
Skew Circuits of Small Width
Nikhil Balaji1, Andreas Krebs2, and Nutan Limaye3

1 Chennai Mathematical Institute, Chennai, India. nikhil@cmi.ac.in
2 University of Tübingen, Germany. mail@krebs-net.de
3 Indian Institute of Technology, Bombay, India. nutan@cse.iitb.ac.in

Abstract
A celebrated result of Barrington (1985) proved that polynomial size, width-5 branching programs
(BP) are equivalent in power to a restricted form of branching programs – polynomial sized width-
5 permutation branching programs (PBP), which in turn capture all of NC1. On the other hand
it is known that width-3 PBPs require exponential size to compute the AND function. No such
lower bound is known for width-4 PBPs, however it is widely conjectured that width-4 PBPs will
not capture all of NC1. In this work, we investigate the region inside width-5 branching programs
by comparing them with bounded width skew circuits.

It is well known that branching programs of bounded width have the same power as skew
circuit of bounded width. The naive approach converts a BP of width w to a skew circuit of
width w2. We improve this bound and show that BP of width w ≥ 5 can be converted to a skew
circuit of width 7. This also implies that skew circuits of bounded width are equal in power to
skew circuits of width 7. For the other way, we prove that for any w ≥ 2, a skew circuit of width
w can be converted into an equivalent branching program of width w.

We prove that width-2 skew circuits are not universal while width-3 skew circuits are universal.
We show that any polynomial sized CNF or DNF is computable by width 3 skew circuits of
polynomial size. We prove that a width-3 skew circuit computing Parity requires exponential
size. This gives an exponential separation between the power of width-3 skew circuits and width-4
skew circuits.

1998 ACM Subject Classification Dummy classification – please refer to http://www.acm.org/
about/class/ccs98-html

1 Introduction

The Boolean circuit complexity class NC1 consists of Boolean functions computable by poly-
nomial sized logarithmic depth circuits. Basic arithmetic operations like addition, multiplic-
ation and division are known to be implementable in NC1. NC1 itself is contained in Log-
space. All regular languages have uniform NC1 families deciding them and there is a regular
language which is NC1-hard. Over the years, several useful characterizations of NC1 have
emerged: NC1 contains exactly those regular languages that are characterized by having
a monoid containing a non-solvable group. They are also equally expressive as Branching
Programs of constant width. Our interest in NC1 is motivated by the celebrated result of
Barrington [1], that Branching Programs of width 5 are sufficient to capture NC1 in its
entirety.

Branching programs have been pivotal to our understanding of computation with limited
resources. They were first defined in [6] and formally studied by Masek in his Master’s thesis
[7]. Borodin et al.[3] proved that AC0 is contained in the class of functions computed by
bounded width branching programs and conjectured that Majority cannot be computed by
them. In a surprising result, Barrington showed that in fact, width 5 branching programs
can compute all of NC1 and hence the Majority function.

© Nikhil Balaji, Andreas Krebs and Nutan Limaye;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 183 (2014)

http://www.acm.org/about/class/ccs98-html
http://www.acm.org/about/class/ccs98-html
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Skew Circuits of Small Width

After the strong lower bound results of [9, 10], the question of proving lower bounds
for NC1 gained a lot of attention. However this has turned out to be a notorious open
problem and we still do not know any non-trivial lower bounds for NC1. Given this scenario,
the branching program characterization of NC1 has provided an avenue to understand the
power of classes that reside inside NC1. Though proving lower bounds for width 5 branching
programs is equivalent to proving lower bounds for NC1, it is conceivable that proving
lower bounds for width 4 branching programs is easier. In this regard, it is known [2] that
width 3 branching programs of a restricted type (permutation branching programs) require
exponential size to compute the AND function. It is worthwhile to contrast this against the
situation at width 5, where permutation branching programs are known to be as powerful
as general branching programs of width 5 and hence NC1 itself.

It is known that bounded width branching programs can be equivalently thought of
as bounded width skew circuits (see for example [8]). Here, we take a closer look at this
relationship. The folklore construction converts a polynomial size branching program of
width w into a polynomial size skew circuit of width w2. We improve this construction and
show that any bounded width branching program of width greater than or equal to 5 can be
converted into an equivalent skew circuit of width 7. We also study the conversion of skew
circuits into branching programs. Here, the known construction converts a skew circuit of
width w into a branching program of width w + 1 [8]. We improve this construction and
prove that a polynomial size skew circuit of width w can be converted into a polynomial size
branching program of width w. These results prove that width 7 skew circuits of polynomial
size characterize NC1.

These structural results allow us to examine the set of languages in NC1 by varying the
width of skew circuits between 1 and 7. Like for permutation branching programs, some
natural questions arise for bounded width skew circuits. We start by examining the power
of width 2 skew circuits. We first observe that they are not universal. We prove that width
2 skew circuits of any size cannot compute parity of two bits.

We then study the power of width 3 skew circuits. Recall that a CNF (DNF) is an AND
(OR) of ORs (ANDs) of variables, i.e. in a CNF the AND gate is (possibly) non-skew. We
implement a CNF by a width 3 skew circuit. Formally, we prove that any k-CNF or any
k-DNF of size s has width 3 skew circuits of length O(sk). Given that any Boolean function
on n variables has a CNF of exponential (in n) size, this also proves that width 3 skew
circuits are universal.

We consider the problem of proving lower bound for width 3 skew circuits. A natural
candidate is a function which has no polynomial sized CNF or DNF. It is known that Parity
is one such function. We prove that Parity requires width 3 skew circuits of exponential size.
We observe that Parity and Approximate Majority have respectively, linear and polynomial
size width 4 skew circuits. This separates width 3 skew circuits from width 4 skew circuits.

The rest of the paper is organized as follows: In Section 2, we introduce the branching
programs, permutation branching programs and skew circuits, and present some obvious
containments. In Section 3, we present our improved results of simulation of branching
programs by skew circuits and vice versa. In Section 4, we explore the skew circuit classes of
width 1 to 7 and present some upper and lower bounds. In Section 5, we give an exponential
separation between skew circuits of width-3 and width-4 via the Parity function. We discuss
some questions that remain unanswered by our work in Section 6.

N. Balaji, A. Krebs and N. Limaye 3

2 Preliminaries

In this section we introduce some notations and preliminaries which we will use in the rest
of the paper.

A directed acyclic graph G = (V,E) is called layered if the vertex set of the graph can
be partitioned, V = V1 ∪ . . . ∪ V` in such a way that for each edge e = (u, v) there exists
1 ≤ i < ` such that u ∈ Vi and v ∈ Vi+1. Given a layered graph G the length of the graph
is the number of layers in it and the width of the graph is the maximum over i ∈ [`], |Vi|.

IDefinition 1. (Branching Programs) A Deterministic Branching Program (BP) is a layered
directed acyclic graph G with the following properties:

There is a designated source vertex s in the first layer (of in-degree 0) and a sink vertex
t (of out-degree 0) in the last layer.
The edges are labelled by an element of X ∪{0, 1}, where X is the set of input variables
to the branching program.

The branching program naturally computes a boolean function f(X), where f(X) = 1
if and only if there is path from s to t in which each edge is labelled by a true literal or a
constant 1 on input X. The length (width) of the BP is the length (respectively, width) of
the underlying layered DAG.

We will denote the class of languages accepted by width-w BP by BPw. Barrington [2, 1]
defined a restricted notion of branching programs called the Permutation Branching Program
(PBP):

I Definition 2. (Permutation Branching Programs as a graph) A width-w PBP is a layered
width w BP in which the following conditions hold:

There are designated source vertices s1, s2, . . . , sw in the first layer, say layer 1 (of in-
degree 0) and sink vertices t1, t2, . . . , tw (of out-degree 0) in the last layer, layer `.
Each layer has exactly w vertices.
In each layer 1 ≤ i < `, all the edges are labelled by a unique variable, say xji .
In each layer 1 ≤ i ≤ ` and b ∈ {0, 1}, the edges activated when xji

= b forms a
permutation/matching, say θi,b.

The permutation branching program naturally computes a boolean function f(X), where
f(X) = 1 if and only if there is path from s1 to t1, s2 to t2, and so on till sw to tw, where
in each path each edge is labelled by a true literal or a constant 1 on input X. We will refer
to the class of languages accepted by polynomial sized width-w PBP by PBPw.

The above definition of PBP can be rephrased as follows:

I Definition 3. (Permutation Branching Programs as a set of instructions) A width-w
length-` PBP is a program given by a set of ` instructions in which for any 1 ≤ i ≤ `, the
ith instruction is a three tuple 〈ji, θ

i, σi〉, where ji is an index from {1, 2, . . . , |X|}, θi, σi

are permutations of {1, 2, . . . , w}. The output of the instruction is θi if xji
= 1 and it is

σi if xji
= 0. The output of the program on input x is the product of the output of each

instruction of the program on x.

We say that a permutation branching program computes a function f if there exists a fixed
permutation π 6= id such that for every x such that f(x) = 1 the program outputs π and
for every x such that f(x) = 0 the program outputs id1.

1 This is often called the strong acceptance condiction. Other notions of acceptance have been studied
in the literature. See for example [4]

4 Skew Circuits of Small Width

It is easy to see that the above two definitions of PBP are equivalent.

I Definition 4. (Skew Circuits) An AND gate is called skew if all but one of its children
are input variables. A Boolean circuit in which all the AND gates are skew is called a skew
circuit.

We assume that the skew circuits are layered. The width of the circuit is the maximum
number of gates in any layer. The layer may have AND, OR or input gates. Each type
of gate contributes towards the width. We assume that the fan-in of the AND gates is
bounded by 2 and there are no NOT gates (negations appear only for the input variables)2.
We denote the class of languages decided by width-w skew circuits by SKw. The following
lemma summarises some well known connections between BPw, PBPw, SKw.

I Lemma 5. Let w ∈ N. Then
1. For any w, PBPw ⊆ BPw.
2. For any w ≥ 5, BPw ⊆ PBPw [1].
3. For any w, BPw is contained in SKw2 (see for example [8]).

Proof Sketch. The first part follows from the definitions of PBPw and BPw. The celebrated
result of Barrington shows the converse for w ≥ 5. The proof of 3 involves converting a
layered DAG G into a circuit CG such that on any input x there is a directed path from s

to t in G if and only if CG evaluates to 1 on x. This is done by converting every node of
G into an OR gate and every edge of G into an AND gate. Let e = (u, v) be an edge in G
which connects vertex u to vertex v and has label xe. Let ORu and ORv be the OR gates in
CG corresponding to u, v and let ANDe be the AND gate in CG corresponding to e. In CG,
output of ANDe feeds into ORv and ANDe receives ORu and xe as its inputs. It is easy to
see that this construction ensures that on any input x there is a directed path from s to t
in G if and only if CG evaluated to 1 on x. Moreover, the circuit CG thus constructed is a
skew circuit. In a layered graph G if there are at most w nodes per layer, then there are at
most w2 edges between any two consecutive layers. Therefore, in CG any layer can have at
most w2 gates.

J

I Definition 6. (Approximate Majority) Approximate Majority ApproxMaja,n : {0, 1}n →
{0, 1} is the promise problem defined as:

ApproxMaja,n(x) :=
{

0, if x has Hamming weight at most a
1, if x has Hamming weight at least n− a

3 Branching Programs and Skew Circuits

Here we analyze the conversion from branching programs to skew circuits and vice versa.

3.1 Branching Programs to Skew Circuits
First we discuss the following folklore conversion of branching programs to skew circuits:

2 This assumption is not without loss of generality. However, we will see that when a branching program
is converted into a skew circuits, exactly this type of skew circuits arise.

N. Balaji, A. Krebs and N. Limaye 5

I Lemma 7. (Folklore) Let f : {0, 1}n → {0, 1} be a Boolean function computed by a width-
w length-` branching program with at most k edges between any two consecutive layers and
with the additional property that each layer reads at most one variable or its negation. Then
there is a skew circuit of width max{w + 2, k} and size O((k + w)`) computing f .

Proof. Given a branching program B of width w, we convert it to a skew circuit C as
follows:
1. For every node g in B (except s), the circuit C has an OR gate ∨g. The node corres-

ponding to s in C is the gate that computes the constant function 1. The output gate
of C is the node corresponding to t in B.

2. Suppose there are incoming edges e1, e2, . . . , ek to the node g from gates g1, g2, . . . , gk

respectively. From our assumption they read the same input variable or its negation.
For these wires we create AND gates ∧1,∧2, . . . ,∧k which feed into ∨g and each AND
gate ∧i receives two inputs: gi and the varibale (or its negation) labeling the edge ei,
respectively.

Every vertex in the BP gives rise to an OR gate in the skew circuit. And every wire in
the BP gives rise to an AND gate in the skew circuit. As every wire in any layer reads the
same variable or its negation, we need to add two vertices corresponding to this variable and
its negation on the layer below the AND layer, i.e. in the OR layer just below it. Therefore,
the width of the OR layer is at most w + 2, whereas the width of the AND layer is at
most k. This immediately yields width and size bounds of max{w + 2, k} and O((k + w)`)
respectively. It is easy to see that for every x ∈ {0, 1}n, f(x) = B(x) = C(x). J

3.2 Permutation Branching Programs to skew circuits
A permutation θ is called a transposition if either it is the identity permutation or there
exists i 6= j such that θ(i) = j, θ(j) = i and for all k 6= i 6= j, θ(k) = k. We call a
transposition non-trivial if it is not the identity permutation, trivial otherwise.

I Definition 8. (Transposition Branching Programs, TBP) A width-w length-` TBP is a
program given by a set of ` instructions in which for any 1 ≤ i ≤ `, the ith instruction is
a three tuple 〈ji, θ

i, σi〉, where ji is an index from {1, 2, . . . , |X|}, θi, σi are transpositions
of {1, 2, . . . , w}. The output of the instruction is θi if xji

= 1 and it is σi if xji
= 0. The

output of the program on input x is the product of the output of each instruction of the
program on x.

I Lemma 9. Given a width-w PBP of length ` there is an equivalent width-w TBP of length
O(w`).

Proof. It is known (see for example [5]) that any permutation of {1, 2, . . . , w} can be written
as a product of W transpositions of {1, 2, . . . , w}, where W = O(w). Let P be a width-w
PBP of length `. Consider the ith instruction in the program, say 〈ji, θi, σi〉. We know
that we can write θi as a product of W transpositions, i.e. θi = ti,1 · ti,2 . . . ti,W , where for
1 ≤ j ≤ W ti,j is a transposition. Similarly, we have σi = si,1 · si,2 . . . si,W , where si,j is a
transposition for 1 ≤ j ≤W .

To give a TBP equivalent to P , we replace every instruction 〈ji, θi, σi〉 in P by the
following: 〈ji, ti,1, id〉·〈ji, ti,2, id〉 . . . 〈ji, ti,W , id〉 ·〈ji, id, si,1〉·〈ji, id, si,2〉 . . . 〈ji, id, si,W 〉. By
a simple inductive argument we can prove that the the transposition branching program thus
obtained is equivalent to P . As W = O(w), the upper bound on the length of the resulting
branching program follows. J

6 Skew Circuits of Small Width

We defined TBPs as a set of instructions. Like in the case of PBPs, the definition of
TBPs can be rephrased in terms of the underlying DAG. We observe the following about
the DAG resulting from TBPs.

A width-w TBP is a layered width w PBP in which the following conditions hold:
There are designated source vertices s1, s2, . . . , sw in the first layer, say layer 1 (of in-
degree 0) and sink vertices t1, t2, . . . , tw (of out-degree 0) in the last layer, layer `.
Each layer has exactly w vertices.
In each layer 1 ≤ i < `, all the edges are labelled by a unique variable, say xji

.
In each layer 1 ≤ i ≤ `, one of the following holds:

either the edges corresponding to xji
= 1 form a non-trivial transposition and the

edges cooresponding to xji
= 0 form the identity permutation

or the edges corresponding to xji
= 0 form a non-trivial transposition and the edges

cooresponding to xji = 1 form the identity permutation

I Remark 10. As a result of the above properties of the TBP the total number of distinct
edges between any two layers in a width-w TBP is at most w + 2: there are w edges
corresponding to the identity permutation, 2 edges corresponding to the transposition of
two elements, and w − 2 edges corresponding to the identity maps for all but the two
transposed elements. The w − 2 last edges overlap with the w edges corresponding to the
identity permutation.

I Lemma 11. PBPw ⊆ SKw+2

Proof. Given a PBPw for L of size s, by Lemma 9 we know that L also has a width-w TBP.
By Remark 10 the underlying DAG for the TBP has at most w + 2 edges between any two
consecutive layers. Using Lemma 7 we get a skew circuit of width w + 2 for L. Note that
the size of such a circuit is O(ws)

J

Using Barrington’s characterization of NC1 and Lemma 11 we get the following: NC1 =
BP5 = PBP5 ⊆ SK7

3.3 Skew Circuits to Branching Programs
In this section we start from a skew circuit of bounded width and convert it into a branching
program of bounded width. Formally, we prove the following:

I Theorem 12. If C is a skew circuit of width w and length ` then there is a branching
program P of width w and size O(w`) computing the same function as C.

Proof. Recall that in a skew circuit C, AND gates have fan-in 2 and at least one child is an
input variable whereas OR gates have arbitrary fan-in and arbitrary predecessors.

Given a skew circuit C of width w and length `0 we will construct a branching program
P of width w that will recognize the same language. Let Gi1, . . . , Giw be the gates of C on
layer i for i = 1, . . . , `0.

Let X = {`i1 , `i2 , . . . , `iL
} (|X| = L) be the set of layers on which there is at least one

input gate. Without loss of generality we assume that in each j ∈ [L] the gate G`ij
w is an

input gate. (There may be other input gates as well.)
We will construct a branching program of length s = L+ 2 and width w. The nodes in

the branching program in layer `ij ∈ X will be called Nj0, . . . , Nj(w−1). The node N00 is
the initial node and the node N(s−1)(w−1) will be the target node.

N. Balaji, A. Krebs and N. Limaye 7

The nodes N11, . . . , N(s−1)(w−1) will by our construction compute the value of the nodes
in a layer in X. More formally, for every input x, the gate G`jc in layer `j of the circuit (and
layer j in X) evaluated to 1 iff the node Njc can be reached from the initial node. Since
the gate Giw in X is an input gate we will not add corresponding gate in the branching
program. We have completely specified the vertex set of the branching program P .

We now describe the edge set of P . We add an edge from N(j−1)0 to Nj0 labeled by 1 for
every 1 ≤ j ≤ s − 1. This ensures that all nodes Nj0 are always reachable from the initial
node.

Suppose that the layer `j and `j + 1 are both in X, i.e. `j+1 = `j + 1, then the edges
between the nodes in the layer `j and `j+1 in the branching program are easy to state. A
node Nj+1c is connected to Njd if there is an edge between the corresponding gates G`j+1c

and G`jd. Also the edge in the branching program is labeled by 1 if the gate G`jd is an OR
gate, and labeled by the variable xi (or its negtion ¬xi) if G`jd is an AND gate querying xi,
resp. ¬xi. If an OR gate in `j is connected to an input gate, we generate an edge to Nj0
labeled by the literal queried by the input gate.

Now assume that the layer `j is in X and `j+1 is the next layer in X and `j+1 > `j + 1.
Then in the skew circuit, no input gates occur strictly between the layers `j and `j+1. This
implies that there are no AND gates in the layers `j + 2, . . . , `j+1. Hence the functions
computed by the gates in layer `j+1 are ORs of some gates in layer `j + 1. In layer gates
in layer `j + 1 are ORs of either ANDs of gates in layer `j + 1 and an input variable or
ORs of directly gates in layer `j + 1. Therefore, we add the following edges in the branching
program: a node N(j+1)c is connected to Njd if the OR function computed by G`j+1c has
G`jd as one of the inputs. This edge in the branching program is labeled by 1 if this was a
direct OR, it is labeled by the variable xi (or its negtion ¬xi) it it was an ‘or’ of an ‘and’
querying xi resp. ¬xi. e.

It is easy to verify by induction on the layers that Njc is reachable from the inital gate if
the corresponding gate evaluates true. Finally we add an edge from the node corresponding
to the output gate to N(s−1)(w−1).

J

Putting together Lemma 11 and Theorem 12 we get the following corollary:

I Corollary 13. NC1 = BP5 = PBP5 = SK7

4 Width ≤ 7 skew circuits

In this section we study the structure of the languages in NC1 by investigating properties of
skew circuits of width 7 or less. By definition SKi ⊆ SKi+1 for 1 ≤ i ≤ 6.

We start by proving that width 2 circuits are not universal.

I Lemma 14. A width 2 skew circuit of arbitrary size cannot compute Parity of 2 bits.

Proof. Let f = (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2). To show that f /∈ SK2, firstly notice that fixing
the values of both the variables is necessary and sufficient to make f a constant function.
Let C be a SK2 circuit of minimal length computing f . The output gate of C cannot have
a constant as its input: suppose the output is an AND(OR) gate and receives 0 (resp. 1)
as input then the circuit computes a constant function. On the other hand, if the output is
an AND(OR) gate and receives 1 (resp. 0) as input then such an output gate is redundant,
contradicting the minimality of the circuit.

8 Skew Circuits of Small Width

Now, the output cannot be an AND gate because being skew, it can be fixed by fixing
one of its inputs, which contradicts the fact that C computes f . Therefore the output gate
of C, say g0, is an OR gate. Let g1, g2 be its two inputs. a) Both the children of g0 cannot
be OR since we can collapse such a layer and still compute the same function contradicting
minimality; b) Both the children cannot be AND: suppose they are both AND gates, the
next layer must have at least one input variable, say xi. Let the other gate on that layer be
h1. If both query the variable, then by setting that variable to 0, we will make the output
zero, which will contradict the assumption that C computes f . Suppose one of them, say g1,
does not query x1 then the output of the circuit is g0 = (h1∧xi)∨h1 = h1. This contradicts
the minimality of the circuit. c) Even one of the children of g0 cannot be a variable, else
by setting that variable we can fix the output of the circuit. d) Due to cases (a), (b) and
(c) we are only left with a case in where one of the inputs to g0 is an AND and the other is
OR, say g1, g2 resp. In the layer just below this layer, there will have to be an input gate
in a minimal circuit and this will have to be queried by both g1, g2. This variable can now
be fixed (to make g1 = 1 and therefore g0 = 1) so that the output of the circuit is fixed.
Therefore, no width 2 skew circuit computes f . This proves that width 2 circuits are not
universal.

J

Recall that a k-DNF of size s on n variables is an OR of s terms, where each term is
an AND of at most k literals from {x1, x2, . . . , xn,¬x1,¬x2, . . . ,¬xn}. Similarly, k-CNF of
size s on n variables is an AND of s clauses, where each clause is an OR of at most k literals
from {x1, x2, . . . , xn,¬x1,¬x2, . . . ,¬xn}.

I Lemma 15. Let f be a k-DNF of size s on n variables. Then f has a width-3 skew circuit
of length O(sk).

Proof. A term is an AND of at most k literals. It is easy to see that any such term can
be computed by a skew circuit of width 2 and length O(k). Suppose C1, C2, . . . , Cs are
width-2 skew circuits of length `1, `2, . . . , `s, respectively computing the s terms in the k-
DNF of size s. We need to compute an OR of these. This can be done using the one extra
width: stagger circuits C1, C2, . . . , Cs one after the other. This requires width 2 and length
L := k ·

∑s
i=1 `i = O(sk). Now add one OR gate per layer alongside these Cis. Let us call

them g1, g2, . . . , gL. Feed output of gi to gi+1 for all 1 ≤ i ≤ L and feed output of Ci to
g`i+1. It is easy to see that gL+1 computes f . (See Figure 1.) J

∨

∧

y11 y12 . . . y1k

. . . ∧

ys1 ys2 . . . ysk

y11 y12 . . . y1k . . . ys1 . . . ysk

< < <

> > > > > > >

.

Figure 1 Width 3 skew circuits for DNFs

N. Balaji, A. Krebs and N. Limaye 9

As any Boolean function on n variables has an n-DNF of size at most 2n, we get the
following corollary.

I Corollary 16. Let f : {0, 1}n → {0, 1}. Then f can be computed by width-3 skew circuit
of length O(n2n), i.e. width-3 skew circuits are universal.

I Lemma 17. Let f be a k-CNF of size s on n variables. Then f has a width-3 skew circuit
of length O(sk).

Proof. Note that in a CNF, the top AND gate gets clauses as inputs. That is, the AND
gate is not skew. However, it is still possible to get a skew circuit for CNFs. We prove
this by induction on the number of clauses, i.e. s. The base case is s = 1. This is
just an OR of literals, which is computable by width-2 skew circuit of length O(k). Let
fi(x1, . . . , xn) = C1 ∧ . . . ∧ Ci be computable by width-3 skew circuit of length O(ik).
Now fi+1 = fi ∧ Ci+1 (where Ci+1 = xj1 ∨ xj2 . . . ∨ xjk

) is computed as follows: fi+1 =
(. . . ((fi ∧ xj1)∨ (fi ∧ xj2) . . . (fi ∧ xjk

)) . . .). Note that we need width 1 each for the fi, the
AND gate and the input variable. (Even though we require width 3 to compute fi, after the
computation, it just requires width 1 to carry around the value of the function to the next
stage). (See Figure 2.) J

∧

fi ∨

xj1 xj2 . . . xjk

∨

∧

fi xj1

∧

fi xj2

. . . ∧

fi xjk

fi ∈ SK3

fi fi fi

< < <

> > >xjk
xj2xj1

.

Figure 2 Width 3 skew circuits for CNFs

By a result of Viola [11], it is known that Approximate Majority is computable by P-
uniform depth-3 circuits of polynomial size with alternating AND/OR layers with the output
gate being an OR gate. This along with Lemma 17 above yields:

I Corollary 18. ApproxMaja,n has skew circuits of width 4 and polynomial length.

Razborov[9] and Smolensky[10] show that Parity does not have constant depth circuit of
polynomial size. It also implies that Parity does not have polynomial size CNFs or DNFs .
However, we now show that Parity has skew circuits of width 4 and polynomial size.

I Lemma 19. Parity on n variables has a skew circuit of width 4 and length O(n).

Proof. This is an easy observation which comes from the fact that Parity has a branching
program of width 2 and length O(n). This fact along with part 3 of Lemma 5 proves the
result. (Figure 3 shows the width 4 skew circuit for Parity.) J

10 Skew Circuits of Small Width

Block 1 Block 2 Block (n− 1). . .

x1

¬x1

x2

<

<

¬x2

>

>

>

>

x3

<

<

¬x3

>

>

>

>

<

<

. . .

. . .

. . .

. . .

<

Figure 3 Width-4 skew circuit for Parity

5 Parity and SK3

In this section we prove that Parity does not have polynomial length width-3 skew circuits.
As Parity has width 4 skew circuits of linear length (Lemma 19), this separates SK3 from
SK4.

I Theorem 20. SK3 (SK4.

In order to prove this we first show that any width three skew circuit computing Parity
can be converted into a normal form. We then show that any polynomial sized circuit of
that normal form cannot compute Parity.

I Lemma 21. Let C be a Boolean width 3 skew circuit with size s(n) computing Parityn.
The circuit C can be converted into another circuit D such that D computes Parity of at
least n− 2 bits and has the following structure:
1. The top gate of D is an OR of at most 3s(n)2 disjoint skew circuits, say C1, C2, . . . , Cm,

where m ≤ 3s(n)2.
2. The sum of sizes of all Cis is at most O(s(n)3)
3. At most two of these circuits have width 3 and all the other have width at most 2.

I Lemma 22. Let D be a circuit satisfying properties 1,2,3 from Lemma 21 and computing
Parityn. Then there exists a constant c such that the size of D is at least 2n/nc.

Using Lemma 21 and Lemma 22 it is easy to see that the lower bound for Parity follows.

5.1 Proof of Lemma 21
Let C be a width three circuit computing Parity of n bits of size s(n). The top gate of
C cannot be AND. This is because, by fixing the input wires of the AND gate, we could
fix the output of the circuit, however, Parity of n bits cannot be fixed by fixing < n bits.
Therefore, we can assume that the top gate is an OR gate.

I Proposition 23. Let C be any width three skew circuit computing Parity of n bits. Let k
be the highest layer in C consisting of only AND gates, say g1

k, g
2
k, g

3
k. We can convert this

N. Balaji, A. Krebs and N. Limaye 11

into another width 3 skew circuit D computing Parity of at least n − 2 bits such that no
layer of D contains three AND gates.

Proof. Let k be the highest layer (closest to the output gate) with all three AND gates,
say g1

k, g
2
k, g

3
k. Note that, due to skewness of the circuit, the layer k + 1 cannot have any

AND gates. If any one of the gates at layer k has fan-in 1, then we can replace that gate
by an OR gate. Therefore, we will assume that each gate has fan-in 2. Let gates at layer
below, i.e. k − 1, be g1

k−1, g
2
k−1, g

3
k−1. As we are dealing with skew circuits, at least one of

g1
k−1, g

2
k−1, g

3
k−1 is an input gate. Suppose there is only one input gate, then all gates at

layer k must read this input bit. And therefore, the three gates at layer k can be fixed by
fixing this input bit. If there are two input gates, then either both read the same literal
(a variable and its negation) or they read two distinct input bits. In the latter case, by
fixing the two distinct bits, all the three gates can be fixed. Finally, if the two variables
being read are x and ¬x then fixing x may not fix all three gates. For example, suppose
g1

k−1 = x, g2
k−1 = ¬x, g3

k−1 = g, and g1
k = (g AND x) and g2

k = (g AND ¬x). Then fixing
x to any value will not fix both g1

k and g2
k. However, in this case, note that gates at layer

k feed into OR gates. Therefore, in this case, such an AND layer is redundant. Therefore,
any such layer consisting of only AND gates can be completely removed from the circuit by
fixing at most 2 bits. J

Therefore, we will now assume that we have a circuit D which computes parity of at
least n− 2 bits in which no layer consists of only AND gates.

Let G = (V,E) denote the DAG underlying the circuit D. Let X ⊆ V denote the subset
of gates which have a path to the top gate via only OR gates. Note that all the vertices in
this set are themselves OR gates. We refer to the set of vertices X as ORSET.

Let Xin ⊆ V denote the set of vertices in V \X which have an edge incident from it to
some vertex in X. Similarly, let Xout ⊆ V denote the set of vertices in V \X which have
an edge incident to them from some vertex in X.

(a) Disconnect all edges incident to the set Xout from X. Let the new dangling wires be
labelled with the constant 0 input.

(b) If after step (a) any AND gates receives constant input 0 then delete the gate and if any
OR gate receives constant input 0 then delete this input of the OR gate.

(c) In the graph obtained after steps (a) and (b), consider V \X. This disconnects the DAG
G and gives rise to some connected components, say X1, X2, . . . , X`. For each i ∈ [`] and
edge (u, v) such that u ∈ Xi and v ∈ X let Ci,u be the subgraph (DAG) of Xi with u as
its sink.

I Proposition 24. The step (a) above does not change the function computed by the circuit.

Proof. Let u be a gate in X which feeds into some gate in Xout say v. Step (a) above
disconnects u from v and feeds value 0 to v. Suppose gu, the OR gate corresponding to u
evaluates to 1, then the circuit will evaluate to 1 irrespective of all other gates. On the other
hand, if it evaluates to 0, then that is the value that we have fed into v and therefore, the
modification in Step (a) does not change the output of the circuit in either case.

J

Note that V \ X is partitioned by Xis. Therefore, ` ≤ s(n). Also, ∪m
i=1Xi ⊆ V \ X.

Therefore,
∑m

i=1 |Xi| ≤ s(n). The number of edges in G is at most 3s(n). Therefore, the
total number of edges between any Xi and X is at most 3s(n). Therefore, the number of
circuits Cu,i is at most s(n)2 and each such circuit is of size at most s(n). This proves parts
1, 2 of Lemma 21.

12 Skew Circuits of Small Width

We will now prove part 3 of Lemma 21. The top gate of D is the same as the top gate of
C, and it is an OR gate. Therefore, this gate is in the ORSET. Now as long as there are OR
gates on the layers, we have at least one gate per layer in the ORSET. Finally, if there is a
layer with no OR gates, then this layer must have at least one input variable (as D does not
have any layer with three AND gates). The other two gates at this layer be g, h. Let Xg, Xh

be two DAGs rooted at g and h, respectively, and Cg and Ch be the two corresponding
circuits. These are possibly width three circuits. However, all other connected components
of V \X are of width at most 2 due to step (b) above. This gives Part 3 of Lemma 21.

5.2 Proof of Lemma 22
Let D be the circuit given by Lemma 21. Let n0 denote the number of unfixed variables.
Let C1, C2, . . . , Cm be circuits given by Lemma 21. We know that at most two circuits
among these have width 3. Let us assume without loss of generality that the two circuits
are C1, C2. The output gates of these circuits are AND gates, say G1 and G2, respectively.
These being skew circuits, all but one of the inputs of the AND gates are input gates. We
will first prove the following proposition.
I Proposition 25. By fixing at most two variables both G1 and G2 can be set to zero.

Proof. Let G1, G2, . . . , Gm be top gates of the circuits C1, C2, . . . , Cm. Note that Gis are
AND gates because if they were OR gates they would have been in the ORSET. Say they
appear on layers k1, k2, . . . , km in the original width 3 circuit C. If both C1, C2 are width 3
circuits, then it is easy to see that k1 ≤ ki for 3 ≤ i ≤ m and k2 ≤ ki for 3 ≤ i ≤ m. Let us
assume without loss of generality k1 ≤ k2, i.e the gate G1 appears on a lower layer (closer
to Layer 1) than G2.

Let xi, Y1, Y2 be the gates on the layer k1− 1. As G1 is an AND gate, it must query one
variable. Let that be xi. Let the other input to G1 be Y1 without loss of generality.

Now note that Y2 must be connected to the ORSET via G2. If it is not connected via
G2 then it is easy to see that C2 cannot have width 3. (∵ k2 > k1 and ORSET extends all
the way upto k1 + 1, therefore, the circuit C2, which starts at k2 and is disjoint from the
ORSET and disjoint from the path which connected Y2 to the ORSET, can have width at
most 2.)

Our proof for the proposition is a case analysis of the various settings for xi, Y1, and Y2.

(a) Suppose input gate of G2 reads a variable y 6= ¬xi, then set xi = 0, y = 0 which will
eliminate both G1, G2 by setting at most two variables as desired.

(b) Suppose y = ¬xi. Here, by minimality of the circuit we can assume that the output of
the entire circuit can be written as ∨O(m)

i=3 Ci ∨ (Y1 ∧ xi) ∨ (Y2 ∧ ¬xi). To handle this
we need to look at the next layer below k1 − 1 that reads an input variable. Say the
variable read is xj and the layer number is k0. Let the other two gates on this layer
be Z1, Z2. Here again, by observing that there cannot be any redundant gates in the
minimal circuit (and using distributity of AND/ORs) it is easy to see that xj 6= xi. If
either of Y1, Y2 is an AND gate, then k0 = k1 − 1 else both are OR gates.
Therefore, Y1, Y2 are ORs over {(xj∧Z1), Z1, Z2}. (The analysis for the case of ORs over
{(xj ∧ Z2), Z1, Z2} is symmetric. The case of ORs over simply {xj , Z1, Z2} cannot arise
as otherwise Y1 or Y2 will be connected to the ORSET directly, but this is not possible
as we have that both are connected to the ORSET via ANDs.)

(i) If both Y1 and Y2 do not query xj ∧ Z1, then the AND is redundant, which is not
possible in a minimal circuit.

N. Balaji, A. Krebs and N. Limaye 13

(ii) If Y2 (Y1) queries only xj ∧ Z1. Then by setting xi = 0, xj = 0 (¬xi = 0, xj = 0,
respectively) we can set both G1 and G2 to zero.

(iii) If Y2 queries (xj ∧ Z1) and Z1, but not Z2. Then again the AND is redundant. (The
case that Y1 queries (xj ∧ Z1) and Z1, but not Z2 is similar.)

(iv) If Y2 queries (xj ∧ Z1) and Z2, but not Z1 and Y1 queries Z2 (Y1 may query Z1 and
xj ∧Z1 as well) then G1∨G2 = (((xj ∧ Z1) ∨ Z2) ∧ xi)∨(Z2∧xi) = ((xj ∧ Z1) ∧ xi)∨
(Z2 ∧ xi) ∨ (Z ∧ ¬xi) = ((xj ∧ Z1) ∧ xi) ∨ Z2, i.e. Z2 directly feeds into the ORSET,
but this contradicts minimality. (The case that Y1 queries (xj ∧ Z1) and Z2, but not
Z1 and Y2 queries Z2 is similar).

(v) If Y2 queries (xj ∧Z1) and Z2, but not Z1 and Y1 queries Z1 but nothing else then Y1
is redundant.

This exhausts all the cases and finally by setting at most 2 variables we have managed
to eliminate both G1, G2. This finishes the proof of the proposition.

J

Let N denote the number of variables which were not set. Here, N ≥ n0 − 2. The new
circuit, say D′, is now an OR of C3, C4, . . . , Cm and by our assumption, it computes Parity
of N variables. We will show that OR of polynomially many polynomial size width-2 skew
circuits cannot compute Parity.

Let us fix some notation. Let L⊕ denote the 1 set of parity, i.e. L⊕ = {x ∈ {0, 1}N |
Parity(x) = 1}. We know that |L⊕| = 2N−1. For any Boolean circuit C, let LC denote
{x ∈ {0, 1}N | C(x) = 1}. Note that as D′ above is an OR of C3, C4 . . . , Cm, we have
LD′ = ∪m

i=3LCi
.

I Definition 26. We say that a Boolean circuit C α-approximates a function f : {0, 1}n →
{0, 1} if the following conditions hold:
∀x ∈ {0, 1}n, if f(x) = 0 then C(x) = 0, i.e. C has no false positives.
The ratio of |{x | C(x) = 1}| to |{x | f(x) = 1}| is at least α

For the sake of contradiction we have assumed that D′ computes parity of N bits.
Assuming this and from the fact that LD′ = ∪m

i=3LCi , we get that there exists an i ∈
{3, 4, . . . ,m} such that Ci 1/m-approximates parity of N bits. We will now prove that no
such Ci exists, which will give us the contradiction. Formally, we prove the following:
I Claim 27. Let D′ and C3, C4, . . . , Cm be defined as above. There does not exists i ∈
{3, 4, . . . ,m} such that Ci 1/m-approximates Parity of N bits.

Proof. Suppose there exists a Ci which 1/m-approximates parity of N bits. Recall that Ci

is a width 2 skew circuit. Let the last layer be L and the first layer be 1. Let `i1 , `i2 , . . . , `it

be the layers in which there is one input gate, with `i1 being closest to layer 1 and `it

being closest to layer L. (Note that, we can assume without loss of generality that layer 1
is the only layer which has two input gates.) Let the variables queried by these gates be
xi1 , xi2 , . . . , xit

, respectively. Let hit+1 denote the output gate in layer L. Similarly, let hi1

be the gate in layer `i1 (other than the input gate), hi2 be the gate in layer `i2 (other than
the input gate) and so on till hit

be the gate in layer `it
(other than the input gate).

As there are no NOT gates in the circuit, hij+1 is a monotone function of xij , hij for
every 1 ≤ j ≤ t. There is a unique value of xij

, say bij
∈ {0, 1}, such that by setting

xij
= bij

, hij+1 becomes a non-trivial function of hij
. (This is because, there are at most 6

different monotone functions on two bits, two of which cannot occur in a minimal circuit.
And the other four (AND, OR, NAND, NOR) have this property.)

14 Skew Circuits of Small Width

Note that, the setting of xit
= bit

will not fix the value of hit
. Suppose hit

gets fixed
due to this setting. In that case, value of hit+1 will also get fixed. Suppose the value of hit+1

becomes 1, then for all settings of x 6= xit
, hit+1 will continue to have value 1. But we have

assumed that Ci has no false positives. Therefore, this is not possible. On the other hand,
if the value of hit+1 gets fixed to 0, then for all settings of variables x 6= xit

the circuit will
output 0. That is, for 2N−1 different inputs the circuit will output 0. However, we have
assumed that the circuit outputs 1 for at least 2N−1/m many inputs.

Assuming xit
= bit

and xit
6= xit−1 , we will repeat this argument for xit−1 . Let xit−1 =

bit−1 be the setting of xit−1 which makes hit a function of hit−1 . Suppose this setting of
xit−1 fixes hit

then that will inturn fix hit+1 . As before, to avoid false positives, the value of
hit+1 cannot be fixed to 1. And to ensure that the circuit evaluated to 1 on at least 2N−1/m

inputs, it cannot be fixed to 0.
In this way, we can repeat the argument for k distinct variables as long as k < (N −

1) − dlogme. Let k0 be such that k0 = ω(logm) and k0 < (N − 1) − dlogme. We fix k0
distinct variables as above. But now note that any other setting of these k0 variables fixes
the value of hit+1 to 0. Therefore, the circuit can be 1 on at most O(2N−k0) inputs. But
this contradicts our assumption that hit+1 evaluated to 1 on at least 2N/m inputs from L⊕.

J

6 Discussion

The above study provides a wide range of interesting questions, answers to which may
improve our understanding of functions in NC1. Namely, the questions regarding lower
bounds for width k skew circuits for 4 ≤ k ≤ 6. Some of these questions could be more
tractable than the daunting question of proving lower bounds for NC1 circuits. We conjecture
that Majority is a function with respect to which width 4 circuits will have exponential lower
bound. Towards proving such a result, it may be interesting to obtain a normal form for
width 4 skew circuits. It may also be possible that any function in NC1 is computable by
width k circuits for 4 ≤ k ≤ 6. Such a result will tighten the connection between branching
programs and skew circuits.

References
1 D.A. Barrington. Bounded-width polynomial-size branching programs can recognize exactly

those languages in NC1. Journal of Computer and System Sciences, 38:150–164, 1989.
2 David A Barrington. Width-3 permutation branching programs. Technical Memo

MIT/LCS/TM-293, Massachusetts Institute of Technology, Laboratory for Computer Sci-
ence, 1985.

3 Allan Borodin, Danny Dolev, Faith E Fich, and Wolfgang Paul. Bounds for width two
branching programs. SIAM Journal on Computing, 15(2):549–560, 1986.

4 Alex Brodsky. An impossibility gap between width-4 and width-5 permutation branching
programs. Information Processing Letters, 94(4):159–164, May 2005.

5 Israel Nathan Herstein. Topics in algebra. John Wiley & Sons, 2006.
6 Chang-Yeong Lee. Representation of switching circuits by binary-decision programs. Bell

System Technical Journal, 38(4):985–999, 1959.
7 William Joseph Masek. A fast algorithm for the string editing problem and decision graph

complexity. PhD thesis, Massachusetts Institute of Technology, 1976.
8 BV Raghavendra Rao. A study of width bounded arithmetic circuits and the complexity

of matroid isomorphism. [HBNI TH 17], 2010.

N. Balaji, A. Krebs and N. Limaye 15

9 Alexander A Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical Notes, 41(4):333–338, 1987.

10 Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Proceedings of the nineteenth annual ACM symposium on Theory of com-
puting, pages 77–82. ACM, 1987.

11 Emanuele Viola. On approximate majority and probabilistic time. Computational Com-
plexity, 18(3):337–375, 2009.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

