OR function over {0,1}". Hence, deg(g) > n, which leads to a contradiction
whenever n > (p* — 1)d. O

We next extend Claim 5.4 to a find a common root for a number of polynomials.

Claim 5.5. Let f1,... fr : Fy — T be polynomials of degree d and depth < k—1 such that f;(0) =0
for alli € [r]. If n > (p¥ — 1)dr then there exists x € {0,1}"\ 0" such that f;(x) = 0 for all i € [r].

Proof. We construct an interpolating polynomial for fi,..., f.. Following the proof of Claim 5.4, for
each f; there exists a classical polynomial g; : F) — F), satisfying the following. For any x € {0,1}",
if f;(z) = 0 then g;(z) = 0, and if f;(z) # O then g;(z) = 1. Moreover, deg(g;) < (p* — 1)d. Define
g:F, = F)pas
,
g@) = 1-T](1 - gi(a)).
i=1

Note that deg(g) < > deg(g;) < (p* —1)dr. Suppose for contradiction that for every z € {0,1}™\0"
there is an i € [r] such that f;(x) # 0. Then ¢g(0) = 0 as f;(0) = 0 for all ¢ € [r], but g(x) = 1 for
all z € {0,1}"\ 0". Then g computes the OR function over {0,1}", and hence deg(g) > n. This
leads to a contradiction whenever n > (p* — 1)dr. O
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Next, we argue that the hamming ball of radius d is an interpolating set for polynomials of
degree d over {0,1}". In the following, let B(n,d) = {z € {0,1}": > x; < d}.

Claim 5.6. Let f : F — T be a polynomial of degree d such that f(z) = 0 for all x € B(n,d).
Then f(x) =0 for all z € {0,1}".

Proof. Towards contradiction, let z* € {0,1}" be a point such that f(z*) # 0, with a minimal

hamming weight. By assumption, the hamming weight of z* is at least d+ 1. Let i1,...,i44+1 € [n]
be distinct coordinates such that zj, = ... = ;1:;f‘d+1 = 1. Let e¢; € {0,1}" be the j-th unit vector,

defined as (ej); = 1 and (e;);» = 0 for j' # j. Define vectors hy,...,hqy1 € F) by hj = —e;;. Since
f is a degree d polynomial, we have

Dpy .. Dy, f =0.

Evaluating this on z* gives

Z (—l)mf(x*—Zei):O.

Ic{it, i1} el

However, as we chose z* with minimal hamming weight such that f(z*) # 0, we have f(z* —
> icr€i) = 0 for all nonempty I. Hence also f(z*) = 0. O

Next, we prove that low degree polynomials must be zero on a large combinatorial box. In the
following, we identify subsets S C [n| with their indicator in {0,1}".

Lemma 5.7. Let f : F) — T be a polynomial of degree d and depth < k — 1 such that f(0) =0.
For ¢ > 1, if n > 2dp*t™1 then there exist pairwise disjoint and nonempty sets of variables
S1,...,8¢ C [n] such that

¢
f (Z yi5i> =0 vy € {0,1}%
i=1

Proof. Fix ay,...,as to be determined later such that n > a; + ...+ ap. Let Ay,..., 4y C [n] be
disjoint subsets of variables of size |A4;| = a;. We will find subsets S; C A; such that (> v:5;) =0
for all y € {0,1}%. As we may set the variables outside A, ..., Ay to zero, we assume from now on
that n =a1 + ...+ ay.

First, set a; = pFd. Consider the restriction of f to A; by setting the remaining variables to
zero. By Claim 5.4, there exists a nonempty set S; C Aj such that f(S;) = 0.

Next, suppose that we already constructed S; C Aq,...,5; C A; for some 1 < j < £, such that

F(OyiSi) =0for all y € {0,1}9. For each y € {0,1}7, define a polynomial f, : Fﬁj“ — T by

J
fy(@) = f (Z YiSi + 90/)
i=1

where 2’ € Fﬁj "1 denotes the variables in A;;;. We will find a common nonzero root for f,(z').
First, consider only y € B(j,d). The number of such polynomials is r = ( 2z d) = Z?:o (] )

%

Applying claim 5.5, we have that if we choose a;1 > drpF then there exists Sj+1 C Ajyq such that

fy (Sjr) =0 Vye B(j,d).

12



We claim that this implies that f,(Sj4+1) = 0 for all y € {0,1}9. To see that, define g : IF{, — T by

gy)=f (Z YiSi + Sj+1> :

i=1

This a polynomial of degree d, and by Claim 5.6, if it is zero for all y € B(j,d), then it is the zero
on all {0,1}¢. Hence, we have that f(Zf;rll yiS;) = 0 for all y € {0,1}7+1.

We now calculate the parameters. We have ( <] d) < 2j% and hence it suffices to take aji1 =
2dj%p*. Hence, we need n > ng for

l L

ng =Y a; <2dp* > j¢ < adpFeit!.
=1 =1

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. Let p1,...,p, be distinct primes, and let p = max(p1,...,pr). Let f; : F} —
T be polynomials of degree at most d and depth at most k — 1 which weakly represent the OR
function. We fix integers n > fg = ng > ¢1... > {._1 > £, = 1 which will be specified later.
Applying Lemma 5.7 to f; with parameter ¢1, we get that as long as n is large enough, we can find
disjoint nonempty subsets Si1,...,S1 C [n] such that f1(>y;S1:) =0 for all y € {0, 1},

Next, consider the restriction of fs to the combinatorial cube formed by {S7,}. That is, define
15 Ff,l — T by f5(y) = f2(>_ yiS1:). Note that f5 is a polynomial of degree at most d and depth
at most k — 1. Applying Lemma 5.7 to f} with parameter 2, we get that as long as ¢; is large
enough, we can find disjoint nonempty subsets S y,...,55 ,, C [f1] such that f3(> v:S5;) =0 for
all y € {0,1}*2. Define S92.1,...,54, C [n] by So; = UjeSéisl,j* Then Sa1,...,S52, are disjoint
nonempty subsets of [n], such that ’

32 €2
fi (Z yz‘SQ,i) = fo (Z yiS2,i> =0 Wye{0,1}~
i1 i1

Continuing in this fashion, we ultimately find disjoint nonempty subsets Sy 1,...,S,4 C [n]
such that
Ly Ly
fi (Z yiSr,i> =...=f (Z yiSr,i) =0 VWye{0,1}.
i=1 i=1
In particular, fi,..., f, cannot weakly represent the OR function. This argument requires that for
each0<i<r—1,4; > 2dpk€§ljf11, which can be satisfied if

n > ng = (2dp") @t

Now, k < d/(p — 1) + 1 and hence p¥ < p#®P=D+1 < 245 As we can trivially bound 2d < 2% we
obtain the simplified bound

ng < 24(d+l)T-logp.

Thus, if fi,..., fr do weakly represent the OR function, at least one of the must have degree
d > Q((log, n)t/r). O
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A Improved weak OR representation by classical polynomials

In this section, we construct a low degree polynomial over Z,, that weakly represents the OR
function. Recall that the task is to construct a polynomial P in Z,,[x1,...,z,] such that P(0) =0
and P(x) # 0 for any nonzero x € {0,1}". Let m = py,...,p, for pairwise distinct primes p;. Let
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¢(m) be the largest prime divisor of m. As mentioned before, the best result is due to Barrington,
Beigel and Rudich [BBR94], who constructed a symmetric polynomial of degree O (E(m)nl/ ") that
weakly represents the OR function. It is also well known [BBR94], by Lucas’ theorem that for
symmetric functions, d = 2 (f(m)_lnl/r).

Our construction takes us closer to the lower bound. We construct symmetric polynomials that
have modulus independent degree, that is, d = O (nl/r).

Theorem A.l. Let m = [[._, p; for pairwise distinct primes p;. Then there exists an explicit
polynomial P € L [x1,. .., 2] of degree at most 2[n'/"] such that P weakly represents OR modulo
m.

Proof. For each 1 <1 <, let ¢; be the smallest integer such that p;* > [nl/ ’"].

The construction. Let S; be the j-th symmetric polynomial in ¢ = (x1,...,2,). Let ¢; be a
quadratic non residue in Z,, for odd p;. Define P € Z[zy,...,zy] as follows. Let

P(x) = zigl — qizZ-QQ mod p;, for odd p;,

and
P(x) = zi21 + 21249 + zl-22 mod p;, for p; = 2,
where
e;—2
zip=1— H (1- sz (z)Pi1)
5=0
and

Ziz = 8 i1 (z).

This uniquely defines P(x) mod m.

Note that P(z) = 0 mod p; if and only if z;; = z2 = 0 mod p;. This follows from the
irreducibility of 2 — ¢; over Ly, for odd p; and 2 + x4 1 over Zo.

If x =0, then 2z1; = 29, = 0 mod p; for all ¢ and hence P(z) =0 mod m.

Let wt(z) := >/, |xi|. Now, given  # 0, we have wt(z) # 0. Therefore, wt(z) # 0 mod n+1.
Thus, there exists ip such that wt(z) # 0 mod pZO. From here on, we set p := p;,,e = €.
Consider the p-ary expansion of wt(x). Let wt(x) = Z;;é ajp’ +tp°, 0 < a; < p— 1. Since
wt(z) # 0 mod p°, we have for some j, a; # 0.

We first note that since z € {0,1}", we have S,;(z) = (
we have a; = S,;(z) mod p.

Let 21 = 251,21 = Zip2. Now, if ac—1 # 0, then Spe—1(z) = 22 # 0 mod p and thus P(x) # 0
mod p. Therefore, P(z) # 0 mod m and we are done. If on the other hand, if any a; # 0
(j < e—2), then Sy(x) # 0. Thus, z; = 1 and hence P(x) # 0 mod p. Therefore, P(z) # 0
mod m. .

Finally, we bound the degree of P(z). The degree of each z;; is at most (p; — 1) ZE;S pl =

wi(z)

o ) Therefore, by Lucas’ theorem,

pffl — 1. The degree of each z;s is pfifl. Therefore the degree of P(z) is max; 2pfi71. (Note that
is where we improve on [BBR94]. Their upper bound is p;’.) Since e; is the least integer such that
pit > [nl/q, we have p5* < p; [nl/r]. Therefore, pfi_l < [nl/r] and this proves the theorem.
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