
Heuristic time hierarchies via hierarchies for sampling
distributions ∗

Dmitry Itsykson † Alexander Knop† Dmitry Sokolov†

Abstract

We give a new simple proof of the time hierarchy theorem for heuristic BPP
originally proved by Fortnow and Santhanam [FS04] and then simplified and im-
proved by Pervyshev [Per07]. In the proof we use a hierarchy theorem for sampling
distributions recently proved by Watson [Wat13]. As a byproduct we get that
P 6⊆ BPTime[nk] if one way functions exist. As far as we know this statement
was not known before. We also show that our technique may be extended for time
hierarchies in some other heuristic classes.

1 Introduction

The time hierarchy theorem for a computational model states that given more time it is
possible to solve more computational problems. For deterministic Turing machines this
theorem was proved by Hartmanis and Stearns [HS67] by using diagonalization. To show
that there exists a language that is solvable in O(n3) steps but not solvable in O(n2)
one may consider a language that contains a string x if Turing machine Mx rejects x
in n2 steps. Time hierarchy theorems are known for all syntactic computational models
(a model is syntactic if it is possible to enumerate all correct machines of this model).
Standard diagonalization does not work if it is impossible to negate the answer of a
machine in polynomial time (for example this is true for nondeterministic algorithms);
but delayed diagonalization [Zak83] works well for all syntactic models.

A computational model is semantic if it is impossible to enumerate correct ma-
chines. For example BPTime,RTime,ZPTime are semantic models; we can’t enu-
merate correct machines since they have to satisfy promises. There are not known
tight time hierarchy theorem for any semantic model. The best current result for
time hierarchy for randomized computations with bounded error is superpolynomial:
BPTime[nlogn] (BPTime[2n

ε
] [KV87]. However, we are not able to prove that

BPTime[n] (BPTime[n100 logn].
The first advancement in that direction was a time hierarchy theorem for random-

ized classes with several bits of nonuniform advice [Bar02, FS04], the latest results in-
clude a time hierarchy for classes with only one bit of advice : BPTime/1 [FS04],

∗The research is partially supported by the RFBR grant 14-01-00545, by the President’s grant MK-
2813.2014.1 and by the Government of the Russia (grant 14.Z50.31.0030).
†Steklov Institute of Mathematics at St. Petersburg, 27 Fontanka, St.Petersburg, 191023, Russia,

dmitrits@pdmi.ras.ru, aaknop@gmail.com, sokolov.dmt@gmail.com.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 178 (2014)

ZPTime/1,MATime/1, etc. [vMP07]. The idea of the proofs of time hierarchies with
nonuniform advice from [FS04] (the similar idea was used in [Bar02]) is based on the ex-
istence of an optimal algorithm for some PSPACE-complete language. The proof from
[vMP07] is based on a tricky delayed diagonalization.

Fortnow and Santhanam also proved the time hierarchy theorem for heuristic ran-
domized algorithms with bounded error, such algorithms may give an incorrect answer
(and also violate promise) on the small fraction of inputs. This proof was also based on
an optimal algorithm for PSPACE-complete language. Pervyshev [Per07] simplifies the
time hierarchy theorem for heuristic BPTime. Pervyshev used delayed diagonalization
against all randomized Turing machines. A randomized Turing machine may accept with
any probability of error, thus it can’t be simulated with bounded error. Let M be a
randomized Turing machine that may violate a promise. Suppose we have to simulate
it on an input x. Pervyshev suggested a method to simulate it heuristically: for every
input x we put into the correspondence a set of strings {y1, y2, . . . , yN}, where N is large
enough. On every yi we execute M(x) many times and calculate the frequency of ones
µi. We accept yi if µi is greater than θyi , where θyi = 2

5
+ i

5N
. Note that if M(x) satisfies

the promise of bounded error then the answer of our simulation is the same for all yi.
And if M(x) violates the promise then our simulation may violate the promise only for
a small fraction of yi, namely for such yi that θyi is very close to Pr[M(x) = 1].

We give a new proof of time hierarchy theorem for heuristic BPTime. Our proof is
slightly simpler than the Pervyshev’s one, namely we don’t use the multithreshold trick
described above. Our proof is based on the hierarchy for polynomial-time samplable
distributions recently proved by Watson [Wat13]. Watson proved that for any integer
constant k, positive a and ε there exists a polynomial-time samplable ensemble of random
variables γn that takes values from the set {1, 2, . . . , k} such that for every samplable in na

steps ensemble of random variables αn with values in {1, 2, . . . , k} the statistical distance
between αn and βn is at least 1 − 1

k
− ε for some n. We use this result only for k = 2;

this particular case can be proved elementary by delayed diagonalization. We define a
language Lγ that is based on the ensemble γn; we prove that Lγ is solvable in HeurεBPP.
If Lγ is solvable in randomized heuristic time na by an algorithm A, then A may be used
to generate in na steps an ensemble of random variables αn that is close to γn; the latter
contradicts the theorem of Watson.

This method can also be used to prove hierarchy theorems for other heuristic classes.
Pervyshev proved the time hierarchy theorem for heuristic nondeterministic computa-
tions. This proof can also be formulated in our framework. For that we extend the
notion of samplability of random variables. We define a class of random variables (taking
values in {0, 1}) that can be sampled in nondeterministic polynomial time: the sampling
algorithm applies function from NP to random bits. Watson’s theorem also holds for
nondeterministically samplable random variables. For proving time hierarchy for heuristic
NP we need a more accurate version of Watson’s theorem, namely we prove a hierarchy
for a nondeterministic sampling for the case of a sampling algorithm that uses exactly n
random bits, where n is the index of the random variable. In fact, this time hierarchy
was explicitly proved in [Per07].

We also note that our method works for heuristic hierarchies for all classes CTime
and BP · CTime, where C is a syntactic computational model that is closed under the
application of the majority.

2

1.1 Conditional results

There are several known conditions that imply time hierarchy theorem for BPTime.
The existence of a BPP-complete problem (under strong enough reductions) implies a
time hierarchy theorem for BPTime (see for example [Bar02]). The paper of Fortnow
and Santhanam [FS04] implies that if it is possible to approximate the running time of
the optimal algorithm for the PSPACE-complete language in polynomial time, then
there exists a time hierarchy for BPTime. The time hierarchy theorem for BPTime
also holds in case of the existence of log n→n pseudorandom generator (i.e. generator
mapping a seed of size C log n to n pseudorandom bits), since in that case BPTime[nk] ⊆
DTime[nk+ε] and the hierarchy follows from the deterministic time hierarchy. Such
pseudorandom generator exists if, for example, E\Size[2εn] 6= ∅ (see for example [Mil01]).
But the existence of n→poly(n) pseudorandom is not sufficient for full derandomization,
and thus BPTime hierarchy is not completely trivial.

As a corollary of our proof of heuristic time hierarchy we get that P 6⊆
Heur1/2−εBPTime[nk] under the existence of n→poly(n) pseudorandom generator (that
is equivalent to the existence of one-way functions). We also note that if NP ⊆ BPP then
BPP 6⊆ BPTime[nk] for all k. In terms of Impagliazzo’s worlds [Imp95] the BPTime
hierarchy theorem holds in Algorithmica and Criptomania worlds.

2 Preliminaries

For two random variables χ1, χ2 with values from a set K the statistical distance between
them is ∆(χ1, χ2) = max

S∈[k]
|Prχ1 [S]− Prχ2 [S]|.

Let Un denote a uniform distribution over {0, 1}n.
We say that a language L is heuristically decidable in nondeterministic time O(f(n))

with an error δ(n) (we denote this as L ∈ Heurδ(n)NTime[f(n)]) iff there is a nondeter-
ministic algorithm A that runs in at most O(f(n)) steps such that for any n we have that
Prx←Un [A(x) = L(x)] ≥ 1− δ(n). We also define Heurδ(n)NP =

⋃
k≥0

Heurδ(n)NTime[nk].

The class Heurδ(n)BPTime[f(n)] consists of languages L such that there exists a prob-
abilistic algorithm A that runs in at most O(f(n)) steps and for every n the following
holds: Prx←Un [Pr[A(x) = L(x)] ≥ 3

4
] ≥ 1− δ(n), where the inner probability is over ran-

dom bits of the algorithm A. We also denote Heurδ(n)BPP =
⋃
k≥0

Heurδ(n)BPTime[nk].

In the proof of our results we use Boolean samplers from [Gol11].

Definition 2.1. A Boolean sampler is a randomized algorithm S, that takes on input an
integer number n and rational numbers δ, ε. Algorithm S has an oracle access to a function
f : {0, 1}n → {0, 1}; S makes several nonadaptive requests to the function f and outputs
a number in the range [0, 1]. Let us denote f̄ = 1

2n

∑
x∈{0,1}n f(x). For every function

f : {0, 1}n → {0, 1} the following inequality should be satisfied: Pr[|Sf (n, ε, δ)− f̄ | ≥ ε] <
δ.

A Boolean sampler is called averaging if it outputs the average value of requested
values.

3

Theorem 2.1 ([Gol11]). There is an averaging Boolean sampler S which uses n random
bits, makes q(n, ε, δ) = O(1

ε2δ
) requests to the function, and runs in time polynomial in

n, 1
ε

and 1
δ
.

Corollary 2.1. There exists an averaging Boolean sampler S that uses n − 1 random
bits, makes O(1

ε2δ
) requests to the function, and runs in time polynomial in n, 1

ε
and 1

δ
.

Proof. Let S be a sampler from Theorem 2.1. Define the algorithm S ′ as follows: on input
n, ε and δ it returns 1

2
Sf0(n − 1, ε, δ

2
+ 1

2
Sf1(n − 1, ε, δ

2
) where f0, f1 : {0, 1}n−1 → {0, 1}

and f0(x) = f(x0), f1(x) = f(x1). Note that f̄0+f̄1
2

= f̄ . Hence

Pr[|S ′f (n, ε, δ
2

)− f̄ | ≥ ε] ≤

Pr[|Sf0(n, ε, δ
2

)− f̄0| ≥ ε] + Pr[|Sf1(n, ε, δ)− f̄1| ≥ ε] <
δ

2
+
δ

2
= δ.

3 Hierarchy for HeurBPP

Definition 3.1. An ensemble of random variables γn is samplable in time O(f(n)) iff
there exist an integer constant k and a deterministic algorithm A that on the input (1n, r)
runs in O(f(n)) steps and A(1n, r) is distributed according to γn, where r is distributed
uniformly over {0, 1}nk . We denote the set of all ensembles samplable in time O(f(n))
as DSamp[f(n)].

The following theorem is a particular case of a theorem from [Wat13]. However the
proof of this particular case is much simpler than Watson’s proof of his more general
statement. We give it for the sake of completeness.

Theorem 3.1 ([Wat13]). For every a > 0 and ε > 0, there exists b > 0 and an ensemble
of random variables γn ∈ DSamp[nb] that take values from {0, 1} such that for every
ensemble αn ∈ DSamp[na] there exists n0 such that the statistical distance between αn0

and γn0 is at least 1
2
− ε.

Proof. We use delayed diagonalization. Let (Ei, ki) be an enumeration of all deterministic
algorithms (we interpret them as generators of random variables) and integer constants
ki, we assume that Ei is supplied with an alarm clock that terminates its execution on an
input (1n, r) after na+1 steps. We define a sequence ni as follows: n1 = 1, ni+1 = n∗i + 1

and n∗i = 2n
a+1
i . We define γn by the following algorithm Γ(1n, R), where R is a string of

random bits of size at least Nnk and N = O(log ε
ε2

). For n such that ni ≤ n ≤ n∗i :

� if n = n∗i then γn is concentrated on the element from {0, 1} that has the minimal

probability according to Ei(1
ni , r) where r is uniformly distributed over {0, 1}na+1

i .
This can be done by a brute-force search in time poly(n∗i);

� if n ∈ {ni, . . . , n∗i − 1} generate N independent random strings r1, r2, . . . , rN ←
U(n+1)k (but formally we already have all random bits in the string R, i.e. R =
r1r2 . . . rN); execute Ei(1

n+1, rj) for every j ∈ {1, 2, . . . , N} and return the most
frequent answer.

4

Let αn be generated by an algorithm A(1n, r) with nk random bits in time O(na),
and (A, k) be (Ei, ki) in our enumeration. We prove by contradiction that there exists
n ∈ {ni, . . . , n∗i } such that ∆(γn, αn) > 1

2
− ε, where ∆ denotes the statistical distance.

Assume that ∆(γn, αn) ≤ 1
2
− ε for all n. Let b denote the element that has probability 1

according to γn∗
i
. By induction onm (form ≤ n∗i−ni) we prove that Pr[γn∗

i−m = b] > 1− ε
2
.

Base m = 0 is trivial. Now we prove the induction step. By the induction hypothesis

Pr[αn∗
i−m = b] ≥Pr[γn∗

i−m = b]−∆(γn∗
i−m, αn∗

i−m) ≥

Pr[γn∗
i−m = b]− 1

2
+ ε > 1− ε

2
− 1

2
+ ε =

1

2
+
ε

2
.

Hence by Chernoff bounds Pr[γn∗
i−m−1 = b] ≥ 1− 2e−2ε2N that is more than 1− ε

2
for

N = O(log ε
ε2

). Finally we get a contradiction with Pr[αni = b] ≤ 1
2
.

Let γn be an ensemble of random variables that take values from {0, 1}. We denote
Lγ =

⋃
n

{r ∈ {0, 1}n | Pr[γn = 1] > 0.r}, where 0.r is a binary number.

Lemma 3.1. For every polynomial-time samplable ensemble of random variables γn that
take values from {0, 1} the language Lγ ∈ HeurεBPP for every constant ε.

Proof. Consider the following algorithm A: sample N independent instances of the ran-
dom variable γn, let q be a fraction of 1s. If q ≥ 0.r then return 0 otherwise 1. By
Chernoff bounds if |0.r − Pr[γn = 1]| > ε/4 then Pr[A(r) 6= L(r)] < 2e−

1
8
ε2N ; it is less

than 1
4

for N = O(1
ε2

). Note that Prr[|0.r − Pr[γn = 1]| ≤ ε/4] ≤ 2−n + ε/2 that is less
than ε for large enough n.

Lemma 3.2. Let L be a language such that for all n | Pr
x←Un

[x ∈ L] − Pr[γn = 1]| < δ

and L ∈ HeurεBPTime[nk] for some ε, δ ≥ 0. Then there exists an ensemble of random
variables βn such that βn ∈ DSamp[nk+1] and ∆(βn, γn) ≤ ε+ δ + 1

2n
.

Proof. Let E be a randomized algorithm that solves L in HeurεBPTime[nk]. Let Ê(x)
execute E(x) for N = O(n) times and return the most frequent answer. Consider an
ensemble of random variables αn defined in the following way: sample a random element
x ∈ {0, 1}n and return L(x). Then consider the following algorithm that samples βn:
sample a random element x ∈ {0, 1}n and return Ê(x). Since | Pr

x←Un
[x ∈ L] − Pr[γn =

1]| < δ we have that ∆(αn, γn) < δ. Let C be a set of all x such that Pr[E(x) = L(x)] ≥ 3
4
.

Chernoff bounds imply that for x ∈ C we have that Pr[Ê(x) = L(x)] > 1− 1
2n

. Note that

∆(αn, βn) = |Pr[αn = 1]−Pr[βn = 1]| = |Pr[αn = 1, βn = 0]−Pr[αn = 0, βn = 1]| ≤
Pr[αn = 1 ∧ βn = 0] + Pr[αn = 0 ∧ βn = 1] = Pr[αn 6= βn].

Hence

∆(αn, βn) ≤ Pr[αn 6= βn] =

Pr
x,r

[L(x) 6= Êr(x)|x ∈ C] Pr
x,r

[x ∈ C] + Pr
x,r

[L(x) 6= Êr(x)|x 6∈ C] Pr
x,r

[x 6∈ C] ≤

1

2n
Pr
x,r

[x ∈ C] + Pr
x,r

[L(x) 6= Ê(x)|x 6∈ C]ε ≤ 1

2n
+ ε

5

where r is a string of random bits for Ê. Hence by the triangle inequality we have that
∆(βn, γn) ≤ 1

2n
+ ε+ δ.

Theorem 3.2 ([Per07]). For every b > 0 and δ > 0 there exists a language L such that
L 6∈ Heur 1

2
−δBPTime[nb] and L ∈ HeurδBPP.

Proof. Let γn be an ensemble from Theorem 3.1 for ε = δ/2 and a = b+1. By Lemma 3.1
Lγ ∈ HeurδBPP. Assume that Lγ ∈ Heur 1

2
−δBPTime[nb]. Note that by construction

of Lγ we have that | Pr
x←Un

[x ∈ Lγ]− Pr[γn = 1]| < 1
2n

. Hence by Lemma 3.2 there exists

βn ∈ DSamp[na] and ∆(βn, γn) ≤ 1
2
− δ+ 1

2n
+ 1

2n
< 1

2
− δ

2
for n large enough. The latter

contradicts Theorem 3.1.

4 Conditional hierarchy

Theorem 4.1. Assume that one-way functions exist. Then for every ε > 0 and a > 0
there exists a language L ∈ P such L 6∈ Heur 1

2
−εBPTime[na].

Proof. Consider the random variable γn from Theorem 3.1 and let S be a generator that
generates γn. We assume that S gets random bits as the second input. Let S use p(n) ran-
dom bits. Let G be pseudorandom generator that maps n random bits to p(n) pseudoran-
dom ones. Consider the random variable S(1n, G(r)), where r ← Un. Since G is a pseu-
dorandom generator we have that ∆(S(1n, G(Un)), γn) = ∆(S(1n, G(Un)), S(1n, Up(n))) <
ε/4 for all n large enough.

Consider the language L =
⋃
n

{r ∈ {0, 1}n | S(1n, G(r)) = 1}. It is obvious that

L ∈ P. Lemma 3.2 and Theorem 3.1 implies L 6∈ Heur 1
2
−εBPTime[na].

It may be interesting to compare Theorem 4.1 with the following statement: if one-way
functions exist, then (NP, U) 6∈ HeurBPP [BT06].

We also show that the BPTime time hierarchy holds if all languages from NP are
easy.

Theorem 4.2. If NP ⊆ BPP, then BPTime[nk] (BPP for all k > 0.

Proof. Assume, for the sake of contradiction, that BPP ⊆ BPTime[nk]. By the ar-
gument similar to Adleman’s theorem we get BPTime[nk] ⊆ Size[n2k+2]. Results of
[Zac88] implies that if NP ⊆ BPP, then PH ⊆ BPP. So if BPP = BPTime[nk], then
PH ⊆ Size[n2k+2] that contradicts Kannan’s theorem [Kan82].

5 Hierarchy for HeurNP

In this section we show that our technique can also be used to prove a hierarchy theorem
for heuristic NP.

Definition 5.1. An ensemble of random variables γn is samplable in nondeterministic
time O(f(n)) with nk random bits iff there exists a nondeterministic algorithm A that
on an input (1n, r) runs in O(f(n)) steps, and A(1n, r) is distributed according γn, where
r is distributed uniformly over {0, 1}nk . We denote the set of all ensembles samplable in
time O(f(n)) with nk random bits as NSampnk [f(n)].

6

The following theorem is an analogue of Theorem 3.1 for distributions samplable by
nondeterministic algorithms with fixed number of random bits. The proof is almost the
same but we use a Boolean sampler in order to save random bits.

Theorem 5.1. For every a > 0 and ε > 0 there exists b > 0 and an ensemble of random
variables γn ∈ NSampn[nb] that take values from {0, 1} such that for every ensemble
αn ∈ NSampn[na] with values from {0, 1} there exists n such that the statistical distance
between αn and γn is at least 1

2
− ε.

Proof. We use delayed diagonalization. Let Ei be an enumeration of all nondeterministic
algorithms (we interpret them as generators of random variables that use n random bits);
we assume that Ei is supplied with an alarm clock that terminates its execution on an
input (1n, r) after na+1 steps. Let S be a Boolean sampler from Corollary 2.1. We define

a sequence ni as follows n1 = 1, ni+1 = n∗i + 1 and n∗i = 2n
a+1
i . We define γn by the

following algorithm Γ(1n, r), where r ← Un is the string of random bits. For n such that
ni ≤ n ≤ n∗i :

� if n = n∗i then γn is concentrated on the element from {0, 1} that has the minimal
probability according to Ei(1

ni , r), where r is uniformly distributed over {0, 1}n.
This can be done by brute-force search in time poly(n∗i);

� if ni ≤ n < n∗i − 1 we execute Sf (1n+1, ε
2
, 1

4
) using r as a random string, where

f : {0, 1}n+1 → {0, 1} and f(z) = Ei(1
n+1, z). Return 1 iff the result of the sampler

exceeds 1
2
.

Let αn be generated by a nondeterministic algorithm A(1n, r) with n random bits in
O(na) steps, and A have number i in our enumeration. We prove by contradiction that
there exists n (ni ≤ n ≤ n∗i) such that ∆(γn, αn) > 1

2
− ε, where ∆ denotes the statistical

distance. Assume that ∆(γn, αn) ≤ 1
2
− ε for all n. Let b denote the element that has

probability 1 according to γn∗
i

(by the construction Pr[Ei(1
ni) = b] ≤ 1

2
). We prove by

induction on k (for 0 ≤ k ≤ n∗i − ni) that Pr[γn∗
i−k = b] > 1 − ε

2
. The base k = 0 is

trivial. Now we prove the induction step. By the induction hypothesis

Pr[αn∗
i−k = b] ≥ Pr[γn∗

i−k = b]− 1

2
+ ε > 1− ε

2
− 1

2
+ ε =

1

2
+
ε

2
.

Hence by definition of a Boolean sampler Pr[γn∗
i−k−1 = b] ≥ 1 − ε

2
. Finally we get a

contradiction with Pr[αni = b] ≤ 1
2
.

Theorem 5.2 ([Per07]). For every b > 0 and δ > 0 there exists a language L such that
L 6∈ Heur 1

2
−δNTime[nb] and L ∈ NP.

Proof. Let γn be an ensemble from Theorem 5.1 for ε = δ/2 and a = b + 1, and S be
a generator for this random variable. Consider the language L = {x|S(1|x|, x) = 1}. It
is easy to see that this language is in NP. Let us prove that L 6∈ Heur 1

2
−δNTime[nb].

Assume the contrary and let nondeterministic algorithm A decide L in time nb with error
less than 1

2
− δ. In this case for the random variable αn that is distributed according

to A(x) for x ← An we have that ∆(αn, γn) < 1
2
− δ for all n. The latter contradicts

Theorem 5.1.

7

6 Generalization

Let C be some computational model; for every input a C-machine either accepts or rejects;
we assume that the notion of the running time of a C-machine on a given input is well de-
fined. We denote the set of languages that can be decided by C-machines in O(t(n)) steps
by CTime[t(n)]. We also require the model C to be closed under the application of ma-
jority: let F be a deterministic oracle Turing machine that on every input makes several
oracle requests that depend only on the input, calculates majority and returns an answer
from {0, 1}. Let on the input x the machine F make oracle requests y1, y2, . . . , yk(x). Let
language O be from the class CTime[h(n)], then the computation of F with oracle O on
the input x may be simulated on a C-machine in O(n + h(|y1|) + · · · + h(|yk(x)|)) steps.
Note that nondeterministic Turing machines are closed under the application of majority.

Definition 6.1. Class CTime[nc] is the set of languages that can be decided in O(nc)
time on C-machines. CP =

⋃
c>0

CTime[nc].

Definition 6.2. C is a syntactic computational model iff there exists an algorithm A
that takes a number k and enumerates C-machines that stops in nk+1 steps such that for
all languages L ∈ CTime[nk] there exists a machine that decides this language.

Definition 6.3. For a syntactic model C we say that L ∈ Heurδ(n)CTime[f(n)] iff
there exists C-algorithm A that runs in O(f(n)) steps such that for any n we have that
Pr
x

[A(x, 1n) = L(x)] ≥ 1− δ(n). We denote Heurδ(n)CP =
⋃
k∈N

Heurδ(n)CTime[nk].

Definition 6.4. An ensemble of random variables γn is C-samplable in time O(f(n)) with
nk random bits iff there exists a C-algorithm A that on an input (1n, r) runs in O(f(n))
steps and A(1n, r) is distributed according to γn, where r is distributed uniformly over
{0, 1}nk . We denote the set of all ensembles samplable in time O(f(n)) with nk random
bits as CSampnk [f(n)]. We also define CSamp[f(n)] = ∪kCSampnk [f(n)].

The following theorem is completely analogous to Theorem 5.1:

Theorem 6.1. For every a > 0 and ε > 0 there exists b > 0 and an ensemble of random
variables γn ∈ CSampn[nb] that take values from {0, 1} such that for every ensemble
αn ∈ CSampn[na] with values from {0, 1} there exists n such that the statistical distance
between αn and γn is at least 1

2
− ε.

The following theorem is completely analogous to Theorem 5.2:

Theorem 6.2. For every syntactic model C for all b > 0 and δ > 0 there is language L
such that L /∈ Heur 1

2
−δCTime[nb] and L ∈ CP.

Following [Sch89] we define class BP ·CTime[f(n)] that consists of languages L such
that there exists k and C-machine M such that

1. For all x the following holds: Prr←U
nk

[M(x, r) = L(x)] ≥ 3
4
;

2. M(x, r) runs in O(f(n)) steps.

8

Definition 6.5. For syntactic model C we say that L ∈ Heurδ(n)BP · CTime[f(n)] iff
there exists k ≤ c and C-machine M such that

1. For all n the following holds: Prx←Un [Prr←U
nk

[M(x, r) = L(x)] ≥ 3
4
] ≥ 1− δ(n);

2. M(x, r) runs in O(f(n)) steps.

We also define Heurδ(n)BP · CP = ∪c>0Heurδ(n)BP · CTime[nc]

The following theorem is completely analogous to Theorem 3.1:

Theorem 6.3. For every a > 0 and ε > 0 there exists b > 0 and an ensemble of random
variables γn ∈ CSamp[nb] that take values from {0, 1} such that for every ensemble
αn ∈ CSamp[na] there exists n such that the statistical distance between αn and γn is
at least 1

2
− ε.

The following theorem is completely analogous to Theorem 3.2:

Theorem 6.4. For every b > 0 and δ > 0 there is language L such that L /∈ Heur 1
2
−δBP ·

CTime[nb] and L ∈ HeurδBP · CP.

Since AM = BP ·NP Theorem 6.4 implies heuristic time hierarchy for AMTime.

7 Further research

For deterministic computations the standard diagonalization implies that P (
Heur1−δDTime[nk] while the best known result for nondeterministic computations is
NP (Heur 1

2
−δNTime[nk]. Is it possible to improve error from 1

2
− δ to 1 − δ for

nondeterministic or randomized algorithms with bounded error?
The second and third open questions are to prove BPTime hierarchy in Heuris-

tica, where NP 6⊆ BPP but (NP,PSamp) ⊆ HeurBPP, and in Pessiland, where
(NP,PSamp) 6⊆ HeurBPP but there are no one-way functions.

Acknowledgments The authors thank Edward A. Hirsch for useful comments.

References

[Bar02] Boaz Barak. A probabilistic-time hierarchy theorem for “slightly non-uniform”
algorithms. In RANDOM ’02: Proceedings of the 6th International Workshop
on Randomization and Approximation Techniques, pages 194–208, London, UK,
2002. Springer-Verlag.

[BT06] Andrej Bogdanov and Luca Trevisan. Average-case complexity. Foundation and
Trends in Theoretical Computer Science, 2(1):1–106, 2006.

[FS04] Lance Fortnow and Rahul Santhanam. Hierarchy theorems for probabilistic
polynomial time. In FOCS, pages 316–324, 2004.

9

[Gol11] Oded Goldreich, editor. Studies in Complexity and Cryptography. Miscellanea
on the Interplay between Randomness and Computation, volume 6650 of Lecture
Notes in Computer Science. Springer, 2011.

[HS67] J. Hartmanis and R. E. Stearns. On the computational complexity of algo-
rithms. Journal of Symbolic Logic, 32(1):120–121, 1967.

[Imp95] R. Impagliazzo. A personal view of average-case complexity. In SCT ’95:
Proceedings of the 10th Annual Structure in Complexity Theory Conference
(SCT’95), page 134, Washington, DC, USA, 1995. IEEE Computer Society.

[Kan82] Ravi Kannan. Circuit-size lower bounds and non-reducibility to sparse sets.
Information and Control, 55(1):40–56, 1982.

[KV87] Marek Karpinski and Rutger Verbeek. Randomness, provability, and the sepa-
ration of Monte Carlo time and space, pages 189–207. Springer-Verlag, London,
UK, 1987.

[Mil01] Peter Bro Miltersen. Handbook on Randomization, volume II, chapter 19. De-
randomizing Complexity Classes. Kluwer Academic Publishers, July 2001.

[Per07] Konstantin Pervyshev. On heuristic time hierarchies. In IEEE Conference on
Computational Complexity, pages 347–358, 2007.

[Sch89] Uwe Schöning. Probabilistic complexity classes and lowness. Journal of Com-
puter and System Sciences, 39(1):84–100, 1989.

[vMP07] Dieter van Melkebeek and Konstantin Pervyshev. A generic time hierarchy with
one bit of advice. Computational Complexity, 16(2):139–179, 2007.

[Wat13] Thomas Watson. Time hierarchies for sampling distributions. In Innovations in
Theoretical Computer Science, ITCS ’13, Berkeley, CA, USA, January 9-12,
2013, pages 429–440, 2013.

[Zac88] Stathis Zachos. Probabilistic quantifiers and games. J. Comput. Syst. Sci.,
36(3):433–451, 1988.

[Zak83] Stanislav Zak. A turing machine time hierarchy. Theoretical Computer Science,
26(3):327–333, 1983.

10

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

