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Abstract

We consider variants of the Minimum Circuit Size Problem MCSP, where the goal is to
minimize the size of oracle circuits computing a given function. When the oracle is QBF, the
resulting problem MCSPQBF is known to be complete for PSPACE under ZPP reductions. We
show that it is not complete under logspace reductions, and indeed it is not even hard for
TC0 under uniform AC0 reductions. We obtain a variety of consequences that follow if oracle
versions of MCSP are hard for various complexity classes under different types of reductions. We
also prove analogous results for the problem of determining the resource-bounded Kolmogorov
complexity of strings, for certain types of Kolmogorov complexity measures.

1 Introduction

The Minimum Circuit Size Problem (MCSP) asks to decide, for a given truth table f of a Boolean
function and a parameter s, whether f is computable by a Boolean circuit of size at most s. MCSP
is a well-known example of a problem in NP that is widely believed to be intractable, although it
is not known to be NP-complete. MCSP is known to be hard for the complexity class SZK under
BPP-Turing reductions [AD14], which provides strong evidence for intractability. On the other
hand, Kabanets and Cai showed [KC00] that if MCSP is NP-complete under the “usual” sort of
polynomial-time reductions, then EXP 6⊆ P/poly. This can not be interpreted as strong evidence
against NP-completeness – since it is widely conjectured that EXP 6⊆ P/poly – but it does indicate
that it may be difficult to provide an NP-completeness proof.

However, there are other ways to define what the “usual” sort of reductions are: e.g., logspace,
(uniform) TC0, AC0, or NC0. The overwhelming majority of problems that are known to be NP-
complete are, in fact, NP-complete under very restricted kinds of reductions. Can we rule out
NP-hardness of MCSP under such reductions?

Very recently, Murray and Williams [MW14] have shown that MCSP is not even P-hard under
uniform NC0 reductions. Can MCSP be NP-hard under slightly stronger reductions, e.g., uniform
AC0 reductions? We suspect that the answer is ‘No’, but so far we (like Murray and Williams) can
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only show that P-hardness of MCSP under uniform AC0, TC0, or logspace reductions would imply
new (likely) complexity lower bounds (in the spirit of [KC00]).

The main focus of the present paper is an oracle version of MCSP, denoted MCSPA for a
language A, which asks to decide for a given truth table f and a parameter s if f is computable
by an A-oracle circuit of size at most s. We prove a number of implications of hardness of MCSPA

for various choices of the oracle A, and various reductions. In particular, we prove for a PSPACE-
complete A that MCSPA is not P-hard under uniform AC0 reductions.

The results presented here (along with the results recently reported by Murray and Williams
[MW14]) are the first results giving unlikely consequences that would follow if variants of MCSP
or the various oracle circuit minimization problems are hard under a natural notion of reducibility.
We also show that analogous results hold in the Kolmogorov complexity setting due to the cor-
respondence between circuit size and Kolmogorov complexity, using the minimum-KT complexity
problem defined in this paper.

Below we provide a summary of our main results.

1.1 Our results

Most of our results follow the template:

If MCSPA is hard for a complexity class C under reductions of type R, then complexity
statement S is true.

Table 1 below states our results for different instantiations of A, C, R, and S; note that S = ⊥
means that the assumption is false, i.e., MCSPA is not C-hard under R-reductions. Throughout,
we assume that the reader is familiar with complexity classes such as NP,PP, PSPACE, NEXP, etc.
We denote the polynomial hierarchy by PH, and its linear-time version (linear-time hierarchy) by

LTH. The Counting Hierarchy, denoted CH, is the union of the classes PP,PPPP, etc.

Table 1: Summary of main results: If MCSPA is C-hard under R, then S. The last column shows
the theorem where the result is stated in the paper.

oracle A class C reductions R statement S Theorem

PH-hard TC0 uniform AC0 ⊥ Theorem 3.9

any TC0 uniform AC0 LTH 6⊆ io-SIZEA[2Ω(n)] Lemma 3.10

any TC0 uniform AC0 NPA 6⊆ SIZEA[poly] Corollary 3.13
any in CH P uniform TC0 P 6= PP Corollary 3.2
∅ P logspace P 6= PSPACE Corollary 3.3

QBF P logspace EXP = PSPACE Corollary 3.7
QBF NP logspace NEXP = PSPACE Theorem 3.6
QBF PSPACE logspace ⊥ Corollary 3.8

EXP-complete NP polytime NEXP = EXP Theorem 3.4

For the most restricted reductions, uniform AC0, we get that MCSPA is not TC0-hard for any
oracle A such that PH ⊆ SIZEA[poly] (Theorem 3.9), e.g., for A = ⊕P (Corollary 3.12). For
any oracle A, we conclude new circuit lower bounds for the linear-time hierarchy and for NPA
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(Lemma 3.10 and Corollary 3.131).
If MCSP is P-hard under uniform TC0 or logspace reductions, then P is different from PP or

from PSPACE (Corollaries 3.2 and 3.3).
One of the more interesting oracle circuit minimization problems is MCSPQBF. It was shown in

[ABK+06] that MCSPQBF is complete for PSPACE under ZPP-Turing reductions, but the question
of whether it is complete for PSPACE under more restrictive reductions was left open. For most
natural complexity classes C above PSPACE, there is a corresponding oracle circuit minimization

problem (which we will sometimes denote MCSPC) that is known to be complete under P/poly
reductions, but is not known to be complete under more restrictive reductions [ABK+06]. For
the particular case of C = PSPACE, we denote this as MCSPQBF. We show that MCSPQBF is not
PSPACE-complete under logspace reductions (Corollary 3.8). Furthermore, it is not even TC0-hard
under uniform AC0 reductions (Theorem 3.9).

Finally, for even more powerful oracles A, we can handle even general polynomial-time reduc-
tions. We show that if SAT≤pmMCSPEXP, then EXP = NEXP (Theorem 3.4).

We believe that MCSP is not TC0-hard under even nonuniform AC0 reductions. While we are
unable to prove this, we can rule out restricted AC0 reductions for a certain gap version of MCSP.
Define gap-MCSP as follows: Given a truth table f and a parameter s, output ‘Yes’ if f requires
circuit size s, and output ‘No’ if f can be computed by a circuit of size at most s/2. Call a mapping
from n-bit strings to m-bit strings α(n)-stretching if m ≤ n ·α(n), for some function α : N→ R≥0.

We prove that gap-MCSP is not TC0-hard under nonuniform AC0 reductions that are n1/31-
stretching (Theorem 3.17).

1.2 Related work

The most closely related is the recent paper by Murray and Williams [MW14], which also considers
the question whether MCSP is NP-complete under weak reductions, and proves a number of condi-
tional and unconditional results. The main unconditional result is that MCSP is not TC0-hard under
uniform NC0 reductions (or more generally, under O(n1/2−ε)-time projections, for every ε > 0); we
give an alternative proof of this result (Theorem 3.15). For conditional results, [MW14] shows that
if MCSP is NP-hard under uniform AC0 reductions, then NP 6⊂ P/poly and E 6⊂ io-SIZE[2Ω(n)] (also
implied by our Corollary 3.13 and Lemma 3.10), and that NP-hardness of MCSP under general
polynomial-time reductions implies EXP 6= ZPP.

MCSP, MCSPQBF and other oracle circuit minimization problems are closely related to notions
of resource-bounded Kolmogorov complexity. Briefly, a small (oracle) circuit is a short description
of the string that represents the truth-table of the function computed by the circuit. Notions of
resource-bounded Kolmogorov complexity were presented and investigated in [ABK+06] that are
roughly equivalent to (oracle) circuit size.

In particular, there is a space-bounded notion of Kolmogorov complexity, KS, such that the set
of KS-random strings (denoted RKS) is complete for PSPACE under ZPP reductions. It is shown
in [ABK+06] that RKS is not even hard for TC0 under AC0 reductions, and RKS is not hard for
PSPACE under logspace-Turing reductions. The proof of this non-hardness result also carries over
to show that a set such as {f : f is the truth table of a function on n variables that has QBF
circuits of size at most 2n/2} is also not hard for TC0 under AC0 reductions, and is not hard
for PSPACE under logspace-Turing reductions. However it does not immediately carry over to
MCSPQBF, which is defined as {(f, i) : f is the truth table of a function on n variables that has

1Prior to our work, Murray and Williams have shown that if SAT≤AC0

m MCSP, then NP 6⊆ P/poly [MW14]. Their
result is similar to (and is implied by) our Corollary 3.13 for the case of A = ∅.
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QBF circuits of size at most i}; similarly it does not carry over to the set {(x, i) : KS(x) ≤ i}. Also,
the techniques presented in [ABK+06] have not seemed to provide any tools to derive consequences
assuming completeness results for oracle circuit minimization problems for oracles less powerful
than PSPACE. We should point out, however, that [ABK+06] proves a result similar to (and
weaker than) our Lemma 3.10 in the context of time-bounded Kolmogorov complexity: if RKT is

TC0-hard under AC0 many-one reductions, then PH 6⊆ SIZE
[
2n

o(1)
]
.

1.3 Our techniques

To illustrate our proof techniques, let us sketch a proof of one of our results: If MCSP is P-hard
under uniform logspace reductions, then P 6= PSPACE (Corollary 3.3).

The proof is by contradiction. Suppose that P = PSPACE. Our logspace reduction maps n-bit
instances of QBF to nc-bit instances (f, s) of MCSP so that each bit of f is computable in O(log n)
space.

1. Imagine that our reduction is given as input a succinct version of QBF, where some poly(log n)-
size circuit D on each log n-bit input 1 ≤ i ≤ n computes the ith bit of the QBF instance.
It is not hard to see that our reduction, given the circuit D, can compute each bit of f
in poly(log n) space. Thus the Boolean function with the truth table f is computable by
a PSPACE = P algorithm (which also has the circuit D as an input). It follows that this
function f is computable by some polynomial-size Boolean circuit.

2. Next, since we know that f has at most polynomial circuit complexity, to decide the MCSP
instance (f, s), we only need to consider the case where s < poly (since for big values of s,
the answer is ‘Yes’). But deciding such MCSP instances (which we call succinct MCSP) is
possible in Σp

2: guess a circuit of size at most s, and verify that it agrees with the given
polynomial-size circuit for f on all inputs.

3. Finally, since Σp
2 ⊆ PSPACE = P, we get that our succinct MCSP instances can be decided

in P. The reduction from succinct QBF to succinct MCSP is also in PSPACE = P. Hence,
succinct QBF is in P. But, succinct QBF is EXPSPACE-complete, and so we get the collapse
EXPSPACE = P, contradicting the hierarchy theorems.

In step (1) of the sketched proof, the uniformity of an assumed reduction to MCSP is used to
argue that the truth table f produced by the reduction is in fact “easy” to compute uniformly.
The uniform complexity of computing the function f is roughly the “exponential” analogue of
the uniform complexity of the reduction. For circuit classes such as AC0 and TC0, we use the
well-known connection between the “exponential” analog of uniform AC0 and PH, and between the
“exponential” analog of uniform TC0 and CH.

We use the uniform easiness of the function f to conclude that f has small circuit complexity
(and hence our reduction actually outputs instances of succinct MCSP). To get that conclusion,
we need to assume (or derive) the collapse to P/poly of the uniform complexity class that contains
f ; in our example above, we got it from the assumption that PSPACE = P.

Step (2) exploits the fact that succinct MCSP does not become “exponentially harder” (unlike
the usual succinct versions of hard problems), but is actually computable in Σp

2.
In Step (3), we combine the algorithm for our reduction and the algorithm for succinct MCSP

to get an “efficient” algorithm for the succinct version of the input problem (succinct QBF in
our example). Since the succinct version of the input problem does become exponentially harder
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than its non-succinct counterpart, we get some impossible collapse (which can be disproved by
diagonalization).

We use this style of proof for all our results involving reductions computable by uniform TC0

and above. However, for the case of uniform AC0 (and below), we get stronger results by replac-
ing the diagonalization argument of Step (3) with the nonuniform AC0 circuit lower bound for
PARITY [H̊as86].

Remainder of the paper. We state the necessary definitions and auxiliary results in Section 2.
Our main results are proved in Section 3, and some generalizations are given in Section 4. We give
concluding remarks in Section 5.

2 Definitions

Definition 2.1. The minimum circuit size problem MCSP, as defined in [KC00], is defined as
{(f, s)|f has circuits of size s}, where f is a string of length 2m encoding the entire truth-table of
some m-variate Boolean function. (Versions of this problem have been studied long prior to [KC00].
See [AD14, Tra84] for a discussion of this history.) We will also consider the analogous problem
for circuits with oracles, the Minimum A-Circuit Size problem MCSPA, defined analogously, where
instead of ordinary circuits, we use circuits that also have oracle gates that query the oracle A.
When A is a standard complete problem for some complexity class C, we may refer to this as

MCSPC .

We will not need to be very specific about the precise definition of the “size” of a circuit. Our
results hold if the “size” of a circuit is the number of gates (including oracle gates), or the number
of “wires”, or the number of bits used to describe a circuit in some standard encoding. It is perhaps
worth mentioning that the different versions of MCSP that one obtains using these different notions
of “size” are not known to be efficiently reducible to each other.

Circuit size relative to oracle A is polynomially-related to a version of time-bounded Kolmogorov
complexity, denoted KTA, which was defined and studied in [ABK+06].

Definition 2.2. KTA(x) = min{|d|+ t : ∀b ∈ {0, 1, ∗}∀i ≤ |x|+ 1 UA(d, i, b) accepts in t steps iff
xi = b}. Here, U is some fixed universal Turing machine, which has random access to the oracle A
and to the input string (or “description”) d; xi denotes the i-th symbol of x, where x|x|+1 = ∗.

By analogy to MCSPA, we define the “minimum KT problem”:

Definition 2.3. MKTPA = {(x, i)|KTA(x) ≤ i}.

All of our results that deal with MCSPA also apply to MKTPA.
We wish to warn the reader that one’s intuition can be a poor guide, when judging how MCSPA

and MCSPB compare to each other, for given oracles A and B. For instance, it is known that

MCSPSAT ZPP-Turing reduces to MCSPQBF [ABK+06], but no deterministic reduction is known.

Similarly, no efficient reduction of any sort is known between MCSP and MCSPSAT. Some of our

theorems derive consequences from the assumption that MCSPSAT is hard for some complexity
class under AC0 reductions. Although one might suspect that this is a weaker hypothesis than
assuming that MCSP is hard for the same complexity class under AC0 reductions – certainly the

best upper bound for MCSPSAT is worse than the best known upper bound for MCSP – nonetheless
we are not able to derive the same consequences assuming only that MCSP is hard. For essentially
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all time- and space-bounded complexity classes C that contain PSPACE, MCSPC is complete for
C/poly under P/poly reductions [ABK+06, AKRR10], but uniform reductions are known only for
two cases [ABK+06]: when C = PSPACE (MCSPQBF is complete for PSPACE under ZPP reductions)
and when C = EXP (MCSPEXP is complete for EXP under NP-Turing reductions).

2.1 Succinct Problems

The study of succinct encodings of computational problems was introduced by [GW83, PY86],
and has been studied since then by [Wag86, BLT92], among others. Succinct encodings play an
important role in the proofs of our main results.

Definition 2.4. Given a language L, we define the succinct version of L (denoted succ.L) to be
the language {C|tt(C) ∈ L} where C is a Boolean Circuit and tt(C) is the truth-table for C.

It will be necessary for us to consider “succinctly-presented” problems, where the circuit that
constitutes the succinct description is itself an oracle circuit:

Definition 2.5. Given a language L and an oracle A, we define the A-succinct version of L (denoted
A-succ.L) to be the language {C|tt(C) ∈ L} where C is a Boolean Circuit with oracle gates, and
tt(C) is the truth-table for C, when it is evaluated with oracle A. If A = ∅, we denote this language
as succ.L.

The typical situation that arises is that the succinct version of a problem A has exponentially
greater complexity than A. In particular, this happens when A is complete for a complexity class
under “logtime reductions”.

Definition 2.6. We say that a function f can be computed in logarithmic time if there exists a
random-access Turing machine that, given (x, i), computes the ith bit f(x) in time O(log |x|).

Building on prior work of [PY86, GW83, Wag86], Balcázar, Lozano, and Torán presented a
large list of complexity classes (C1, C2), where C1 is defined in terms of some resource bound B(n)
and C2 is defined in the same way, with resource bound B(2n), such that if a set A is complete
for C1 under logtime reductions, then succ.A is complete for C2 under polynomial-time many-one
reductions [BLT92].

Somewhat surprisingly, the complexity of succ.MCSP appears not to be exponentially greater
than that of MCSP. (Related observations were made earlier by Williams [Wil12].)

Theorem 2.7. succ.MCSP ∈ Σp
2

Proof. We present an algorithm in Σp
2 that decides succ.MCSP. Given an instance of succinct MCSP

C, note that C ∈ succ.MCSP iff z is a string of the form (f, s) ∈ MCSP, where z = tt(C). By
definition, |z| must be a power of 2, say |z| = 2r, and |f | must also be a power of 2, say |f | = 2m for
some m < r. Note also that if s > |f | = 2m, then (f, s) should obviously be accepted, since every
m-variate Boolean function has a circuit of size 2m. To be precise, we will choose one particular
convention for encoding the pair (f, s); other reasonable conventions will also yield a Σp

2 upper
bound. Let us encode (f, s) as a string of length 2m+1, where the first 2m bits give the truth table
for f , and the second 2m bits give s in binary. Note that this means that C has m + 1 input
variables, and hardwiring the high-order input bit of C to 0 results in a circuit C ′ for f (of size at
most |C|).

Using this encoding, the “interesting” instances (f, s) are of the form where the second half of
the string is all zeros, except possibly for the low-order m bits (encoding a number s ≤ 2m = |f |.
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The low-order m bits can be computed deterministically in polynomial time, given C, by evaluating
C on inputs 1m+1−logm0logm, 1m+1−logm0−1+logm1, . . . , 1m+1. Let the number encoded by the low-
order m bits be s′. Then C (an encoding of (f, s)) is in succ.MCSP iff

• there is some bit position j corresponding to one of the high-order 2m−m bits of s such that
C(j) = 1, or

• there exists a circuit D of size at most s′ such that, for all i,D(i) = C ′(i) and for all bit
positions j corresponding to one of the high-order 2m − m bits of s, C(j) = 0 (and thus
s = s′).

It is easily seen that this can be checked in Σp
2.

Because this proof relativizes, we obtain:

Corollary 2.8. Let A and B be oracles such that B≤pTA. Then B-succ.MCSPA is in (Σp
2)A.

Proof. We use the same encoding as in Theorem 2.7. Thus, an oracle circuit C encoding an instance
(f, s) (where f is an m-ary function) has m+1 input variables, and hardwiring the high-order input
bit of C to 0 results in an oracle circuit C ′ (with oracle B) for f (of size at most |C|). But if B≤pTA,
then this also gives us an oracle circuit C ′′ (with oracle A) for f (of size at most |C|k for some k),
where we can obtain C ′′ from C in polynomial time.

Then C (an encoding of (f, s)) is in B-succ.MCSPA iff

• there is some bit position j corresponding to one of the high-order 2m−m bits of s such that
CB(j) = 1, or

• there exists a circuit D of size at most s′ such that, for all i,DA(i) = C ′′A(i) and for all bit
positions j corresponding to one of the high-order 2m − m bits of s, CB(j) = 0 (and thus
s = s′).

It is easily seen that this can be checked in (Σp
2)A.

An analogous result also holds for MKTPA.

Theorem 2.9. Let A and B be oracles such that B≤pTA. Then B-succ.MKTPA is in (Σp
2)A.

Proof. Given an instance of B-succ.MKTPA C, note that C ∈ B-succ.MKTPA only if z is a string
of the form (x, i), where z = tt(C). Let us settle on a suitable encoding for pairs; the number i
should be at most 2|x| (a generous overestimate of how large KTA(x) could be), and thus should
consist of at O(log |x|) bits. In order to mark the location of the “comma” separating x and i, we
use the familiar convention of doubling each bit of i, and using the symbols 10 to mark the position
of the “comma”. Thus, given a circuit C with n variables, a (Σp

2)B machine can compute the length
of the encoded string x as follows:

1. Using nondeterminism, guess a position ` and verify that CB(`) = 1 and CB(`+ 1) = 0.

2. Using co-nondeterminism, verify that for all `′ > ` it is not the case that CB(`′) = 1 and
CB(`′ + 1) = 0. (If this test passes, then the tt(C) is of the form (x, i) for some x and i,
although it allows the possibility that absurdly large numbers i are provided.)

3. Reject if the number of bits used in the encoding of i is more than 4n (which is greater than
4 log |x|).
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This (Σp
2)B computation can be simulated by a (Σp

2)A, by our assumption that B≤pTA.
The rest of the algorithm follows closely the algorithm that we presented for MCSP. Given a

circuit C, guess the number ` such that tt(C) = (x, i) for some string x of length `. Without loss of
generality, we can assume that the universal Turing machine used to define KT takes a description
of a program and the input to the program and runs the program on that input. The universal
oracle machine U , given a description d of length |C|+ |`|+O(1), along with (i, b) can output ∗ if
i > ` and otherwise can use oracle A to simulate CB(i) and accept iff the answer is b. The running
time will be at most (|C|+ |`|)k for some k, which gives us an upper bound on KTA(x).

The (Σp
2)A algorithm for B-succ.MKTPA is thus:

1. Guess and verify ` as above, and in parallel:

2. Evaluate CB(j) for the 4n largest positions j < 2n (using oracle A), and thus obtain the
encoding of i.

3. Accept if i ≥ (|C|+ |`|)k.

4. Guess a description d′ of length at most i. Reject if UA(d, `+ 1, ∗) does not accept.

5. Using co-nondeterminism, verify that for all j ≤ ` and all b ∈ {0, 1}, UA(d, j, b) accepts iff
CB(j) = b.

2.2 Constant-Depth Reductions

Proposition 2.10. Suppose that f is a uniform AC0 reduction from a problem A to a problem B.
Let C be an instance of succ.A. Then, the language {(C, i)| the ith bit of f(tt(C)) is 1} is in LTH
(the linear-time hierarchy).

Proof. Consider the unary version of the above language: {1(C,i)| the ith bit of f(tt(C)) is 1}; we
claim that this language is in uniform AC0. To see this, note that after computing the length of the
input (in binary), and thus obtaining a description of C (of length log n), an AC0 algorithm can
compute each bit of tt(C). For instance, the ith bit of tt(C) can be computed by guessing a bit
vector of length log n recording the value of each gate of C on input i, and then verifying that all
of the guessed values are consistent. Once the bits of tt(C) are available, then the AC0 algorithm
computes f(tt(C)).

The result is now immediate, from [AG93, Proposition 5], which shows that the rudimentary
languages (that is, the languages in the linear-time version LTH of the polynomial-time hierarchy
PH) are precisely the sets whose unary encodings are in Dlogtime-uniform AC0.

By an entirely analogous argument, we obtain:

Proposition 2.11. Suppose that f is a uniform TC0 reduction from a problem A to a problem B.
Let C be an instance of succ.A. Then, the language {(C, i)| the ith bit of f(tt(C)) is 1} is in CH.

3 Main Results

3.1 Conditional collapses and separations of complexity classes

Our first theorem shows that significant conclusions follow if MCSP is hard for P under AC0 reduc-
tions.
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Theorem 3.1. If there is any set A in the polynomial hierarchy such that MCSPA (or MKTPA) is
hard for P under AC0 reductions, then P 6= NP.

Proof. We present only the proof for MCSPA; the proof for MKTPA is identical. Suppose that
P = NP and MCSPA is hard for P under AC0 reductions. Thus, there is a family {Cn} of AC0

circuits reducing SAT to MCSPA, such that Cn(φ) = f(φ), where f is the reduction function and φ
is an instance of SAT.

Now we claim that succ.SAT≤pmsucc.MCSPA. To see this, consider an instance D of succ.SAT
(that is, a circuit D on n variables that, when given input i, outputs the ith bit of a SAT instance
of size 2n). This problem has been shown to be complete for NEXP[Pap03]. By Proposition 2.10,
we have that the language {(D, i)| the ith bit of f(tt(D)) is 1} is in PH. By our assumption that
P = NP, we have that this language is in P . Let Em be a family of circuits deciding this language.
The function that takes input D and outputs E|(D,n)| (with D hardwired in) is a polynomial-time

reduction from succ.SAT to succ.MCSPA, which is in (Σp
2)A, by Corollary 2.8. Since A ∈ P (by our

assumption that P = NP), we have that NEXP ⊆ P, which is a contradiction.

Corollary 3.2. If there is any set A ∈ CH such that MCSPA (or MKTPA) is hard for P under TC0

reductions, then P 6= PP.

Proof. The proof is similar to that of the preceding theorem. If P = PP, and there is a TC0

reduction f from SAT to MCSPA, then the language {(D, i)| the ith bit of f(tt(D)) is 1} is in CH
(by Proposition 2.11), and hence is in P.

Now, just as above, we use the circuit family recognizing this language, in order to construct
a polynomial-time reduction from succ.SAT to succ.MCSPA, leading to the contradiction that
NEXP = P.

Corollary 3.3. Suppose that MCSP (or MKTP) is hard for P under logspace many-one reductions.
Then P 6= PSPACE.

Proof. The proof proceeds along similar lines. Assume P = PSPACE. Consider an instance D of
succ.SAT, where there is a reduction f computable in logspace reducing SAT to MCSP. Then the
language {(D, i)| the ith bit of f(tt(D)) is 1} is in PSPACE, since polynomial space suffices in order
to compute f on an exponentially-large input. (We don’t need to store the string tt(D), the bits of
tt(D) can re-computed when they are needed.) By our assumption that P = PSPACE, this language
is in P, and hence is recognized by a uniform circuit family (Em).

Now, as above, the function that maps D to E|(D,n)| (with D hardwired in) is a polynomial-time
reduction from succ.SAT to succ.MCSP, which allows us to conclude that NEXP = P.

Theorem 3.4. Suppose that MCSPEXP is hard for NP under polynomial-time reductions. Then
NEXP = EXP.

Proof. Let f be the reduction taking an instance of SAT to an instance of MCSPEXP. We construct

a reduction from succ.SAT to B-succ.MCSPEXP for some B ∈ EXP.
Consider the language L = {(C, i)| the ith bit of f(φC) is 1}, where φC is the formula described

by the circuit C, viewed as an instance of succ.SAT with n input variables. We can decide L in
exponential time because we can write down φC in exponential time, and then we can compute
f(φC) in exponential time because f is a poly-time reduction on an exponentially large instance.
Let {Dm} be a family of oracle circuits for L, using an oracle for an EXP-complete language B.

Thus the mapping C 7→ D|C|+n is a polynomial-time reduction from succ.SAT to B-succ.MCSPEXP,

which is in (Σp
2)EXP = EXP (see, e.g., [AKRR10, Theorem 24]), and thus EXP = NEXP.
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Corollary 3.5. Consider Levin’s time-bounded Kolmogorov complexity measure Kt [Lev84]. Sup-
pose that {(x, i) : Kt(x) ≤ i} is hard for NP under polynomial-time reductions. Then NEXP = EXP.

Proof. As discussed in [ABK+06], there is essentially no difference between Kt(x) and KTEXP(x).
Thus the proof is immediate, given the proof of Theorem 3.4.

Theorem 3.6. If MCSPQBF or MKTPQBF is hard for NP under logspace reductions, then NEXP =
PSPACE.

Proof. Let f be the reduction taking an instance of SAT to an instance of MCSPQBF. We construct

a reduction from succ.SAT to QBF-succ.MCSPQBF.
Consider the language L = {(C, i)| the ith bit of f(φC) is 1}, where φC is the formula described

by the circuit C, viewed as an instance of succ.QBF with n input variables. We can decide L in
PSPACE, because we can compute f(φC) by building the bits of φC as they are needed. Let {Dm}
be a family of oracle circuits for L, using an oracle for QBF. Thus the mapping C 7→ D|C|+n

is a polynomial-time reduction from succ.QBF to QBF-succ.MCSPQBF, which is in (Σp
2)QBF =

PSPACE, implying NEXP = PSPACE.

Corollary 3.7. If MCSPQBF (or MKTPQBF) is hard for P under logspace reductions, then EXP =
PSPACE.

Proof. The proof is identical to the proof of the preceding theorem, with NP replaced by P, and
with NEXP replaced by EXP.

If we carry out a similar argument, replacing NP with PSPACE, we obtain the contradiction
EXPSPACE = PSPACE, yielding the following.

Corollary 3.8. Neither MCSPQBF nor MKTPQBF is hard for PSPACE under logspace reductions.

3.2 Impossibility of uniform AC0 reductions

Theorem 3.9. For any language A that is hard for PH under P/poly reductions, MCSPA is not
hard for TC0 under uniform AC0 reductions.

The theorem will follow from the next lemma. Recall that LTH (linear-time hierarchy) stands
for the linear-time version of the polynomial-time hierarchy PH.

Lemma 3.10. Suppose that, for some language A, MCSPA is TC0-hard under uniform AC0 reduc-
tions. Then LTH 6⊆ io-SIZEA[2Ω(n)].

Proof. It is shown in [Agr11, Theorems 5.1 and 6.2] that if a set is hard for any class C that is
closed under TC0 reductions under uniform AC0 reductions, then it is hard under length-increasing
(uniform AC0)-uniform NC0 reductions. (Although Theorems 5.1 and 6.2 in [Agr11] are stated only
for sets that are complete for C, they do hold also assuming only hardness [Agr14], using exactly
the same proofs.) Here, the notion “AC0-uniform NC0” refers to NC0 circuits with the property
that direct connection language DCL = {(n, t, i, j)| gate i of Fn has type t and has an edge leading
from gate j} with n in unary is in Dlogtime-uniform AC0.

Hence, if MCSPA is hard for TC0 under uniform AC0 reductions, then we get that PARITY
is reducible to MCSPA under a length-increasing (uniform AC0)-uniform NC0 reduction. Such a
reduction R maps PARITY instances x ∈ {0, 1}n to MCSPA instances (f, s), where f is the truth
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table of a Boolean function, f ∈ {0, 1}m, for some m such that n ≤ m ≤ nO(1), and 0 ≤ s ≤ m is
the size parameter in binary, and hence |s| ≤ O(log n).

Being the output of an NC0 reduction, the binary string s depends on at most O(log n) bits in
the input string x. Imagine fixing these bits in x to achieve the minimum value of the parameter
s. Denote this minimum value of s by v. (We do not need for v to be efficiently computable in
any sense.) We get a nonuniform NC0 reduction from PARITY on n − O(log n) ≥ n/2 bit strings
to MCSPA with the size parameter fixed to the value v.

Claim 3.11. For any language A and any 0 ≤ v ≤ m, MCSPA on inputs f ∈ {0, 1}m, with the
size parameter fixed to v, is solved by a DNF formula of size O(m · 2v2 log v).

Proof of Claim 3.11. Each A-oracle circuit of size v on logm inputs can be described by a binary
string of length at most O(v2 log v), since each of v gates has at most v inputs. Thus, there are
at most 2O(v2 log v) Boolean functions on logm inputs that are computable by A-oracle circuits of
size at most v. Checking if any one of these truth tables equals to the input truth table f can be
done by a DNF, where we take an OR over all easy functions, and for each easy function we use
an AND gate to check equality to the input f .

We conclude that PARITY on n/2-bit strings is solvable by AC0 circuits of depth 3 and size
O(m · 2v2 log v). Indeed, each bit of the truth table f is computable by an NC0 circuit, and hence
by a DNF (and a CNF) of constant size. Plugging in these DNFs (or CNFs) for the bits of f into
the DNF formula from Claim 3.11 yields the required depth-3 AC0 circuit for PARITY on inputs of
length at least n/2.

Next, since PARITY on m-bit strings requires depth-3 AC0 circuits of size at least 2Ω(
√
m) [H̊as86],

we get that v ≥ n1/5. Hence, on input 0n, our uniform NC0 reduction produces (f, s) where f is
the truth table of a Boolean function on r-bit inputs that has A-oracle circuit complexity at least
v ≥ n1/5 ≥ 2εr, for some ε > 0.

Finally, since the NC0 reduction is (uniform AC0)-uniform, we get that the Boolean function
whose truth table is f is computable in LTH.

Proof of Theorem 3.9. Towards a contradiction, suppose that MCSPA is TC0-hard under uniform
AC0 reductions. Then, by Lemma 3.10, there is a language L ∈ PH that requires A-oracle circuit
complexity 2Ω(n) almost everywhere. However, since A is PH-hard under P/poly reductions, we get
that L ∈ SIZEA[poly]. A contradiction.

Corollary 3.12. MCSP⊕P is not TC0-hard under uniform AC0 reductions.

Proof. By Toda’s theorem [Tod91], PH ⊆ BPP⊕P, which in turn is contained in the class of problems
P/poly-reducible to the standard complete problem for ⊕P. The result then follows by Theorem 3.9.

Corollary 3.13. Suppose that, for some oracle A, MCSPA is TC0-hard under uniform AC0 reduc-
tions. Then NPA 6⊆ SIZEA[poly].

Proof. If NPA ⊆ SIZEA[poly], then PHA ⊆ SIZEA[poly]. Now the result follows from Lemma 3.10.

Remark 3.14. Murray and Williams [MW14] prove results similar to (and implied by) our
Lemma 3.10 and Corollary 3.13 for the case of the empty oracle A = ∅. Namely, they show
that if MCSP is NP-hard under uniform AC0 reductions, then NP 6⊆ P/poly and E 6⊆ io-SIZE[2Ω(n)].
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Finally, we observe that the ideas in our proof of Lemma 3.10 yield an alternate proof of
the result by Murray and Williams [MW14] that PARITY is not reducible to MCSP via “local”
O(n1/2−ε)-time reductions. We prove the version for polylogtime-uniform NC0 reductions, but the
same argument applies also to the “local” reductions of [MW14].

Theorem 3.15 ([MW14]). There is no polylogtime-uniform NC0 reduction from PARITY to MCSP.

Proof. Suppose there is such a reduction. Similarly to the proof of Lemma 3.10, we conclude that
this NC0 reduction maps 0n to an MCSP instance (f, s) where f is the truth table of a Boolean
function on r := O(log n) inputs that requires exponential circuit size s ≥ 2Ω(r). On the other
hand, since our NC0 reduction is polylogtime-uniform, the Boolean function with the truth table f
is computable in P, and hence in SIZE[poly]. A contradiction.

3.3 Gap MCSP

For 0 < ε < 1, we consider the following gap version of MCSP, denoted ε-gap MCSP: Given (f, s),
output ‘Yes’ if f requires circuits of size at least s, and output ‘No’ if f can be computed by a
circuit of size at most (1− ε)s.

For α : N → R+, call a mapping R : {0, 1}n → {0, 1}m α-stretching if m ≤ α(n) · n. We will
prove that there is no nδ-stretching nonuniform AC0 reduction from PARITY to ε-gap MCSP, for
certain parameters 0 < ε, δ < 1. First, we rule out nonuniform NC0 reductions.

Theorem 3.16. For every n−1/6 < ε < 1 and for every constant δ < 1/30, there is no nδ-stretching
(nonuniform) NC0 reduction from PARITY to ε-gap MCSP.

Proof. Towards a contradiction, suppose there is an nδ-stretching NC0 reduction from PARITY on
inputs x ∈ {0, 1}n to ε-gap MCSP instances (f, s). Fix to zeros all O(log n) bit positions in the
string x that determine the value of the size parameter s. As in the proof of Lemma 3.10, we get
an NC0 reduction from PARITY on at least n/2 bits y to the ε-gap MCSP instance with the size
parameter fixed to some value v ≥ n1/5.

By our assumption, |f | ≤ n · nδ. Since each bit of f is computable by an NC0 circuit, we get
that each bit of f depends on at most c bits in the input y. The total number of pairs (i, j) where
fi depends on bit yj is at most c · |f |. By averaging, there is a bit yj , 1 ≤ j ≤ n/2, that influences
at most c|f |/(n/2) ≤ 2cnδ bit positions in the string f .

Fix y so that all bits are 0 except for yj (which is set to 1). This y is mapped by our NC0

reduction to the truth table f ′ that is computable by a circuit of size at most (1−ε)v. On the other
hand, flipping the bit yj to 0 forces the reduction to output a truth table f ′′ of circuit complexity
at least v. But, yj influences at most 2cnδ positions in f ′, and so the circuit complexity of f ′′

differs from that of f ′ by at most O(nδ log n) gates (as we can just construct a “difference” circuit
of that size that is 1 on the at most 2cnδ affected positions of f ′). We get εv ≤ O(nδ log n), which
is impossible when δ < 1/30.

Now we extend Theorem 3.16 to the case of nonuniform AC0 reductions.

Theorem 3.17. For every n−1/7 < ε < 1 and for every constant δ < 1/31, there is no nδ-stretching
(nonuniform) AC0 reduction from PARITY to ε-gap MCSP.

Proof. Towards a contradiction, suppose there is a nδ-stretching AC0 reduction from PARITY on
n-bit strings to the ε-gap MCSP. We will show that this implies the existence of an NC0 reduction
with parameters that contradict Theorem 3.16 above.

12



Claim 3.18. For every constant γ > 0, there exist a constant a > 0 and a restriction of our AC0

circuit satisfying the following: (1) each output of the restricted circuit depends on at most a inputs,
and (2) the number of unrestricted variables is at least n1−γ.

Proof of Claim 3.18. Recall that a random p-restriction of n variables x1, . . . , xn is defined as fol-
lows: for each 1 ≤ i ≤ n, with probability p, leave xi unrestricted, and with probability 1− p, set
xi to 0 or 1 uniformly at random. By H̊astad’s Switching Lemma [H̊as86], the probability that a
given CNF on n variables with bottom fan-in at most t does not become a decision tree of depth
at most r after being hit with a random p-restriction is at most (5pt)r.

For an AC0 circuit of size nk and depth d, set p := (5a)−1n−2k/a for some constant a > 0 to
be determined. Applying this random p-restriction d times will reduce the original circuit to a
decision tree of depth a with probability at least 1 − dnk(5pa)a > 3/4. The expected number of
unrestricted variables at the end of this process is pdn ≥ Ω(n/n2kd/a) = Ω(n/nγ

′
), for γ′ := 2kd/a.

By Chernoff bounds, the actual number of unrestricted variables is at least 1/2 of the expectation
with probability at least 3/4.

Thus, with probability at least 1/2, we get a restriction that makes the original AC0 circuit into
an NC0 circuit on at least n/n2γ′ variables, where each output of the new circuit depends on at
most a input variables. Setting γ := 2γ′, we get that a = (4kd)/γ.

We get an NC0 reduction from PARITY on n′ := n1−γ variables to ε-gap MCSP. This reduction
is at most (n′)(δ+γ)/(1−γ)-stretching. Choose 0 < γ < (1/31)2 so that (δ + γ)/(1− γ) < 1/30, and
ε > n−1/7 > (n′)−1/6. Finally, appeal to Theorem 3.16 for contradiction.

4 Generalizations

Theorem 3.1 gives consequences of MCSP being hard for P. The property of P that is exploited in
the proof is that the polynomial hierarchy collapses to P if NP = P. (This is required, so that we can
efficiently a circuit that computes bits of the reduction, knowing only that it is in the polynomial
hierarchy.)

The next theorem formalizes this observation:

Theorem 4.1. Let C be any class such that if NP = C, then PH = C. If there is a set A ∈ PH that
is hard for C under ≤pT reductions such that MCSPA (or MKTPA) is hard for C under uniform AC0

reductions, then NP 6= C.

Proof. Suppose that NP = C, and MCSPA is hard for C. Then, there exists a reduction from SAT
to MCSPA computable in AC0. As in the proof of Theorem 3.1, we can use this to construct a ≤pT
reduction from succ.SAT to B-succ.MCSPA for some B in PH; and thus B is in C by our assumption.
Thus B≤pTA. By Corollary 2.8 this implies that succ.SAT is in (Σp

2)A, which is in the polynomial
hierarchy, and hence is in NP.

However, this implies that NEXP ⊆ NP, which contradicts the Nondeterministic Time Hierarchy
Theorem [SFM78].

Corollary 4.2. Let A be any set in the polynomial hierarchy. If MCSPA (or MKTPA) is hard for
AC0[6] under AC0 reductions, then AC0[6] 6= NP.

Recall that SZK denotes the class of languages with Statistical Zero-Knowledge proofs.

Corollary 4.3. Let A be any set in the polynomial hierarchy that is hard for SZK under ≤pT
reductions. If MCSPA is hard for SZK under AC0 reductions, then SZK 6= NP.
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Proof. SZK is closed under complementation [Oka00]. Thus if NP is equal to the class of languages
in SZK, then coNP = NP = SZK and PH collapses to SZK. Thus SZK satisfies the hypothesis of
Theorem 4.1.

Similarly, we can state the following theorem about TC0 reductions.

Theorem 4.4. Let C be any class such that if PP = C, then CH = C. If there is a set A ∈ CH that
is hard for C under ≤pT reductions such that MCSPA (or MKTPA) is hard for C under uniform TC0

reductions, then PP 6= C.

Proof. Suppose that PP = C, and that MCSPA is hard for C. Then, there exists a reduction
from Maj.SAT (the standard complete problem for PP) to MCSPA computable in TC0. Similarly to
Corollary 3.2, this gives us a ≤pT reduction from succ.MajSAT to B−succ.MCSPA for some B ∈ CH;
and thus B is in C. Then, B≤pTA, and thus succ.MajSAT is in (Σp

2)A, which is in CH, and hence is
in PP. However, succ.MajSAT is complete for probabilistic exponential time, and hence is not in
PP.

Fenner, Fortnow, and Kurtz [FFK94] introduced several complexity classes, including SPP and

WPP that are “low for PP”, in the sense that PP = PPSPP = PPWPP. Thus we obtain the
following corollary:

Corollary 4.5. Let A be any set in the counting hierarchy that is hard for WPP under ≤pT re-
ductions. If MCSPA is hard for WPP (or SPP) under uniform TC0 reductions, then WPP 6= PP
(respectively SPP 6= PP).

5 Discussion

The contrast between Theorem 3.1 and Corollary 3.7 is stark. Theorem 3.1 obtains a very unsur-
prising consequence from the assumption that MCSP is hard for P under a very restrictive class
of reductions, while Corollary 3.7 obtains a very unlikely collapse from the assumption that the
apparently much harder problem MCSPQBF is hard for P under a much less restrictive class of
reductions. Yet, the absence of any known efficient reduction from MCSP to MCSPQBF means that
we have been unable to obtain any unlikely consequences by assuming that MCSP is hard for P.
We believe that it should be possible to provide evidence that MCSP is not hard for P, and we pose
this as an open question for further research.
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