Note on Direct Product Testing with Nearly Identical Sets

Irit Dinur*

May 5, 2016

We show a simple reduction from direct product testing with large intersection size $(1 - \delta)n$ to direct product testing with linear intersection size $\theta(n)$. The linear intersection regime was analyzed in [1] by the author and Steurer. Moshkovitz [3] is interested in the large-intersection regime because of its possible connection to unique games questions, see [2].

Let $f : U^n \to \mathbb{R}^n$. We will consider the direct product test in which the function f is queried in two locations x and x' and the values f(x) and f(x') are compared on a set of indices ("the intersection") where $x_i = x'_i$.

Let B_{α} be the distribution over triples x, T, x' parameterized by $0 < \alpha < 1$ as follows.

- 1. Select $T \subset [n]$ from the binomial distribution $B(n, \alpha)$, i.e. for each *i* independently put *i* in *T* with probability α .
- 2. Select $x \in U^n$ uniformly, select $x' \in U^n$ uniformly conditioned on $x'_T = x_T$.

Let

$$test(\alpha) = \Pr_{x,T,x'\sim B_{\alpha}}[f(x)_T = f(x')_T].$$

The main point in this note is that

Proposition 1. For every $0 < \delta < 1$, $test((1 - \delta)^2) \ge (test(1 - \delta))^2$.

Corollary 2. Fix $0 < \delta, \beta < 1$. If $test(1 - \delta) > \beta^{\delta n}$ then $test(\alpha) > \beta^n$, where $\frac{1}{e^2} \le \alpha \le \frac{1}{e}$.

Proof. Let $p \ge 0$ be an integer such that $2^{-p} < \delta \le 2^{-p+1}$. By repeating the inequality *p* times we can deduce that

$$test(\alpha) \ge (test(1-\delta))^{2^p} \ge (test(1-\delta))^{2/\delta}$$

where $\alpha = (1 - \delta)^{2^p}$ is a constant which is between $1/e^2$ and 1/e.

^{*}Department of Computer Science and Applied Mathematics, Weizmann Institute.

This almost suffices for applying the local-structure lemma of the author and Steurer [1, Lemma 1.2]. We must make one small tweak since the test distribution in [1] is not B_{α} but rather $B_{=k}$, defined by selecting a random subset $T \subset [n]$ of size exactly k and then two random strings $x, x' \in U^n$ such that $x_T = (x')_T$. Denote

$$test(k) = \Pr_{(x,T,x') \sim B_{=k}} [f(x)_T = f(x')_T]$$

Clearly $test(\alpha) = \sum_{k=0}^{n} {n \choose k} \alpha^{k} (1-\alpha)^{n-k} test(k)$ and using standard tail bounds we can deduce that if $test(\alpha) > \beta^{n}$ then $test(k) > \beta^{n} - exp(-n)$ for some $k \approx \alpha n$ where exp(-n) is an error term that comes from a tail inequality. Thus,

Corollary 3. *Fix* $0 < \delta, \beta < 1$. *If* $test(1 - \delta) > \beta^{\delta n}$ *then there is some* $n/10 \le k \le n/2$ *such that* $test(k) > \beta^n - \exp(-n)$.

The main theorem in [3] follows directly from this corollary together with the direct product testing result [1, Lemma 1.2] for linear intersection size, (a more friendly version appears as Lemma 1.1 in [3]). This is meaningful even for $\delta = 1/n$, i.e. for the largest possible intersection, of n - 1 elements (in expectation).

Proof. (of Proposition 1) For an event A denote by $\mathbf{1}(A)$ the corresponding indicator variable.

$$(test(1 - \delta))^{2} = (\underset{x}{\mathbb{E}} \underset{x,x'|x}{\mathbb{E}} \mathbf{1}(f(x)_{T} = f(x')_{T}))^{2}$$

$$\leq \underset{x}{\mathbb{E}} (\underset{T,x'|x}{\mathbb{E}} \mathbf{1}(f(x)_{T} = f(x')_{T}))^{2}$$

$$= \underset{x}{\mathbb{E}} (\underset{T_{1},x_{1}|x}{\mathbb{E}} \mathbf{1}(f(x_{1})_{T_{1}} = f(x)_{T_{1}})(\underset{T_{2},x_{2}|x}{\mathbb{E}} \mathbf{1}(f(x_{2})_{T_{2}} = f(x)_{T_{2}}))$$

$$= \underset{x}{\mathbb{E}} (\underset{x_{1},T_{1},x_{2},T_{2}|x}{\mathbb{E}} \mathbf{1}(f(x_{1})_{T_{1}} = f(x)_{T_{1}}) \cdot \mathbf{1}(f(x_{2})_{T_{2}} = f(x)_{T_{2}}))$$

$$= \underset{x,T_{1},x_{1},T_{2},x_{2}}{\mathbb{E}} \mathbf{1}(f(x_{1})_{T_{1}} = f(x)_{T_{1}} \text{ and } f(x_{2})_{T_{2}} = f(x)_{T_{2}})$$

$$\leq \underset{x,T_{1},x_{1},T_{2},x_{2}}{\mathbb{E}} \mathbf{1}(f(x_{1})_{T_{1}} \cap T_{2} = f(x_{2})_{T_{1}} \cap T_{2})$$

$$= test((1 - \delta)^{2})$$

where the first inequality is Jensen's inequality, and the last equality is because the triple $x_1, T_1 \cap T_2, x_2$ is distributed exactly according to $B_{(1-\delta)^2}$.

References

- Irit Dinur and David Steurer. Direct product testing. In *IEEE 29th Conference* on Computational Complexity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, pages 188–196, 2014. 1, 2
- [2] Subhash Khot and Dana Moshkovitz. Candidate lasserre integrality gap for unique games. In *Proc. 48th ACM Symp. on Theory of Computing*, 2016. 1
- [3] Dana Moshkovitz. Direct product testing with nearly identical sets. *Electronic Colloquium on Computational Complexity (ECCC)*, 21:182, 2014. 1, 2