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Abstract

A Santha-Vazirani (SV) source is a sequence of random bits where the conditional
distribution of each bit, given the previous bits, can be partially controlled by an
adversary. Santha and Vazirani show that deterministic randomness extraction from
these sources is impossible. In this paper, we study the generalization of SV sources for
non-binary sequences. We show that unlike the binary case, deterministic randomness
extraction in the generalized case is sometimes possible. We present a necessary
condition and a sufficient condition for the possibility of deterministic randomness
extraction. These two conditions coincide in “non-degenerate” cases.

Next, we turn to a distributed setting. In this setting the SV source consists of a
random sequence of pairs (a1, b1), (a2, b2), . . . distributed between two parties, where
the first party receives ai’s and the second one receives bi’s. The goal of the two
parties is to extract common randomness without communication. Using the notion
of maximal correlation, we prove a necessary condition and a sufficient condition for
the possibility of common randomness extraction from these sources. Based on these
two conditions, the problem of common randomness extraction essentially reduces to
the problem of randomness extraction from (non-distributed) SV sources. This result
generalizes results of Gács and Körner, and Witsenhausen about common randomness
extraction from i.i.d. sources to adversarial sources.

1 Introduction

Randomized algorithms are simpler and more efficient than their deterministic counter-
parts in many applications. In some settings such as communication complexity and
distributed computing, it is even possible to prove unconditionally that allowing ran-
domness improves the efficiency of algorithms (see e.g., [29, 18, 13]). However, access to
sources of randomness (especially common randomness) may be limited, or the quality of
randomness in the source may be far from perfect. Having such an imperfect source of
randomness, one may be able to extract (almost) unbiased and independent random bits
using randomness extractors. A randomness extractor is a function applied to an imper-
fect source of randomness whose outcome is an almost perfect source of randomness.

The problem of randomness extraction from imperfect sources of randomness was
perhaps first considered by Von Neumann [27]. A later important work in this area is [22]
where Santha and Vazirani introduced the imperfect sources of randomness now often
called Santha-Vazirani (SV) sources. These sources can easily be defined in terms of an
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adversary with two coins. Consider an adversary who has two different coins, one of which
is biased towards heads (e.g., Pr(heads) = 2/3) and the other one is biased towards tails
(e.g., Pr(heads) = 1/3). The adversary, in each time step, chooses one of the two coins
and tosses it. Adversary’s choice of coin may depend (probabilistically) on the previous
outcomes of the tosses. The sequence of random outcomes of these coin tosses is called a
SV source.

Santha and Vazirani [22] show that randomness extraction from the above sources
through a deterministic method is impossible. More precisely, they show that for every
deterministic way of extracting one random bit, there is a strategy for the adversary such
that the extracted bit is biased, or more specifically, the extracted bit is 0 with probability
either ≥ 2/3 or ≤ 1/3. Subsequently, other proofs for this result have been found (see
e.g., [20, 1]). In Appendix A, we give a more refined version of this result, which provides
a more detailed picture of the limits of what the adversary can achieve.

Despite this negative result, such imperfect sources of randomness are enough for
many applications. For example, as shown by Vazirani and Vazirani [24, 25], randomized
polynomial-time algorithms that use perfect random bits can be simulated using SV
sources. This fact can also be verified using the fact that the min-entropy of SV sources is
linear in the size of the source (where min-entropy, in the context of extractors, was first
introduced by [8]). Indeed, by the later theory of randomness extraction (e.g., see [30]), it
is possible to efficiently extract polynomially many almost random bits from such sources
with high min-entropy if we are, in addition to the imperfect source, endowed with a
perfectly random seed of logarithmic length. (In fact, for the special case of SV sources,
a seed of constant length is enough [26, Problem 6.6]). For the application of randomized
polynomial-time algorithms where a logarithmic-length random seed is not available, we
can enumerate in polynomial time over all the logarithmic-length seeds; for each choice
of the seed, we apply the randomness extractor with the given seed and use its outcome
bits (that are not truly random) in the algorithm. Finally, we take a majority over the
outputs of the algorithm for different choices of the seed.

Enumerating over all seeds may be inefficient for some applications, or does not work
at all, e.g., in interactive proofs and one-shot scenarios such as cryptography. Therefore,
it is natural to ask whether deterministic randomness extraction from imperfect sources
of randomness is possible. For most applications, it is also necessary to require that
the extractor be explicit, i.e., extraction can be done efficiently (in polynomial time).
Previous to this work, explicit deterministic extractors had been constructed for many
different classes of sources, including i.i.d. bits with unknown bias [27], Markov chains [4],
affine sources [6, 15], polynomial sources [11, 10], and sources consisting of independent
blocks [5].

Deterministic extractors for generalized SV sources. Although [22] proves the
impossibility of deterministic randomness extraction from SV sources, this impossibility
is shown only for binary sources. In this paper we show that if we consider a generalization
of SV sources over non-binary alphabets, deterministic randomness extraction is indeed
possible under certain conditions.

To generalize SV sources over non-binary alphabets, we assume that the adversary,
instead of coins, has some multi-faceted (say 6-sided) dice. The numbers written on the
faces of different dice are the same, but each die may have a different probability for a
given face value. The adversary throws these dice n times, each time choosing a die to

2



throw depending on the results of the previous throws. Again, the outcome is an imperfect
source of randomness, for which we may ask whether deterministic randomness extraction
is possible or not.

When the dice are non-degenerate, i.e., all faces of all dice have non-zero probability,
we give a necessary and sufficient condition for the existence of a deterministic strategy
for extracting one bit with arbitrarily small bias. For example, when the dice are 6-
sided, the necessary and sufficient condition implies that we can deterministically extract
an almost unbiased bit when the adversary has access to any arbitrary set of five non-
degenerate dice, but randomness extraction is not possible in general when the adversary
has access to six non-degenerate 6-sided dice. More precisely, a set of non-degenerate
dice leads to extractable generalized SV sources if and only if the convex hull of the set of
probability distributions associated with the set of dice does not have full dimension in the
“probability simplex”. We emphasize that when we prove the possibility of deterministic
extraction, we also provide an explicit extractor.

Relation to block-sources. The generalized SV sources considered in this paper are also
a generalization of “block-sources” defined by Chor and Goldreich [8], where the source
is divided into several blocks such that each block has min-entropy at least k conditioned
on the value of the previous blocks. Such a block-source can be thought as a generalized
SV source where the adversary can generate each block (given previous blocks) using any
“flat” distribution with support 2k. Being a special case of generalized SV sources (defined
here), block-sources have another difference as well: Since it is impossible to extract from
a single block-source deterministically, the common results regarding extraction from
block-sources are about either seeded extractors (e.g. [17]) or extraction from at least two
independent block-sources (e.g. [19]).

Common randomness extractors. Common random bits, shared by distinct parties,
constitute an important resource for distributed algorithms; common random bits can
be used by the parties to synchronize the randomness of their local actions. We may
ask the question of randomness extraction in this setting too. Assuming that the parties
are provided with an imperfect source of common randomness, the question is whether
perfect common randomness can be extracted from this source or not.

Gács and Körner [14] and Witsenhausen [28] have looked at the problem of extraction
of common random bits from a very special class of imperfect sources, namely i.i.d. sources.
In this case, the bipartite source available to the parties is generated as follows: In each
time step, a pair (A,B) with some predetermined distribution (known by the two parties)
and independent of the past is generated; A is revealed to the first party and B is revealed
to the second party. After receiving arbitrarily many repetitions of random variables A
and B, the two parties aim to extract a common random bit. It is known that in this case,
the two parties (who are not allowed to communicate) can generate a common random bit
if and only if A and B have a common data [28]. This means that common randomness
generation is possible if A and B can be expressed as A = (A′, C) and B = (B′, C)
for a nonconstant common part C, i.e., there are nonconstant functions f, g such that
C = f(A) = g(B). Observe that when a common part exists, common randomness
can be extracted by the parties by applying the same extractor on the sequence of C’s.
That is, the problem of common randomness extraction in the i.i.d. case is reduced to the
problem of ordinary randomness extraction. These results are obtained using a measure of

3



correlation called maximal correlation. The key feature of this measure of correlation that
helps proving the above result is the tensorization property, i.e., the maximal correlation
between random variables A and B is equal to that of An and Bn for any n, where An

and Bn denote n i.i.d. repetitions of A and B.
In this paper we consider the problem of common randomness extraction from dis-

tributed SV sources defined as follows. In a distributed SV source, the adversary again has
some multi-faceted dice, but here, instead of a single number, a pair of numbers (A,B)
is written on each face. As before, the set of values written on the faces of the dice is the
same, but the probabilities of face values may differ in different dice. In each time step,
the adversary depending on the results of the previous throws, picks a die and throws it.
If (A,B) is the result of the throw, A is given to the first party and B to second party.
Thus, the two parties will observe random variables A and B whose joint distribution
depends on the choice of die by the adversary.

Again consider the non-degenerate case where all faces on all the dice of the adversary
have positive probability. We show that in this case, we can extract a common random
bit from the distributed SV source if and only if it is possible to extract randomness
from the common part of A and B. That is, similar to the i.i.d. case, the problem of
common randomness extraction from distributed SV sources is reduced to the problem of
randomness extraction from non-binary generalized SV sources. Since by our results, we
know when randomness extraction from generalized SV sources is possible, we obtain a
complete answer to the problem in the distributed case too.

This relation between the problem of common randomness extraction and the problem
of randomness extraction from the common part holds in more general settings. For
example, it resolves the problem of common randomness extraction from the following
interesting distributed SV source.

Example. A concrete example of a distributed SV source is as follows. Let us start
with the original source considered by Santha and Vazirani with two coins. Assume that
the adversary chooses coin S ∈ {1, 2} (where coin 1 is biased towards heads and coin
2 is biased towards tails) and let the outcome of the throw of the coin be denoted by
random variable C. The first party, Alice, is assumed to observe both the identity of
the coin chosen by the adversary, i.e., S, and the outcome of the coin, which is C. The
second party, Bob, observes the outcome of the coin C, but only gets to see the choice
of the adversary with probability 0.99. That is, Bob gets B = (C, S̃) where S̃ is the
result of passing S through a binary erasure channel with erasure probability 0.01. Here
the common part of A = (C, S) and B = (C, S̃) is just C. Our result (Theorem 20)
then implies that Alice and Bob cannot benefit from their knowledge of the actions of
adversary, and should only consider the C sequence. But then from the result of [22], we
can conclude that common random bit extraction is impossible in this example.

Proof techniques. We briefly explain the techniques used in the proof of the above
results.

Consider a deterministic randomness extractor that extracts one bit from a generalized
SV source. We can view this extractor as labeling the leaves of a rooted tree with zeros
and ones. Each sequence of dice throws corresponds to a path from the root to one of the
leaves, and at each node, the adversary has some limited control of which branch to take
while moving from the root towards the leaves. To prove the impossibility of randomness
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Figure 1: Given any deterministic extractor, the pair (α, β) is above the curve specified
in this figure, where α and β are the minimum and maximum value of probability of the
output being zero that the adversary can achieve by choosing its strategy. The plot is
for the binary SV source with two coins with probability of heads respectively equal to
1/3 and 2/3. The point (1/2, 1/2) is specified by a red star in the figure. To see how the
curve is obtained, see Appendix A, Corollary 25.

extraction, we need to show that either the minimum or the maximum of the probability
of the output bit being zero, over all adversary’s strategies, is far from 1/2. Our idea is
to track these maximum and minimum probabilities in a recursive way, i.e., to find these
probabilities for any node of the tree in terms of these values for its children. We then
by induction show that for each node of the tree either the minimum probability or the
maximum probability is far from 1/2.

To be more precise, given a deterministic extractor, let α be the minimum probability
of output bit being zero (over all strategies of the adversary). Similarly, let β be the
maximum probability of output bit being zero (over all strategies of the adversary). Then
we show that under certain conditions, there exists a continuous function g(·) on the
interval [0, 1], such that β ≥ g(α) and furthermore g(1/2) > 1/2. We prove β ≥ g(α)
inductively using the tree structure discussed above. This implies the desired impossibility
result, as by the continuity of g(·), both α and β cannot be close to 1/2. For instance, for
the binary SV source with two coins having probability of heads respectively equal to 1/3
and 2/3, Figure 1 shows a curve where (α, β) always lies above it. This curve is clearly
isolated from (1/2, 1/2).

We follow similar ideas for proving our impossibility result for common randomness
extraction from a distributed SV source; again we construct a continuous function, which
somehow captures not only the minimum and maximum of the probability of the extracted
common bit being zero, but also the probability that the two parties agree on their
extracted bits. The construction of this function is more involved in the distributed case;
it has two terms one of which is similar to the function in the non-distributed case, and
the other is inspired by the definition of maximal correlation mentioned above.

To show the possibility of deterministic randomness extraction under certain condi-
tions, we try to use linear relations among the probability vectors associated with different
dice in order to define a martingale with anti-concentration properties, and use the theory
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of stopping times for martingales and submartingales.

Contributions to information theory. As mentioned above, the problem of common
randomness extraction from i.i.d. sources has been studied in the information theory
community. Then our work provides a generalization and an alternative proof of known
results in the i.i.d. case. In particular, we give a new proof of Witsenhausen’s result [28]
on the impossibility of common randomness extraction from certain i.i.d. sources.

We also would like to point out that a generalized SV source as we define, is indeed
an arbitrarily varying source (AVS) [9, 12] with a causal adversary. These sources are
studied in the information theory literature from the point of view of source coding [3].

Notations. In the rest of this section we fix some notations that will be used. The main
results of the paper are discussed in the following two sections.

Probability spaces in this paper are all over finite sets which are denoted by calligraphic
letters such as C. So a probability distribution over C is determined by numbers p(c) for
c ∈ C. The random choice of c ∈ C with this distribution is denoted by C, i.e., C = c
with probability p(c).

In this paper we also consider functions X : C → R. Such a function can be thought of
as a random variable X = X(C). We sometimes for simplicity use the notation X(c) = xc.
The constant function X : C → R with X(c) = 1 is denoted by 1C . The expected value
and variance of X are denoted by E[X] and Var[X] respectively. Given two such functions
X,Y : C → R we define their inner product by

〈X,Y 〉 := E[XY ].

This inner product induces the norm ‖X‖ := 〈X,X〉1/2 = E[X2]1/2.
We sometimes have several distributions over the same set C which are indexed by

elements s ∈ S. In this case to avoid confusions, the expectation value, variance, inner
product, and norm are specified by a subscript, i.e., respectively by E(s),Var(s), 〈·, ·〉(s),
and ‖ · ‖(s). The uniform distribution is specified by a star subscript, i.e,

E∗[X] =
1

|C|
∑
c

xc,

and 〈X,Y 〉∗ := E∗[XY ], and ‖X‖∗ = E∗[X2]1/2.
For simplicity of notation a sequence C1, . . . , Cn of (not necessarily i.i.d.) random

variables is denoted by Cn. Similarly for c1, . . . , cn ∈ C we use cn = (c1, . . . , cn). We also
use the notation c[k:k+`] = (ck, ck+1, . . . , ck+`).

2 Randomness extraction from generalized SV sources

Definition 1 (Generalized SV source). Let C be a finite alphabet set. Consider a finite
set of distributions over C indexed by a set S. That is, assume that for any s ∈ S
we have a distribution over C determined by numbers ps(c) for all c ∈ C. A sequence
C1, C2, · · · of random variables, each over alphabet set C, is said to be a generalized SV
source with respect to distributions ps(c), if the sequence is generated as follows: Assume
that C1, . . . , Ci−1 are already generated. In order to determine Ci, an adversary chooses
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Si = si ∈ S, depending only1 on C1, . . . , Ci−1. Then Ci is sampled from the distribution
psi(c).

We can think of specifying s as choosing a particular multi-faceted die, and c as the
facet that results from throwing the die. The joint probability distribution of random
variables C1, . . . , Cn and S1, . . . , Sn in a generalized SV source factorizes as follows:

p(c1, c2, · · · , cn, s1, s2, · · · , sn) = q(s1)ps1(c1)q(s2|c1)ps2(c2) · · · q(sn|c1 · · · cn−1)psn(cn),

where q(si|c1 · · · ci−1) describes the action of the adversary at time i. Here, first the
adversary chooses S1 = s1 with probability q(s1), and then C1 = c1 is generated with
probability ps1(c1). Then the adversary chooses S2 = s2 with probability q(s2|c1) and
then C2 = c2 is generated with probability ps2(c2), and so on.

Generalized SV sources can be alternatively characterized as follows: Given i and
C1 = c1, . . . , Ci−1 = ci−1, the distribution of Ci should be a convex combination of the
set of |S| distributions {ps(·) : s ∈ S}.

We emphasize that even after fixing distributions ps(c), the generalized SV source
(similar to ordinary SV sources) is not a fixed source, but rather a class of sources. This
is because in each step si is chosen arbitrarily by the adversary as a (probabilistic) function
of C1, . . . , Ci−1. Nevertheless, once we fix adversary’s strategy, the generalized SV source
is fixed in that class of sources.

Definition 2 (Deterministic extraction). We say that deterministic randomness extrac-
tion from the generalized SV source determined by distributions ps(c) is possible if for
every ε > 0 there exist n and Γn : Cn → {0, 1} such that for every strategy of the ad-
versary, the distribution of Γn(Cn) is ε-close, in total variation distance, to the uniform
distribution. That is, independent of adversary’s strategy, Γn(Cn) is an almost uniform
bit.

In the following we present a necessary condition and separately a sufficient condition
for the existence of deterministic extractors for generalized SV sources. In the non-
degenerate case, i.e., when ps(c) > 0 for all s, c, these two conditions coincide. Thus we
fully characterize the possibility of deterministic randomness extraction from generalized
SV sources in the non-degenerate case.

2.1 A sufficient condition for the existence of randomness extractors

In this subsection we prove the following theorem.

Theorem 3. Consider a generalized SV source with alphabet C, set of dice S, and prob-
ability distributions ps(c). Suppose that there exists ψ : C → R such that for every s ∈ S
we have E(s)[ψ(C)] = 0 and Var(s)[ψ(C)] > 0, where E(s) and Var(s) are expectation and
variance with respect to the distribution ps(·). Then randomness can be extracted from
this SV source.

Observe that if ps(c) > 0 for all s, c, then this theorem can equivalently be stated as
follows: Thinking of each distribution ps(·) as a point in the probability simplex, if the

1We can allow for the adversary to choose si depending both on C1, . . . , Ci−1 and on S1, . . . , Si−1, but
this relaxation is not important, since it is only the marginal distribution of p(c1, c2, · · · , cn) that matters
to us.
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convex hull of the set of points {ps(·) : s ∈ S} in the probability simplex does not have full
dimension, then deterministic randomness extraction is possible. For instance if |S| < |C|
this condition is always satisfied and then we can deterministically extract randomness.

Proof of Theorem 3. Pick a sufficiently large (but constant) number M . Define random
variables X1, . . . , Xn and Y0, . . . , Yn inductively as follows: Let Y0 = 0, and for i =
1, . . . , n, define Yi = Yi−1 + Xi where Xi = ψ(Ci). Observe that by our assumption we
have E[Xi|X1, . . . , Xi−1] = 0, so Y0, . . . , Yn forms a martingale.

Let τ be the first time t such that |Yt| ≥M ; if no such t exists, define τ = n. Clearly,
τ is a stopping time for the martingale. Now define the extracted bit to be 1 if Yτ ≥M ;
otherwise define it to be 0. We show that this is a true random bit extractor.

Let v = mins Var(s)[ψ] > 0. Define Zi = Y 2
i − iv. We claim that Zi is a submartingale

with respect to X1, . . . , Xn. To show this we compute

E[Zi|X1, . . . , Xi−1] = E
[
(Xi + Yi−1)2 − iv

∣∣X1, . . . , Xi−1

]
= E

[
(Y 2
i−1 − (i− 1)v) + (X2

i − v) + 2XiYi−1

∣∣X1, . . . , Xi−1

]
≥ Zi−1.

Here we used Zi−1 = Y 2
i−1 − (i− 1)v, and

E[XiYi−1|X1, . . . , Xi−1] = Yi−1E[Xi|X1, . . . , Xi−1] = 0,

and that by the law of total variance

E[X2
i |X1, . . . , Xi−1] = Var[ψ(Ci)|X1, . . . , Xi−1] ≥ Var[ψ(Ci)|X1, . . . , Xi−1, Si] ≥ v.

Therefore by optional stopping theorem for submartingales, we have

E[Zτ ] ≥ E[Z0] = 0,

or equivalently
E[Y 2

τ ] ≥ vE[τ ].

Let m = maxc |ψ(c)|. Then, by the definition of τ we have |Yτ | ≤M +m. Therefore,

E[τ ] ≤ E[Y 2
τ ]

v
≤ (M +m)2

v
.

Hence by the Markov inequality we have

Pr[τ = n] ≤ (M +m)2

vn
= O

( 1

n

)
.

This means that

Pr
[
Yτ ∈ [M,M +m) ∪ (−M −m,−M ]

]
= 1−O

( 1

n

)
.

On the other hand, for the martingale Y0, Y1, . . ., we have E[Yτ ] = E[Y0] = 0. Together
with |Yτ | ≤M +m, this implies

M

2M +m
+O

( 1

n

)
≤ Pr[Yτ ∈ [M,M +m)] ≤ M +m

2M +m
+O

( 1

n

)
.

Therefore, the extracted bit has sufficiently small bias as M,n are chosen sufficiently
large. This is because m = maxc |ψ(c)| is a constant, independent of M and n.
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Remark 4. Note that the extractor constructed in the above proof is explicit. Moreover,
although we have only mentioned how to extract a single bit, the analysis shows that for
arbitrarily small (but constant) bias, one can extract linearly many bits each having at
most that bias given the previous bits. This can be done by partitioning the sequence into
a linear number of blocks. One bit is extracted from each block. Each produced bit is
almost uniform, given the past blocks and hence given the past produced bits. Thus, the
bits are almost uniform and almost mutually independent.

Remark 5. Note that we could have chosen M = Θ(n1/3) in the above proof. Then the
analysis would have shown that the bias is polynomially small, namely a bias of Θ(n−1/3).

2.2 A necessary condition for the existence of randomness extractors

The main result of this subsection is the following theorem.

Theorem 6. Consider a generalized SV source with alphabet C, set of dice S, and proba-
bilities ps(c). Suppose that there is no non-zero function ψ : C → R such that for all s ∈ S
we have E(s)[ψ(C)] = 0. Then deterministic randomness extraction from this generalized
SV source is impossible.

Again, let us consider the case where ps(c) > 0 for all s, c. In this case ψ being non-
zero is equivalent to Var(s)[ψ] > 0 for all s. Then comparing to Theorem 3 we find that
the necessary and sufficient condition for the possibility of deterministic extraction is the
existence of a non-zero ψ with E(s)[ψ] = 0.

In Appendix B we give a proof of this theorem based on ideas in [20]. Here we present
another proof whose ideas will be used in the distributed case too.

Proof of Theorem 6. A deterministic randomness extraction algorithm corresponds to a
subset I ⊆ Cn such that the extracted bit is 0 if the observed cn is in I, and is 1 otherwise.
For any n, and any such I ⊆ Cn, let α(I) and β(I) respectively be the minimum and
maximum of the probability of output 0 over all strategies of the adversary, i.e.,

α(I) := min Pr[Cn ∈ I], β(I) := max Pr[Cn ∈ I],

where minimum and maximum are taken over adversary’s strategies.
Fix a deterministic algorithm for randomness extraction. To prove the theorem we

need to show that for every such I, either α(I) or β(I) is far from 1/2. The numbers
α(I), β(I) can be computed recursively as follows. For every c ∈ C, let Ic := {c[2:n] :
(c, c[2:n]) ∈ I}. Note that Ic is a subset of Cn−1 for which α(Ic) is defined. We claim that

α(I) = min
s

∑
c

ps(c)α(Ic) = min
s

E(s)[α(IC)].

To verify this, suppose that the adversary in the first step chooses s1 = s. Then C1 = c
occurs with probability ps(c). Assuming C1 = c, the final extracted bit is equal to 0
if (C2, . . . , Cn) ∈ Ic. Since, by definition, the minimum of the probability of this latter
event is α(Ic), the (unconditional) probability of the extracted bit being 0 is equal to∑

c ps(c)α(Ic). Taking the minimum of this expression over all s1 = s gives α(I). We
similarly have

β(I) = max
s

E(s)[β(IC)].
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By the above discussion to compute α(I) and β(I) for I ⊆ Cn it suffices to compute
these numbers for subsets of Cn−1. Thus the functions α(·) and β(·) can be computed
recursively. The above recursive procedure can be understood as assigning two values to
each node of the tree associated with the extractor, as described in the “proof techniques”
subsection of the introduction.

Let Φn be the set of pairs (α(I), β(I)) for all subsets I ⊆ Cn. In other words, for
n ≥ 1 define

Φn :=
{

(α(I), β(I)) : I ⊆ Cn
}
.

Also let
Φ0 = {(0, 0), (1, 1)}.

Observe that Φ0 corresponds to the case when there is no SV source to look at, and
the deterministic extractor outputs a constant bit. Now by the above discussion, Φn is
indeed the set of pairs (x, y) for which there exist X,Y : C → R such that (X(c), Y (c)) =
(xc, yc) ∈ Φn−1 for every c ∈ C, and that

x = min
s

E(s)[X] = min
s

∑
c

p(c|s)X(c),

y = max
s

E(s)[Y ] = min
s

∑
c

p(c|s)Y (c). (1)

A full characterization of the set Φn for the original binary SV source is given in Ap-
pendix A.

Suppose that g : [0, 1]→ R is a function that satisfies the followings:

• g is continuous and monotone,

• we have

g(0) = 0, g(1) = 1, g(1/2) > 1/2, (2)

• and for all X : C → [0, 1] we have

max
s

E(s)[g(X)] ≥ min
s′
g
(
E(s′)[X]

)
,

or equivalently

max
s,s′

E(s)[g(X)]− g
(
E(s′)[X]

)
≥ 0. (3)

Then we claim that β(I) ≥ g(α(I)). To prove this, it suffices to show that for all
(x, y) ∈ Φn we have y ≥ g(x). The latter statement can be proved by induction on
n. The base of induction, n = 0, follows from g(0) = 0 and g(1) = 1. Assuming that
(x, y) ∈ Φn is obtained from (1) for (xc, yc) ∈ Φn−1, by the induction hypothesis we have
yc ≥ g(xc), and then

g(x) = g
(

min
s

E(s)[X]
)

= min
s
g
(
E(s)[X]

)
≤ max

s
E(s)[g(X)]

≤ max
s

E(s)[Y ]

= y.
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Here in the second line we use the monotonicity of g, and in the fourth line we use the
induction hypothesis.

If such a function g with the above properties exists, then α(I) and β(I) cannot both
be arbitrary close to 1/2. To verify this, note that β(I) ≥ g(α(I)), so if (α(I), β(I)) '
(1/2, 1/2), by the continuity of g we have 1/2 & g(1/2). This is a contradiction since
g(1/2) > 1/2. As a result, we only need to prove the existence of the function g.

Let f : [0, 1] → R be a smooth function such that f(1/2) > 0 and f(0) = f(1) = 0.
We show that the function gε defined by

gε(x) := x+ εf(x), (4)

for sufficiently small ε > 0, satisfies the desired properties. Verification of (2) is easy.
For the monotonicity of gε, note that since f is smooth, there is a uniform upper bound
|f ′(x)| ≤ M on the derivative of f . Then for ε < 1/M , the function gε is monotone. It
remains to show (3).

Define
T :=

{
T : C → [0, 1] : ‖T‖∗ = 1, E∗[T ] = 0

}
.

For every T ∈ T we have
max
s,s′

E(s)[T ]− E(s′)[T ] > 0,

because otherwise we would obtain a non-constant function whose expectation is indepen-
dent of s, which is in contradiction with our assumption in the statement of the theorem.
Therefore, using the compactness of T , there is ∆ > 0 such that

max
s,s′

E(s)[T ]− E(s′)[T ] > ∆, ∀T ∈ T .

Let X : C → [0, 1] be an arbitrary function. Then, letting x = E∗[X] and r =√
Var∗[X] ≥ 0 we get that

X = x1C + rT = x+ rT,

for some T ∈ T , i.e., xc = x+ rtc for all c ∈ C. From equation (4) we have

max
s,s′

E(s)[gε(X)]− gε
(
E(s′)[X]

)
= max

s,s′
r
(
E(s)[T ]− E(s′)[T ]

)
+ ε
(
E(s)[f(x+ rT )]− f

(
x+ rE(s′)[T ]

))
.

For every 0 ≤ x, y ≤ 1 there is some z (between x and y) such that f(y) = f(x) +
(y − x)f ′(z). Using the upper bound M on the derivative of f we obtain

f(x)−M |y − x| ≤ f(y) ≤ f(x) +M |y − x|.

Therefore, using the fact that |tc| ≤
√
|C| ≤ |C| (implied by ‖T‖∗ = 1), we have

max
s,s′

E(s)[gε(X)]− gε
(
E(s′)[X]

)
≥ max

s,s′
r
(
E(s)[T ]− E(s′)[T ]

)
+ ε
(
E(s)[f(x)− rM |T |]−

(
f(x) + rME(s′)[|T |]

))
≥ max

s,s′
r
(
E(s)[T ]− E(s′)[T ]

)
− 2εrM |C|

≥ r(∆− 2εM |C|).
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which is strictly positive if ε < ∆/(2M |C|). Then the function gε for

ε < min{1/M,∆/(2M |C|)},

has all the desired properties.

Corollary 7. Consider a generalized SV source with alphabet C, set of dice S, and prob-
abilities ps(c). Let S ′ be a subset of S and let C′ be the set of all c for which there exists
some s ∈ S ′ such that ps′(c) > 0. Suppose that there is no non-zero function ψ : C → R
such that (i) ψ is zero on C − C′, and (ii) for all s ∈ S ′ we have E(s)[ψ(C)] = 0. Then
deterministic randomness extraction from this generalized SV source is impossible.

3 Distributed SV sources

Distributed SV sources can be defined similarly to generalized SV sources except that in
this case, the outcome in each time step is a pair that is distributed between two parties.

Definition 8. Fix finite sets A,B, S. Let ps(ab) define a probability distribution over
A × B for any s ∈ S. The distributed SV source with respect to distributions ps(ab) is
defined as follows. The adversary in each time step i, depending on the previous out-
comes (A1, B1) = (a1, b1), . . . , (Ai−1, Bi−1) = (ai−1, bi−1) chooses some Si = si. Then
(Ai, Bi) = (ai, bi) is sampled from the distribution psi(aibi). The sequence of random
variables (A1, B1), (A2, B2), . . . , is called a distributed SV source.

Here we assume that the outcomes of this SV source are distributed between two
parties, say Alice and Bob. That is, in each time step i, Ai is revealed to Alice and Bi is
revealed to Bob. So Alice receives the sequence A1, A2, . . . , and Bob receive the sequence
B1, B2, . . . .

In this section we are interested in whether two parties can generate a common random
bit from distributed SV sources. To be more precise, let us first define the problem more
formally.

Definition 9. We say that common randomness can be extracted from the distributed SV
source (A1, B1), (A2, B2), . . . if for every ε > 0 there is n and functions Γn : An → {0, 1}
and Λn : Bn → {0, 1} such that for every strategy of adversary, the distributions of
K1 = Γn(An) and K2 = Λn(Bn) are ε-close (in total variation distance) to uniform
distribution, and that Pr[K1 6= K2] < ε.

In the above definition we considered only deterministic protocols for extracting a
common random bit. We could also consider probabilistic protocols where Γn and Λn are
random functions depending on private randomnesses of Alice and Bob respectively. More
precisely, we could take K1 = Γn(An, R1) and K2 = Λn(Bn, R2) with the above conditions
onK1,K2, where R1 and R2 are private randomnesses of Alice and Bob respectively, which
are independent of the SV source and of each other. Nevertheless, if a common random
bit can be extracted with probabilistic protocols, then common randomness extraction
with deterministic protocols is also possible.

Lemma 10. In the problem of common random bit extraction, with no loss of generality
we may assume that the parties do not have private randomness.

The proof of this lemma is given in Appendix C.
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3.1 Maximal correlation

Let us first consider the problem of common randomness extraction in a simpler case
where there is no adversary (in the i.i.d. case). That is, let us assume that we have only
one distribution p(ab), and Alice and Bob in each time i receive samples Ai and Bi from
this distribution. The question of the possibility of common randomness extraction can
be raised in this case too.

Witsenhausen [28] used a measure of correlation called maximal correlation to prove
a necessary and sufficient condition for the possibility of common randomness extraction
from i.i.d. sources.

Definition 11 (Maximal correlation). The maximal correlation of random variables A
and B with joint distribution p(ab) denoted by ρ(A,B) is defined by

ρ(A,B) := max E[XY ], (5)

subject to: E[X] = E[Y ] = 0,

E[X2] = E[Y 2] = 1,

where the maximum is taken over all functions X : A → R, Y : B → R.

Maximal correlation has the intriguing property that if (An, Bn) is n i.i.d. copies of
(A,B), then ρ(An, Bn) = ρ(A,B). Moreover, maximal correlation does not increase under
local stochastic maps [28].

From the definition and using Cauchy-Schwarz inequality it is not hard to verify
that 0 ≤ ρ(A,B) ≤ 1. Further, ρ(A,B) = 0 if and only if A,B are independent. To
characterize the other extreme case ρ(A,B) = 1 we need the notion of common data.

Definition 12. We say that A,B have common data if there are non-constant func-
tions Γ(A) and Λ(B), with arbitrary but the same images, such that Γ(A) = Λ(B) with
probability one.

Thus A and B have common data if Alice and Bob, having access to A and B respec-
tively, can compute the same non-trivial data (i.e., Γ(A) = Λ(B)) without communication.
We have ρ(A,B) = 1 if and only if A,B have common data.

Theorem 13. [28] A common random bit can be extracted from i.i.d. copies of A,B if
and only if ρ(A,B) = 1.

Here, we give an alternative proof of this theorem whose ideas will be used later. This
proof of Witsenhausen’s theorem can also be of independent interest.

Proof. If ρ(A,B) = 1, then A,B have common data as defined above, and a common
random bit can be extracted from that common data by standard randomness extractors
for i.i.d. sources.

For the other direction, suppose that ρ(A,B) = ρ < 1, and that we can extract one bit
of common randomness from A,B. By Lemma 10 we may assume that Alice and Bob’s
strategies for extracting common randomness are deterministic. That is, we may assume
that there are subsets I ⊆ An and J ⊆ Bn such that Alice’s extracted bit is K1 = 0 if
An ∈ I and Bob’s extracted bit K2 = 0 if Bn ∈ J , and that K1,K2 are equal with high
probability, and their distributions are close to uniform distribution over {0, 1}.
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Let us define

α(I) := Pr[An ∈ I],

β(J ) := Pr[Bn ∈ J ],

γ(I,J ) := Pr[An ∈ I & Bn ∈ J ].

Then by assumption these three number are all close to 1/2.
For every a ∈ A and b ∈ B define Ia = {a[2:n] : (a, a[2:n]) ∈ I} and Jb := {b[2:n] :

(b, b[2:n]) ∈ J }. Then as in the proof of Theorem 6 the numbers α(I), β(J ) and γ(I,J )
can be computed recursively:

α(I) =
∑
a

p(a)α(Ia) = E[α(IA)],

β(J ) =
∑
b

p(b)β(Jb) = E[β(JB)],

γ(I,J ) =
∑
a,b

p(a, b)γ(Ia,Jb) = E[γ(IA,JB)].

For n ≥ 1, let Φn be the set of triples (α(I), β(J ), γ(I,J )) for all I ⊆ An and J ⊆ Bn.
Also let

Φ0 =
{
e0 = (1, 1, 1), e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 0)

}
.

Observe that Φ0 corresponds to deterministic strategies of Alice and Bob that determine
K1,K2 without looking at any random source. If, for instance, Alice always outputs
K1 = 0 and Bob always outputs K2 = 1, then Pr[K1 = 0] = 1, Pr[K2 = 0] = 0, and
Pr[K1 = K2 = 0] = 0. This gives the triple e1 = (1, 0, 0) in Φ0.

Now since by the above discussions the numbers α(I), β(J ) and γ(I,J ) can be com-
puted recursively, the sets Φn can be characterized recursively too. Indeed, Φn for n ≥ 1
is the set of triples (x, y, z) for which there exist functions X(a) = xa, Y (b) = yb and
Z(ab) = zab such that for all (a, b) we have (xa, yb, zab) ∈ Φn−1 and that

x = E[X], y = E[Y ], z = E[Z]. (6)

Let us define the function f : [0, 1]2 → R by

f(x, y, z) := (x+ y)ρ− 2z + 2xy − (x2 + y2)ρ. (7)

We claim that f(α(I), β(J ), γ(I,J )) ≥ 0. Assuming this, we conclude that α(I), β(J )
and γ(I,J ) cannot all be close to 1/2 because f is continuous and

f(1/2, 1/2, 1/2) = −1− ρ
2

< 0.

To prove our claim it suffices to show that f(x, y, z) ≥ 0 for all (x, y, z) ∈ Φn, which
itself can be proved by induction on n. The base of induction, n = 0, follows from
f(e`) ≥ 0 for 0 ≤ ` ≤ 3. Now suppose that (x, y, z) ∈ Φn is obtained from functions
X,Y, Z as above that satisfy (6). By the induction hypothesis for every (a, b) we have
f(X(a), Y (b), Z(ab)) ≥ 0. Then to prove f(x, y, z) ≥ 0, it suffices to show that

f(x, y, z) ≥ E[f(X,Y, Z)].
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Using (6), we need to show that

f(E[X],E[Y ],E[Z]) ≥ E[f(X,Y, Z)].

Using the definition of the function f(·) in equation (7), and by expanding both sides and
canceling the linear terms, we need to show that

2E[X]E[Y ]− ρ(E[X]2 + E[Y ]2) ≥ 2E[XY ]− ρ(E[X2] + E[Y 2]).

Let us define X ′ = X − E[X] and Y ′ = Y − E[Y ]. Then, expressing the above inequality
in terms of X ′, Y ′ we need to show that

2E[X ′Y ′] ≤ ρ(E[X ′2] + E[Y ′2]).

This inequality is a consequence of the definition of ρ = ρ(A,B) because E[X ′] = E[Y ′] = 0
and then

E[X ′Y ′] ≤ ρ
√
E[X ′2]E[Y ′2] ≤ 1

2
ρ(E[X ′2] + E[Y ′2]).

3.2 Common data

In the previous subsection we briefly discussed the notion of common data and recalled
that ρ(A,B) = 1 if and only if common data exists. To state our result, however, we need
a more precise characterization of common data.

Suppose that A,B have a common data, meaning that there are non-trivial functions
Γ(A) and Λ(B) such that Γ(A) = Λ(B). Let C be the images of these functions. For any
c ∈ C define Ac = Γ−1(c) and Bc = Λ−1(c). Given the fact that Γ(A) = Λ(B) always
holds, then for every c 6= c′ and (a, b) ∈ Ac × Bc′ we must have p(ab) = 0.

To understand this more precisely consider a bipartite graph G on the vertex set A∪B
with an edge between (a, b) if p(ab) 6= 0. Then by the above observation, the existence
of common data implies that the graph G is disconnected (and also at least two of the
connected compoenents are not singletons); if c 6= c′ then there is no edge between vertices
in Ac ∪ Bc and Ac′ ∪ Bc′ .

Conversely, if G is disconnected (and also at least two of the connected components are
not singletons) then common data exists; letting C be the sets of connected components,
and defining Γ(a),Λ(b) be the index of the connected component to which a, b belong, we
have Γ(A) = Λ(B). As a result, ρ(A,B) = 1 if and only if G is disconnected (and at least
two of the connected components are not singletons).

We summarize the above discussion in the following lemma.

Lemma 14. Let C be the random variable associated to the index of the connected com-
ponent of G to which (A,B) belong. Then C can be computed as a function of A or B
individually. Moreover, any common data of A,B is a function of C, and ρ(A,B) = 1 if
and only if C is non-trivial (i.e., G has at least two non-singleton connected components).
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Figure 2: The graph associated with probability distribution given in Example 15. This
graph has two non-singleton connected components, so A and B have common data.

Example 15. Consider the following joint distribution on A × B where A = B =
{1, 2, 3, 4}.

B
1 2 3 4

1 0.1 0 0 0
A 2 0.1 0.2 0 0

3 0 0 0.1 0.1
4 0 0 0.2 0.2

The graph associated with this distribution is given in Figure 2. This graph is disconnected.
The common data of A,B is one bit, determined by whether A and B are both in {1, 2}
or in {3, 4}.

Let c ∈ C be a connected component of G. Then p(ab|c), the distribution of A,B
conditioned on C = c, does not have common data. This is because the bipartite graph
associated to this conditional distribution is nothing but the c-th connected component of
G, which by definition is connected. Denoting the maximal correlation of this conditional
distribution by ρ(A,B|C = c) we find that ρ(A,B|C = c) < 1.

Definition 16 (Conditional maximal correlation [2]). Let p(abc) be a tripartite distribu-
tion. We define

ρ(A,B|C) := max
c: p(c)>0

ρ(A,B|C = c),

where ρ(A,B|C = c) is the maximal correlation of the conditional bipartite distribution
p(ab|c).

With this definition, for all bipartite distributions p(ab), if we define C to be the
common part of A and B as in Lemma 14 then

ρ(A,B|C) < 1. (8)

3.3 Common data of a distributed SV source

Given a distributed SV source specified by distributions ps(ab), our goal is to determine
whether a common random bit can be extracted from this source or not. Suppose that
for some s ∈ S, the maximal correlation of ps(ab), which we denote by ρs(A,B), is less
than 1. Then, by Theorem 13 common randomness extraction is impossible because the
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adversary can in all time steps choose si = s to obtain an i.i.d. source. So we may assume
that ρs(A,B) = 1 for all s.

Let Gs be the bipartite graph associated to the bipartite distribution ps(ab). By
the above observation we let ρs(A,B) = 1 and then Gs has at least two non-singleton
connected components. We claim that even the graph

⋃
s Gs, obtained by the union of

edges of individual graphs Gs, should also have at least two non-singleton components. To
see this, assume that the adversary in each time step chooses si ∈ S uniformly at random
and independent of the past. Then we obtain an i.i.d. source with distribution

q(ab) =
1

|S|
∑
s

ps(ab).

Then common randomness can be extracted from this i.i.d. source, only if the bipartite
graph associated to q(ab) is disconnected. It is easy to verify that this bipartite graph is
nothing but

⋃
s Gs. So without loss of generality we may assume that

⋃
s Gs has at least

two non-singleton connected components.
The following lemma summarizes the above discussion.

Lemma 17. For a distributed SV source we let Gs be the bipartite graph associated to
ps(ab), and define Ḡ =

⋃
s Gs. Then a common bit can be extracted from the distributed SV

source only if Ḡ has at least two non-singleton connected components. Moreover, letting
C be the random variable corresponding to the connected components of Ḡ, then C can be
computed by Alice and Bob separately.

Definition 18. The random variable C defined in Lemma 17 is called the common data
of the distributed SV source.

Example 19. Consider the following two joint distribution on A and B. The graph
corresponding to both of these distributions has three connected components. But if we
superimpose these two distributions over each other (by choosing each with probability
half), the graph of the resulting distribution has only two connected components.

B
1 2 3 4

1 0.1 0 0 0
A 2 0 0.2 0 0

3 0 0 0.1 0.1
4 0 0 0.3 0.2

B
1 2 3 4

1 0.2 0 0 0
A 2 0.1 0.1 0 0

3 0 0 0.3 0
4 0 0 0 0.3

3.4 Common random bit extraction from distributed SV sources

We now have all the required tools to state and prove our main result about common
randomness extraction from distributed SV sources.

Theorem 20. Consider a distributed SV source (as in Definition 8) with corresponding
sets S, A, and B and corresponding distributions ps(ab). Let C be the common data
of the distributed SV source (as in Definition 18). Let ps(abc) denote the induced joint
distribution of A, B, and C. Suppose that there is no non-zero function ψ : C → R such
that E(s)[ψ(C)] = 0 for all s. Then common randomness cannot be extracted from this
distributed SV source.
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An algorithm to extract common random bits is to focus on the common part C
that can be computed by both Alice and Bob. Indeed C itself can be thought of as a
generalized SV source. If deterministic randomness extraction from C is possible, then
Alice and Bob can obtain a common random bit by individually applying the randomness
extraction protocol. Comparing with Theorems 3 and 6, and assuming ps(c) > 0 for all
s, c, the above theorem states that a common random bit can be extracted if and only if
deterministic randomness extraction from C is possible.

The proof of this theorem is essentially obtained by combining the ideas developed in
the proofs of Theorems 6 and 13. We present a detailed proof in Appendix D.

4 Future Work

In this paper we completely characterized the randomness extraction problem for non-
degenerate cases. A future work could be to solve this problem for the degenerate cases.
In the degenerate cases, for generalized non-distributed sources Corollary 7 gives a mildly
stronger necessary condition than Theorem 6, but there is still a gap between this neces-
sary condition and the sufficient condition of Theorem 3.

We note that our randomness extractor in Theorem 3 extracts a bit whose bias is
inverse polynomially small in the length of the source sequence. It is interesting to see if
this extractor could be improved to yield a bit with an exponentially small bias. Further-
more, if we want to produce more than one bit of randomness, the tradeoff between the
number of produced random bits and their quality is open.

Another interesting problem is to look at efficient adversaries, similar to the work
of [1]. Our proofs only show existence of inefficient adversaries.

Another way to restrict the adversary is to put limitations on the number of times
the adversary can choose a strategy s ∈ S, i.e. there can be a cost associated to each
strategy s.

A different type of limitation can be on the adversary’s knowledge about the sequence
generated so far. More specifically, the adversary might have noisy or partial access to
the previous outcomes in the sequence (these sources are called “active sources” [21]).
These sources model adversaries with limited memory. Space bounded sources have been
studied in [16, 23].
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A Exact bias of deterministic extractors for the SV source

SV sources were originally defined in the binary case [22]. Such a source is specified by
two distributions, i.e., S = {0, 1}, over C = {0, 1} with

p0(0) = δ, and p1(0) = 1− δ,

where 0 < δ < 1/2. This is proved in [22] and can also be concluded from Theorem 6
that randomness extraction from this SV source is impossible. Our goal in this appendix
is to exactly characterize the set ∪nΦn for this source where Φn is defined in the proof of
Theorem 6.

Let us describe our problem here more precisely.

Definition 21. Fix an algorithm for extracting randomness from the binary SV source
with parameter δ. Let α be the minimum of the probability of the extracted bit being
0, where the minimum is taken over all adversary’s strategies. Similarly let β be the
maximum of this probability over all strategies of the adversary. We call (α, β) the pair
associated with the extractor. Define Hδ be the set of all such pairs (α, β) over all possible
extractors.
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Our goal is to determine the set Hδ.
To state the result we need some notation.

Definition 22. Fix 0 < δ < 1. For x1, x2, . . . xn ∈ {0, 1}, define

(0.x1x2 . . . xn)δ =
n∑
i=1

xi(1− δ)i
( δ

1− δ
)sx(i)

,

where

sx(i) =

i−1∑
j=1

xj .

Observe that when δ = 1/2, we get the standard binary expansion.

Definition 23. For two pairs (α1, β1) and (α2, β2) of real numbers we say that (α1, β1)
dominates (α2, β2) if α1 ≤ α2 and β1 ≥ β2.

The set Hδ can be characterized using the following proposition that implicitly ap-
pears in the conference version of [22] (at the beginning of their sketch of proof of their
Theorem 6).

As mentioned in the introduction, a deterministic extractor has a corresponding depth-
n binary tree, with leaves marked by either 0 or 1.

Proposition 24 ([22]). Assume that the depth-n binary tree associated with the deter-
ministic extractor has exactly x leaves that are marked with bit 0. Let x = (x1 . . . xn)2

be the binary expansion of x. Then the maximum probability y that the extracted bit is 0
is at least (0.x1 . . . xn)δ, and the equality occurs when the x leaves of value 0 form a left
prefix of all leaves, i.e., they appear consecutively from the leftmost leaf towards right (or
in other words the extractor assigns 0 to the sequence (y1, · · · , yn) iff (y1, · · · , yn)2 < x.)

The following Corollary implies Figure 1 for the binary SV source with δ = 1/3.

Corollary 25. Let

Fδ :=
{

((0.x1 . . . xn)1−δ, (0.x1 . . . xn)δ) : ∀n,∀x1, . . . xn ∈ {0, 1}
}
∪
{

(1, 1)
}
.

Then Fδ ⊆ Hδ. Furthermore, any (α, β) ∈ Hδ is dominated by a pair in Fδ.

Proof. By symmetry, the maximum probability that the extracted bit be 1 is minimized
when all leaves with value 1 form a left prefix, hence when the leaves with value 0 form
a right prefix. In other words (and again by symmetry), the minimum probability that
the extracted bit be 0 is maximized when all leaves with value 0 form a left prefix.
Thus, both minimum of y and maximum of x occur when all 0-leaves form a left prefix.
Observe that the pair (x, y) associated to the tree having 0-leaves as a left prefix is
((0.x1 . . . xn)1−δ, (0.x1 . . . xn)δ).

Santha and Vazirani argue that Proposition 24 follows from inequality (12), which is
not proved in their paper. Lemma 26 below gives a proof for the inequality and hence
the proposition.
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Lemma 26. If

(0.x1 . . . xn)1/2 + (0.y1 . . . yn)1/2 = (0.z1 . . . zn)1/2 (9)

and
(0.x1 . . . xn)1/2 ≥ (0.y1 . . . yn)1/2, (10)

then

(0.x1 . . . xn)δ +
δ

1− δ (0.y1 . . . yn)δ ≥ (0.z1 . . . zn)δ. (11)

Remark 27. This lemma in particular shows that if x = (x1 . . . xn)2, y = (y1 . . . yn)2, z =
(z1 . . . zn+1)2, x+y = z, x ≥ y, then (0.0x1 . . . xn)1/2+(0.0y1 . . . yn)1/2 = (0.z1 . . . zn+1)1/2,
and hence

(1− δ)(0.x1 . . . xn)δ + δ(0.y1 . . . yn)δ ≥ (0.z1 . . . zn+1)δ. (12)

This latter equation proves the induction step in the proof of [22].

Proof of Lemma 26. First, we show that without loss of generality we may assume xi ≥ yi
for all i. For the first i for which xi 6= yi, we have xi > yi. Consider the first i for which
xi < yi. If for this i, we swap xj with yj for all j ≥ i, we still have Equation (9) but
(0.x1 . . . xn)δ + δ

1−δ (0.y1 . . . yn)δ decreases by

(1− δ)i−1((
δ

1− δ )sx(i) − (
δ

1− δ )sy(i)+1)((0.xi . . . xn)δ − (0.yi . . . yn)δ)

which is nonnegative because sx(i) ≥ sy(i) + 1 and (0.xi . . . xn)δ ≤ (0.yi . . . yn)δ. We can
successively do these swaps until xi ≥ yi for all i.

Now we prove the lemma by induction on n. Assume for the sake of contradiction
that Inequality (11) does not hold.

If z1 = 0, then x1 = y1 = z1 = 0. Then we can remove x1, y1, z1, decrease n by 1, and
prove the lemma using the induction hypothesis. Thus, assume that z1 = 1. Now we can
partition the indices {1, . . . , n} into blocks such that in the addition of (0.x1 . . . xn)1/2

with (0.y1 . . . yn)1/2, no carry is passed from one block to the next block, but within each
block there is always a passed carry. Consider the leftmost block that begins from index
1 and ends at index m.

If m = 1, then we should have x1 = 1, y1 = 0, z1 = 1. If we change x1 and z1

to 0, then we still have Equation (9). Also, Inequality (10) holds because xi ≥ yi for
i ≥ 2. Furthermore, both (0.x1 . . . xn)δ and (0.z1 . . . zn)δ are decreased by 1− δ and then
multiplied by δ/(1 − δ) ≤ 1, while (0.y1 . . . yn)δ does not change. Therefore, Inequality
(11) holds, if and only if it holds after changing x1 and z1 to 0. Since now z1 = 0, we can
use the induction hypothesis.

If m > 1, then we should have x1 = 0, x2 = x3 = . . . = xm = 1, y1 = 0, z1 = 1, y2 =
z2, . . . , ym−1 = zm−1, ym = 1, zm = 0. Let i be an index ∈ [2,m − 1] such that yi = 0 (if
such an i exists.) If we change yi and zi both to 1, then Equation (9) holds. Inequality (10)
also holds since xi ≥ yi for all i. Furthermore, δ

1−δ (0.y1 . . . yn)δ − (0.z1 . . . zn)δ decreases
by

δ

1− δ (1− δ)i−1(
δ

1− δ )sy(i)(1− δ

1− δ )((0.yi . . . yn)δ)

− (1− δ)i−1(
δ

1− δ )sz(i)(1− δ

1− δ )((0.zi . . . zn)δ)

=
δ

1− δ (1− δ)i−1(
δ

1− δ )sy(i)(1− δ

1− δ )((0.yi . . . yn)δ − (0.zi . . . zn)δ)
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because sy(i) = sz(i)−1. This decrease is nonnegative because (0.yi+1 . . . yn)δ > (0.zi+1 . . . yn)δ
(since ym > zm). So, to prove the claim, without loss of generality we can assume
x2 = . . . = xm = y2 = . . . = ym = z1 = . . . = zm−1 = 1. But now if we make the values
of xi, yi, zi to 0 for all i ∈ [1,m], we still have Equality (9) and Inequality (10), while this
does not change the difference of the two sides of Inequality (11). Given z1 = 0, we can
use the induction hypothesis as above.

B Another proof of Theorem 6

Consider the set of points {ps(·) : s ∈ S} in the probability simplex. Then, by assumption
there is a point q(·) in the interior of the convex hull of these points. Fix a deterministic
extractor specified by a subset I ⊆ Cn, i.e., if the observed cn is in I then the extracted
bit is 0, and otherwise it is 1. Consider the probability distribution qn(·) on Cn that is
the i.i.d. repetition of q(·). Without loss of generality, assume that qn(I) ≥ 1/2. Let
I0 ⊆ I be a minimal subset such that qn(I0) ≥ 1/2. That is, let I0 ⊆ I be such that
qn(I0) ≥ 1/2 and no proper subset of I0 has this property. Observe that for any cn ∈ Cn
we have qn(cn) ≤ 2−Θ(n). Therefore, by the definition of I0 we have qn(I0) = 1/2+2−Θ(n).

Let p̃(·) be a tweak of the distribution qn(·) obtained as follows. Let ε > 0 be small
constant, and define p̃(cn) = (1 + ε)qn(cn) for cn ∈ I0; also for cn /∈ I0 define p̃(cn) =
(1− ε− 2−Θ(n))qn(cn) to make p̃(·) a probability distribution.

We claim that p̃(·) is in the class of distributions associated with the generalized SV
source, i.e., the adversary can choose a strategy to generate this distribution. Assuming
this claim, observe that the probability that the extracted bit is 0 would be equal to

p̃(I) ≥ p̃(I0) = (1 + ε)qn(I0) ≥ (1 + ε)/2.

Thus the adversary can force the bias of the extracted bit to be at least ε. This would
finish the proof.

What remains to show is that p̃(·) can be generated by the adversary. Observe that
for any J ⊆ Cn we have

p̃(J ) = (1 +O(ε))qn(J ).

In particular, for any c1, . . . , ci, we have

p̃(C1 = c1, . . . , Ci = ci) = (1 +O(ε))
i∏

j=1

q(cj).

Therefore,

p̃(Ci = ci|C1 = c1, . . . , Ci−1) =
1 +O(ε)

1 +O(ε)
q(ci) = (1 +O(ε))q(ci).

Since q(·) is in the interior of the convex hull of {ps(·) : s ∈ S}, then for sufficiently small
ε > 0, any probability distribution of the form ((1 + O(ε))q(·) is in this convex hull too.
Thus, by definition p̃(·) can be produced by the adversary.

C Proof of Lemma 10

We use the notation developed before the statement of Lemma 10. We assume that
K1 = Γn(An, R1) and K2 = Λn(Bn, R2) are ε-close to the uniform distribution over {0, 1}
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and that Pr[K1 6= K2] < ε. Define

K ′1 = Γ′n(An) = argmaxk Pr[K1 = k|An],

and
K ′2 = Λ′n(Bn) = argmaxk Pr[K2 = k|Bn].

Then K ′1 and K ′2 are (deterministic) functions of An and Bn respectively. We claim that

Pr[K ′1 6= K ′2] ≤ 3ε,

and ∣∣Pr[K ′1 = 0]− 1

2

∣∣, ∣∣Pr[K ′2 = 0]− 1

2

∣∣ ≤ 2ε.

Proving these inequalities would complete the proof.
Observe that for every An = an we have

Pr[K ′1 6= K1|An = an] = min{Pr[K1 = 0|an],Pr[K1 = 1|an]}.

On the other hand,

Pr[K2 6= K1|an] = Pr[K2 = 1|an] Pr[K1 = 0|an] + Pr[K2 = 0|an] Pr[K1 = 1|an]

≥ min{Pr[K1 = 0|an],Pr[K1 = 1|an]}
= Pr[K ′1 6= K1|An = an].

As a result, we have
Pr[K ′1 6= K1] ≤ Pr[K2 6= K1] ≤ ε,

which gives ∣∣Pr[K ′1 = 0]− 1

2

∣∣ ≤ 2ε.

This inequality for K ′2 is proved similarly.
Next we have

Pr[K ′1 6= K ′2] ≤ Pr[K ′1 6= K1] + Pr[K1 6= K2] + Pr[K2 6= K ′2]

≤ ε+ ε+ ε.

D Proof of Theorem 20

First we show that it suffices to prove Theorem 20 in the following special case.

Lemma 28. If Theorem 20 holds in the special case where distributions ps(a, b) satisfy

ps(a), ps(b) > 0, ∀s, a, b. (13)

and

ρ(A,B|CS) := max
s
ρs(A,B|C) < 1, (14)

where ρs(A,B|C) denotes the conditional maximal correlation of A and B given C with
respect to the distribution ps(abc), then the theorem holds in general.
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Proof. For any s ∈ S define p′s(a, b) as follows: fix some (small) τ ∈ (0, 1), and define

p′s(a, b) := (1− τ)ps(a, b) +
τ

|S|
∑
s′∈S

ps′(a, b). (15)

Observe that p′s(·) is some perturbed variant of ps(·). Also note that p′s(·) is in the convex
hull of distributions ps′(·) for different values of s′. Thus in each step, the adversary can
enforce that the pair (a, b) generated by the source has distribution p′s(a, b) via a random-
ized strategy. As a result, it suffices to show the impossibility of common randomness
extraction from the distributed SV source with distributions p′s(·) instead of ps(·). Now
we only need to show that p′s(·) satisfies (13) and (14) as well as the assumption of
Theorem 20.

First, by the definitions of p′s(·) given in (15) the support of p′s(·) does not depend
on s. Therefore, without loss of generality we may assume that for any a ∈ A we have
p′s(a) > 0. Similarly, we may assume that for any b ∈ B we have p′s(b) > 0.

Second, it is not hard to see that the graph G′s associated with distributions p′s(·) is the
same for all s and is equal to the graph Ḡ = ∪sGs associated with the original distributions
ps(·). This in particular implies that Ḡ′ = Ḡ and the common part C remains the same.
Moreover, for any s, c, we have ρ′s(A,B|C = c) < 1 for distribution p′s(·) because the
connected components of the graph Ḡ are nothing but elements of C.

We finally verify that there is no non-zero ψ : C → R such that E′(s)[ψ(C)] = 0 where

the expectation is computed with respect to p′s(·). Suppose such a function ψ exists.
Then we have

0 = E′(s)[ψ] = (1− τ)E(s)[ψ] +
τ

|S|
∑
s′

E(s′)[ψ], (16)

where E(s)[·] denotes expectation with respect to ps(·). Summing the above equations for
all s ∈ S, we find that ∑

s

E(s)[ψ] = 0,

and then using (16) again we obtain E(s)[ψ] = 0. Therefore by the assumption of Theo-
rem 20 the function ψ should be zero.

By the above lemma, from now on we assume that the distributions ps(·) satisfy the
extra assumptions (13) and (14).

Suppose that common random bit extraction is possible. By Lemma 10 we may
assume that Alice and Bob’s protocol is deterministic and is described by subsets I ⊆ An
and J ⊆ Bn. That is, Alice’s output is K1 = 0 if an ∈ I and Bob’s output is K2 = 0 if
bn ∈ J .

Let us define

α(I) := max Pr[An ∈ I],

β(J ) := max Pr[Bn ∈ J ],

γ(I,J ) := min Pr[An ∈ I, Bn ∈ J ],

where the maximizations and the minimization are computed over all strategies of the
adversary. If common randomness extraction is possible, then there are n and I ⊆ An
and J ⊆ Bn such that all the three numbers α(I), β(J ) and γ(I,J ) are close to 1/2.
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For n ≥ 1 let Φn be the set of triples (α(I), β(J ), γ(I,J )) for all subsets I ⊆ An and
J ⊆ Bn. We also define

Φ0 =
{
e0 = (1, 1, 1), e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 0)

}
.

As discussed in the proof of Theorem 13 the set Φ0 corresponds to deterministic strategies
where the parties do not look at the source at all. By the above discussion we need to
show that (1/2, 1/2, 1/2) is far from ∪nΦn.

By the same ideas as in the proofs of Theorems 6 and 13 the sets Φn can be computed
recursively. For every a, b and I ⊆ An and J ⊆ Bn define

Ia := {a[2:n] : (a, a[2:n]) ∈ I}, Jb := {b[2:n] : (b, b[2:n]) ∈ J }.

Then we have

α(I) = max
s

E(s)[α(IA)]

β(J ) = max
s

E(s)[β(JB)],

γ(I,J ) = min
s

E(s)[γ(IA,JB)].

As a result, the sets Φn can be characterized recursively as follows. Φn is indeed the set
of triples (x, y, z) for which there are functions X(a) = xa, Y (b) = yb and Z(ab) = zab
such that for all (a, b) we have (xa, yb, zab) ∈ Φn−1 and that

x = max
s

E(s)[X], y = max
s

E(s)[Y ], z = min
s

E(s)[Z]. (17)

We now prove that Φn for every n is far from (1/2, 1/2, 1/2).

Theorem 29. Let

0 < ε ≤ ∆′(1− ρ)

1 + ∆′
,

and M ≥ 24|A||B|/∆ + 2 where ∆ and ∆′ are two positive constants that are specified
later (in Lemmas 30 and 31). Define

f(x, y, z) = M(x+ y)− 2(M + ε)z + 2xy − (1− ε)(x2 + y2).

Then with the assumption of Theorem 20 and (13) and (14), for all functions X,Y, Z as
above, we have

f(x, y, z) ≥ min
s

E(s)[f(X,Y, Z)],

where x, y, z are defined in (17).

Given this theorem we can finish the proof of Theorem 20. Observe that f(ei) ≥ 0
for 0 ≤ i ≤ 3. Then by the above theorem and a simple induction, for any (x, y, z) ∈ Φn

we have f(x, y, z) ≥ 0. We however have f(1/2, 1/2, 1/2) = −ε/2 < 0. Then by the
continuity of f , the point (1/2, 1/2, 1/2) is far from Φn for any n.

The proof of Theorem 29 is the most technical part of this paper; its proof is given
after stating some definitions and lemmas.
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D.1 Some preliminary definitions and lemmas

In this section, we let E(cs)[·] to be the expectation with respect to the conditional prob-
ability distribution ps(ab|c).

A characterization of conditional maximal correlation. The assumption that
ρ = ρ(A;B|CS) < 1 implies the following for any fixed value of s: take two arbitrary
functions X : A → R and Y : B → R such that

E(cs)[X] = E(cs)[Y ] = 0, ∀c,

where by the notation that we have set up before E(cs)[X] =
∑

ab ps(ab|c)xa =
∑

a ps(a|c)xa,
and similarly E(cs)[Y ] =

∑
b ps(b|c)yb. Then we must have

E(cs)[XY ] ≤ ρ
√
E(cs)[X2]E(cs)[Y 2] (18)

for all c. Using the joint convexity of f(x, y) =
√
xy we have that

E(s)[XY ] ≤
∑
c

ps(c)ρ
√
E(cs)[X2]E(cs)[Y 2]

≤ ρ
√(∑

c

ps(c)E(cs)[X2]
)(∑

c

ps(c)E(cs)[Y 2]
)

= ρ
√

E(s)[X2]E(s)[Y 2]. (19)

On the other hand, equation (19) implies equation (18) by choosing X and Y to be zero
whenever C is not equal to some given c. Therefore (19) is a complete characterization
of the conditional maximal correlation.

Definitions of LA, LB, L⊥A and L⊥B. Let LA be the linear space of functions X : A → R
such that E(s)[X] is independent of s, i.e.,

LA := {X : A → R : E(s)[X] = E(s′)[X], ∀s, s′}. (20)

Let L⊥A be the orthogonal complement of LA with respect to the inner product 〈·, ·〉∗,
which is the inner product with respect to the uniform distribution, i.e.,

L⊥A := {X : A → R : 〈X,X ′〉∗ = 0, ∀X ′ ∈ LA}.

We define LB and L⊥B similarly.

Lemma 30. There is ∆ > 0 such that for all vectors X ∈ L⊥A and Y ∈ L⊥B we have

max
s,s′

E(s)[X]− E(s′)[X] ≥ ∆‖X‖∗,

and
max
s,s′

E(s)[Y ]− E(s′)[Y ] ≥ ∆‖Y ‖∗.
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Proof. It suffices to show that

max
s,s′

E(s)[X]− E(s′)[X] > 0,

for any X ∈ L⊥A with ‖X‖∗ = 1. The proof then follows from the compactness of the
unit ball in L⊥A. To show the above inequality note that the left hand side is always
non-negative, and that it is zero if and only if X ∈ LA. But since 0 6= X ∈ L⊥A, it cannot
be in LA. We are done.

Definitions of L′A and L′B. In Theorem 20 we assume that there is no non-constant
ψ : C → R such that E(s)[ψ] is independent of s. To state this property in terms of our
notations, let us define KA be the set of functions U : A → R such that U is determined
by C, i.e.,

KA := {U : A → R : U(a) = U(a′), ∀a, a′ s.t. C(a) = C(a′)}.

With abuse of notation for a function U ∈ KA we may use U(c) since U is indeed a
function of C.

Then the assumption of Theorem 20 equivalently means that LA ∩ KA contains only
constant functions, i.e.,

LA ∩ KA = {r1A : r ∈ R}.
Let us define

L′A := LA ∩ (1A)⊥, (21)

where (1A)⊥ is computed with respect to the inner product 〈·, ·〉∗. Then the above con-
dition implies that

L′A ∩ KA = {0}. (22)

We similarly define KB and L′B and have L′B ∩ KB = {0}.

Definitions of K⊥s
A and K⊥s

B . Let K⊥s
A and K⊥s

B be the orthogonal complements of KA
and KB respectively, with respect to the inner product 〈·, ·〉(s). We define

K⊥s
A = {U ′ : A → R : E(s)[U

′X] = 0, ∀X ∈ KA},

and similarly we define K⊥s
B . Note that 〈·, ·〉(s) is indeed an inner product because of

assumption (13). Then the above orthogonal complement is well-defined. Observe that

K⊥s
A = {U ′ : A → R : E(cs)[U

′] = 0, ∀c}.

We can write any function X : A → R as X = U + U ′, where U ∈ KA and U ′ ∈ K⊥s
A .

Indeed, let
U = E(C(a)s)[X].

Then we have
E(cs)[U

′] = E(cs)[X − U ] = E(cs)[X]− U(c) = 0.

Therefore, by definition U ′ ∈ K⊥s
A .

28



Lemma 31. There is ∆′ > 0 such that for any X ∈ L′A, Y ∈ L′B and s ∈ S we have

‖U ′‖(s) ≥ ∆′‖U‖(s), ‖V ′‖(s) ≥ ∆′‖V ‖(s),

where U ∈ KA and U ′ ∈ K⊥s
A are such that X = U+U ′. Functions V ∈ KB and V ′ ∈ K⊥s

B

are defined similarly.

Proof. Without loss of generality, we can restrict to X ∈ L′A where ‖X‖(s) = 1. Using (22)
we have U ′ 6= 0 for any such X. Thus ‖U‖(s)/‖U ′‖(s) is well defined and continuous as
a function on the unit sphere of L′A. Therefore, it achieves its maximum. Let Ms < ∞
be the maximum of ‖U‖(s)/‖U ′‖(s) and ‖V ‖(s)/‖V ′‖(s) over the unit balls of L′A and L′B.
Then the the choice of ∆′ = mins(1/Ms) works.

Now we have all the required tools to prove Theorem 29.

D.2 Proof of Theorem 29

First note that f(x, y, z) is monotonically increasing in its first and second arguments on
[0, 1] and monotonically decreasing in its third argument. For instance, the derivative
with respect to y is M + 2z−2(1− ε)x which is non-negative for x, z ∈ [0, 1] since M ≥ 2.
Therefore, we have

f(x, y, z) = f(max
s1

E(s1)[X],max
s2

E(s2)[Y ],min
s3

E(s1)[Z])

= max
s1,s2,s3

f
(
E(s1)[X],E(s2)[Y ],E(s3)[Z]

)
.

To prove the theorem, we thus need to show that

g(X,Y, Z) := max
s,s1,s2,s3

(
f
(
E(s1)[X],E(s2)[Y ],E(s3)[Z]

)
− E(s)[f(X,Y, Z)]

)
≥ 0.

Let X = X ′ +X ′′ where X ′ ∈ LA and X ′′ ∈ L⊥A. Therefore using (20) we have

E(s)[X
′] = E(s1)[X

′] ∀s, s1. (23)

Similarly let Y = Y ′+Y ′′ where Y ′ ∈ LB and Y ′′ ∈ L⊥B. Assume without loss of generality
that

‖X ′′‖∗ ≥ ‖Y ′′‖∗. (24)
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We now compute

g(X,Y, Z) ≥ max
s,s1

f
(
E(s1)[X],E(s)[Y ],E(s)[Z]

)
− E(s)[f(X,Y, Z)]

= max
s,s1

(
M(E(s1)[X] + E(s)[Y ])− 2(M + ε)E(s)[Z] + 2E(s1)[X]E(s)[Y ]

− (1− ε)(E(s1)[X]2 + E(s)[Y ]2)

− E(s)

[
M(X + Y )− 2(M + ε)Z + 2XY − (1− ε)(X2 + Y 2)

])
= max

s,s1
M
(
E(s1)[X]− E(s)[X]

)
+ 2
(
E(s1)[X]E(s)[Y ]− E(s)[XY ]

)
− (1− ε)

(
E(s1)[X]2 − E(s)[X

2] + E(s)[Y ]2 − E(s)[Y
2]
)

= max
s,s1

M
(
E(s1)[X

′′]− E(s)[X
′′]
)

+ 2
(
E(s1)[X]E(s)[Y ]− E(s)[XY ]

)
− (1− ε)

(
E(s1)[X]2 − E(s)[X

2] + E(s)[Y ]2 − E(s)[Y
2]
)
, (25)

where in (25) we use (23) and the fact that X = X ′ +X ′′. By Lemma 30 there are s, s1

such that

E(s1)[X
′′]− E(s)[X

′′] ≥ ∆‖X ′′‖∗. (26)

From now on we fix s, s1 to be the ones that achieve the above inequality. By this choice
we obtain a lower bound on the first term of (25).

g(X,Y, Z) ≥M‖X ′′‖∗ + 2
(
E(s1)[X]E(s)[Y ]− E(s)[XY ]

)
− (1− ε)

(
E(s1)[X]2 − E(s)[X

2] + E(s)[Y ]2 − E(s)[Y
2]
)
.

To bound the second term of (25), we use X = X ′ +X ′′ and Y = Y ′ + Y ′′ to write

E(s1)[X]E(s)[Y ] = E(s1)[X
′]E(s)[Y

′] + E(s1)[X
′]E(s)[Y

′′] + E(s1)[X
′′]E(s)[Y

′] + E(s1)[X
′′]E(s)[Y

′′]

≥ E(s1)[X
′]E(s)[Y

′]− x′maxy
′′
max − x′′maxy

′
max − x′′maxy

′′
max, (27)

where x′max = maxa |X ′(a)|, and x′′max, y
′
max and y′′max are defined similarly. Now note that

‖X‖2∗ = ‖X ′‖2∗ + ‖X ′′‖2∗. Moreover, ‖X‖2∗ ≤ 1 since X(a) ∈ [0, 1] for all a. This implies
that x′max, x

′′
max ≤ |

√
A|, and similarly y′max, y

′′
max ≤

√
|B|. We also have

max
{ 1√
|A|

x′′max,
1√
|B|

y′′max

}
≤ max{‖X ′′‖∗, ‖Y ′′‖∗} = ‖X ′′‖∗,

where here we use (24). We can then use these inequalities in (27) to obtain

E(s1)[X]E(s)[Y ] ≥ E(s1)[X
′]E(s)[Y

′]− 3
√
|A||B| · ‖X ′′‖∗. (28)

By the same analysis on E(s)[XY ] we get

E(s)[XY ] ≤ E(s)[X
′Y ′] + x′maxy

′′
max + x′′maxy

′
max + x′′maxy

′′
max

≤ E(s)[X
′Y ′] + 3

√
|A||B| · ‖X ′′‖∗.
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As a result,

E(s1)[X]E(s)[Y ]− E(s)[XY ] ≥ E(s1)[X
′]E(s)[Y

′]− E(s)[X
′Y ′]− 6

√
|A||B| · ‖X ′′‖∗.

Applying the same lines of inequalities for the other terms we obtain

E(s1)[X]2 − E(s)[X
2] ≤ E(s1)[X

′]2 − E(s)[X
′2] + 6|A| · ‖X ′′‖∗, (29)

and

E(s)[Y ]2 − E(s)[Y
2] ≤ E(s)[Y

′]2 − E(s)[Y
′2] + 6|B| · ‖X ′′‖∗. (30)

Putting equations (26), (28), (29) and (30) together we obtain

g(X,Y, Z) ≥M∆‖X ′′‖∗ + 2
(
E(s1)[X

′]E(s)[Y
′]− E(s)[X

′Y ′]− 6|A||B| · ‖X ′′‖∗
)

− (1− ε)
((

E(s1)[X
′]2 − E(s)[X

′2]
)

+
(
E(s)[Y

′]2 − E(s)[Y
′2]
)

+ 12|A||B| · ‖X ′′‖∗
)

≥ (M∆− 24|A||B|)‖X ′′‖∗ + 2
(
E(s1)[X

′]E(s)[Y
′]− E(s)[X

′Y ′]
)

− (1− ε)
(
E(s1)[X

′]2 − E(s)[X
′2] + E(s)[Y

′]2 − E(s)[Y
′2]
)

≥ 2
(
E(s)[X

′]E(s)[Y
′]− E(s)[X

′Y ′]
)

− (1− ε)
(
E(s)[X

′]2 − E(s)[X
′2] + E(s)[Y

′]2 − E(s)[Y
′2]
)
,

where in the last line we use (23) and the fact that M∆− 24|A||B| ≥ 0.
Let

h(X ′, Y ′) = 2
(
E(s)[X

′]E(s)[Y
′]− E(s)[X

′Y ′]
)

− (1− ε)
(
E(s)[X

′]2 − E(s)[X
′2] + E(s)[Y

′]2 − E(s)[Y
′2]
)
, (31)

Then it suffices to show that h(X ′, Y ′) ≥ 0 for every X ′ ∈ LA and Y ′ ∈ LB. By a simple
algebra for every r, t ∈ R we verify that

h(X ′ + r1A, Y
′ + t1B) = h(X ′, Y ′).

This means that with no loss of generality we may assume that X ′ ∈ L′A = LA ∩ (1A)⊥

and Y ′ ∈ L′B = LB ∩ (1A)⊥.
Let U ∈ KA and U ′ ∈ K⊥s

A such that X ′ = U + U ′. Similarly let Y ′ = V + V ′ where

V ∈ KB and V ′ ∈ K⊥s
B . Since U ∈ KA, its values can be denoted by uc. We similarly

denote the values of V by vc. Therefore, we have

E(cs)[U
′] = E(cs)[V

′] = 0 ∀c. (32)

Thus by the characterization of ρ = ρ(A,B|CS) given in (19) we have

E(s)[U
′V ′] ≤ ρ

√
E(s)[U ′2]E(s)[V ′2] ≤ ρ

2

(
E(s)[U

′2] + E(s)[V
′2]
)
. (33)

Further (32) implies that E(s)[U
′] = E(s)[V

′] = 0 and then

E(s)[X
′] = E(s)[U ], E(s)[Y

′] = E(s)[V ]. (34)
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Moreover using equation (32) we find that

E(s)[X
′Y ′] = E(s)[UV ] + E(s)[UV

′] + E(s)[U
′V ] + E(s)[U

′V ′]

= E(s)[UV ] +
∑
c

ps(c)ucE(cs)[V
′] +

∑
c

ps(c)vcE(cs)[U
′] + E(s)[U

′V ′]

= E(s)[UV ] + E(s)[U
′V ′]. (35)

A similar argument shows that

E(s)[X
′2] = E(s)[U

2] + E(s)[U
′2], (36)

E(s)[Y
′2] = E(s)[V

2] + E(s)[V
′2]. (37)

Using equations (34)-(37), we compute a lower bound for h(X ′, Y ′).

h(X ′, Y ′) ≥ 2
(
E(s)[U ]E(s)[V ]− E(s)[UV ]− E(s)[U

′V ′]
)

− (1− ε)
(
E(s)[U ]2 − E(s)[U

2]− E(s)[U
′2] + E(s)[V ]2 − E(s)[V

2]− E(s)[V
′2]
)
.

Using (33) we continue

h(X ′, Y ′) ≥
(

2E(s)[U ]E(s)[V ]− 2E(s)[UV ] + E(s)[U
2]− E(s)[U ]2 + E(s)[V

2]− E(s)[V ]2
)

+ ε
(
E(s)[U ]2 − E(s)[U

2] + E(s)[V ]2 − E(s)[V
2]
)
− 2E(s)[U

′V ′]

+ (1− ε)
(
E(s)[U

′2] + E(s)[V
′2]
)

≥
(

2E(s)[U ]E(s)[V ]− 2E(s)[UV ] + E(s)[U
2]− E(s)[U ]2 + E(s)[V

2]− E(s)[V ]2
)

+ ε
(
E(s)[U ]2 − E(s)[U

2] + E(s)[V ]2 − E(s)[V
2]
)

+ (1− ε− ρ)
(
E(s)[U

′2] + E(s)[V
′2]
)

= E(s)

[(
(U − E(s)[U ])− (V − E(s)[V ])

)2]
+ ε
(
E(s)[U ]2 − E(s)[U

2] + E(s)[V ]2 − E(s)[V
2]
)

+ (1− ε− ρ)
(
E(s)[U

′2] + E(s)[V
′2]
)

≥ ε
(
E(s)[U ]2 − E(s)[U

2] + E(s)[V ]2 − E(s)[V
2]
)

+ (1− ε− ρ)
(
E(s)[U

′2] + E(s)[V
′2]
)

≥ −ε
(
E(s)[U

2] + E(s)[V
2]
)

+ (1− ε− ρ)
(
E(s)[U

′2] + E(s)[V
′2]
)

= −ε
(
‖U‖2(s) + ‖V ‖2(s)

)
+ (1− ε− ρ)

(
‖U ′‖2(s) + ‖V ′‖2(s)

)
.

Now using Lemma 31 we have

‖U ′‖(s) ≥ ∆′‖U‖(s), ‖V ′‖(s) ≥ ∆′‖V ‖(s).

Hence,

h(X ′, Y ′) ≥ −ε
(
‖U‖2(s) + ‖V ‖2(s)

)
+ (1− ε− ρ)∆′

(
‖U‖2(s) + ‖V ‖2(s)

)
= (∆′(1− ρ)− (1 + ∆′)ε)

(
‖U ′‖2s + ‖V ′‖2(s)

)
≥ 0.

These inequalities hold since ε ≤ ∆′(1− ρ)/(1 + ∆′).
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