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Abstract

Set disjointness is one of the most fundamental problems in communication complexity. In the
multi-party number-in-hand version of set disjointness, k players receive private inputs X1, . . . , Xk ⊆
{1, . . . , n}, and their goal is to determine whether or not

⋂k
i=1Xi = ∅. In this paper we prove a

tight lower bound on the randomized communication complexity of multi-party number-in-hand set
disjointness in the shared blackboard model. Our main tool is information complexity. Intuitively, in
order to “become convinced” that their sets are disjoint, the players must discover, for each element
j ∈ [n], some player i such that j 6∈ Xi; this information is worth n log k bits. We are able to formalize
this information and show that the players must learn a total of Ω(n log k) bits of information about each
other’s inputs, and this implies a communication lower bound of Ω(n log k) as well. Overall, we obtain
the tight bound Θ(n log k + k) on the problem, and give a simple matching deterministic upper bound.

1 Introduction
Set disjointness is one of the most fundamental problems in communication complexity; it has been stud-
ied in the classical two-player model [KS92, Raz92], in the number-on-forehead model (e.g., [She13]),
and in many other settings (see [CP10]); it has applications in various areas ranging from stream-
ing [AMS99] to data structures [Pat11], distributed computing [SHK+12], circuit lower bounds [CFL83]
and many other examples.

In this note we study the multiparty number-in-hand communication complexity of set disjointness,
with communication over a shared blackboard. In this classical setup, there are k players, each with a
private input Xi ∈ {0, 1}n, and the players wish to compute a joint function f(X1, . . . , Xk) of their
inputs. Specifically, in set disjointness, we interpret each Xi as a subset of [n], and the players need to
determine whether

⋂n
i=1Xi = ∅; formally, we shall denote

DISJn,k(X1, . . . , Xk) = ¬
n∨
j=1

k∧
i=1

Xj
i ,

where Xj
i is coordinate j of player i’s input.
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A trivial reduction from the two-player lower bound of [KS92, Raz92] shows that Ω(n) bits are also
required to solve set disjointness with k players, and an easy argument shows that Ω(k) is also a lower
bound. As for upper bounds, there is a simple protocol with communication complexity O(n log n+ k):
the players go in order, with each player i writing on the board the coordinates j where Xj

i = 0, unless
they already appear on the board. A player that has no new zero coordinates to contribute writes a single
bit to indicate this. After all players have taken their turn, if there is some coordinate that does not appear
on the board, then this coordinate is in the intersection.

A-priori, it is not obvious whether the “right answer” is Θ(n+ k), Θ(n log n+ k), or somewhere in
between. After all, in some cases where one might naively expect a logarithmic factor to arise, it does
not: an example is the randomized protocol of Håstad and Wigderson [HW07], which solves two-player
set disjointness under the promise that |X| = |Y | = s inO(s) bits, instead ofO(s log n). Moreover, two
players can even compute the exact intersection of their sets X,Y using O(s) bits when |X| = |Y | = s:
this result is proven in [BGPW13], which uses information complexity to compute the exact (up to lower-
order terms) number of bits required for any s, and in [BCK+14] it is shown that only log∗ s rounds are
needed to achieve a communication complexity of O(s).

In this paper we show that the randomized communication complexity of set disjointness with k
players is actually Θ(n log k + k). Intuitively, the factor log k arises because the protocol must “find”,
for each j ∈ [n], some player i with Xj

i = 0, before it can declare that
⋂k
i=1Xi = 0. The index of such

a player is “worth” log k bits of information. For sufficiently large n this also translates to O(log k) bits
of communication (for small n, the term Θ(k) dominates the communication complexity).

We remark that a promise version of set disjointness has received significant attention in the number-
in-hand model, due to its connections to streaming lower bounds [AMS99]. In this problem the players
are promised that either the sets intersect at exactly one element, or the sets are pairwise disjoint. The
communication complexity of promise set disjointness is Θ(n/k) [Gro09] (note again the absence of
the logarithmic factor), and in this paper we use some of the techniques developed in [BYJKS04] to
prove lower bounds on promise set disjointness — specifically, the notion of conditional information
cost, and the technique by which one decomposes the problem into many smaller problems (direct sum).
(In [BYJKS04] the lower bound proved is Ω(n/k2), and this was gradually improved until [Gro09] gave
the tight lower bound of Ω(n/k).)

1.1 Information Complexity
Our main tool in this paper is information complexity [CSWY01, BYJKS04]: in order to prove a lower
bound on the communication complexity of set disjointness we will show that any protocol that solves
it must reveal a lot of information about the players’ inputs, in the information-theoretic sense — the
entropy of the inputs is significantly reduced once the transcript of the protocol is observed. Since the
amount of information revealed by the transcript is bounded by the transcript’s length, a lower bound on
the information revealed also implies the same lower bound on communication.

The precise notion of information cost that we use in this paper was introduced in [BYJKS04], and is
called conditional information cost. We will work with a distribution on inputs (X,D) ∼ µ which has
an “auxiliary variable” D, conditioned on which the inputs X1, . . . ,Xk are independent. Conditional
information cost measures the information an external observer learns about the inputs, given D.

One of the advantages of this approach is that it allows us to decompose the problem into many small
problems, prove that each small problem is “a little bit hard”, and obtain a lower bound for the overall
problem that is the sum of the bounds on the smaller problems. This is called direct sum [BYJKS04].
In our case (as in [BYJKS04]), since DISJn,k =

∨n
j=1

∧k
i=1X

j
i , we will break the problem up into n

instances of one-bit AND, prove a lower bound of Ω(log k) on AND, and obtain the lower bound of
Ω(n log k) for disjointness.

In order to show that computing AND must reveal Ω(log k) bits of information about the input,
we argue that whenever the output of the protocol is 0, the protocol’s transcript must “point” to some
player i whose input is zero. This is formalized by analyzing the posterior probability that Xi = 0
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given the transcript. Roughly speaking, under our input distribution, the prior probability that Xi = 0 is
only O(1/k), but we will show that for “most” transcripts, there is a player i with a constant posterior
probability of Xi = 0 given the transcript. The divergence between the prior and the posterior then
is Ω(log k) (see below for the formal definition of divergence), which corresponds to Ω(log k) bits of
information revealed.

1.2 Organization
We begin in Section 2 with a review of some basic notions from information theory. In Section 3 we
prove the two lower bounds on set disjointness, of Ω(n log k) and Ω(k) respectively. Section 3.1 gives
the formal definition of conditional information cost and the direct sum statement (we include a proof
for completeness). We then prove in Section 3.2 that computing a single-bit AND with k players has a
conditional information cost of Ω(log k); together with the direct sum lemma, this yields a lower bound
of Ω(n log k) on the conditional information cost and communication complexity of DISJn,k.

In Section 3.3 we give an easy proof showing that computing a single-bit AND with k players re-
quires Ω(k) bits of communication (even using randomness), which serves both to demonstrate a gap of
Ω(k/ log k) between communication and information cost in the shared blackboard model, and also im-
plies a lower bound of Ω(k) on the communication complexity of DISJn,k. Finally, in Section 4 we give
a deterministic protocol for DISJn,k with communication complexity O(n log k + k), which is optimal
in light of our lower bounds in Section 3.

2 Background on Information Theory
Our main lower bound is based on information complexity [CSWY01] and follows the framework intro-
duced in [BYJKS04]. We shall use the following basic notions. In general, for variables A1, . . . ,A`

with joint distribution µ, we let µ(Ai) denote the marginal distribution of Ai, and µ(Ai | Aj = aj)
denote the distribution of Ai conditioned on Aj = aj (and similarly for more variables).

Definition 1 (Entropy and conditional entropy). The entropy of a random variable X ∼ µ with support
X is given by

H(X) =
∑
x∈X

Pr
µ

[X = x] log
1

Prµ [X = x]
.

For two random variables X,Y with joint distribution µ, the conditional entropy of X given Y is

H(X | Y ) = E
y∼µ(Y )

∑
x∈X

Pr
µ(X | Y =y)

[X = x] log
1

Prµ(X | Y =y) [X = x]
.

Definition 2 (KL divergence). Given two distributions µ1, µ2 with support X , the KL divergence of µ1

from µ2 is

D

(
µ1

µ2

)
=
∑
x∈X

µ1(x) log
µ1(x)

µ2(x)
.

Definition 3 (Mutual information and conditional mutual information). The mutual information between
two random variables X,Y is

I(X;Y ) = H(X)−H(X | Y ) = H(Y )−H(Y |X).

The conditional mutual information between X and Y given Z is

I(X;Y |Z) = H(X |Z)−H(X | Y ,Z) = H(Y ,Z)−H(Y |X,Z).
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Mutual information and KL divergence are related as follows:

I(X;Y ) = D

(
µ(X,Y )

µ(X)µ(Y )

)
= E

y∼µ(Y )
D

(
µ(X | Y = y)

µ(X)

)
= E

x∼µ(X)
D

(
µ(Y |X = x)

µ(Y )

)
,

and similarly for conditional mutual information.
We will require the following useful lemma, from, e.g., [BR11]:

Lemma 1. If A and C are independent given D, then for any variable B,

I(A;B |C,D) ≥ I(A;B |D).

Proof.

I(A;B |D) ≤ I(A;B,C |D) = I(A;B |C,D) + I(A;C |D) = I(A;B |C,D).

Another easy fact is the following (also noted in, e.g., [BR11]):

Lemma 2. If A and C are independent given D, then for any B we have

I(A;B,C |D) = I(A;B |C,D).

Proof. By the chain rule,

I(A;B,C |D) = I(A;C |D) + I(A;B |C,D).

Since A and C are independent given D we have I(A;C |D) = 0, and the claim follows.

3 Lower Bounds

3.1 Ω(n log k) Lower Bound
Conditional information cost and direct sum. To prove a lower bound of Ω(n log k) on the
communication complexity of DISJn,k, we use the notion of conditional information cost, introduced
in [BYJKS04].

Definition 4. Let Π be a randomized protocol, and let µ be a distribution on ({0, 1}n)k × D for some
domain D. The conditional information cost of Π with respect to µ is given by

CIC
µ

(Π) = I
(X,D)∼µ

(Π;X |D).

For a problem P and an error parameter ε ∈ (0, 1), we define

CIC
µ,ε

(P ) = inf
Π

CIC
µ

(Π),

where the infimum is taken over all protocols that solve P with worst-case error ε.

Note that, since I(A;B |C) ≤ H(A) ≤ |A| always, a lower bound on the conditional information
cost of a problem P implies a corresponding lower bound on the communication complexity of P .

Following [BYJKS04], we decompose the disjointness problem into n copies of k-player AND on a
single bit, and argue that the cost adds up linearly:
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Lemma 3. Let µ be a distribution on {0, 1}k ×D, with the following properties:

1. For any (X,D) in the support of µ,
∧k
i=1Xi = 0, and

2. For any D ∈ D, when we draw (X,D) ∼ µ conditioned on D = D, the variables X1, . . . ,Xk

are independent.

Then
CIC
µn,ε

(DISJn,k) ≥ n · CIC
µ,ε

(ANDk).

Proof. We show that for any protocol Π that solves DISJn,k with error ε, there is a protocol Θ that solves
ANDk with error ε and has

I
(U ,F )∼µ

(U ; Θ | F ) ≤
I(X,D)∼µn (X; Π′ |D)

n
.

The claim follows.
We construct Θ as follows: on input U , the players generate an input X for Π by agreeing on a

uniform coordinate i ∈ [n] and on a vector H ∼ µ(F )n−1 using public randomness, setting Xi = U ,
and then each player p privately samples each coordinate Xj

p for j 6= i from its distribution given Hj .
Then they call Π with the resulting input. Since under µ we have

∧
Xj = 0 for each j 6= i, the output

to disjointness on X is 1 iff
∧
U = 1, so Θ has the same error probability as Π.

On input (U ,F ) ∼ µ, let (X,D) be the input to Π generated as above. The distribution of (X,D)
is µn. We have

I
(U ,F )∼µ

(U ; Θ | F ) = I
(X,D)∼µn

(
Xi; Π, i,D−i |Di

)
= I

(X,D)∼µn

(
Xi; Π | i,D

)
(by Lemma 2)

≤ I
(X,D)∼µn

(
Xi; Π | i,X<i,D

)
(by Lemma 1)

=
1

n

n∑
i=1

I
(X,D)∼µn

(
Xi; Π |X<i,D

)
=

I(X,D)∼µn (X; Π′ |D)

n
.

In the next section we will give a distribution µ satisfying the conditions of the lemma above, under
which CICµ,δ(ANDk) ≥ Ω(log k) for some small constant error probability δ. Therefore, by the lemma,
CICµ,δ(DISJn,k) ≥ Ω(n log k).

3.2 Lower Bound for ANDk

We use the following distribution µ:

(1) Select one player Z ∈ [k]; this player receives zero.

(2) Every other player’s input is an iid Bernoulli RV with probability 1/k of being 0.

That is, for each i 6= z we have

Pr [Xi = b |Z = z] = Ber1/k(b).

Our analysis will be conditional in Z. We will also assume that the error δ of the protocol is bounded by
some small constant we can choose.

The distribution is motivated as follows: we must always assign zero to some player, in order to
satisfy the conditions of Lemma 3. Intuitively, we wish to have as few zeroes as possible in the input,
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to make it hard for the protocol to find one of them and become “convinced” that
∧
X = 0. However,

this concern is balanced by the fact that we require a residual entropy of at least Ω(log k) even when we
condition on the identity of the special zero player (to get the lower bound on the conditional information
cost); so we cannot assign 1 to all players except the special player. We would ideally choose a small
constant number of non-special players and assign them zero, but this would not be a product distribution;
we emulate this idea by assigning each player 0 w.p. 1/k.

Outline of the lower bound. Under the distribution µ described above, it is somewhat likely (con-
stant probability) that besides the special player Z, exactly one other player receives zero; we will
condition on this event, which makes the distribution “symmetric” in a sense—a uniformly random pair
of players receive zero, and the others receive one. Notice that conditioned on exactly two players re-
ceiving zero and on Z, the identity of the other player that received zero is uniform in [k] \ {Z}, so it
is worth roughly log k bits of information. Our proof will argue that the protocol must find some player
that received zero, and since, due to the symmetry, it “cannot tell” which is the special player Z, it finds
the other player that got zero with probability 1/2. This will show that the conditional information cost
of the protocol is Ω(log k).

Posterior probabilities. What does it mean for the protocol to “find a zero”? We formalize this in
terms of the posterior probability distribution of the input X given the transcript and Z. “Finding a
zero” will mean that for some i ∈ [k], the posterior probability of Xi = 0 given the transcript is constant
(whereas the prior was only 1/k).

Recall that the conditional information cost can be re-phrased in terms of the KL-divergence between
the posterior and prior of X:

I(Π;X |Z) = È
,z
D

(
µ(X |Π = `,Z = z)

µ(X |Z = z)

)
.

It is more convenient to work with the distributions of the individual inputs Xi rather than the distribution
of the entire input X . And this will be sufficient to prove the lower bound:

Lemma 4.

I(Π;X |Z) ≥
k∑
i=1

È
,z
D

(
µ(Xi |Π = `,Z = z)

µ(Xi |Z = z)

)

Proof. By the chain rule,

I(Π;X |Z) =

k∑
i=1

I(Π;Xi |X<i,Z).

Because X<i is independent of Xi given Z, Lemma 1 implies that

k∑
i=1

I(Π;Xi |X<i,Z) ≥
k∑
i=1

I(Π;Xi |Z) =

k∑
i=1

È
,z
D

(
µ(Xi |Π = `,Z = z)

µ(Xi |Z = z)

)
,

and we are done.

When z = i, the divergence is zero: we know in advance that Xi = 0, so the posterior and the prior
are the same. So in fact we are interested in bounding

I(Π;X |Z) ≥ 1

k

k∑
i=1

∑
z 6=i

E
`∼π|Z=z

D

(
µ(Xi |Π = `,Z = z)

µ(Xi |Z = z)

)
. (1)
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Our goal is to show that the average transcript ` “points” to at least one player that received zero and is
not the special player—that is, for some i 6= z, the posterior probability of Xi = 0 given Π = `,Z = z
is constant. Since the prior is only 1/k, this gives us a divergence of Ω(log k): specifically, if the
posterior probability of 0 is p, then

D

(
µ(Xi |Π = `,Z = z)

µ(Xi |Z = z)

)
=
∑
b=0,1

Pr [Xi = b |Π = `,Z = z] log
Pr [Xi = b |Π = `,Z = z]

Pr [Xi = b |Z = z]

= p log
p
1
k

+ (1− p) log
1− p
1− 1

k

= p log p+ p log k + (1− p) log(1− p) + (1− p) log
1

1− 1
k

≥ p log k −H(p) ≥ p log(k)− 1. (2)

(As usual, we assume the convention that 0 log 0 = 0.) Plugging (2) into (1), with constant p, will yield
the lower bound. But first we must show that indeed the average transcript “points” to a player that
received zero.

Finding zeroes. In order to analyze the posterior probabilities, we examine the structure of the pro-
tocol. As usual, we will use the fact that for any particular transcript, the probability of getting this
transcript can be broken up into the product of functions that each depend only on the input to a single
player:

Lemma 5. For any leaf (transcript) `, there exist functions
{
q`i,b

}
i∈[k],b∈{0,1}

such that

Pr [Π(X) = `] =

k∏
i=1

q`i,Xi
.

Proof. For convenience, we assume that all transcripts of the protocol have the same length. We prove
the claim for any prefix of a transcript as well as for complete transcripts. Let Πs denote the first s
symbols of the transcript. The proof is by induction on the prefix length; the base case is the empty
prefix, for which the claim is immediate.

Suppose we have already proven the claim for a prefix ` of length s, and let `′ = `a for some
symbol a. Let i be the identity of the player whose turn it is to speak after seeing transcript `. Then the
probability that the transcript of length s+ 1 on input X will be `a is given by

Pr [Πs+1(X) = `a] = Pr [Πs(X) = `] · Pr [player i says a on input Xi, transcript `] .

By the induction hypothesis we can write

Pr [Πs(X) = `] =

k∏
i=1

q`i,Xi
.

To prove the claim for `′ = `a we set q`
′

j,b = q`j,b for each j 6= i, and for player i we set q`
′

i,b =

q`i,b · Pr [player i says a on input b, transcript `].

As we said above, we want to argue that in many leafs (transcripts), some player “shows his hand”
and reveals that its input was zero; indeed, we will show that for some player i 6= Z, the probability
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of getting this transcript given Xi = 0 is Ω(k) times larger than given Xi = 1. More formally, let us
denote

α`i := q`i,0/q
`
i,1. (3)

(The case where q`i,1 = 0 is trivial, as in this case the posterior probability of zero is 1, so we will
generally assume q`i,1 > 0.) We will show that “many” leafs ` have maxi α

`
i = Ω(k). To bring the

argument back to the posterior probability of Xi = 0 given Π = ` we will use Bayes’ rule.
To apply Bayes’ rule, let us calculate the probabilities involved. For i 6= z and b ∈ {0, 1},

Pr [Π = ` |Xi = b,Z = z] =
∑
X

Pr [Π = ` |X = X,Z = z] Pr [X = X |Xi = b,Z = z]

=
∑

X:Xi=b,Xz=0

 k∏
j 6=i,z

Ber1/k(Xi) ·
k∏
j=1

q`j,Xj


= q`i,b · q`z,0

∑
X−i,z

 k∏
j 6=i,z

q`j,Xj
Ber1/k(Xi)

 .

We also have

Pr [Π = ` |Z = z] =
∑
b=0,1

Pr [Π = ` |Xi = b,Z = z] Pr [Xi = b |Z = z]

= q`z,0
∑
X−i,z

 k∏
j 6=i,z

q`j,Xj
Ber1/k(Xi)

 · [1

k
q`i,0 +

(
1− 1

k

)
q`i,1

]
.

Therefore the posterior probability of Xi = b at leaf `, given Z = z for z 6= i, is

Pr [Xi = b |Π = `,Z = z] =
Pr [Xi = b |Z = z] Pr [Π = ` |Xi = b,Z = z]

Pr [Π = ` |Z = z]

=
Ber1/k(b)q`i,b

1
k q
`
i,0 +

(
1− 1

k

)
q`i,1

.

Since this does not depend on the specific value of Z, we also have

Pr [Xi = b |Π = `,Z 6= i] =
∑
z 6=i

Pr [Xi = b ∧Z = z |Π = `,Z 6= i]

=
∑
z 6=i

Pr [Z = z |Π = `,Z 6= i] Pr [Xi = b |Π = `,Z = z]

=
∑
z 6=i

Pr [Z = z |Π = `,Z 6= i]
Ber1/k(b)q`i,b

1
k q
`
i,0 +

(
1− 1

k

)
q`i,1

=
Ber1/k(b)q`i,b

1
k q
`
i,0 +

(
1− 1

k

)
q`i,1
·
∑
z 6=i

Pr [Z = z |Π = `,Z 6= i]

=
Ber1/k(b)q`i,b

1
k q
`
i,0 +

(
1− 1

k

)
q`i,1

.

In particular, for a transcript `, the posterior probability of Xi = 0 given Z 6= i and Π = ` is

q`i,0
q`i,0 + (k − 1)qi,1

=
α`i

α`i + k − 1
≥ α`i
α`i + k

, (4)

unless qi,1 = 0, in which case the posterior is of course 1. If α`i = Ω(k) then this becomes constant.
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“Good leafs”. Our task now is to show that for “many” leafs ` we indeed have, for some i ∈ [k],
α`i = Ω(k); in other words, maxi α

`
i = Ω(k).

We focus our attention on inputs that have exactly two zeroes, and our “good leafs” will also be
chosen with respect to their behavior on these inputs. Let Xc denote the set of inputs with c zeroes for
c ∈ [k]. Note that the correct answer for ANDk is 1 on inputs in X0 (there is only one such input, 1k) and
0 on inputs in Xc for c ≥ 1.

Let π2 be the distribution of leafs conditioned on the input being in X2:

π2(`) =
∑
X∈X2

[
µ(X|X2

)

k∏
i=1

q`i,Xi

]
.

Let L be the set of leafs satisfying the following constraints: for each ` ∈ L, the output of the protocol
is 0, and also

π2(`) ≥ C ·
k∏
i=1

q`i,1,

where C is some large constant whose value will be chosen later. In other words, L is the set of leafs
with output 0 which “strongly prefer” inputs with two zeroes over 1k. (In particular, these leafs do not
contribute much to the error of the protocol.)

To show that L has large mass under π2, let us partition the complement of L2 into two sets B0, B1

based on the output value on each leaf. Neither set can be large:

• The leafs in B1 cannot have large mass under π2 because they yield the wrong output (1) on all
inputs in X2:

π2 (B1) =
∑
`∈B1

∑
X∈X2

µ(X|X2
) Pr [Π = ` |X = X]

=
1

µ(X2)

∑
X∈X2

µ(X)
∑
`∈B1

Pr [Π = ` |X = X]

≤ 1

µ(X2)

∑
X∈X≥1

µ(X)
∑
`∈B1

Pr [Π = ` |X = X]

≤ 1

µ(X2)
Pr
µ

[Π outputs 1] ≤ δ

µ(X2)
.

• B0 contains leafs on which the output is 0, but

π2(`) < C ·
k∏
i=1

q`i,1.

These leafs contribute to the error of the protocol on 1k at least in proportion to their mass under
π2, and therefore they also cannot have large mass:

Pr
[
Π(1k) outputs 0

]
≥
∑
`∈B0

Pr
[
Π(1k) = `

]
=
∑
`∈B0

k∏
i=1

q`i,1

>
∑
`∈B0

π2(`)/C = π2(B0)/C,

and therefore π2(B0) < C · δ.
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Together we have that assuming C · δ < 1/200 and δ/µ(X2) < 1/200 (both constant requirements),
π2(B0 ∪ B1) < 1/100. Note that we can choose C arbitrarily large, and compensate by assuming a
smaller error probability δ.

For any leaf ` ∈ L, we have

π2(`) =
∑
X∈X2

µ(X|X2)

k∏
i=1

q`i,Xi
≥ C

k∏
i=1

q`i,1.

Given membership in X2, all two-zero inputs are equally likely, so µ(X|X2) = 1

(k
2)

for any X ∈ X2.

Note that for each X ∈ X2 we can write
∏k
i=1 q

`
i,Xi

= q`j1,0q
`
j2,0
·
∏
i 6=j1,j2 q

`
i,1, where j1 6= j2 are

the two indices where X has zero. Dividing both sides by
∏k
i=1 q

`
i,1 (and renaming the indices for

convenience), we obtain
1(
k
2

) ∑
i<j

α`iα
`
j ≥ C.

Because
∑
i<j aiai ≤ (

∑
i ai)

2 for any sequence a1, . . . , aN , we get that∑
i

α`i ≥
√
k(k − 1)

2
· C ≥

√
k2

4
· C =

√
C

2
k. (5)

In other words, the sum of the coefficients is linear. However, our goal is to show that for many leafs the
maximum coefficient is linear, and this does not necessarily hold for all of L. We focus our attention on
the subset L′ ⊆ L of leafs ` satisfying

Pr [Π = ` |X ∈ X2] ≥ 1

2
Pr [Π = ` |X ∈ X3] ,

that is, leafs that “like” inputs with two zeroes not much less than inputs with three zeroes. We have
π2(L′) ≥ π2(L)− 1/2, because

π2(L \ L′) =
∑

`∈L\L′
Pr [Π = ` |X ∈ X2] ≤ 1

2

∑
`∈L\L′

Pr [Π = ` |X ∈ X3] ≤ 1

2
.

Now fix ` ∈ L′, and let us show that for some i ∈ [k], the posterior probability of Xi = 0 given `
is Ω(k) times the posterior probability of 1. If there is some i for which q`i,1 = 0, then we are done, so
assume that this is not the case. Because ` ∈ L′,∑

X∈X2

µ(X|X2
)

k∏
i=1

q`i,Xi
≥ 1

2

∑
X∈X3

µ(X|X3
)

k∏
i=1

q`i,Xi
,

that is,
1(
k
2

) ∑
i<j

α`iα
`
j ≥

1

2
(
k
3

) ∑
i<j<m

α`iα
`
jα

`
m. (6)

Now assume for the sake of contradiction that for a constant C ′ whose value will be fixed later, we have
α`i < C ′k for each i ∈ [k]. Then

6
∑

i<j<m

α`iα
`
jα

`
m =

(∑
i

α`i

)3

− 3
∑
i 6=j

(
α`i
)2
α`j −

∑
i

α3
i

>

(∑
i

α`i

)3

− 3C ′k
∑
i 6=j

α`iα
`
j − (C ′)2k2

∑
i

αi

≥

(∑
i

α`i

)3

− 3C ′k

(∑
i

α`i

)2

− (C ′)2k2
∑
i

αi.
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From (5) we know that k ≤ 2
∑
i α

`
i/(
√
C), so

6
∑

i<j<m

α`iα
`
jα

`
m ≥

(∑
i

α`i

)3

− 6
C ′√
C

(∑
i

α`i

)3

− 4
(C ′)2

C

(∑
i

αi

)3

.

If we choose, e.g., C ′ <
√
C/100, we get that

6
∑

i<j<m

α`iα
`
jα

`
m ≥

1

2

(∑
i

α`i

)3
(5)
≥ 1

4

√
Ck

(∑
i

α`i

)2

,

and therefore
1

2
(
k
3

) ∑
i<j<m

α`iα
`
jα

`
m ≥

√
C

16k2

(∑
i

α`i

)2

.

This gives us a lower bound on the right-hand side in (6). The left-hand side is bounded from above by

1(
k
2

) ∑
i<j

α`iα
`
j ≤

4

k2

(∑
i

α`i

)2

.

If we chooseC sufficiently large we obtain a contradiction to (6). Note that the value ofC ′ is constrained
only by the value of C, so by increasing C (which requires only assuming a smaller error probability δ
for the protocol) we can obtain an arbitrarily large lower bound maxi α

`
i ≥ C ′k.

Wrap-up. So far we have shown the following: fix a constant probability p ∈ (0, 1), and let c > 0 be
a constant such that c/(c + 1) ≥ p. (We can find such c because limc→∞ c/(c + 1) = 1.) Then there
exist constants δ, p2 ∈ (0, 1) such that any protocol that solves AND with error probability at most δ has
a set L′ of leafs such that π2(L′) ≥ p2, and for each ` ∈ L′ there is a player i = i(`) with α`i ≥ ck. For
this player we have

Pr
[
Xi(`) = 0 |Π = `,Z 6= i

] (4)
≥

α`i(`)

α`i(`) + k

(∗)
≥ ck

ck + k
≥ p. (7)

(∗): The function x/(x+ k) is increasing in x for any k > 0, as

d

dx

(
x

x+ k

)
=

1

x+ k
− x

(x+ k)2
=

k

(x+ k)2
> 0.

It follows from (2) that for any z 6= i(`), assuming k ≥ 22/p,

D

(
µ(Xi(`) |Π = `,Z = z)

µ(Xi(`) |Z = z)

)
≥ p log k − 1 ≥ (p/2) log k, (8)
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and hence

I(Π;X |Z)
(1)
≥ 1

k

k∑
i=1

∑
z 6=i

E
`∼π|Z=z

D

(
µ(Xi |Π = `,Z = z)

µ(Xi |Z = z)

)

=
1

k

k∑
i=1

∑
z 6=i

∑
`

Pr [Π = ` |Z = z]D

(
µ(Xi |Π = `,Z = z)

µ(Xi |Z = z)

)

≥ 1

k

k∑
i=1

∑
z 6=i

∑
`∈L′

∑
X∈X2

Pr[X = X |Z = z] Pr [Π(X) = `]D

(
µ(Xi |Π = `,Z = z)

µ(Xi |Z = z)

)

≥ 1

k

∑
`∈L′

∑
z 6=i(`)

∑
X∈X2

Pr[X = X |Z = z] Pr [Π(X) = `]D

(
µ(Xi(`) |Π = `,Z = z)

µ(Xi(`) |Z = z)

)

≥ p log k

2

∑
`∈L′

∑
X∈X2

Pr [X = X |Z 6= i(`)] Pr [Π(X) = `] . (9)

Observe that for any X ∈ X2 and i ∈ [k] we have Pr [X = X |Z 6= i] ≥ Pr [X = X] /2, because if
Xi = 1 the probability of X is increased, and if Xi = 0 we are ruling out one of two symmetric ways to
obtain X from µ. Also, recall that π2(L′) ≥ p2, that is,

p2 ≤ Pr
X∼µ|X2

[Π(X) ∈ L′] =
1

µ(X2)

∑
X∈X2

µ(X) [Π(X) ∈ L′] . (10)

Therefore,

I(Π;X |Z)
(9)
≥ p log k

2

∑
`∈L′

∑
X∈X2

Pr [X = X |Z 6= i(`)] Pr [Π(X) = `] (11)

≥ p log k

4

∑
`∈L′

∑
X∈X2

µ(X) Pr [Π(X) = `]

=
p log k

4

∑
X∈X2

µ(X) Pr [Π(X) ∈ L′]
(10)
≥ p log k

4
· p2 · µ(X2). (12)

Finally, we have

µ(X2) = Bink−1,1/k(1) = (k − 1) · 1

k

(
1− 1

k

)k−2

≥ 1

2
·
(
e−1/k

)k−2

≥ 1

2e(k−2)/k
≥ 1

2e
.

We used the fact that for x ∈ (0, 1/2) we have 1− x ≥ e−x. Together with (12), we see that

|Π| ≥ I(Π;X |Z) ≥ Ω(log k).

This completes the proof.
Our lower bound of Ω(n log k) is tight for the external information complexity of DISJn,k: if players

go over the coordinates one by one, and write their inputs on the board until they encounter a zero, then
they learn at most O(n log k) bits of information (for each coordinate, the index of some player that got
zero). Below we show that for communication complexity there is also an additive factor of k.

3.3 Lower Bound of Ω(k) on the Communication Complexity of ANDk

We now show that computing ANDk requires Ω(k) bits of communication, which trivially implies a
lower bound of Ω(k) on DISJn,k. Note that, since ANDk requires only O(log k) bits of information to
solve (by simply having the players write their inputs in order until we reach some player that received
0), this implies a gap of Ω(k/ log(k)) between communication and information complexity.
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Lemma 6. The randomized communication complexity of ANDk is Ω(k).

Proof. As usual, we prove the lower bound for deterministic protocols under random inputs, and obtain
the lower bound for randomized protocols with worst-case input. Let ε < 1/3 be the error bound, and
fix ε′ > ε such that ε/(1− ε′) < 1/2.

Consider the following input distribution µ: with probability ε′ > ε, all players receive 1, and with
probability 1− ε′, one random player receives 0 and the other players receive 1.

Fix a deterministic protocol Π for ANDk. Let p1, . . . , p` be the order in which players speak when
the input is 1k, and assume for the sake of contradiction that ` < (1− ε/(1− ε′)) · k.

If Π(1k) = 0, then Π’s error under µ is ε′ > ε, so we can assume that Π(1k) = 1. Let E be the event
that the input is not 1k, but all of the players p1, . . . , p` receive 1. We have Prµ [E ] = (1−ε′)·(1−`/k) >
ε. But when E occurs, the transcript of Π is identical to its transcript on 1k, as Π is deterministic and all
players that speak when the input is 1k still receive 1 (in particular, the order of players that speak also
remains the same under E). Therefore with probability > ε the protocol outputs the wrong answer.

4 Matching Upper Bound
We now describe a deterministic protocol for DISJn,k with communication complexity O(n log k + k),
which, in light of the proof above, is optimal even for randomized algorithms.

High-level outline. In the protocol, players attempt to prove that
⋂k
i=1Xi = ∅ by writing on the

board the indices of coordinates i ∈ [n] where their input is zero; these coordinates cannot be in the
intersection. If for each coordinate there is some player that can rule it out, then the intersection is
empty. To reduce the amount of communication, players never write on the board a coordinate that
already appears on the board. A naive implementation of this idea is to have players go in order 1, . . . , k,
and have each player in its turn write on the board the coordinates where it got 0, and which do not
already appear on the board. This leads to a communication complexity of O(n log n + k), as each
coordinate requires O(log n) bits to be written on the board (the additive k term comes from players
that need to indicate that they have no new zeroes to contribute). We can lower the communication
complexity by “packing” the coordinates together, encoding sets of coordinates more compactly than
the cost of writing them on the board one-by-one; for this to work, only players that have “many” new
coordinates to write at once should contribute, and the other players should simply pass when it is their
turn to speak. When we have reduced the number of coordinates that do not appear on the board to
poly(k), we can afford to go back to the naive approach and simply have each player add all its zero
coordinates to the board if they do not already appear there.

Detailed description. The protocol runs in cycles, where in each cycle some prefix of the players
1, . . . , k each speak exactly once, in order, and the remaining players do not speak. Let Zi be the set of
coordinates that do not appear on the board at the beginning of cycle i, and let zi := |Zi|. Notice that if
the input sets are indeed disjoint, then by the pigeonhole principle, at least one player has at least zi/k
zero coordinates that do not appear on the board (“new zeroes”).

Suppose that at the beginning of cycle i we still have zi ≥ k2. When it is the turn of player j to
speak, if player j has at least zi/k new zeroes, then it chooses zi/k of them and writes them on the board,
encoded as a subset of Zi. The number of possible subsets is

(
zi
zi/k

)
≤ ((zie)/(zi/k))

zi/k = (ek)zi/k, so
encoding one subset requires (zi/k) log(ek) bits. If player j does not have zi/k new zeroes to contribute,
it writes a single bit on the board indicating this (“pass”). To simplify the analysis slightly, after the first
player that does not pass, we immediately begin a new cycle (skipping over the remaining players in the
cycle).

When at the beginning of some cycle i we have zi < k2, each player simply writes all its new zeroes
on the board in the naive encoding (as elements of Zi).
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The protocol ends when one of the following occurs: if at any point all coordinates appear on the
board, then the players halt and output “disjoint”. Otherwise, if a complete cycle goes by in which all
players pass, then the players halt and output “non-disjoint”. Also, if we reach a cycle i with zi < k2,
and at the end of the cycle not all coordinates appear on the board, then the players output “non-disjoint”.

Correctness. If the players output “disjoint” then clearly the inputs are disjoint. For the other case,
assume for the sake of contradiction that the players announce “not disjoint” at the end of cycle i, but
the inputs are in fact disjoint. If cycle i has zi < k2 then the player only announce “not disjoint” if not
all coordinates are written on the board at the end of the cycle. But in this cycle all players write their
remaining zeroes on the board, so any coordinate that does not appear on the board at the end of the
cycle is in the intersection, and the sets are not disjoint. Assume therefore that zi ≥ k2, and the players
output “not disjoint” because all players passed when it was their turn to speak in cycle i. Since the
inputs are disjoint, for each coordinate j ∈ Zi, some player received a zero in coordinate j. It follows
that some player has at least zi/k zeroes in coordinates from Zi, and the smallest such player would not
have passed when it was its turn to speak. This is a contradiction.

Communication complexity. In each cycle i with zi ≥ k2, at most k players pass, and at most
(zi/k) log(ek) bits are added to the board to represent new zero coordinates. The total is (zi/k) log(ek)+
k bits, and since zi ≥ k2, we have (zi/k) log(ek) +k ≤ (zi/k)(log(ek) + 1). Also, zi+1 = zi− zi/k =
((k − 1)/k)zi, so in general we have zi = ((k − 1)/k)in (with the first cycle being cycle 0). Therefore
the total number of bits written on the board, while zi ≥ k2, is bounded from above by

∞∑
i=0

(
k−1
k

)i
n

k
(log(ek) + 1) =

n

k
(log(ek) + 1) · 1

1− k−1
k

= n (log(ek) + 1) .

If we reach a cycle i with zi < k2, there can be at most one such cycle (if we reach the end and not
all coordinates appear on the board, the players output “non-disjoint”). The total number of bits written
during this cycle is bounded by zi · log(zi) + k ≤ n log(k2) + k. The total communication complexity
of the protocol is O(n log k + k).
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