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Abstract

We consider randomness extraction by ACY circuits. The main parameter, n, is the length of
the source, and all other parameters are functions of it. The additional extraction parameters
are the min-entropy bound k& = k(n), the seed length r = r(n), the output length m = m(n),
and the (output) deviation bound € = e(n).

For k < n/ log‘“(l) n, we show that AC°-extraction is possible if and only if T <1+
poly(logn) - £; that is, the extraction rate m/r exceeds the trivial rate (of one) by an addi-
tive amount that is proportional to the min-entropy rate k/n. In particular, non-trivial AC’-
extraction (i.e., m > r + 1) is possible if and only if k - > n/poly(logn). For k > n/log®® n,
we show that AC’-extraction of r + Q(r) bits is possible when r = O(logn), but leave open the
question of whether more bits can be extracted in this case.

The impossibility result is for constant €, and the possibility result supports e = 1/poly(n).
The impossibility result is for (possibly) non-uniform AC°, whereas the possibility result hold
for uniform AC°. All our impossibility results hold even for the model of bit-fixing sources,
where k coincides with the number of non-fixed (i.e., random) bits.

We also consider deterministic AC? extraction from various classes of restricted sources. In
particular, for any constant § > 0, we give explicit AC" extractors for poly(1/4) independent
sources that are each of min-entropy rate J; and four sources suffice for § = 0.99. Also, we
give non-explicit AC® extractors for bit-fixing sources of entropy rate 1/poly(logn) (i.e., having
n/poly(logn) unfixed bits). This shows that the known analysis of the “restriction method”
(for making a circuit constant by fixing as few variables as possible) is tight for AC® even if the
restriction is picked deterministically depending on the circuit.
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1 Introduction

Randomness extractors, hereafter referred to as extractors, are procedures that transform sources
of “weak randomness” into sources of almost perfect randomness. The feasibility of such a transfor-
mation depends on the specific notion of “weak randomness”, and in most cases the transformation
must be provided with a short (perfectly) random seed. Indeed, this fundamental problem has
several versions, and each of them comes with a set of parameters. (See Shaltiel’s survey [52] for a
wide perspective as well as for a snapshot of the state of the art a decade ago.)

The most popular and general notion of weak randomness is parameterized by a probability
bound, denoted 27%, such that no outcome may appear with probability that exceeds it. In such
a case, k is called the min-entropy of the source. Additional parameters of the extraction problem
include the length of the source, denoted n, the length of the seed, denoted r, the length of the
(extracted) output, denoted m, and an upper bound on its deviation (from perfect randomness),
denoted €. In fact, n is viewed as the main parameter, and all other parameters are stated as
functions of n. A function E : {0,1}" x {0,1}" — {0,1}™ is called a (k, €)-extractor if for every X
of min-entropy k it holds that E(X, U,) is e-close to U,,, where U, denotes the uniform distribution
over {0, 1}*. Tt is called a strong (k, €)-extractor if for such X’s it holds that F(X, U,)oU, is e-close to
Upm+r- (Note that if E is a strong (k, €)-extractor, then E'(z,u) = E(z,u)owu is an (k, €)-extractor.)

When ignoring computational issues, the exact trade-off between the various extraction pa-
rameters is known, but much research has been devoted to obtaining explicit constructions that
approach the optimal bounds. Traditionally, an extractor is called explicit if it can be computed
efficiently (i.e., in polynomial-time) or alternatively if Boolean circuits computing it can be con-
structed in poly(n)-time. It is known that some constructions are even more explicit than that; for
example, the popular constructions of universal hashing functions [14] (known as the “mother of
all extractors”) are computable by highly uniform AC°[2] circuits (i.e., constant-depth circuits of
polynomial-size with parity gates). The same holds for Trevisan’s celebrated extractor [53]. Can
one get any lower (indeed to AC®)? This is the question we study here.

1.1 The most relevant prior work

Our starting point is the following negative result by Viola [56].

Theorem 1.1 (severe limitations on extraction in AC® [56, Thm. 6.4]): If a (k,0.999)-extractor
E :{0,1}"x{0,1}099m 5 10 1}™ is computable by a circuit C (with negations and unbounded fan-
in and and or gates), then size(C) > exp(Q(n/k)/ ([P =D * In particular, if E can be computed
by a family of ACY circuits, then there exists a positive polynomial p such that k(n) > n/p(logn)
for all sufficiently large n.

This result rules out ACY-extractors that either extract from entropy k = n/ 10g‘”(1) n or use a seed
length r that is sublinear in the output length. However, the result leaves open the possibility
that (non-trivial) ACY-extractors exist for other settings of parameters. Indeed, when making
only the non-triviality requirement (i.e., m = r + 1), two such extractors existed in the literature.
First, ACY circuits can extract one bit from a source of logarithmic min-entropy when using a
very long seed; specifically, when » = n = m — 1. (This can be done by sampling input-output
pairs of the inner product function [33], cf. [5, 57].) Second, non-trivial AC’-extractors exist for
min-entropy k > n/polylogn (using the “sample-then-extract” paradigm developed by Nisan and



Zuckerman [45] and refined by Vadhan [54]). In fact, this AC%-extractor can extract logarithmically
many bits.

Theorem 1.2 (following [54, Thm. 7.4]): For every k(n) = n/poly(logn) and ¢(n) = 1/poly(n),
there exist (non-explicit) AC circuits that compute a strong (k(n),e(n))-extractor E : {0,1}" x

{0,1}00een) _, 10, 1}0008n) - Fyrthermore, the circuits have depth 4 + [%-‘.

The proof of Theorem 1.2 follows the proof of [54, Thm. 7.4], which combines an adequate sampler
with an adequate extractor using the (sample-then-extract) composition theorem of [54, Thm. 6.3].
We note that both the sampler and the extractor used in the original proof of [54, Thm. 7.4]
are non-explicit; furthermore, the (optimal) extractor used there is probably not computable by
constant-depth circuits of poly(n)-size (let alone explicit ones). Instead, we shall use the (non-
optimal) explicit extractor of [28, Sec. 5], which is computable by (uniform) constant-depth circuits
of size poly(n). The resulting AC’-extractor inherits the non-explicitness of the sampler used in
the proof of [54, Thm. 7.4]. Jumping ahead, we mention that we provide an explicit version of
Theorem 1.2 (see Theorem 3.1) by using a new explicit sampler (see Theorem 3.2).

Hence, while a non-explicit AC%-extractor for & > n/poly(logn) is implicit in prior work, the
explicit version (as stated in Theorem 3.1) relies on our new sampler (i.e., Theorem 3.2). In any
case, the foregoing results do not refer to the general trade-offs between the parameters k, r and
m that allow extraction to be performed in AC°.

1.2 Our main results

We study the following general question.

Parameters enabling extraction in AC: For which values of k, v and m are (k,n=°)-
extractors E : {0,1}" x {0,1}"™ — {0,1}™™ computable in AC®?

Recall that, for logarithmic seed length (i.e., r(n) = O(logn)), a min-entropy bound of k(n) >
n/poly(logn) is a necessary condition (even for m(n) = r(n)+Q(logn) (see Theorem 1.1)), whereas
m(n) = r(n)+O0(logn) is achievable (by Theorem 1.2). These results mark the boundaries (between
impossible and possible) as a function of £ when r(n) = O(logn) and m(n) = r(n) + ©(logn).
Indeed, this boundary refers to a line (k,r = O(logn), m = r 4+ ©(logn)) in the three dimensional
space (k,r,m) € [n]3. Our work is aimed at mapping the entire space, and it achieves this goal for
k<n/ log? M n. In this setting, we show that AC-extraction is possible if and only if T <1+
poly(logn) - %; that is, the extraction rate m/r exceeds 1 by an additive amount that is proportional
to the min-entropy rate k/n. The region of k& > n/poly(logn) remains partially unmapped (as
indicated in Problem 1.6 below).

In general, our impossibility results are for constant €, and the possibility results support € =
1/poly(n). The impossibility results are for (possibly non-uniform) AC®, whereas all but one of our
possibility results hold for uniform AC® (assuming that the relevant functions (i.e., k,r,m and )
are poly(n)-time computable). All impossibility results hold even for the model of bit-fizing sources,
where k coincides with the number of non-fixed (i.e., random) bits.

When we write k(n) < n/poly(logn) we mean that, for every positive polynomial p and all
sufficiently large n, it holds that k(n) < n/p(logn). When we write k(n) > n/poly(logn) we mean
that there exists a polynomial p such that, for all sufficiently large n, it holds that k(n) > n/p(logn).



With these preliminaries in place, we turn to describe our main results. In the case of strong
extraction we obtain a very clear dichotomy.

Theorem 1.3 (strong extraction in AC°):

e impossibility: Strong extraction, even of a single bit, is impossible in AC® for k(n) < n/poly(logn),
regardless of the length of the seed.

e possibility: Strong extraction of mg = Q(logn) bits is possible in uniform AC° for any k(n) >
n/poly(logn), using a seed of length O(logn). Furthermore, in this case, for everyt < k/2my,
strong extraction of t - mg bits is possible using a seed of length O(t -logn).

[The impossibility result follows by Theorem 5.3. The possibility result follows by Part 2 of Corol-
lary 6.4, which in turn is based on Theorem 3.1 (combined with Theorem 6.3 for the furthermore
part).]

We comment that, for k(n) > n/poly(logn), one can extract poly-logarithmically many bits in
AC® using a seed of logarithmic length but at an error rate of 1/poly(logn); this can be done by
using Trevisan’s extractors [53] (insead of the extractor of [28, Sec. 5]). We now turn to ordinary
(i.e., non-strong) extraction, starting with the minimal case of non-trivial extraction.

Theorem 1.4 (ordinary extraction in ACY, the case of m = +1):
e impossibility: Eztraction of 7(n) 4 1 bits is impossible in AC® for r(n) - k(n) < n/poly(logn).

e possibility: There exists a constant ¢ > 2 such that, for every k(n) > c-log(n/e) and every
r(n) > (n-log®n)/k(n), extraction of r(n)+min(poly(logn), k(n)/2) bits is possible in uniform
ACC.

[The impossibility result follows by Part 1 of Theorem 5.4, whereas the possibility result follows by
Corollary 6.2.]

Theorem 1.5 (ordinary extraction in AC?, the case of m = r + ©(r)):

e impossibility: Extraction of r(n) +Q(r(n)) bits is impossible in AC® for k(n) < n/poly(logn),
regardless of r.

e possibility: There exists a constant ¢ > 0 such that, for every k(n) > n/poly(logn) and every
r(n) € [Qlogn), k(n)/c], extraction of (1+ c) - r(n) bits is possible in uniform AC° using a
seed of length r(n).

[The impossibility result follows by Part 2 of Theorem 5.4, whereas the possibility result (of Theo-
rem 1.5) follows by the possibility result of Theorem 1.3.]

Note that the impossibility result of Theorem 5.4 establishes the same bound as Viola’s [56,
Thm. 6.4] (see Theorem 1.1), but does so for bit-fixing sources.

Let us restate the message of Theorem 1.5: It says that extracting m(n) = r(n) + ©(r(n)) bits
is impossible if k(n) < n/poly(logn) (regardless of the size of r), whereas if k(n) > n/poly(logn)
then using a seed of length r(n) = Q(logn) we can extract r(n) + Q(r(n)) bits. However, it is not
clear whether we cannot extract significantly more bits in the latter case.



Open Problem 1.6 (extracting more bits at rate of at least 1/poly(logn)): Can one extract more
that poly(log n)-r(n) bits in AC® using a seed of length r(n) = Q(logn), when k(n) > n/poly(logn) ?
In particular, can one extract more that poly(logn) bits using a seed of logarithmic length? For
starters, what about the special case of constant min-entropy rate, that is, k(n) = Q(n)?

We conjecture that the answer is negative and provide some evidence for this conjecture in Sec-
tion 4.2. Recall that for k(n) > n/poly(logn), we can extract poly-logarithmically many bits using
a seed of logarithmic seed but at an error rate of 1/poly(logn); see Part 2 of Corollary 3.4. Indeed,
a minor open problem regarding this case is to reduce the error rate to 1/poly(n).

Theorems 1.4 and 1.5 can be interpolated, and they indeed follow as special cases of the following
generalization (which is our main result).

Theorem 1.7 (ordinary extraction in AC°, the general case of m = r +m/):

e impossibility: For any m’(n) > 1, extraction of r(n) + m/(n) bits is impossible in AC® if

K(n) < s - s (eauiva, if (r(n) 4 m'(n)) - k(n) < m(n) - n/poly(logn)).

e possibility: There exists a constant ¢ > 1 such that for every k(n), m’(n), and r(n) such that
k(n) > c- (m/(n) + log(n/e)), extraction of r(n) 4+ m'(n) bits is possible in uniform AC° in
each of the following two cases.

1. Forr(n) - k(n) > [m/(n)/poly(logn)] - O(nlog®n) and k(n) > poly(logn);

2. For r(n) = n. Furthermore, for r(n)-k(n) > n/poly(logn), we have m’(n) = Q(k(n)) —
poly(logn).

[The impossibility result follows by Theorem 5.4, whereas the possibility result follows by Corol-
lary 6.4.]

The result of Theorem 1.7 is almost tight for k(n) < n/poly(logn): Extraction of r(n)+m’(n)
bits is impossible in ACY if 7(n) - k(n) +m/(n) - k(n) < m/(n)-n/poly(logn), which is equivalent (in
this case) to r(n)-k(n) < m’(n)-n/poly(logn), but is possible if r(n) - k(n) > m/(n) - n/poly(logn)
(provided that poly(logn) < m/(n) < k(n) — O(logn)). Hence, what we really do not know refers
to the range of k(n) > n/poly(logn); that is, to Problem 1.6.

A different perspective on Theorem 1.7 is obtained by considering the relation between k/n and
m/ /r. Theorem 1.7 asserts that for m’/r € [0,0(1)], extraction in ACY is possible if k /n > f(n)-m//r
for some f(n) = 1/poly(logn) and impossible if k/n < f'(n)-m’/r for every f’(n) = 1/poly(logn).
Recall that Theorems 1.1 and 1.2 only refer to the case of m’/r = ©(1), whereas Theorem 1.7
covers all m//r € [0,0(1)]. Problem 1.6 refers to m//r = w(1) (or actually to m’/r = (logn)~™M).

We highlight the fact that non-trivial extraction (i.e., m’(n) = 1) is possible in .ACY if and only if
k-r > n/poly(logn). In contrast, the threshold for “significant” AC-extraction, that is m’ = Q(r),
is k > n/poly(logn). Hence, for r > poly(logn), there is a gap between the min-entropy bound
that allows non-trivial AC%-extraction and the min-entropy required for extracting r + Q(r) bits in

ACY.

Extraction with respect to restricted sources. In relation to Problem 1.6, we mention that
both in the model of block sources and in the model of bit-fixing sources, we can extract more
than poly-logarithmically many bits using a seed of logarithmic length, where in both cases the min-
entropy rate is at least 1/poly(logn) (and extraction is in AC®). In fact, in both cases, n/poly(logn)
bits are extracted.



Theorem 1.8 (extraction in AC° for bit-fixing sources and block sources): For any k(n) >
n/poly(logn), extraction of n/poly(logn) bits using a seed of length O(logn) is possible in uni-
form ACY for bit-firing sources in which k(n) of the n bits are not fized. Ditto for block sources
with ©(k(n)/logn) blocks such that each block has conditional min-entropy Q(logn).

[See Corollary 4.3 and Theorem 5.2.]

Recall that the bit-fixing model allows for deterministic extractors, which work even for lower
min-entropy rates, but these extractors are not computable by AC° (which is to be expected in
light of the fact that our impossibility results hold for the bit-fixing model). Still, it is possible that
whenever extraction in ACY is possible for bit-fixing sources, it is also possible via deterministic
extractors. We show that this is essentially the case.

Theorem 1.9 (deterministic extraction in AC® for bit-fixing sources): For any k(n) > n/poly(logn),
deterministic extraction of n/poly(logn) bits is possible in AC® for bit-fizing sources in which k(n)
of the n bits are not fized.

[See Theorem 5.7.] Unlike all previously mentioned results, this possibility result only claims
the existence of ACY circuits (but does not provide an explicit construction). We mention (see
Theorem 5.13) that we can construct explicit AC® circuits that compute a deterministic disperser
for this class of sources (i.e., we present a circuit that is not constant on any such source).

A circuit complexity perspective (w.r.t random restrictions). A (deterministic) extractor for bit-fixing
sources in which k(n) of the n bits are random constitutes a circuit that is not trivialized (i.e., does
not simplify to a constant) under any restriction that keeps k(n) of the variables alive.! Hence,
Hastad’s analysis [31] of the random restriction method [1, 23, 59], which implies that any depth d
circuit of size s(n) trivializes under a random restriction that keeps n,/O(log?~! s(n)) variables alive,
is optimal in a very strong sense: Not only that there exist AC circuits that do not trivialize under
a random restriction that keeps n/poly(logn) variables alive, but these circuits are not trivialized
under any restriction that keeps n/poly(logn) variables alive. In other words, a restriction that
1s carefully selected based on the target circuit cannot achieve significantly better parameters than
a random restriction (i.e., cannot trivialize the circuit while leaving significantly more variables
alive). There are contexts in which circuit-dependent restriction yields stronger lower bounds than
its randomized counterpart. These contexts include AC° circuits of nearly-linear size [15], and of
threshold circuits of nearly-linear size [34].

Deterministic extraction from several independent sources. Another model allowing for deterministic
extractors is the model of two or more independent sources each having min-entropy at least k(n)
(cf., e.g., [16, 6, 7, 37]). While this model allows for deterministic extractors, which work even for
min-entropy rates below 1/poly(logn), the known extractors are not computable by AC° (which is
to be expected in light of the fact that our impossibility results hold also for this model). We show
that deterministic extraction in AC® is possible also in this model.

Theorem 1.10 (deterministic extraction in ACY for the multi-source model): For any constant
§ > 0, there exist explicit ACC-extractors for poly(1/6) independent sources that are each of min-
entropy rate §. For § = 0.99, four sources suffice.

See Section 7. In the two-source model, we only obtain such extractors for rates that approach 1
(ie., d >1—log *n).

1n fact, the same holds for dispersers, which are functions that map any such source to a non-trivial distribution.



1.3 Techniques

Our results build on known results and known techniques. These are augmented by several new
constructions of various pseudorandom objects including

e two alternative constructions of averaging samplers (see Sections 3.2 and 3.4, respectively);

e an AC%extractor for bit-fixing sources extracting n/poly(logn) bits using a logarithmically
long seed (see Section 5.1);

a deterministic AC’-extractor for bit-fixing sources extracting poly(log n) bits (see Section 5.3);

a deterministic two-source AC’-extractor (see Section 7.1);
e deterministic many-source AC’-extractors for lower entropy rate (see Sections 7.2 and 7.3).

These and other contributions are mentioned in Section 1.5, where we emphasize interesting aspects
that are not mentioned here. In the current section, we focus on a few common themes that re-occur
in several proofs. Similar ideas were used before, but we found the current incarnations useful and
worthy of highlighting.

Generating pseudorandom partitions. Loosely speaking, the problem is to generate a pseu-
dorandom partition of [n] into m equal-sized sets such that each set has a strong hitting or sampling
property. We wish to do this using a logarithmic amount of randomness and for m = n/poly(logn).
Specifically, Lemma 5.2.1 asserts a pseudorandom partition generator for n/m = O(p~!log(1/¢))?
such that each set of density p is hit by each subset of the partition with probability at least 1 — .

The idea is to use a fixed partition of [n] into n/m disjoint m-cycles and a standard hitter of
sample complexity y/n/m. Hoping that this hitter generates a set that hits each cycle at most
once, we augment this set to a cover of all n/m cycles, and use the m “shifts” of this augmented
set as a partition. Using a suitable implementation, the aforementioned hope does materialize
with constant probability, and we augment the construction so to obtain a good partition with
overwhelmingly high probability. (The proof of Lemma 5.2.1 presents a specific instantiation of
this idea that is implementable in uniform ACY.)

Somewhat related problems arise in the proofs of Theorems 3.2 and 3.6. In these proofs, we
need to construct a sampler that generates a very large set (say of size nt/ 3) of distinct elements.
This is relatively easy if the elements of the sample are pairwise independent. Getting sets of size
greater than /n requires additional ideas, which appear in the proof of Theorem 3.6.

In the latter case we rely on the fact that the number of occurrences of each element in the
sample is not large, and that this number can be computed using a high quality hashing scheme. We
then include each element in the final sample with probability that is proportional to the number
of occurrences in the first sample, while noting that this random sieving preserves the sampling
property of the first sample. (We warn that the implementation of this procedure in AC° is not
straightforward.)

Combining various pseudorandom properties. As hinted above, we may want to have a good
sampler that uses samples that are uniformly distributed in the domain in a O(1)-wise independent
manner. The problem is that good samplers use random walks on expander graphs, and in this
case the samples are each uniformly distributed but they are not even pairwise independent.



The solution is to XOR an O(1)-wise independent sequence with the vertices visited in the
random walk (see Claim 3.2.2). We show that the combined sampler inherits the properties of each
of the original samplers. Indeed, such combinations were used before for different properties (e.g.,
Impagliazzo and Wigderson [35] de-randomized Yao’s XOR Lemma by XORing the output of the
“projected seed generator” of [44] with the output of a random walk generator).

1.4 The perspective of error reduction

As articulated by Zuckerman [62], there is a close relation between randomness extractors that are
computable in a natural complexity class such as AC° and error-reduction procedures computable
in that class. The error-reduction procedures referred to here are confined to generating several
inputs, applying the original circuit to each of these inputs, and ruling by majority. Hence, these
procedures are closely related to averaging samplers (as defined implicitly in the next paragraph).

Specifically, a (k,0.1)-extractor E : {0,1}" x {0,1}" — {0,1}™ yields a sampler S : {0,1}" —
({0,1}™)%" such that for every f : {0,1}™ — {0, 1} with probability at least 1 —2-2~(%) it holds
that 277 3" c g,y f(s) = (1 £0.1) - E[f(Un)]. (Just use S(z) = {E(z,0) : 0 € {0,1}"}.) The
converse holds too (by using E(z,0) = S(x)s): A sampler S : {0,1}* — ({0,1}™)?" that satisfies
Pr27" -3 oy f(s) = (1 £0.0) - E[f(Un)]] > 101279 for every f : {0,1}™ — {0,1},
yields a (k,0.2)-extractor £ : {0,1}" x {0,1}" — {0,1}". For simplicity, let us ignore the small
slackness (i.e., 0.1 vs 0.2, and 2 vs 0.1) in the following discussion.

In light of the tight relationship between the extractor and the sampler in the foregoing para-
graph it holds that, for » = O(logn) and any length parameter m, having (k,0.1)-extractors in
AC° and having samplers with error 2~ (%) computable in AC° is equivalent. Note that efficient
error-reduction requires m(n) = n*Y), since n represents the length of the input to the sampler
and m(n) the length of the sampled strings, which means that n = poly(m(n)) must hold.

Recall that Theorem 1.1 refers to relatively weak extractors; that is, ones that extracts a constant
factor more bits than the length of the seed (i.e., m(n) > (1 + Q(1)) - r(n)). It asserts that AC°
circuits cannot compute such extractors for min-entropy rate that is smaller than 1/poly(logn). In
contrast, recall that ACY2] (i.e., AC® with parity gates) circuits can compute very good extractors
(e.g., Trevisan’s [53]); for example, such circuits can compute (k, €)-extractors with a logarithmically
long seed for k(n) = m(n)? = \/n (and €(n) = 1/poly(n)).

Nevertheless, Theorem 1.1 says nothing about AC%-extraction from sources of higher min-
entropy rate (i.e., rate at least 1/poly(logn)). Actually, Theorem 1.2 says that AC%-extraction
is possible in this case, but it only provides for extracting logarithmically many bits (i.e., m(n) =
O(logn)), whereas efficient error-reduction requires m(n) = n®*(1). Furthermore, Vadhan’s ap-
proach [54], which underlies the proof of Theorem 1.2, seems to yield AC’-extractors of logarithmic
seed length only when the output length is polylogarithmic, even when the min-entropy rate is a
constant. The question (see Problem 1.6) is whether one can extract more randomness under these
conditions (i.e., using a source of constant min-entropy and a logarithmically long seed).

While a positive resolution regarding m(n) = £ would imply efficient error-reduction for
AC°, a bypass was found recently. Specifically, a recent revision of [29] (posted in June 2014)
establishes error-reduction for AC° at the same level that would have been implied by the best
ACY-extractors that are not ruled out by Theorem 1.1. That is, it offers error-reduction at a
level that corresponds to min-entropy k(n) = n/poly(logn), output length m(n) = n®®, and
logarithmic seed length (i.e., r(n) = O(logn)).



This was obtained by observing that we do not really need information-theoretic extractors
(computable in AC?), but rather extractors (computable in AC?) that output distributions that
fool all ACY circuits. Alternatively, it suffices to extract randomness for auxiliary circuits obtained
by shrinking the input of the original AC° circuits by using the pseudorandom generator of Nisan [43,
44]. Hence, randomness-efficient error-reduction for AC° was obtained without presenting an AC’-
extractor with the corresponding parameters. In other words, there is a gap (at least in our
knowledge) between general error-reduction implementable in AC® (via samplers as reviewed above)
and error-reduction for AC°, which may be defined as obtaining samplers that satisfy the sampling
requirement only with respect to functions that f that are computable in ACC.

This gap in our knowledge provides a new motivation for resolving Problem 1.6, but now a
resolution in the negative direction would be more interesting. Such a result would mean that,
for a natural choice of parameters, randomness-efficient error-reduction for AC° exists while a
corresponding AC-extractor does not exist (where the correspondence between parameters is as in
the standard relation articulated by Zuckerman [62]).

1.5 A roadmap and additional comments on the technical contents

Following the preliminaries, this write-up proceeds as follows. In Section 3, we prove Theorem 3.1,
which is based on a non-explicit construction of Vadhan [54, Thm. 7.4]. Our improvement boils
down to presenting an explicit “averaging sampler” with parameters that are comparable to the
non-explicit construction. One key observation underlying the new construction is that the relazed
notion of averaging sampler as defined by Vadhan in [54, Def. 6.1] can be composed and manipu-
lated in ways that are not possible with the standard definition of averaging samplers. The reason
is that Vadhan’s notion is actually a hybrid of the notions of hitters and (standard) averaging
samplers. Using the new sampler one can also improve the parameters in some of Vadhan’s explicit
constructions of local extractors [54].

In general, Section 3 demonstrates the relevance of the study of local extractor to extraction
in ACY. In particular, local extractors yield constant-depth circuits of size that is exponential
in the seed length and in the locality. In some cases, the size can be made even smaller (e.g.,
sub-exponential in the locality).

In Section 4 we consider block-sources. In Section 4.1 we show that applying an extractor to
individual blocks of a block-source, while using the same seed in all applications, yields an extractor.
This result seems to be folklore, but we believe that it is a very useful one, since we think that this
extraction strategy is a natural thing to do when actually having a block-source. This is relevant
to the context of AC®, because the resulting extractor preserve the computational complexity of
the original extractor. In Section 4.2 we consider the difficulty of converting an arbitrary high
min-entropy source into a block-source: Loosely speaking, we show that two natural approaches to
this task fail.

In Section 5 we consider AC’-extractors for bit-fixing sources. In Section 5.1, we present our
first construction, which uses a randomized procedure that outputs a partition of [n] into small
subsets that intersect any set of sufficient density (with high probability). The procedure uses a
logarithmic amount of randomness and is explicit (and hence is implementable by uniform AC° cir-
cuits). It yields an AC’-extractor that uses a logarithmically long seed and extracts n /poly(logn)
bits from bit-fixing sources of min-entropy n/poly(logn). In Section 5.3 we combine the latter
extractor with a new deterministic extractor (which extracts poly-logarithmically many bits), and
obtain a deterministic extractor that essentially matches the performance of the seeded extractor.



The former deterministic extractor is based on a new AC°-reduction of the task of extraction from
(oblivious) bit-fizing sources of entropy rate that tends to 0 (i.e., 1/poly(logn)) to the task of ex-
traction from non-oblivious bit-fizing sources of entropy rate that tends to 1 (i.e., 1 —1/poly(logn)),
whereas the latter task was treated by Ajtai and Linial [4].? Indeed, the reduction is from a more
restricted type of sources to a broader type of sources, but the sources of the more restricted type
have significantly lower entropy.

The parameters obtained by these extractors are essentially optimal, with respect to AC°-
extraction from bit-fixing sources. Indeed, in Section 5.2, we present impossibility results that
extend those that are stated in Theorem 1.1: One result asserts that that AC° circuits cannot
compute a strong extractor for bit-fixing sources when the number of “unfixed” (i.e., random) bits
is n/(logn)“(") (regardless of the seed length). In general, Section 5.2 provides proofs of all our
impossibility results, showing that the relevant bounds hold even for extractors that should only
work for bit-fixing sources.

In Section 5.4 we show that the foregoing impossibility results regarding extraction from bit-
fixing sources do not hold for a restricted class of such sources, called zero-fixing sources [18],
consisting of bit-fixing sources in which all fixed bits are set to zero. We show that AC? circuits,
which use a seed of logarithmic length, can extract from zero-firing sources that contain only a
logarithmic number of random bits.

Turning back to general sources of min-entropy k, in Section 6 we consider extraction with a
seed of linear length. In Section 6.1 we generalize Viola’s construction [57, Lem. 4.3] of a non-trivial
extractor in AC” to one that outputs poly(logn) additional bits (rather than one). In Section 6.2
we show that independent applications of an extractor (i.e., with independently distributed seeds)
yield an extractor, provided that the total number of extracted bits does not exceed the min-
entropy bound. This is a naive result, which relies on well-known ideas, but it is advantageous in
the context of ACY because the resulting extractor preserve the computational complexity of the
original extractor. Indeed, this simple observation is pivotal in establishing the general upper bound
of Theorem 1.7, which presents a trade-off between the seed length and the number of (additional)
bits extracted.

In Section 7, we consider deterministic AC-extractor for several independent sources. Leaving
open the question of extraction from pairs of sources of some constant min-entropy rate, we prove
the existence of AC -extractors for pairs of sources of min-entropy rate 1 —log~* n. This is obtained
by presenting a uniform AC-reduction of the task at hand to the task of extraction from non-
oblivious bit-fizing sources of entropy rate 1 —O(log™>n). (Unlike in Section 5.3 here the reduction
is between incomparable types of sources and the target sources have lower entropy.) We also
present, for any constant § > 0, explicit AC°-extractors for poly(1/8) independent sources that are
each of min-entropy rate 0, whereas for § = 0.99 four sources suffice.

Finally, in Section 8, we list and restate open problems that are mentioned in various parts of
the paper.

2In non-oblivious bit-fixing sources the fixed bits may be determined as a function of the values of the random
bits, whereas in (oblivious) bit-fixing sources the fixed bits are set indepedently of the values of the random bits.
The connection between influence of sets as studies in [4] and deterministic extraction from non-oblivious bit-fixing
sources was made in [40].



2 Preliminaries

By “circuits” we mean Boolean circuits with negations and unbounded fan-in and and or gates.
Since we deal with a very low complexity class (i.e., ACY), it is important to be careful about
the representation of objects. In particular, elements of [n] = {1,2,...,n} are represented as
(|logy n] + 1)-bit long strings, and subsets of [n] are represented as (unsorted) sequences over [n].
This convention is important for supporting an efficient implementation of the projection operation;
that is, for a sequence x = (x1,...,x,) € {0,1}" and I C [n], we let X denote the projection of z
on I (ie., if I = (i1,...,4¢), then X; = (24, ..., 2;,)). Indeed, the mapping (=, (i1, ...,7t)) = (.4,
is computable in uniform AC° (e.g., by having the j' output bit equal Viep (@i A (i=ij;))).3

By logn we mean log, n, whereas by poly(n) we mean any (unspecified) positive polynomial.
In several statements (e.g., Theorem 1.1), we preferred to use 0.999 (resp., 0.499) rather than “for
every constant smaller than one” (resp., “for every constant smaller than half”).

Another general convention is that multiple occurrences of the same random variable mean
that the same random value is assigned in all occurrences; that is, if X is a random variable, then
(X, X, X) represents the random variable obtained by selecting = according to X and outputting
(z,z,2). By U, we denote a random variable that is uniformly distributed over {0, 1}*.

Below we review the basic definitions regarding extractors as well as some results regarding
locally computable extractors.

2.1 General extractors

We recommend Shaltiel’s survey [52] for a general introduction to randomness extractors.

Definition 2.1 (min-entropy and (n, k)-sources): The min-entropy of a random variable X, de-
noted Hoo(X), is min,{logy(1/Pr[X = z|)}. An (n,k)-source is a random variable X assuming
values in {0,1}" such that Hoo (X) > k.

(Indeed, max, {|Pr[X = 2]} < 27H=(X) ) In the following definition, A[X ;Y] denotes the statis-
tical difference (a.k.a variation distance) between X and Y; that is,

def 1

ALX;Y]= S > [Pr[X =v] - Pr[y =1]| = max{Pr[X € 5] - Pr[y € 5]}

Definition 2.2 ((seeded) randomness extractors): The function E : {0,1}"™ x {0,1}" — {0,1}"™ is
called an e-error extractor for a class of sources C if for every X in C it holds that A[E(X,Uy);Up] <

€. It is called a strong e-error extractor for C if for every X in C it holds that A[E(X,U,) o Uy Uy, o U,] <
€. When C is the class of (n, k)-sources, we call E a (k, €)-extractor.

Note that
A[E(X,U.) o U 3Uy 0 U] = Eg v, [A[E(X, s);Upn]].

We say that an extractor is explicit if a circuit computing it can be constructed in poly(n)-time.
Indeed, to make sense of this definition, one should consider a family of extractors parameterized

3In contrast, if I C [n] is represented by the n-bit long indicator vector x = (x1, ..., Xn) such that x; = 1ifi € T
and y; = 0 otherwise, then the mapping (x,I) + x7 is not computable in AC°. The reason is that counting (i.e.,
computing Zie[n] b;) is AC-reducible to the foregoing operation by setting « = 1™ and measuring the length of z;,
where I = {i € [n] : b; = 1}, while relying on (b1, ..., b,) being an admissible representation of I.
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by n; that is, we actually consider the family {E, : {0,1}" x {0,1}"™ — {0,1}™™},cn such
that E, is an (k(n), e(n))-extractor. Likewise, when using asymptotic notation in reference to an
extractor E : {0,1}" x {0,1}" — {0, 1}, we actually refer to a family as above; that is, we always
view the source length (i.e., n) as a varying parameter (which determines all other parameters;
e,g., r = r(n), m = m(n), etc). Furthermore, we assume that k,r,m : N — N are monotonically
non-decreasing and that € : N — [0, 1] is monotonically non-increasing. These conventions are used
extensively throughout this write-up.

2.2 Local extractors

Locally computable extractors were systematically studied by Vadhan [54]. These constructs as
well as some of Vadhan’s techniques (see especially [54, Sec. 6]) are used by us towards constructing
extractors that can be computed in AC°.

Definition 2.3 (t-local extractors): The extractor E : {0,1}™ x {0,1}" — {0,1}™ is called t-local

if of every s € {0,1}" the residual function fs(x) def E(z,s) depends on at most t bits of x.

For the case of constant min-entropy rate, we have the following result.

Theorem 2.4 (special case of [54, Thm. 8.5]): For every constants d, 5 > 0 and e(n) = 1/poly(n),
there exists an explicit O(log n)-local strong (0n, €(n))-extractor E : {0, 1}*x{0, 1}5™() — {0, 1}
for m(n) = ©(logn). Furthermore, the extractor is computable in uniform ACC.

The furthermore claim is not stated in [54], but it follows from the main claim by combining the
circuits that compute the residual functions (obtained by fixing the seed). Specifically, we combine
depth-two circuits that compute the residual functions (where each function depends on O(logn)
bits), with depth-two circuits that select the adequate function, obtaining depth-three circuits. For
the case of min-entropy rate 1/poly(logn), we mention the following non-explicit construction.

Theorem 2.5 (special case of [54, Thm. 7.4]): For every k(n) = n/poly(logn) and e¢(n) =
1/poly(n), there exists an (non-explicit) (2n/k(n))-local strong (k(n),e(n))-extractor E : {0,1}™ x
{07 1}O(logn) N {0, 1}Q(logn)_

(Note that here the seed is longer than the output, but the result is non-trivial since the extractor
is strong.) While the relevance of Theorem 2.4 to our study was demonstrated in its furthermore-
part, the relevance of Theorem 2.5 is less clear and arises from the technique used in its proof. The
point is that the proof of Theorem 2.5 is based on the composition theorem of [54, Thm. 6.3], which
implies that combining an adequate sampler with an adequate extractor yields an extractor that
can be computed more efficiently than standard extractors. Loosely speaking, the sampler is used
to sample relatively few bits in the source, and the extractor is applied to the resulting sequence
of bits, which approximately maintains the entropy rate of the source. Thus, the complexity of
the resulting extractor is related to the complexity of sampling and to the complexity of extraction
from a much shorter source. (This fact will be extensively used in Section 3.)

The sample-and-extract paradigm goes back to the work Nisan and Zuckerman [45], but the
point here is using it in order to reduce the computational complexity of extraction. Furthermore,
better parameters are obtained by using the following relaxed notion of an averaging sampler,
introduced by Vadhan [54], which is a hybrid of a sampler and a hitter (see discussion following
the definition).
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Definition 2.6 (averaging samplers, relaxed [54, Def. 6.1]):* A function S : {0,1}" — [n]* is called

a (u, i, ~y)-averaging sampler if for every f : [n] — [0,1] such that p(f) et Eicin[f(3)] > p it holds
that

1 .

Pri sw,) [t > f) < u’] <. (1)
el

Furthermore, it is required that |S(u)| =t for every u € {0,1}"; that is, the sampler must always

generate t distinct elements.

The standard notion of a (,)-averaging sampler is obtained from Definition 2.6 by requiring
that S is an (u,p — d,v)-averaging sampler for every p € [0,1]. (Note that in such a case an
upper bound on the probability that %Zze 1 f(@) > p(f) + ¢ follows by considering the function
1 — f.) The definition of a (u,y)-hitter is obtained from Definition 2.6 by replacing Eq. (1) with
Pri sw.[2icr f(i) = 0] < 7. (Indeed, the latter definition remains intact if one only considers
Boolean functions f : [n] — {0,1} (such that p(f) > u).)® (In Appendix A.1 we prove two useful
features of such averaging samplers, although these features are not essential to this write-up.)

The relevance of averaging samplers to our project is captured by the following composition
theorem of Vadhan [54].

Theorem 2.7 (sample-then-extract [54, Thm. 6.3]):° For any 0 < 31 < § < 1, let u = (6 —
27)/log(1/7) and ' = (6 — 37)/log(1/7). Suppose that the following two conditions hold.

1. 8 :{0,1}" — [n]" is a (u, ', y)-averaging sampler;
2. Fy:{0,1} x {0,1}"0 — {0,1}™ is a ((§ — 37) - t, €9)-extractor.
Then, E : {0,1}" x {0,1}7°%" — {0,1}"™ defined by E(z, (s0,s)) = Eo(zg(s), 50) s a (6 -n,€0+ 7+

exp(—Q(Tn)))-extractor. Furthermore, if Ey is strong then so is E.

For any 5 € (0,1), setting 7 = (1 — /3)J/3 and assuming that 6 = w(log(1/€)/n), we obtain the
following simplified form.

Corollary 2.8 (Theorem 2.7, specialized): For any 8 € (0,1) and § = w(log(1/e)/n), let ' =

©(6/log(1/0)) and p = % = (14+Q())-u. Suppose that the following two conditions hold.

1. 8 :{0,1}" — [n]" is a (u, ', €)-averaging sampler;
2. Ey:{0,1}t x {0,1}0 — {0,1}™ is a (B9 - t, €)-extractor.

Then, E : {0,1}"™ x {0,1}"°%" — {0,1}"™ defined by E(z, (so,s)) = Eo(rg(s),50) is a (6 - n,3e)-
extractor. Alternatively, if 6 = Q(log(1/v)/n) and S is a (u, 1',v)-averaging sampler, then E is a
(6-mn,e+ 79(1))-e$tmctor. Furthermore, if Ey is strong then so is E.

Indeed, when using Corollary 2.8 one should artificially set the error parameter of both constructs
in the hypothesis to be the maximum of their actual values. Note that if both S and Ey are
computable in (uniform) AC°, then so is E.

4The formulation in [54, Def. 6.1] is slightly different: Firstly, the current (u, u’,y)-averaging sampler corresponds
to a (p, u — p',y)-averaging sampler in [54, Def. 6.1]. Secondly, the “distinct element condition” is an integral part
of Definition 2.6, whereas it is an additional feature in [54, Def. 6.1].

®See the proof of [27, Thm. 5.10], which is adapted in the proof of Claim A.2.

5The formulation in [54, Thm. 6.3] is slightly different: See Footnote 4.
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3 Local extractors and extraction in AC°

In this section, we use local extractors and the ideas underlying their construction to obtain extrac-
tors computable in AC°. This approach was already used in proving Theorem 2.4, and we stated
our intention to use it towards proving Theorems 1.2 and 3.1. Let us spell out how Theorem 2.4
was proved, in order to clarify the connection between local extraction and extraction in AC°.

Theorem 2.4 asserts an (explicit) extractor of logarithmic locality and logarithmic seed length.
This means that for any possible seed, the residual extraction function depends only on logarith-
mically many bits in the source, which implies that these residual functions can be computed by
depth-two circuits of polynomial size. Combining the polynomially many circuits that correspond
to all possible fixing of the seed, we obtain the desired AC’-extractor.

Note that the foregoing argument can be turned around: It implies that if ACY cannot compute
extractors with logarithmic seed length for certain parameters, then such extractors cannot have
logarithmic locality. We mention that Bogdanov and Guo [10] proved a logarithmic lower bound on
the locality of extractors, which (unlike our lower bounds) applies also to the case of k(n) = Q(n),
but this does not rule out AC%extractors (see Theorem 2.4).

Turning to Theorem 1.2 and its explicit version (captured by Theorem 3.1), recall that its proof
is based on Vadhan’s sample-then-extract technique (as stated in [54, Thm. 6.3] and restated in
Corollary 2.8). The starting point is the proof of Theorem 2.5, which uses a sampler (of a logarith-
mically long seed) that samples poly-logarithmically many bits of the source. Unlike Vadhan, we
cannot afford an arbitrary extractor here, so instead we use an extractor that can be computed by
(explicit) constant-depth circuits of poly(n)-size (see Section 3.1 for details). In addition, we make
the entire construction explicit by using a new explicit sampler (instead of the non-explicit sampler
used originally in [54]). Thus, we obtain:

Theorem 3.1 (an explicit version of Theorem 1.2): For every k(n) = n/poly(logn) and e(n) =
1/poly(n), there exist explicit ACC circuits that compute a strong (k(n), e(n))-extractor E : {0,1}" x

{0,1}00een) _, 10 110008 - Byrthermore, the circuits have depth 4 + {%—‘.

The new explicit sampler, presented in Section 3.2, uses a seed of logarithmic length, and so
it is trivially implemented by uniform AC circuits. As stated in Corollary 3.3, combining this
sampler with Corollary 2.8, the construction of AC%extractors for (n,k)-sources reduces to the
construction of poly(n)-circuits of constant depth for extraction from (¢, Q(k/n) - t)-sources, where
t = poly(n/k). Since k = n/poly(logn), we can afford constant-depth circuits of size exp(t¢) for a
sufficiently small constant ¢ > 0.

The applications of the new sampler are spelled out in Section 3.3. Since the new extractor
works only for ¢ = O(nl/ 3) (or for constant error v > 0), it does not suffice for the application in
Section 6, and so we present (in Section 3.4) an alternative sampler that works essentially for any ¢
and any error v = 1/poly(n), which suffices for the latter application. The alternative version uses
a seed of polylogarithmic length, which forces us to detail its implementation in ACY.

3.1 Proving Theorem 1.2

As a warm-up, we prove Theorem 1.2, which asserts that for every k(n) = n/poly(logn) and
e(n) = 1/poly(n), there exist ACY circuits that compute a strong (k(n),e(n))-extractor E : {0,1}" x
{0,11000gn) _, 10 1}90oen) (Furthermore, the circuits have depth 4 + %.)
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Proof Sketch: We slightly modify the proof of [54, Thm. 7.4], which combines an averaging
sampler with an extractor (using [54, Thm. 6.3] (see Corollary 2.8)), while setting § = k(n)/n =
1/poly(logn), m = ©(logn) and ¢t = O(m/d). Specifically, instead of using the (optimal) non-
explicit extractor asserted in [54, Lem. 7.1], which may not be computable in AC°, we shall use
the strong (ko, €)-extractor Ey : {0,1}* x {0,1}90een) — {0 11" agserted in [28, Sec. 5], where
ko = O(m +log(1/e)). Recall that this extractor uses a seed of length O(m + log(t/€)) = O(logn).
(At this point we use the same non-explicit averaging sampler as in the original proof; that is, the
sampler of [54, Lem. 7.2.].)

The key observation is that Ey can be computed by (uniform) poly(n)-size circuits of depth
2+log,, t =3+ bg&#, since the residual computation (resulting when fixing the seed) amounts
to a linear combination (over GF(200°81))) of O(log t)-bit long blocks of the t-bit source viewed as a
sequence of t/O(logt) elements over a field of size poly(t). The sampler itself uses a logarithmically
long seed, and thus can be computed by depth two circuits of polynomial size. [l

Towards the explicit version. The foregoing proof, which follows the proof of [54, Lem. 7.1],
combines an adequate sampler with an adequate extractor using the composition theorem of [54,
Thm. 6.3]. Recall that we replaced the extractor used in the original proof by an alternative
extractor, which happens to be explicit. In order to obtain an explicit version of the foregoing
construction (i.e., prove an explicit version of Theorem 1.2), we also need to replace the non-
explicit sampler used in the original proof. This will be done in Section 3.3, after designing an
explicit sampler (in Section 3.2).

3.2 A new averaging sampler

As stated in Section 3.1, a central ingredient in our constructions is a new sampler that uses a seed
of logarithmic length regardless of the density (i.e., 1) of the functions that it semi-approximates,
where by “semi-approximates” we refer to the relaxed notion of an averaging sampler (as reviewed
in Definition 2.6).

Theorem 3.2 (an averaging sampler with logarithmic seed length): Let o € (0,1) be an arbitrary
constant. Then, for every pu > n~'/3/poly(logn) and v > 1/poly(n), there exists an explicit
(11, ap, 7 )-averaging sampler S : {0,1}°0087) —s [n]t for any t € [O(u L log(n/v)),0(n'/3)]. An
analogous result holds for any p > 1/n, t = Q(1/u), and any constant v > 0.

That is, the main claim requires p > n~ Y3 and allows ~ > 1/poly(n), whereas the alternative
allows any p > 0 (equiv., g > 1/n) but provide only for constant v > 0. (The constant 1/3, in the
exponent, can be replaced by any constant smaller than 1/2.)

Proof: We first establish the result for a constant 7, and then extend it to arbitrary v > 1/poly(n).
Our starting point is the observation that the pairwise-independence generator yields a (p, g, 7y)-
averaging sampler with ¢ = ©(1/yu) samples. Basically, the behavior of this generator with respect
to the relaxed notion of averaging samplers (as in Definition 2.6) is similar to its behavior with
respect to the notion of hitters (i.e., the sample size is linearly related to O(1/u)).

Claim 3.2.1 (the pairwise independence generator as an averaging sampler): Let F' be a finite
field, t < |F|, and ¢1, ..., ¢ be t distinct non-zero elements of F. Consider G : F? — F such that,
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for everyr,s € F,
G(T‘, S) = (’I” + ¢157 T+ ¢257 Tt ¢t8)‘

Then, for any constants «, 8 € (0,1), selecting uniformly and independently r € F and s € F'\ {0},
and outputting G(r, s) yields a (u, ap, 5)-averaging sampler for p = Q(1/t).

We shall also use the fact that each of the elements in the sample is uniformly distributed in F. An
alternative construction that enjoys all the above features is the expander neighborhood generator
(see, e.g., [27, Apdx. C.2]), when instantiated with Ramanujan graphs (see [41]).

Proof: The proof is by a straightforward adaptation of the proof of the hitting property (see,
e.g., [27, Apdx. C.2]). Specifically, for r and s selected uniformly in F', and any function f : F —
[0,1] such that p(f) > u, denoting by (; the value of f(r + ¢;s), we have

t t
Pr|Y G<a-p(f)-t] < Prllt-p(f)=> ¢|>0—a)t p(f)
Jj=1 Jj=1
_ (L p() - pl)
(A=)t p(f))?
1
(I—a)? p-t
where the second inequality uses Chebyshev’s Inequality. Avoiding the choice of s = 0 guarantees
that the ¢ elements in G(r, s) are indeed disjoint, while skewing the probability by at most 1/|F| =
o(l1). m
Establishing the alternative claim (of the theorem) and moving on. Associating [n] with the non-
zero elements of a finite field (of size approximately n)7 and using any ¢ > O(1/u), we obtain an
(1, o, B)-averaging sampler that uses a seed of length 2logn (as in the alternative claim).

In order to reduce the error probability to v = 1/poly(n), we shall use a random walk of
length £ = O(log(n/7v)) on a constant-degree expander over the vertex set [n?] to generate seeds for
the generator G of Claim 3.2.1. Actually, in order to guarantee that these seeds do not generate
samples that intersect, we will shift these seeds using a O(1)-wise independent sequence over [n]?,
and discard a small part of the resulting sample. The point is that this combination yields a
sequence that maintains the sampling features of the expander random walk and the property that
each O(1) elements of the sequence are independently and uniformly distributed in the set. (At
this point, we shall discard the few repetitions.)

<

Claim 3.2.2 (a randomized version of the “random walk on an expander” hitter): For every
constants € > 0 and ¢ € N and a varying m, let £ = O(logm) be sufficiently large, and consider the
following generator, denoted G', that uses a seed of length O(logm).

1. The generator uses the first part of the seed to generate a random walk of length £ on a
poly(1/e)-reqular expander with vertex set Z,,. Denote the sequence of visited vertices by
(1, v0).

2. The generator uses the second part of the seed to generate a 2c-wise independent sequence of
¢ elements in Zy,, denoted (s1, ..., Sg).

"The discrepancy between the field size and n can be ignored (e.g., by using a slightly bigger field and mapping
elements out of [n] is some standard manner).
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3. For every i € [{], the generator computes v, < v; + s; mod m.

4. The generator outputs the sequence of the first ' = £ — ¢ distinct elements in the sequence
(v, ..., vp), and outputs (1,..,¢") if |{v} i € [{]}| <l —c.

Then, the foregoing generator is a (1 — €,1 — O(y/€), exp(—Q(¢))-averaging sampler.

In other words, for every constants € > 0 and ¢ € N, the generator G’ : {0,1}90e™) _; (7, )OUogm)
isa (1 —¢1—0(ye), m )-averaging sampler.

Proof: We first upper bound the probability that |[{v} : i € [¢]}| < ¢ —c. Fixing any sequence of v;’s
(as selected in Step 1), we consider the probability space generated by Step 3. For the bad event to

occur, there must be a set of 2c indices, denoted I, such that the set St def {vi+s; mod m :i € I} has
cardinality smaller than c. Since for every 2c-subset I it holds that Pr[|S;| < c] < (") - (¢/m)* <
(c2/m)¢, the bad event occurs with probability at most (2{:) (2 /m)¢ < (22 /m)° < 27O provided
that ¢/logm is a sufficiently large constant.

We now analyze the sampling property of the sequence of all v}’s, while noting that any subse-
quence of length ¢ will do almost as well (since the omission causes a loss of at most ¢ = o(y/€/)
units). Fixing an arbitrary function f : Z,, — [0, 1] such that p(f) > 1 — ¢, we now fix an arbitrary
sequence (s1, ..., S¢) as selected in Step 2. This selection induces ¢ auxiliary functions fi, ..., fz such
that f;(z) = f(z + s; mod m), since under this definition f(v}) = f;(v;). Setting ¢’ = 6+/¢, we shall
prove that

Pr | fi(vi) <t-(1—¢€)| =exp(—Q(0)), (2)

€[4

where (v1, ..., v¢) is generated as in Step 1. We recall the general Expander Random Walk Theorem
(see [27, Thm. A.4]), which asserts that for Boolean functions b; : [m] — {0,1} it holds that
Pr(} e bi(vi) = €] < [l;ejqmin(1, p(bi) +€)1/2, where € upper bounds the (square of) the spectral
gap of the expander (i.e., the expander was chosen so that this upper bound holds). Hence, Eq. (2)
follows for Boolean f;’s by considering all € ¢-subsets I C [¢] and setting b; = 1 — f; if i € I and
b; = 1 otherwise. Specifically, the probability that Zie[f} fi(vi) < (1 =€) - ¢ is upper bounded by
(fﬁ) . (26)5%/ 2 since this event can occur only if there exists a € ¢-subset I such that for every i € I
it holds that f;(v;) = 0 (whereas p(fi;) > 1 — ¢).8 Now, using

<€€€> . (26)6’5/2 < (36/6’6)6% . (26)5/5/2
(1/2)6’8/27

where the equality uses € = 64/€, and the claim follows (for Boolean f).

Observing that any averaging sampler for Boolean functions also works for general functions
(see Claim A.2), the claim is established. In this case, we can establish that the generator is
a (1 —0.5¢,1 — O(y/e), exp(—Q(¢))-averaging sampler. An alternative argument for the current
setting may proceed by defining auxiliary Boolean functions f/ such that f/(z) = 1 if and only

8Note that, for this I, we have p(b;) < € for i € I and b; = 1 otherwise. Hence, 3., fi(v;) = 0 if and only if
iel
> ier bi(vi) = |I|, which holds if and only if =, bi(vi) = ¢, whereas the probability of the latter event is upper

bounded by Hie[l] min(1, p(b;) + 6)1/2 < (25)”'/2,
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if fi(x) > 1 — €Y/3, noting that p(f/) > 1 — €3, and using € = O(¢'/3). (This alternative only
establishes that the generator is a (1 —¢€,1 — O(e'/3), exp(—Q(¢))-averaging sampler, which is good
enough for our application.) B

Establishing the main claim of the theorem. The theorem follows by combining the samplers asserted
in Claims 3.2.1 and 3.2.2. Specifically, we use G’ of Claim 3.2.2 to generate a sequence of ¢ seeds
for the generator G of Claim 3.2.1 (i.e., we set m = n? and associate Z,, with (F'\ {0})? = [n]?).
Actually, we might as well use the sequence of all ¢ seeds defined in Step 3 of G’ (since we are
going to make our own omissions anyhow). We set the constant parameter 5 in Claim 3.2.1 so to
fit € in Claim 3.2.2 (i.e., 8 = ¢), while picking the constant parameter a@ < 1 as large as we wish
(and ditto w.r.t t € [@(u 'log(n/v)),0(n'/?)]). That is, the combined generator maps its seed
s € {0,1}0098M) to the sequence of sets G(s1), ..., G(s¢), where (s1, ..., s¢) < G'(s).

The combined generator satisfies the average sampling property of Eq. (1); that is, for every
f :[n] = [0,1] such that p(f) > u, with probability at least 1 — ~, the ¢ - t-sized sample, denoted
I, satisfies (1/]1)-3;c; f(i) > (1 = O(y/€)) - ap. This is the case since at least 1 — O(y/e€) fraction
of the seeds generated by G’ produce samples that have an f-average of at least au. (Indeed, the
one-sided flavor of Eq. (1) allows to discard the exceptional seeds.) Since € > 0 and 1 — « > 0 can
be made arbitrarily small constants, we can have (1 — O(y/€)) - a be arbitrarily close to one. We
note that the sampling guarantee remains valid also if we omit any o(¢) of the ¢ samples (produced
by the ¢ seeds generated by G').

The question is whether the sample I contains no repetitions. Recall that G' generates samples
that have no repetitions, and that the ¢ elements in each sample are each uniformly distributed in
[n]. For any desired ¢, the seeds generated by G’ are 2¢c-wise independent. Now, consider a random
graph R with vertices corresponding to the ¢ seeds and edges connecting a pair of seeds if and only
if the corresponding samples intersect. We claim that, with probability at least 1 — (£2t2/n)¢, this
graph has an independent set of size ¢ — 2c.

To prove the last claim note that if the graph has no vertex cover of size 2¢, then it must
have a matching of size greater than ¢. We shall show that even having a matching of size ¢
is unlikely. Denoting the number of possible matching of size ¢ in an f-vertex graph by M <
(;c) - (2¢!) < £%, note that the probability that the graph R has a matching of size ¢ is upper
bounded by M - (t2/n)¢ < (£2t?/n)¢, because we consider M - (t2)¢ events, and each event occurs
with probability (1/n)¢. Specifically, each event corresponds to a choice of ¢ disjoint pairs of seeds
and a choice of a pair of samples per each pair of seeds, and this sequence of 2¢ samples is uniformly
distributed in [n]2¢. (Here we use the fact that the seeds generated by G’ are uniformly distributed
in an 2¢c-wise independent manner, and that each sample generated by G is uniformly distributed
in [n].) N

Recalling that t = O(n'/?) and £ = O(logn) (and v = 1/poly(n)), and that ¢ is a constant
chosen at our discretion, we conclude that with probability 1 —- the graph contains an independent
set of size £ — 2¢, which means that the ¢ seeds generate at least £ — 2¢ disjoint samples. The final
sampler outputs the union of £—2¢ disjoint samples, and an arbitrary sequence of (/—2c)-t elements
otherwise (i.e., if such a collection of disjoint samples does not exist). By the foregoing analysis
this final sampler also satisfies the average sampling property of Eq. (1). W
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3.3 Applications to explicit constructions of extractors

We first describe the implication of the new averaging sampler on randomness extraction in AC°
(from (n, k)-sources ). We start by spelling out the construction obtained by instantiating Corol-
lary 2.8 with the averaging sampler of Theorem 3.2.

Corollary 3.3 (using the averaging sampler of Theorem 3.2): Let 8 € (0,1) be a constant, § >
n~Y3 and t € [O(6 1 log?n), O(n'/3)]. Suppose that Eg : {0,1} x {0,1}70 — {0,1}™ is a (86 -t,€)-
extractor that is computable by (uniform) constant-depth circuits of poly(n)-size. Then, there exists
a (6 - n,3-max(e, poly(1/n)))-eztractor E : {0,1}™ x {0,1}70+00cen) _ £0 137 that is computable
by (uniform) ACY circuits. Furthermore, the depth of the circuits for E is only one unit more than
the depth of the circuits for Ey, and if Ey is strong then so is E.

(The constant 1/3 can be replaced by any constant smaller than 1/2.)

Proof: Towards invoking Corollary 2.8, we set u/ = $6/0(log(1/6)) and pu = % . We

use the (u, 1/, 1/poly(n))-averaging sampler S : {0,1}°0°8™) — [n]* of Theorem 3.2, while noting
that 4/ = 36/(1 + 28) is a constant smaller than 1, whereas p > n~'/3/poly(logn) and t =
Q6 log?n) = Q(u~'logn). Invoking Corollary 2.8, while noting that § = w((logn)/n) and that
S is computable by uniform DNFs (resp., CNFs) of poly(n)-size, we obtain the desired extractor.
[

Next, combining Corollary 3.3 with known extractors, which can be computed by constant-
depth circuits of poly(n)-size, we derive the following —

Corollary 3.4 (extraction in ACY with seed of logarithmic length):

1. (Theorem 3.1, restated): For every k(n) > n/poly(logn) and e(n) = 1/poly(n), there exist
explicit AC® circuits that compute a strong (k(n), e(n))-eztractor E : {0,1}" x {0,1}90ogn) _,
el S log(n/k(n))
{0,1}000™) - Burthermore, the circuits have depth 4 + [%-‘.
2. For every k(n) > n/poly(logn), m(n) = poly(logn), and e(n) = 1/poly(logn), there exist
explicit AC® circuits that compute a strong (k(n), e(n))-eztractor E : {0,1}" x {0, 1}90ogn) _,
{0, 1Y) Furthermore, the circuits have depth 3 + {W—‘.
The extractor of Part 2 has longer output (i.e., m(n) = poly(logn) rather than m(n) = O(logn)),
but weaker quality than the extractor of Part 1 (i.e., ¢(n) = 1/poly(logn) rather than e(n) =
1/poly(n)). We cannot afford the error-reduction procedures of [48], since these procedures seem
sequential in nature. But it may be possible to implement the extractor of [30] (or another adequate
extractor) by constant-depth circuits of sub-exponential size; in general, for a parameter ¢ (to be set
to O(logn)) and any 6 > 1/poly(¢) and t = poly(¢), we merely need exp(—$2(¢))-error extractors for
(6t,t)-sources that are implementable by constant-depth circuits of exp(f)-size and extract (5t)2(1)
bits.

Proof: Starting with Corollary 3.3, the two parts are proved by providing corresponding extractors.
Specifically, we set 3 = 1/2, § = k(n)/n and t = ©((logn)¢ - §~1), for a constant ¢ > 1 selected
below, and pick an adequate extractor Ey : {0,1}' x {0,1}" — {0,1}™.
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For Part 1 we set ¢ = 1 and use the strong (§t/2, €)-extractor Ey : {0, 1}t x {0,1}° — {0,1}™
asserted in [28, Sec. 5], which supports ro = O(m) for m = ©(dt) — log(1/e€). Using € = 1/poly(n)
and t = Q(6 logn), we have m = O(logn), and all claims follow, since (as detailed next) Ey can
be computed by (uniform) poly(n)-size circuits of depth 2+ [log,,t| = 3+ [(log(n/k(n)))/logm].

To see that Ep can be computed by (uniform) poly(n)-size circuits of depth 2 + [log,, t], we
consider all poly(n) possible fixings of its seed, and observe that Fy can be computed by a depth-
two circuit that selects the appropriate residual circuit. As noted in Section 3.1, viewing the t-bit
source as a sequence of t/O(logt) elements over a field F' of size poly(t), the residual computation
(for each fixing of the seed to Ep) amounts to a linear combination (over F') of these field elements.
Such linear combinations can be computed by depth 1+ [log,, t] circuits of poly(n)-size.

Turning to Part 2, we set ¢ = k}gi’gn +1 (ie., m = (logn)~!) and use the strong (6t/2, €)-
extractor Ep : {0,1}tx{0,1}" — {0,1}™ asserted by Trevisan [53], which supports ro = O(log(t/¢))
and m = (6t/2)¢D/¢) provided that 6t/2 > t*) and ¢ = 1/poly(t). Recalling that the resid-
ual computations corresponding to Trevisan’s extractor amounts to a linear combination of the
t bits, we conclude that these linear combinations can be computed by depth 1 + [logjy,,, t] =

1+ [c 4 10g)og,,(n/k(n))] circuits of poly(n)-size. W

Application to explicit constructions of local extractors. Combining Theorem 3.2 with [54,
Thm. 6.3] (see Corollary 2.8), yields improved parameters for explicit local extractors. Further
improvement is obtained by using better extractors (i.e., the current state-of-art extractors of
Guruswami et al. [30, Thm. 1.5]) than those available to Vadhan [54].7

Corollary 3.5 (implications to locally computable extractors): For every constant o € (0,1),
k = Q(poly(logn)) and ¢ = 1/poly(n), and every t > min(0((n/k)log?n),n), there exists an
explicit construction of a t-local (k, €)-extractor E : {0,1}" x {0,1}00cgn) _ {0 1}o-(k/n)t,

Proof Sketch: Assume that ¢ < n, since otherwise the claim is trivial (using ¢ = n and [30,
Thm. 1.5]). Now, setting § = k(n)/n, u = §/O(log(1/5)) and t > O(u 'logn), combine the
(1, apt, 0.3¢)-averaging sampler of Theorem 3.2 (which maps {0, 1}00°87) to [n]*) with the (adt, 0.3¢)-
extractor of Guruswami et al. [30, Thm. 1.5] (set to map {0,1} x {0,1}008(t/) o {0, 1}e70),
where the combination is via Corollary 2.8. This yields extraction of ot bits. W

3.4 An alternative averaging sampler

The drawback of the averaging sampler presented in Theorem 3.2 is that it does not apply to the
case that both u < n~'/2 and v < 1/n? (or so). This was good enough for the applications to
extraction in AC? presented in Section 3.3, but is not sufficient for other applications (see, e.g.,
Section 6, and specifically Corollary 6.2).

Recall that the reason for the lower bound on y is that we needed t2 > ;=2 to be (significantly)
smaller than n, so that we may expect two random t-subsets of [n] to be disjoint. The latter
condition was used for establishing the claim that the sampler always generate distinct elements
(as required in the furthermore clause of Definition 2.6). We now achieve the latter goal while

9The latter improvement is in the output length and in some cases in the deviation parameter e. Specifically,
using only extractors that were available to Vadhan (i.e., [53, 48]), one can extract Q((k/n)-t)%?% bits (rather than
Q((k/n) - t) bits) for e = max(poly(1/n), exp(—t'~°M)).
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using a seed of length O(logn)?, rather than O(logn), which suffices for our application (i.e.,
Corollary 6.2).

Theorem 3.6 (an averaging sampler for all densities): Let a € (0,1) be an arbitrary constant.
Then, for every p > 1/n and ~v > 1/poly(n), there exist explicit constant-depth poly(n)-size
circuits Cp, ¢ {0,1}000s™)* s [n]t that compute a (u(n), au(n),v(n))-averaging sampler for any
t € [0(u~"log®n),0.1n].

Proof Sketch: Our starting point is the simple (pairwise independence) averaging sampler G
asserted in Claim 3.2.1. Setting ¢ = O(logn), we consider ¢ independent invocations of G and the
sequence of ¢ -t elements generated. Denoting this sequence (or multi-set) by S, note that each
element occurs in S at most £ times, since the sets generated by G have no repetitions. Denoting
the number of occurrences of 7 (in the multi-set S) by ¢;, we use an ¢-wise independent sequence
of length n over [¢] in order to select each i € [n] with probability ¢;/¢, resulting in a set S” (with
no repetitions).

Using an /" moment inequality (see Appendix A.2) it can be shown that the probability that
the number of sampled elements is (1 & €) - ¢ is greater than 1 — (e~ 2¢2/t)!/2, since the expected
number is ¢ - t/¢ (whereas t > 27202 = O(log?n), since we refer to any constant € > 0). Fixing
any f : [n] — [0,1] such that p(f) > p, and assuming that ). ¢ f(i) > apu - £t (which occurs
with probability at least 1 — v (cf. the proof of Theorem 3.2)), we apply the same reasoning to the
f-value of the random set S’. Specifically, since t = Q(u~"log?n), it follows that for any constant
€ > 0 the probability that >, ¢ f(i) < (1 —¢€) - au-t, is at most (7202 /aut)*/? < 4 (where here
we use t > 2¢ 20"\~ U? = O(p~'log®n)). Finally, we augment the set S’ so to obtain a set of
size exactly (1 + 2¢) - t.

It is left to show that the foregoing sampler can be implemented by uniform constant-depth
circuits of poly(n)-size. This is not straightforward. Hence, the foregoing description is merely an
intuitive motivation and the actual implementation proceeds as follows.

1. Obtaining the multi-set S (by using ¢ invocations of ), and generating an ¢-wise independent
n

sequence (p1,...,pn) € [{]".

The implementation of this step by uniform constant-depth circuits of size poly(n) is straight-
forward for G and quite standard for the /-wise independent sequence. The construction of
an (-wise independent sequence over [¢] is actually performed over GF(2!°8™), and involves
taking various linear combinations of ¢ field elements, which constitute the seed of the /-wise
independence generator.

2. Computing the number of occurrences of each element (in S) and producing the set S’
Specifically, the element e € [n] in included in S’ if and only if it occurs in S at least p. times
(i.e., ge > pe), where (p1, ..., pp) is the sequence produced in Step 1.

This can be done by uniform constant-depth circuits of size poly(n) because the number of
occurrences of element e € [n] in S equals the cardinality of the maximal set I C [¢] such that
each index in I corresponds to an invocation of GG that produced a sample that contains e.
Specifically, the condition to check for each set I is that for every i € I there exists j € [t] such
that v; + ¢js; = e, where (ri,s;) is the seed used in the i invocation of G. (Alternatively,
we can count the number of occurrences of each e € [n] in S by using a counter for small
values, as in Step 3(b).) Indeed, we obtain a representation of S as an n-long sequence over
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{0,1, ..., ¢}, and produce (or sieve out) the set S’ using the same representation, which means
that S’ is represented as an n-bit long sequence.

The above actions can be performed by uniform constant-depth circuits of size 2¢ - poly(n) =
poly(n). Note, however, that the set S is not in the standard format that we use throughout
this paper, which is a format that seems essential for having ACY circuits compute a mapping
of the form (z,5”) — xg. The next steps are aimed at putting S’ in the standard format.

3. Making progress towards obtaining a standard representation of S (as a sequence of elements
of [n]) is done as follows.

(a) First, we select an /-wise independent hash function A : [n] — [t/£3] and hash S’ C [n] to
[t/¢3] such that, with probability at least 1—+, each image i € [t/£3] is assigned (142¢)-£3
elements of S’. (The probabilistic claim holds by virtue of the /-wise independent hash
function we use, while noting that (1 —e)-£3 > 2¢72 . ¢2))

(b) Next, we rank the elements of S’ that are hashed by h to each image i € [t/¢3]. This
is done by using a (uniform AC°) counter for small values (i.e., a uniform AC circuits
that counts the number of ones a string of length n, when guaranteed that this number
does not exceed poly(logn)).!? An explicit construction of such a counter was presented
in [47], improving over [3, Sec. 5] (and subsequent works).!! Here, we count for each
e € (S’ N h~1(i)) the number of elements in S’ that are smaller than e and are hashed

by h to h(e) (i.e., we compute } ) Xer, Where xor = 1 if ¢’ € §” and h(e) = h(e)).

At the end of the current step we obtain a representation of S’ as a sequence of ¢/£3 (sorted)

sets that are each of size (1 + 2¢) - £3, where the latter claim holds with probability 1 — 2.

This is closed to the desired format, but is not quite there.

Note that the current step can be performed by uniform constant-depth circuits of size
poly(n), where the key observation is that such circuits can rank poly(logn) many elements
that reside in an array of length n. (The implementation of that ¢-wise independent hash
functions from [n] to [n/¢3] is similar to the implementation of f~wise independent sequences
over [¢] discussed in Step 1.)

4. Obtaining a standard representation of the augmented set S’ (as a sequence of elements of
[n]) is done as follows. Indeed, obtaining the standard representation is linked to augmenting
the set S’ to a set of size exactly (1 + 2¢) - ¢.

Using an f-wise independent sequence of length ¢ over [n], we first select ¢ elements of [n],
while noting that (with probability at least 1 — «y) we obtain at least ¢/2 distinct elements
that are not in S’. (Here we use ¢ < 0.1n.) Furthermore, the number of additional elements
mapped to each image of the (¢-wise independent) hash function h (used in Step 3) is at most
(1 +¢€) - £3 and the number of additional elements not in S’ that are mapped to this image
under h is at least £3/2.

Denoting the multi-set of additional elements by A and fixing a good hash function h, note
that for every i € [t/¢3] it holds that (i) |S'NAL(i)| = (1£2€)-£3, (ii) [ANRTL(i)] < (1+¢€)-£3,
and (iii) |(A\ S") N h~1(i)] > £3/2. Now, we rank the O(£3) elements of A that are mapped

0T hese circuit can also detect the case that the guarantee is violated.
11 An alternative construction is presented in Appendix A.3.
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by h to each image i € [t/¢3], just as we did with S’ in Step 3, and use the two rankings in
order to obtain a list of (1 + 2¢) - £3 elements that are mapped (by h) to i such that this list
contains all elements in S’ N A~1(4). (Specifically, we place the j'' elements of S’ N A~1(4) in
position j, and the 5 element of AN Ah~1(3) in position [’ NA~1(i)| + 5 < (14 2€)£3.)1? At
this point we have the desired format.

If any of these steps failed, which happened with probability O(vy), then we just output a fixed
sequence. W

Corollary 3.7 (using the averaging sampler of Theorem 3.6): Let 5 € (0,1) be a constant, 6 =
Q(logn)/n and t € [©(67 log®n),0.1n]. Suppose that Eg : {0,1}¢x{0,1}70 — {0,1}™ is a (35-t, €)-
extractor that is computable by (uniform) constant-depth circuits of poly(n)-size. Then, there exists
a (8 - n, e+ poly(1/n))-extractor E : {0,1}" x {0,1}r0+00osn)® _y £0 13 that is computable by
(uniform) AC° circuits.

Proof Sketch: As in the proof of Corollary 3.3, towards invoking Corollary 2.8, we set p' =

B6/0(log(1/6)) and p = % - 1. But here we use the (u,p',1/poly(n))-averaging sampler S :

{0, 1}0(10g")2 — [n]* of Theorem 3.6, while noting that 6 = Q((logn)/n) and t = Q(u~"log?n).
Invoking the alternative part of Corollary 2.8, while noting that 6 = Q((logn)/n), the claim follows.
|

4 Extraction from Block Sources

We consider block sources as defined by Chor and Goldreich [16], and not their generalization as
used by Zuckerman [60, 61] (see also [45]) and subsequent works.

Definition 4.1 (block sources [16]):'3 An (n, (¢,b))-block source is a sequence of (possibly depen-
dent) random variables X = (X1, ..., X,,) € {0,1}" such that for everyi € [n] and x4, ..., x; € {0,1}¢
it holds that

PI‘[XZ' = l’i|X1 o--+0oX;_1=x10""" Ol‘i,l] < 27t

It follows that Pr[Xjo0---0 X, =x10---0x,] < (27%)", which means that X is an (n/, nb)-source.

A short discussion. Zuckerman and subsequent works considered a generalized definition of
block sources with varying block-length, where typically the blocks lengths decrease drastically
(e.g., | Xi| <|Xi—1]/2). This was used as a methodological step towards constructing extractors for
general min-entropy sources. While the study of randomness extractors for general min-entropy
sources proved to have numerous applications (most of which were not envisioned originally), we
believe that the original motivation of extracting high-quality randomness out of low-quality sources

12 Alternatively, we can just rank the the O(¢%) elements of S’ U A that are mapped by h to each image i € [t/£?],
while considering the elements of S’ as smaller than those of A. Either way, the fact that A is a multi-set is irrelevant
to our analysis, and the procedure just uses each element of A as if it has appeared with multiplicity 1. In contrast,
one should not ignore multiplicity when considering the multi-set S, since multiplicity may have an effect on the
sampling properties of S.

13 Actually, block sources were defined in [16] as being an infinite sequence of random variables that satisfy the
(conditional) min-entropy bound.
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of randomness is extremely important. Furthermore, we believe that block sources are a very
realistic model of poor sources of randomness, and hence we believe that extracting high-quality
randomness from such sources is of great importance.

Of course, one can extract randomness from block sources by using a corresponding extractor for
general min-entropy sources, since any e-error extractor for (n¢, nb)-sources is an e-error extractor
for (n, (¢,b))-sources. Yet, more advantageous constructions may be possible for block sources,
because the latter are a very restricted special case. In particular, it may be desirable to extract
randomness on-the-fly (i.e., in a block-by-block manner), rather than wait for the entire source
outcome, and it may be desirable to do so without storing much information. (Of course, this is
impossible for general min-entropy sources.)

4.1 A simple extractor

The following construction extract randomness separately from each block, using the same random
seed, and without sharing any other information among the (block-based) steps of the extraction
process. We stress that using the same seed for extraction from all the blocks harms the quality of
the output in a small and minimal manner.

Theorem 4.2 (a simple extractor for block sources): Let E : {0,1}* x {0,1}" — {0,1}™ be a
strong (b, €)-extractor. Then, E' : {0,1}™ x {0,1}" — {0,1}"™ defined by E'(x10---0xp,s) =
E(x1,8) 00 E(xy,s) is a strong n - e-error extractor for (n, (¢,b))-block sources.

Theorem 4.2 seems to be folklore. In particular, it follows as a special case of Lemma 5.7 of
Guruswami et al. [30], but this fact is not transparent because their result refers to a “block
chaining” construction; that is, in their construction, the original seed is used on the last block,
and extraction from the i*" block (via E;) is used both for obtaining a part of the output and a
seed for extraction from the i — 15 block.!* Given a strong extractor E as above, one should first
define an auxiliary extractor Fi(z,s) = (s, E(z,s)), and then apply [30, Lem. 5.7] with E; = F;
(for all i’s). (For sake of self-containment, we provide a direct and detailed proof of Theorem 4.2.)

Proof: We need to upper bound the statistical distance between Up,4, and E(X1,U,) 00
E(Xy,U,) o Uy, where all occurrences of U, represent the same outcome and X = (Xi,...,X,) €
{0,1}™ is an (n, (¢, b))-block source. We prove the claim by induction on n, where the base case (of
n = 1) is immediate by the hypothesis regarding E. In the induction step we proceed as follows,
using the notation Xi; ) = (X, ..., Xy) and E'(X[j ), Ur) = E(X;,U;) 0 - -+ 0 E(Xy, Uy), where the
choice of ¢ € [n — 1] is immaterial (i.e., any 7 € [n — 1] will do):

A[E'(X,U,) o U, 3 Uppm 0 U]
= A[E/(X[l,i}7 Up) o E/(X[i+1,n}7 Ur) 0 Ur 3 Uim © Utn—iym © U]
< A[E(Xp,Ur) 0 E'(Xjjy1,0), Ur) 0 Up s E' (X141, Ur) © Ug—iym © Uy
+ A[E’(X[Lﬂ, Ur) © Un—iym © Ur 5 Uim © Ugn—ym © Uy]
A[X(1 0 B' (X101, Ur) 0 Ur 3 X[t © Upp—iym 0 Us] (3)
+ A[E'(X[Lﬂ, U)o Uy 5 Uiy 0 Uy] (4)

IN

YGpecifically, in [30, Lem. 5.7], E'(10-+-0xpn,8) =y10--- 0y, (or rather E'(x10-+-0Xpn,8) = 80 0Y1 00 yn),
where s, = s and (si—1,¥;) < Ei(zi,s;) for i =n, ..., 1.
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where the last inequality uses the fact that A[II(Y);II(Z)] < A[Y ;Z] holds for any random
process II. Using the induction hypothesis (regarding extraction from the (i, (¢,b))-source X[ ;),
Eq. (4) is upper bounded by i-e. So we turn to analyze Eq. (3). Letting X/ denote the distribution
of X[i11,,) conditioned on X3 5 = x, we get

A[Xp,i) 0 B (X100, Ur) 0 Up 5 X3y © Ugn—iym © Uy
= Eﬂ_X[M] [A [E/(X;, Ur) o] UT 5 U(n—i)m o UT]
< (n—i)-e

where the inequality uses the induction hypothesis regarding extraction from the (n—i, (¢, b))-source
X! . The claim follows. [l

Relevance to the study of extraction in ACY. Theorem 4.2 reduces the complexity of extrac-
tion from (n, (¢,b))-block sources to the complexity of extraction from (¢, b)-sources. In particular,
we get —

Corollary 4.3 (AC° extractors for block sources): For every £(n) = poly(logn) and e(n) =

1/poly(n) there exist b(n) = O(logn) and explicit AC® circuits that compute a strong e(n)-error

extractor E : {0,1}¢ x {0,1}900en) — {0, 1} ™) for (n, (£,b))-block sources. Furthermore, the
- log(¢(n) /b(n))

circuits have depth 4 + OglognTnn.

Note that b(n)/¢(n) is the min-entropy rate of the source.

Proof: Wishing to use the construction of Theorem 4.2, we (again) use the (b,¢€)-extractor
E:{0,1}) x {0,1}C0gn) _ £, 1}2008n) a55erted in [28, Sec. 5]. As noted in the proof of Theo-
rem 3.1, this extractor can be computed by (uniform) poly(n)-size circuits of depth 3+log,,,(,,) £(n) =
4+ (log(4(n)/b(n)))/loglogn. I

4.2 On converting min-entropy sources into block sources

In light of the relative ease of extracting randomness from block sources, it is natural to try to
convert general min-entropy sources into block sources. Such conversion is intended to be easier
than extraction; specifically, it amounts to sampling bits of the original source and arranging them
in blocks.

This idea goes back to Zuckerman’s work [60, 61], but in all known incarnations each block is
sampled using fresh randomness. This is typically not a problem when the number of blocks is
small, but in our context we wish the number of blocks to be large. The question addressed here
is whether conversion is possible using randomness complexity that is significantly smaller than the
number of desired blocks.

Following is a definition that captures what we mean by conversion, which we call blocking (i.e.,
converting into a block source). Loosely speaking, a blocker is given a general (n,dn)-source, and
needs to “produce” a block source with m > 1 blocks such that each blocks has min-entropy rate
at least ¢’ (conditioned on prior blocks). Of course, we consider ¢’ € (0,0) and blocks of length
s <n/m. In terms of the following definition of blockers, we ask whether we may have r = o(m).
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Definition 4.4 (converting general min-entropy sources to block sources): For n,m,s,r € N and
€,0,0" € [0,1], consider a generator S : {0,1}" — ([n]*)™, which on input a seed u € {0,1}" outputs
an m-long sequence of s-subsets of [n], denoted (S1(u), ..., Sm(w)). We say that S is a (9,0, ¢€)-
blocker if for every (n,dn)-source X, for at least 1 — € of the choices of uw € {0,1}", it holds that
(X, ()5 > XSy (u)) 18 an (m, (s,0's))-block source.

Definition 4.4 is analogous to the strong version of extraction (i.e., strong extractors). A milder
requirement is that (Xg (1,), - Xs,,(0,)) is e-close to a (m, (s,d's))-block source. For simplicity,
we consider the stronger notion first and postpone the consideration of the milder notion to later
(see Remarks 4.7 and 4.9).

While we do not resolve the foregoing question, we present two illustrations for its difficulty.
First, we show that the requirements from a blocker must be more demanding than the requirements
from a generator of a sequence of disjoint sets in which each set in the sequence has good sampling
properties. This is shown for the case of m = 2, albeit using a somewhat contrived construction.
Next, we show that a natural construction fails too; this is shown for m = n®*(1) and r = O(logn).
In both cases, the reader may think of small but constant values of § > §’ > 0 and of s = poly(logn).
(Recall that randomness extraction from block sources can be performed in AC® when the block
length is poly-logarithmic.)

1st illustration: Sampling does not suffice (even for two blocks)

Here we show that a “two-set sampler” is not necessarily a good blocker. We shall show this by
considering a very general and natural definition of a two-set sampler, and show that there exists
such constructs that fails as blockers.

We shall refer to a rather generic notion of a two-set sampler that generates pairs of sets such
that some property P is satisfied for each individual set. The property P is actually a collection
of conditions (or properties), and it is required that each condition is satisfied (with specified
probability). Of course, it is also required that the two generated sets are disjoint.

Definition 4.5 (two-set sampler w.r.t a class of properties {P;}): Forn,s,r € N, let S: {0,1}" —
[n]® x [n]* and denote (S1(u), S2(u)) = S(u). For e € [0,1] and P; C [n]* for every i € [t], we say
that S is a two-set sampler w.r.t (¢,{P; : i € [t]}) if the following two conditions hold:

1. For each o € {1,2} and i € [t], it holds that Pr[S,(U,) € P;] > 1 —e.

2. For every u € {0,1}", the sets Si(u) and Sa(u) are disjoint.

A natural class of properties are those that correspond to a (4, €)-averaging sampler. In this case,
the properties correspond to subsets of [n] and the property corresponding to a set T' C [n] consists
of all s-subsets having (p(T") £9) - s elements in 7', where p(T) is the density of 7" in [n].

We could have stated the result only for averaging samplers (i.e., for the aforementioned prop-
erties that correspond to them), but we believe that it good to state it in greater generality. Since
{P;} is totally generic, it is not clear that two-set samplers w.r.t it exist. For this reason, the
following theorem assumes the existence of a two-set sampler w.r.t {P;}. Furthermore, we also
require that {P;} is closed under relabeling of [n]; that is, for every permutation 7 : [n] — [n] and
every i there exists a j such that P; = {m(A) : A € P;}. Note that the properties corresponding
to averaging samplers are indeed closed under relabeling of [n]. The following theorem says that
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whenever two-set samplers (w.r.t P) exist at all, there exists such samplers that fail as blockers
(for the case of m = 2).

Theorem 4.6 (two-set samplers are not necessarily blockers): Let n,s € N such that n = w(s?),
€ €10,1], and P = {P; C [n]*} be a collection of properties that is closed under relabeling of [n]. If
there exists a two-set sampler w.r.t (e,P), then there exists a two-set sampler w.r.t (2¢,P) that is
not a (0.5,0(1),1 — o(1))-blocker. Furthermore, there exists an (n,0.5n)-source X such that given
X, with probability at least 1 —2s%/n, this two-set sampler outputs a source of two blocks such that
the second block is totally determined by the first block.

Proof: We start with an arbitrary two-set sampler w.r.t (¢,P), denoted S : {0,1}" — [n]® x [n].
Consider a random matching 7 : [n] — [n] (i.e., a random bijection 7 such that 7(i) # i and
7(n(i)) = i for every i € [n]), and note that, w.v.h.p, for an 1 — O(s?/n) fraction of the u’s it holds
that 7(S1(u)) NS1(u) = 0. Let us call such u’s good for 7, and note that there exists a matching
7 for which the fraction of good u’s is at least 1 — O(s?/n) = 1 — o(1). Fix such a 7 and define a
new two-set sampler S, which uses a seed (u,u’) € {0,1}?", as follows:

L If 7n(Si(uw)) N Si(u) =0, let S"(u,u’) = (S1(uw),m(S1(uw))) and call u good;
2. Otherwise (i.e., 7(S1(u)) N S1(u) # 0) let S"(u,u’) = S(W).

Note that 1 —o(1) of the u’s are good, and that S’ is a two-set sampler w.r.t (2¢,P). To prove the
latter assertion, let us first consider Sj(Us,), and denote the set of good r-bit strings by G. Then,
for every P;,

PI‘[S{(UQT) ZPi] = Prycuy,[Si(u) € PinueG]+ PI‘(UM/)(_U% [Sl(u') ZPiNu ¢ (]
< Pryy, [S1(u) € Pi] + Pro, e, [S1(v) & Pil.

The same analysis applies to the second set (i.e., S5(Usa;)), except that here Si(u) is replaced

by Si(w(u)) and the “closure under relabeling” hypothesis is used. Specifically, suppose that
P; = {r"1(A) : A € P;}, then:

Pr[Sy(Usr) € Pil = Prycu,[Si(n(u)) & PiAu € G+ Prouy s, [S2(u) € Pi Au ¢ G
< Prycy, [S1(m(u) & Pi] + Pri,uyu,, [S2 (') & Pi]
= Pryy,[Si(u) & Pj] + Pryy,[S2(u) & Py

Hence, S’ is a two-set sampler w.r.t (2¢,P). In contrast to this fact, as shown next, it turns out
that S’ fails miserably as a blocker.

Let X be uniform over the set of strings {z : (Vi € [n]) z; = 2.(;}, which has cardinality
27/2 This means that X has min-entropy n/2. On the other hand, whenever u is good, we
have that Xg () is determined by Xgr(,), since in this case Sy(u) = 7(Si(u)), which implies
Xy (u) = Xan(s(w)) = X5 (). Hence, with probability at least 1 — 252 /n =1 —o(1) (i.e., whenever
u is good), the second block in the source (X (4), Xsj(u)) has min-entropy zero conditioned on the
first block. I}

Remark 4.7 (non-strong blocking fails too): Actually, the proof of Theorem 4.6 applies also to
the weaker notion of blocking in which it is only required that (XS{(U,«)aXSQ(UT)) s e-close to a
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(2, (s,0's))-block source. The proof implies that (Xsr(v,) Xsyw,)) s 252 /n-close to a source in
which the second block equals the first block, and thus has no conditional entropy at all. It follows
that this sampled source is far from any block source in which the second block has even just few
bits of min-entropy.

Digest. Note that Theorem 4.6 does not refer to the randomness complexity of the two-set
sampler. In such a setting, we know that blockers (let alone for m = 2) do exist. Hence what
Theorem 4.6 asserts is only that requirements regarding the sampling features of individuals sets
generated by a two-set samplers do not imply that this two-set sampler is a blocker.

The reason that two-set samplers may fail as blockers is that their definition makes too mild
requirements regarding the relation between the two generated sets. Indeed, Definition 4.4 only
requires that these two sets be disjoint. The proof of Theorem 4.6 capitalizes on this fact and uses
a fixed matching of elements between all pairs of sets (i.e., for a fixed matching 7, the elements of
the second set are typically the w-mates of the elements of the first set).

2nd illustration: A natural candidate that fails

The proof of Theorem 4.6 relies on a contrived example and shows that such an example exists
no matter what “sampling property” (regarding individual sets) is considered. Here we take an
opposite approach: We consider a natural construction (and do not specify the sampling properties
that it satisfies). Specifically, we shall present a natural multi-set sampler, which we believe most
readers may find a natural candidate for a good blocker, and show that it actually fails as a blocker.
The multi-set sampler (and candidate blocker) refers to the case of m = n*(1), s = poly(logn), and
r = O(logn). (Recall that these are the parameters that we want in order to extract n*) bits in
AC® via conversion to block sources.)

A rhetoric question: What is more natural than trying the standard O(1)-wise independent generator?
Indeed, let us consider it.

Construction 4.8 (constant-wise independent multi-set sampler): Let F' be a finite field of size
n and ¢ > 2 be a constant, and consider the c-wise independent generator, denoted G:F¢— ",
such that G(u) = (g1(u), ..., gn(u)) and gj(ur, ..., uc) = 3 ;e uia;fl, where aq, ..., ap, are distinct
field elements. For m = n*) and s = poly(logn), consider the sampler S(u) = (S1(w), ..., Sy (u))

such that Si(u) = {g(i—1)s41(w), -, gis(u) }-

Note that S : F¢ — (F*)™, which means that this sampler has a seed of length clog, n. Is this
sampler not a natural candidate for a blocker? Well, as we show next, it fails badly.

e Preliminaries: We assume that for some d € N it holds that ms € (0.9 +0.1) - n'/? (or s0).1
Let F = K¢, where K is a finite field, and let H C K of sufficiently small constant density

(say, density 1/3cd). Hence, k o |H? = Q(n), since n = |K%| and |H| = Q(|K]).

e A class of (affine) sources: Next, for any f : HY — K, consider its low-degree extension
f': K% - K, and let X € K™ be uniformly distributed among all d-variate polynomials of
individual degree |H|; that is, for a uniformly distributed f : H¢ — K, let X, = f'(a) for

Q

15 After all, if the above sampler is a good blocker for m = n M and s = poly(logn), then it should be a good

blocker also when n is an integer power of ms (or so).
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every a € K¢ = [n]. So X has “min-entropy” k (in units of symbols in K). Indeed, this is a
source over the alphabet K (rather than over {0,1}).

By the way, it is an affine source, since the values of all X,’s (i.e., the polynomial f’) are
determined as linear combination of the values at o € H? (i.e., the function f).

e The foregoing sampler S as a candidate blocker: Now, for any u = (u1, ...,u.) € [n]¢ = (K%)°,
the sampler S : (K%)¢ — ((K%)*)™ produces the sampled source (X5 (u)s s X5y (u))- Recall
that ms € (0.9 +£0.1) - |K| and |H| = |K|/3cd.

Let X be a generic source from the above class. Plugging in the definition of S;, note that the
4 element in the i*" block of the sampled source is Xg(i71)5+j (w) = Xcu(%il)sﬂ), where Cy(a) =

ZZG[C] upa’~t. Now, suppose that ar, ..., s € F = K@ are all in the base field K (which is possible

since ms < |K|). Then, it suffices to define C,, on K (i.e., C, : K — K?), which means that C,, is
a (c — 1)-degree curve over K¢ (i.e., it is a curve over K¢, defined based on u € (K%)¢, with a free
parameter in K).

Recalling that X is defined in term of the low-degree extension f’ of a random function f :
H? - K, we have Xeu(opuoryery) = I (Culaqi-1)s+;)), where o Cy 1 K — K (via K%) is a degree
(¢ — 1)d|H| univariate polynomial over K (since f’ is a d-variate polynomial of individual degree
|H| and C,, is a curve of degree ¢ — 1). Hence, for every seed u of the sampler, less than cd|H|
symbols of the sampled source determine all other symbols (of the sampled source); in particular,
the first cd|H|/s blocks of the sampled source (Xg, (), s Xs,,(u)) fully determine the remaining
m — (cd|H|/s) blocks. Recall that cd|H|/s = |K|/3s < m/2 (by our choice of H and K). W

Remark 4.9 (non-strong blocking fails too): Since there are only polynomially many curves C,
using few additional symbols (let alone few additional blocks), we can determine which curve is
used, and determine the remaining blocks based on this. Typically, each additional symbol read
from the sampled source, beyond the cd|H| symbols that suffice for extrapolation, cuts the number
of possible curves by a factor of |K|.

Critique: One may raise two reasonable objections to our example. (1) We considered sources
over a large (non-binary) alphabet K; (2) We made the sampler use the |K| elements of K ¢ K% as
the coefficients in the c-wise independent sequence (of length |K|). We believe that both objections
are not acute.

Objection (1) can be addressed by encoding the elements of K by binary strings of length
¢ = log |K|. This requires an analogous modification of the sampler in which indices in [n] are
replaced by f-sets of [nf] (i.e., i is replaced by {(i — 1)¢ + 1,...,i¢}).16 (Alternatively, one may
argue that the question for arbitrary alphabets is as natural.) Objection (2) can be addressed by
claiming that the construction should work regardless of the choice of field elements, let alone that
the same argument holds when choosing field elements that reside on any line (or low degree curve)
in K¢ (instead of residing in K ). Indeed, we do not recall any application of c-wise independence
that insists on an “non-structured” choice of the field elements (whenever there is a choice at all).
Actually, it is quite natural to use a structured choice of field elements.

15Tndeed, this merely moves the problem from the alphabet to the sampler (which now samples indices by taking
all indices in each sampled block), and one may object to viewing such a sampler as natural.
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Discussion

Note that both counterexamples utilize affine sources, whereas it is possible to convert affine sources
(having min-entropy at least k& = n/poly(logn)) into block sources (using a seed of logarithmic
length and obtaining blocks of length s = poly(n/k)). Specifically, as hinted up-front, it is well
known that conversion into m blocks is possible if one is willing to use a seed of length r = O(mlogn)
(by repeated sampling with fresh random seeds). Since the number of affine sources is less than
2"° we may infer that there exists a set of O(n2/8¢) such that for an affine source of min-entropy
dn at least a 1 — e fraction of these seeds yield an (m, (s,0.5s))-block source.

The forgoing argument cannot be applied to general (n,dn)-sources, since their number is too
large. But it is not inconceivable that a more refine counting argument may work. More generally,
we ask —

Open Problem 4.10 (blockers of logarithmic randomness): Does there exist a (6,6, 0(1))-blockers
S :{0,1}900m) —5 ([n]*)™ for constant &' € (0,6) C (0,1) and m = w(1)? What about m = n®*1)
and s = poly(logn)?

A positive answer to the latter question is a sufficient but possibly not necessary condition for a
positive resolution of Problem 1.6. Of course, a negative resolution of Problem 1.6 would imply a
negative answer to Problem 4.10.

5 Extraction from Block-Fixing Sources

In this section, we consider AC? extractors for bit-fixing sources, a model first considered by Chor
et al. [17]. In this model the min-entropy bound %k denotes the number of bits that are random in
the source, whereas the other n — k bits are fixed obliviously of the values of the random bits.”
Actually, we consider a generalization to block-fixing sources, first considered in [40].

Definition 5.1 (block-fixing sources [17, 40]): An (n, k, £)-block-fixing source is a sequence of ran-
dom variables X = (X1, ..., X,,) € {0, 1} such that there exists a set of at least k indices I C [n] and
a sequence (x1,...,z,) € {0,1}* such that X7 is uniformly distributed over {0,1}11¢ and X; = z;
for every i € [n]\ I. The special case of { = 1 is referred to as a (n, k)-bit-fixing source; that is, a
(n, k, 1)-block-firing source is called a (n, k)-bit-fixing source.

Note that extractors for block-fixing sources need not preserve the block structure in their output,
although the extractors presented in Theorem 5.2 do preserve this structure. In general, for every
¢, an e-error extractor for (nf, k¢)-bit-fixing sources is an e-error extractor for (n, k, £)-block-fixing
sources, and ditto for strong extractors. It is also easy to see that if E : {0,1}" x {0,1}7(") —
{0,1}™(") is a strong e-error extractor for (n, k)-bit-fixing sources, then E’ : {0, 1}¢" x {0,1}7(") —
{0,1}¢™(™) given by

E'((x11, . %np),s) = E((x1,1, ., Tn1),5) 0 - 0 E((T1,0, - Tng), 5)

is a strong le-error extractor for (nf, kf)-bit-fixing sources. (An analogous statement for ordinary
extractors seems to require using ¢ different seeds, and so the seed length becomes ¢ - r(n).)

"Indeed, such sources are sometimes called oblivious bit-fizing sources, in order to distinguish them from non-
oblivious bit-fixing sources [40] in which the remaining n — k bits are fixed as a function of the values of the k random
bits.
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In Section 5.1, we present (strong) extractors for (n,n/poly(logn), ¢)-block-fixing sources that
use a seed of logarithmic length and extract nf/poly(logn) bits, whereas in Section 5.3 we present
deterministic extractors of similar performance. Both extractors work in ACY, which is optimal in
light of the results presented in Section 5.2 (assuming that ¢ < poly(logn)). Specifically, in Sec-
tion 5.2, we prove that there exist no strong AC? extractors for min-entropy lower than n /poly(logn)
(regardless of the seed length). We also show that the same holds for ordinary extractors that out-
put (1 +Q(1)) - r(n) bits when using a seed of length r(n).

5.1 Extraction with a logarithmically long seed

Although extraction from bit-fixing sources is possible without using a random seed (see [17, 40]),
the known deterministic (i.e., seedless) extractors are not computable in AC’. In this section
we present seeded extractors (for bit-fixing sources) that are computable in ACY (and use seeds
of logarithmic length). In Section 5.3, following ideas of Gabizon et al. [25], we shall use the
aforementioned seeded extractors to obtain deterministic extractors of similar performance, based
on new deterministic extractors that extract poly-logarithmically many bits.

Theorem 5.2 (seeded extractor for block-fixing sources): Let k : N — N and € : N — [0, 1] be
such that k(n) > n/poly(logn) and e(n) > 1/poly(n). Then, there exists a function E : {0,1}™ x
{0,11000gn) _y 1 1}poly(k(m)/n)nl yhat is computable in uniform AC® and constitutes a strong
e-error extractor for (n,k,l)-block-fizing sources.

Theorem 5.2 is related to results of Gabizon et al. [25, Sec. 6], but the parameters are quite
different: Most importantly, their extractors are not in AC°, although they could have obtained
such extractors with a different setting of the parameters in their construction. Likewise, they
extract only m(n) = k(n)*1) bits. On the other hand, they treat any k(n) > poly(logn) and use
a seed of length O(log k(n)). The pivot of our solution is the use of a new pseudorandom partition
generator, captured by Lemma 5.2.1.

Proof: For sake of simplicity, we consider the case of £ = 1, and denote the bits of the source
by x1 0 --- 0 x,. The basic idea, which goes back to Gabizon et al. [25, Sec. 6], is to use a
random partition of the source into many short sources, and extract bits from each of these short
sources by XORing the corresponding bits. That is, we use the seed of the extractor to generate
(pseudo)random subsets, denoted Si, ..., Sy, C [n], and output the bits @jeg,x; for i = 1,...,m.
This works provides that each of the S;’s contains a location of a random (i.e., non-fixed) bit of the
original source, and that these (non-fixed) locations are distinct. Furthermore, the S;’s should each
be of size poly(logn) so to allow for the XOR to be implemented by constant-depth poly(n)-size
circuits.

The first idea that comes to mind is to generate the subsets by repeatedly invoking an ordinary
sampler (cf. [27]), using related seeds, but this seems to require that m < \/n. An alternative
approach, which also goes back to Gabizon et al. [25, Sec. 6], is to generate a pseudorandom
partition of [n] into m subsets of equal size. Unfortunately, the techniques used in [25, Sec. 5] also
seems to require that m < \/n, whereas we seek m = n/poly(logn). Furthermore, we need to
generate such a partition using a seed of logarithmic length and each subset in the partition should
have a strong hitting property (i.e., as stated in the second condition of the following claim). (We
comment that similar problems arise in the proof of Theorems 3.2 and 3.6, but the parameters and
hitting requirements there are different.)
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Lemma 5.2.1 (pseudorandom partitions with a strong hitting property): Ford,v > 0 andn,t € N
such that t = ©(6 1 log(1/v))? divides n, let m = n/t and r = O(log(n/7)). Then, there exists an
explicit function G : {0,1}" — ([n]")™ such that the following two conditions hold.

1. For every u € {0,1}" the m-sequence G(u) is a partition of [n]; that is, for every ji # jo it
holds that G(u);, and G(u)j, are disjoint t-subsets of [n].

2. For every T C [n] of density &, with probability at least 1 — =y, each subset in G(U,) hits T';
that is, Pr[3j € [m] s.t. G(U,); NT = 0] < ~.

Proof: Our starting point is an ordinary hitter H : {0,1}" — [n]®, where ' = O(log(n/) and
s = O(6 tlog(1/4")), that hits each set of density § with probability at least 1 —~'. We further
assume that every two sample points of this hitter are uniformly distributed independently of one
another. Note that the combined hitter of [27, Apdx. C.3] satisfies the first requirement, whereas
the second requirement can be achieved by “randomizing” the original sample via a sequence of
pairwise independent “shifts” (cf. Claim 3.2.2).1® Associating [n] with [t] x Z,, and using t = s,
it follows that with probability at least half, the sample ((i1,71), ..., (is,Js)) < H(U,») contains no
collision on the first coordinate (i.e., for every a # b it holds that i, # 4;). Hence, conditioned
on this event, for every set T of density 4, the probability that H(U,.) hits T is at least 1 — 2+'.

Consider the following generator G’ : {0,1}"" — ([n]t)™:

1. On input u € {0,1}", obtain ((i1,71), ..., (is,js)) < H(u). If there exist a # b such that
i = ip, then output a fixed partition (So,...,Sm—1) of [n] = [t] X Z,, into t-subsets; for
example, S; = {(¢,7) : i € [t]}. In this case we say that u is bad.

2. Otherwise (i.e., for every a # b it holds that i, # i), for every i € [t] and j € Zy,, let
pij = (i,Ja +j mod m) if i = i, and p; ; = (i,7) otherwise (i.e., i & {i1,...,is}). For every
J € Zm, define G%(u) = {p;; : i € [t]}, and output the m-sequence (Gp(u), ..., G}, _1(u)). In
this case we say that u is good, and it holds that

Go(u) = {(ia,ja) : @ € [s]} U{(4,0) s i € ([t]\ {i1, .., s })}
and G (u) = {(4, j' + j mod m) : (i, j') € Gp(u)}.
Note that in each case the output sequence is a partition of [n] = [t] X Zy,. In the “good case” (i.e.,
of a good w) this follows since G{(u) = {(4,9(i)) : i € [t]} for some function g : Z,, — Z,, (ie.,

9(ia) = ja for a € [s] and g(i) = 0 for i & {41, ...,4s}) and G (u) = {(i, g(¢)+j mod m) : i € [t]}. The
foregoing properties of H imply that, with probability at least half U, is good, whereas conditioned

18 Alternatively, we can apply the sampler used in the proof of Theorem 3.2 (with ¢ = 1), but set the parameters
in order to satisfy hitting rather than sampling. The difference between the two versions is that shifting the samples
(as proposed in the main text) is different from shifting the seeds used to generate the subsamples. Specifically, recall
that the combined hitter of [27, Apdx. C.3] has the form H"(u) = U;epH;(vi), where (v1,...,vr) < W(u) is a
random walk on an expander and H] is a pairwise independence generator. In the main text we suggested using
pairwise independent shifts of the sample U;c1H' (vi), whereas in the proof of Theorem 3.2 we used the sample
Usep H' (v;), where (v1, ..., v;/) is obtained by a pairwise independent shift of (v1, ..., v¢). In the analysis of the first
alternative one relies on the generalized hitting property of H’, whereas in the analysis of the second alternative one
relies on the generalized hitting property of W, where generalized hitting refers to generating a sequence (o1, ...,0s)
such that for every sequence of sets (11, ..., Ts) (each of density §) with probability at least 1 — there exists an i € [s]
such that o; € T;. Note that the standard analyses of both H' and W extends to this case.
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on this event the probability that G’(U,/) € T is at least 1 — 27/, for every set T' of density § and
for every j € Zp,.

Let us reflect for a moment on the structure of the generator G’. It uses a fixed partition of
[n] = [t] X Zy, into t cycles, each of length m, where the i*" cycle consists of {(i,5) : j € Zp}.
Assuming that the sample H(u) € ([t] X Z,)*® hits exactly s cycles, we augmented the sample to a
cover of all cycles by adding (dummy) elements of the form (i,0) for every uncovered cycle. (Of
course, this cannot damage the hitting property.) Finally, we use the m “shifts” of the resulting
set Sp as a partition, where the j* shift of the set So C [t] x Zy, equals {(i, ' + j) : (i,5') € So}.
In case the initial sample hits less than s cycles (i.e., some cycle is hit by more than a single point
in the sample), the generator outputs a fixed partition. The only problem is that the latter bad
event may occur with constant probability (of at most 1/2), whereas we want it to occur (in the
final generator) with probability smaller than .

The desired generator G is obtained by taking a random walk of length ¢ = O(log(1/7)) on a
constant degree expander with vertex set {0, 1}7"/, and outputting G’(v) where v is the first vertex
on the walk that is good. If no such vertex exists, then we just output the fixed partition, but this
event occurs with probability at most /2.

Denoting the random walk by (v1, ..., vy), recall that the probability that some v; is good is at
least 1 — exp(—$(t')) > 1 — (v/2). We show that conditioned on this event, for every T of density
d, with probability at least 1 — (3v/4) — (8¢'m~’/~), each set in the partition output by G hits the
set T. This is shown by considering only the indices j € [t'] such that with probability at least
/4t vertex v; is the first vertex in the walk that is good. Specifically, denote by G; the event that
vj is good, and let G} denote the event G; A =(V;1<;Gy). Let J = {j € [¢'] : Pr[G]] > v/4t'} and
note that Pr[V;e;G;| > 1 — (v/2) —t' - (y/4t') = 1 — 3v/4. On the other hand, for each j € J,
the probability that each set in G(v;) hits T' is at least 1 —2m~’. Let use denote this event by #;.
Then, the probability that all sets output by G hit T is at least

>_Prig)) - Pr{H;|G)] = PrlVjesGj) - min{Pr[H;|G;]}

jeJ
37\ . Pr[-H,]
> (1_4)%1{1_ b }

Using Pr[-#;| < 2my' and Pr[G}] > v/4t’ (for any j € J), we obtained the claimed lower bound
of (1 - 37/4) - (1 — (2m/)/(v/4)) > (1 — 33/4) + (8¢'m /7).

Setting 7/ = ~2/32t'm, it follows that each set output by G hits a set T of density & with
probability at least 1 — . Noting that G uses a seed of length r = 1’ + O(t') = O(log(n/7)), the
lemma follows. W
Wrapping up. We set 6 = k(n)/n = 1/poly(logn) and v = € = 1/poly(n), and use Lemma 5.2.1
with s = O(6~log(1/7)) and t = s2 = O(6~"logn)?, which implies m = n/t = Q(6’>n/log?n) =
n/poly(logn) and r = O(logn). The extractor E(z,u) outputs y; o --- oy, such that y; =
DicG(u);41 Ti- Since G can be computed by uniform depth-two circuits of size poly(n) and ¢ =
poly(logn), it follows that E is in uniform AC®. In analyzing the performance of E on an arbitrary
(n, k)-bit-fixing source, let 1" denote the set of k unfixed bits in the source, and note that the output
bits (i.e., y;’s) depend on disjoint sets of bits in the source and that with probability at least 1 —~y
each output bit depends on some unfixed bit of the source. The theorem follows for £ = 1, and the
argument for general ¢ is identical.
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5.2 Impossibility results

The following impossibility result asserts the optimality of Theorem 5.2 with respect to the pa-
rameter k (i.e., the number of random blocks in the source): While Theorem 5.2 asserts strong
extractors that are computable in AC° for any k(n) = n/(logn)°M, the following result asserts
that this is not possible for any k(n) = n/(logn)*().

Theorem 5.3 (impossibility of strong extraction in AC°): Suppose that E : {0,1}™ x {0,1}" —
{0,1} is computable by s(n)-size circuits of depth d = d(n). If E is a strong 0.499-error extractor
for (n, k, €)-block-fizing sources, then k > n/(¢ - O(logs(n))?1).

Recall that ¢ = 1 corresponds to bit-fixing sources. Note that the current result regarding (n, k)-
bit-fixing sources implies that if a strong (0.499/¢)-error extractor for (n,k,£)-block-firing sources
is computable in AC, then k > n/poly(logn). We conjecture that this holds even for 0.499-error
extractor for (n, k, £)-block-fixing sources; that is, we conjecture that the linear dependence on ¢, in
the foregoing results, can be eliminated.

Before proving Theorem 5.3 we note that it is incomparable but related to Theorem 1.1 (i.e.,
Viola’s [56, Thm. 6.4]): Theorem 5.3 refers to strong extractors that output a single bit, whereas
Theorem 1.1 applies to ordinary extractors that output a constant factor more bits than their seed
length. (A version that refers to ordinary extractors is presented later; see Theorem 5.4.) An
important advantage of Theorem 5.3 over Theorem 1.1 is that it refers to a much more restricted
class of sources (i.e., (n, k, 1)-block-fixing sources rather than (n, k)-sources).

Proof: For simplicity, we start with the case of £ = 1. Fixing any value o € {0,1}" of the seed,
consider the residual depth d circuit of size s = s(n), denoted C,, that computes the mapping = —
E(x,0). Invoking the “average sensitivity bound” of Linial et al. [38], as improved by Boppana [11],
for every C, we have

3" L(Cy) < BE O(log s)* 1, (5)

i€[n]
where for any Boolean function f: {0,1}" — {0,1}

L(f) ¥ Proy, [f(z) £ f(z @ 01107 )] (6)

(See background in [36, Sec. 12.4] and [46, Chap. 2].)

It follows that there exists a set of en/B indices I C [n] such that E;y,[Y ;c; Li(Cs)] < €,
since the expectation over all |I]-sized subsets is smaller than e. Furthermore, there exists a string
z € {0,1}" such that

S Pr,.u, [Cg(:v) £ O,y (2 @ 071107
i€l

and there exists a set G C {0,1}" of density at least 1 — /e such that for every o € G it holds that

S Pr..u, [Ca(x) 4 Cy(z @ 0i~110m)
i€l

EO’(—U»p

T\ = Z[n}\f}] <e€ (7)

Thns = Zna| < Ve 8)

Fixing I and z as above, consider an (n,|I|,1)-block-fixing source X = (Xj,...,X,,) such that
Xi; =z ifi € [n]\ I and X; is random otherwise. We next show that, for every o € G there exists
a bit y, so that Pr[Cy(X) = y,] > 1 — /e,
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To prove the above claim, assume that p % PriCyr(X) =ys] <1-—
Then, Pry e 0,[Co(z) # CoY)|Tpps = Yps = 2mpal = 2p(1 — p)
there exists s € {0,1}" such that sy,;\; = 0"~ Ul and Pr[C,(X) #
contradicts Eq. (8), since

V€. This implies that

Veand p > 1/2 (wlo.g.).
>
Cy(X & s)] > /e, which

Pr(C,(X) # Co(X @s)] < Y Pr[Cs(X) # Co(X ® 010"
i:8,=1
< Y Pr(Cy(X) # Co(X @ 07110" )]
el

(The first inequality uses the fact that X = X @ s’ for every s’ € {0, 1}" such that S/[n}\f = o1l

We have established that for every o € @G, it holds that Pr[E(X,0) = y,] > 1 — /e, for
some bit y,, whereas Pr[U; = y,] = 1/2. It follows that A[E(X,U,) o U, ;U; o U,], which equals
E. v, [A[E(X,u);U]], is greater than Pr[U, € G]-(1—/e—0.5) > (1—+/€)-(0.5—/€) > 0.5—2/e.
Hence, if F is a strong (0.5 — 2y/€)-error extractor for (n, k, 1)-block-fixing sources, then k > en/B.

The argument for general £ > 1 proceeds analogously, except that here we have n - £ vari-
ables/indices, which are partitioned into n blocks. We first consider the set L of all indices in
[n] x [£] such that for every (i,) € L it holds that E,. 1, [I;;(Cy)] < 2B/n, where B = O(log s)?~*
(asin Eq. (5)). Recalling that }-; iy Eocuv,[1:;(Cr)] < B, it follows that |L| > nf—n/2. We
consider the set L' C [n] of blocks such that ¢ € L’ if for every j € [¢] it holds that (i,5) € L. Then,
|L'| > n/2. We now select an arbitrary set I’ C L' of size en/2¢B, let I = I' x [{], and proceed as
before, while noting that (as before) it holds that Eov, [>; ;s 1i,j(Co)] < €, since [I[-2B/n = ¢.
That is, we fix I, 2 = (21, ..., 2n) € ({0,1})" and G (as before), and note that for every o € G it
holds that

> Procu, [Ca(w) # Co(x @ 03— gn—idx(bi)y g, f = Z[n]\]] <V, 9)
(4,9)el

where idx(i,j) = (i — 1) - £ + j. Now, consider an (n, |I'|, £)-block-fixing source X = (X1, ..., X},)
such that X; = z; if ¢ € [n]\ I’ and X; is random (i.e., distributed as U;) otherwise. Then, for
every o € G there exists a bit y, so that Pr[C,(X) = y,] > 1 — /e, since otherwise Eq. (9) is
contradicted. The claim follows as before, but note that |I'| = |I|/¢ = en/2¢(B. 1

Theorem 5.4 (impossibility of ordinary extraction in ACY): Suppose that E : {0,1}" x {0,1}" —
{0,1}™ is computable by s(n)-size circuits of depth d = d(n), and let m" = m—r. Suppose that § > 0
satisfies (L5n;L’J) <14 6-2™, which is satisfied whenever either § < 1/m’ or § <1/3logm. Then,
if Eis a (1 —26 —27™)-error extractor for (n,k,1)-block-fizing sources, then k > %.
In particular:

1. If m=r+1 (ie., m' =1) and E is a 0.499-error extractor for (n,k,1)-block-fixing sources,

2. If m =r+Q(r) (e, m" = Q(r)) and E is a 0.999-error extractor for (n,k,1)-block-fixing
sources, then k > n/O(log s(n))4~1.
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Setting & = min(o(1),1/3logm), the general case implies that if F is a (1 — 27" — o(1))-error

extractor for (n, k, 1)-block-fizing sources, then k > 5. O&Zs AT Theorem 5.4 generalizes The-
orem 1.1, which only refers to the case of m’ = Q(r). Another important advantage of Theorem 5.4

over Theorem 1.1 is that it refers to a much more restricted class of sources (i.e., (n, k, 1)-block-fixing
sources rather than (n, k)-sources).

Proof: The proof is very similar to the proof of Theorem 5.3, except that we consider 2" -m residual
circuits Cy; such that C, j(x) computes the 4™ bit of E(z,0). Specifically, we again derive a set
of en/B indices I C [n] and a string z € {0,1}" such that

<7<—U7 jER

11D _Precu, [ 0.5(#) # Coj(x @ 07110™ ) gy = Z[n]\f}] <, (10)

el

where j €pr [m] denotes that j is distributed uniformly in [m]. We shall again fix I and z as
above, and consider an (n, |I|,1)-block-fixing source X = (X1,...,X,,) such that X; = z; if ¢ €
[n]\ I and X; is random otherwise. We set ¢ = §°m’/m, and denote C,(x) = E(z,0). Now,
letting dist(y,z) denote the Hamming distance between the m-bit long strings y and z (i.e.,

dist(y1- - Ym, 21 - 2m) = [{i € [m] : y; # zi}|), we get

EO’(—UT

Y E,x [dist(Co(x),Colz @ 0“10”@'))]] <m-e=8m. (11)
el
Hence, there exists a set G C {0,1}" of density at least 1 — § such that for every o € G it holds
that 4 A
Z E. x [dist(Cy(2), Co(z @ 01_110"_’))] < &*m’. (12)
el
Then, for every o € G there exists a string y, € {0,1}™ so that E[dist(C,(X),y,)] < &6*m/
because for two independent samples z and 2’ drawn from X, it holds that

E, . [dist(Cy(z),Co(2))] < max {E%X [dist(Cy(z), Co(z @ 5)] }

B 86{0,1}”:5[”‘]\[:0"7'1'

S:S[n]\IZOTL_

< max { Z E..x [dlst(C (x), Ca(ﬂf@oi—llon—i))}}

i:5;=1

which (by Eq. (12)) is smaller than 62m’. Hence, for every o € G, it holds that Pr[dist(C,(X),y,) <
dm/] > 1 — 6. Defining S = {y, : ¢ € G}, we note that, with probability at least (1 — §)?, the
Hamming distance between E(X,U,) and S (i.e., the distance to the closest string in 5) is at most
|0m/|. On the other hand, the probability that Uy, is at Hamming distance at most [ém’] from S
is upper bounded by M < 27" 446, since |S| < 27 = 2™ and (L(;ZLL,J) <1+6-27. Tt
follows that A[E(X,U,) ;U] > (1—0) — (27" +4), whereas X has 6°m’n/mB random bits. [l

19We mention that the proceeding version of [56] contains a result that is more closely related to Theorem 5.4: The
(n, k)-source used in the proof there also belongs to a very restricted class; specifically, the source is a randomized
process that produces an output by starting with 0™ and taking k/36 steps such that at each step a random position
is selected (with repetitions) and its value is flipped.
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5.3 Deterministic extractors

Recall that the bit-fixing model allows for deterministic extractors (e.g., E(x) = @;c[n)¥i), which
work for even lower min-entropy rate than those that are impossible for AC°, but indeed these
extractors are not computable in AC°. Still, it is possible that whenever extraction in AC° is
possible for bit-fixing sources, this is also possible via deterministic extractors. We show that
this is indeed the case. Our proof proceeds in three steps: First, we present ACY circuits that
extract a single bit (see Theorem 5.7), next we use them to present AC® circuits that extract poly-
logarithmically many bits (see Theorem 5.11), and finally we combine these with the extractor of
Theorem 5.2 to extract n/poly(logn) bits.

Recall that a deterministic extractor (a.k.a seedless extractor) is one that gets no seed (i.e., has
seed length r(n) = 0). By definition, any deterministic extractor is strong. An obvious deterministic
extractor for (n, k)-bit-fixing sources, which is implementable in ACY when k(n) > n — poly(logn),
is B(z) = @icn—k(n)+1)Ti- A first indication that one can do much better is provided by Ajtai
and Linial’s non-explicit construction of AC? circuits in which “large sets have small influence” [4,
Sec. 5]. As shown in [40, Lem. 6.1], such circuits are deterministic extractors for non-oblivious
bit-fixing sources.

Definition 5.5 (non-oblivious bit-fixing sources [40]): A non-oblivious (n, k)-bit-fixing source is a
sequence of random variables X = (X1,...,Xy) € {0,1}" such that there exists a set of at least k
indices I C [n] and a sequence of functions fi, ..., fn : {0, 1311 = {0,1} such that X; is uniformly
distributed over {0, 1} and X; = f;(X;) for everyi € [n] \ I.

Bit-fixing sources as in Definition 5.1 are a special case in which the f;’s are constant functions. Such
sources are sometimes called oblivious bit-fixing sources. Clearly, any e-extractor for non-oblivious
(n, k)-bit-fixing sources is an e-extractor for (oblivious) (n, k)-bit-fixing sources.

Theorem 5.6 (deterministic extraction in AC® for non-oblivious bit-fixing sources [4, Sec. 5]):
There exist AC® circuits C' : {0,1}" — {0,1} such that, for every k, it holds that C'is a deterministic
O((n — k) -log? n)-error extractors for non-oblivious (n, k)-bit-fizing sources.

As shown in [40, Lem. 6.1&6.2], the error probability of extractors of the foregoing type is captured
by the notion of influence of sets. For a Boolean function f : {0,1}" — {0,1} and a set S C [n],
the influence of S on f, denoted Ig(f), is defined as the maximum of Pr,. ¢, [f(z) # f(g(x))],
taken over all functions g : {0,1}" — {0,1}" that satisfy g(z)p)\s = T)\s for every z € {0,1}"
(i.e., g only changes the values of = at location in S and does so depending on the entire input).°
Ajtai and Linial [4, Sec. 5] proved that there exist balanced AC° circuits C : {0,1}* — {0,1}
such that the influence of every set of density p on C is O(log2 n) - p, where f is balanced if
Pr[f(U,) = 1] = 0.5. Hence, these circuits are deterministic O(plog?n)-error extractors for the
corresponding set of sources (i.e., non-oblivious (n,n — pn)-bit-fixing sources).

Theorem 5.6 is meaningful only for min-entropy rate approaching 1; that is, it is only meaningful
for non-oblivious (n, k)-bit-fixing sources with k > n — O(n/log?n). This is not an artifact of
the proof (nor even of the fact that the extractor is in AC®): As shown by Kahn, Kalai, and
Linial [39] any deterministic e-extractor for non-oblivious (n, k)-bit-fixing sources must satisfy k >

29The influence of a single variable, as defined in Eq. (6), is a special case: Indeed, when considering the influence
of the variable i, it suffices to consider g(z) = = @ 0~ 110" °.
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n — Q(e"'n/logn). However, for oblivious (n, k)-bit-fixing sources, one can achieve a min-entropy
rate that approaches 0; that is, a deterministic AC’-extractor for oblivious (n, k)-bit-fixing sources
with any k& > n/poly(logn).

Theorem 5.7 (deterministic extraction in AC® for bit-fixing sources): For every k(n) > n/poly(logn)
and every e(n) > 1/poly(logn), there exist deterministic e-error extractors E : {0,1}" — {0,1} for
(n, k)-bit-fizing sources such that the extractors are computable in AC°.

Our proof of Theorem 5.7 builds upon Theorem 5.6, and thus inherits the non-uniformity of the
latter. In addition, our own reduction of Theorem 5.7 to Theorem 5.6 is non-explicit, due to our
use of a probabilistic analysis of the rank of rectangular matrices [9].

Proof: Our starting point is the extractor of non-oblivious bit-fixing sources asserted in Theo-
rem 5.6. Denoting the corresponding AC° circuit by C: {0,1}" — {0,1}, our plan is to construct
a new circuit C’ : {0,1}" — {0, 1}, where n’ = O(n), by feeding each input of C with the parity of
a random subset of poly(logn) inputs of C’. Specifically, C'(z) = C(Li(x), ..., Ly(x)), where each
L; is a random linear function generated by selecting each x; with probability p = poly(logn)/n.
Indeed, these L;’s can be computed by a constant-depth circuits of size poly(n).

Suppose that, for any choice V' of on’ = k(n') > n variables (i.e., x;’s), at least n — p - n of the
linear functions (i.e.,. L;’s) are linearly independent as functions in the variables in V. Then, any
fixing of n’ — k(n’) of the z-variables, leaves at least n — pn of the functions (i.e., the L;’s) linearly
independent, which means that assigning random values to k(n') of the inputs of C’ (and setting
the rest arbitrarily but obliviously of the random values) yields a random assignment to n — pn of
the inputs of C.

In anticipation of considering the influence of sets of pn inputs on C, we set p = ¢/O(logn)? =
1/poly(log n), which guarantees that the influence of such sets is at most €. Next, we set m = p-n
and n’ = O(n), and seek a sparse n-by-n’ Boolean matrix M such that (1) each row of M has at most
poly(log n) one-entries, and (2) any n-by-n sub-matrix of M has rank at least n—m. If we had such
a matrix, then we can let its rows serve as the L;’s and be done (for k(n') = n = n'/poly(logn’)).

While we believe that such a matrix exists, we were not able to prove this conjecture. Instead,
we take a somewhat longer route. First, we construct a matrix with properties as above over a
finite field of quasi-polynomial (in n) size. Then, we use this construction to get a matrix with such
properties for a finite field of poly-logarithmic (in n) size. Lastly, we show how to use the latter in
our context. These three steps are captured by the following three claims.

Claim 5.7.1 (a desired matrix over a finite field of quasi-polynomial size): For anym € [n/poly(logn),n]
and n' € [Q(nlog®n),0(n)], and every finite field F of cardinality q > exp(n’/m), there exist an
n-by-n' matriz M over F that satisfies the following two properties.

1. Each row of M has at most poly(logn) non-zero entries.

2. Each n-by-n sub-matrix of M has rank at least n — m.

Proof: Setting p = (logn)/n, consider selecting a random sparse n-by-n’ matrix M over F by
setting each entry to 0 with probability 1 — p, and letting it be a uniformly distributed nonzero
value otherwise. (The choices for the various entries are independent of one another.) Then, with
probability at least 1 — n - exp(—Q(pn/)) > 1 — exp(—Q(logn)?), each row of M has O(pn') =
poly(log n) non-zero entries.
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In proving the second property, we use a result of Blomer et al. [9] that asserts that an n-by-n
matrix distributed as above has rank smaller than n — m with probability O(¢~™). Applying a
union bound, we infer that the second property fails with probability at most

(”) 0™ < (1) - exp(—Qnlog® n) fm)™

n

= exp(O(nlogn)) - exp(—Q(nlog?n)),
where the inequality uses logq > Q(n’/m) = Q(nlog?n)/m. The claim follows. m

Claim 5.7.2 (a desired matrix over a finite field of poly-logarithmic size): For anym € [n/poly(logn),o(n)]
and n' € [Q(nlog?n),0(n)], every finite field F' of cardinality ¢ = poly(n’/m), and n" =
poly(q) - 0/, there exist an n-by-n" matriz M’ over F' that satisfies the following two properties.

1. Each row of M’ has at most poly(logn) non-zero entries.

2. Each n-by-(2n/n’) - n" sub-matriz of M' has rank at least n —m.

Proof: Let F be a finite field of size exp(©O(n’/m)) and M be a matrix as guaranteed by Claim 5.7.1.
Let ¢ = [log|F|| = ©(n//m) = poly(logn). For some ¢ = poly(n’/m) and ¢ = poly(q’), consider a
linear error correcting code mapping GF(¢')¢ to GF(¢')? such that this code has relative distance
at least 1 — (n/n’). (For example, the Reed-Solomon code of degree ¢ over GF(¢') uses ¢ = ¢’ and
has relative distance 1—(£/q’), whereas ¢/q' < n/n’ provided that ¢’ > (n’/m)2.) Now, encode each
element of F' (viewed as an ¢-long sequence over GF(q’)) by the corresponding codeword, obtaining
an n-by-n'¢’ matrix M’ over F' = GF(¢'). We may assume that F”’ is a sub-field of F; in fact, we
should pick F' to satisfy this condition (as well as the other conditions stated above).

Letting n” = n’ - ¢ = poly(logn) - n, note that the number of nonzero entries in each row of
M’ is at most poly(logn) - ¢ = poly(logn), since each row of M has at most poly(logn) non-zeros.
This establishes the first property of M’.

To establish the second property of M’, consider an arbitrary choice of (2n/n’) - (n'¢') = 2nt’
columns of M’, and let M" denote the corresponding sub-matrix. Considering the partition of the
columns of M’ into n’ blocks of length ¢ (each encoding a symbol of F'), we infer that at least n
of these blocks contain more than #'n/n’ chosen columns. Let us call these blocks heavy. Recalling
that the linear code has absolute distance ¢’ — (¢'n/n’), we infer that any linear combination of the
rows of the sub-matrix M"” that yields the zero vector must yield zero in the column of M that
corresponds to each of the heavy blocks (because a codewords with more than ¢'n/n’ zeros must
encode the zero of F' (viewed as the all-zero sequence of GF(¢'))). Recalling that there are n heavy
blocks, it follows that an F’-linear combination of the rows of M” that yields the zero vector must
yield zero in at least n columns of M. Using the second property of M, it follows that this F’-linear
combination must contain more than n — m rows, and the claim follows. &

Construction 5.7.3 (a kind of condenser):?! Let m,n/,q¢',n" and M’ be as in Claim 5.7.2, and
suppose that q' is a power of two. Let § = 4n/n’ and s = ©((¢'logn)?/§), and consider the following
transformation of (211, ..., zn s) € {0, 13" into an n-bit long string © = (x1, ..., Tn).

2'For any & > 1/poly(logn) and any p > 1/poly(logn), this construction “condenses” an (n’s,dn”s)-bit-fixing
source, into a non-oblivious (n, (1 — p) - n)-bit-fixing source. Thus, the min-entropy rate is significantly increased
(from d to 1 — p), but the output source belong to a wider class of sources.
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1. For each i € [n"], compute z; = ;1 2i,j mod ¢
Viewing each z; as an element of GF(¢') = Zy, let z = (21, ..., 2p7) € GF ().

2. Compute (y1,...,yn) = M'z € GF(¢')". For each i € [n], let z; be the result of applying some
balanced predicate to y; (e.g., x; is the least significant bit of y;).22

Note that these computation can be carried out by constant-depth circuits of size poly(n), since
q¢ = poly(logn), n" = O(n) and each row of M' has at most poly(logn) non-zero entries.

Claim 5.7.4 (analysis of Construction 5.7.3): If the input to Construction 5.7.3 is taken from an
(n"s,0n" s)-bit-fizing source, then there exist n —m bits in the output with a joint distribution that
is n=M _close to Uy_pm,.

Proof: If a ¢ fraction of the input bits are random, then for at least a §/2 fraction of i € [n”],
called good, at least a §/2 fraction of the bits z;1, ..., z; s are random. (Recall that random bits
are independent of one another, whereas the other bits are fixed.) As shown by Kamp and Zucker-
man [40], the sum modulo ¢’ of the bits of a (s, §’s)-bit-fixing source is exp(—£(d"s/(¢')?))-close to
the uniform distribution on Z,. Hence, for each good i it holds that z; is exp(—(ds/(q')?))-close
to the uniform distribution on Zy (and the z;’s are independent of one another). By the choice of
s = Q(q' logn)? /s, it follows that z; is exp(—Q(log?® n))-close to be uniform over GF(¢')/|, where I
denotes the set of good i’s and |I| > én” /2.

Consider the column of M’ that correspond to the good i’s. By the second property of M’
(and using § = 4n/n’), it holds that the rank of the corresponding n-by-(2n/n’) - n” sub-matrix
is at least n — m. Denoting a set of n — m linearly independent rows by R, it follows that yp is
exp(—Q(log? n))-close to be uniform over GF(¢/)"~™, and a corresponding statement holds for zr
with respect to {0,1}"~™. The claim follows. m

Wrapping up. The final construction is as follows. Let C : {0,1}™ — {0, 1} be the AC" circuit guar-
anteed by Theorem 5.6. Setting p = ¢/O(logn)? > 1/poly(logn) and § = k(n?)/n? > 1/poly(logn),
we use n” = 4n/8 = O(n) and invoke Construction 5.7.3. Let C” : {0,1}""* — {0,1}" be the AC°
circuit provided by Construction 5.7.3, and note that § < k(n”s)/n”s (since we may assume that
k(t)/t is non-increasing in t). We define the final circuit ¢’ : {0,1}""s — {0,1} as the composition
of C and C”; that is, C'(z) = C(C"(z)). Using Claim 5.7.4, we infer that for any (n”s, dn”s)-bit-
fixing source Z, it holds that C”(Z) is n=“(M-close to a source in which n — pn of the bits are
totally random (and the rest may be determined as a function of them). By Theorem 5.6, in this
case C(C"(Z)) is e-close to a random bit.?3 Hence, C' is an e-error extractor for for (n”s, k(n"s))-
bit-fixing sources, which establishes the claim of the theorem. [l

Remark 5.8 (Construction 5.7.3, revisited): While the output of Construction 5.7.3 is not an
affine combination of its input bits, it is n=*M-close to an affine source of min-entropy at least
n —m (cf. [24]). This is due to the following two facts:

1. The vector (21, ..., zpr) € ({0, 13" produced in Step 1 is n=*MW-close to a (n”,dn" /2,0")-
block-fixing source, where 2" = ¢.

22For this reason we need ¢’ to be even.
ZRecall that e(n) > 1/poly(logn), which is much larger than the n=*() deviation created by C”.
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2. The vector x is a GF(2)-linear combination of the bits of z, since y is a GF(2"")-linear
combination of the blocks of z (viewed as elements of GF(2¢")).

Hence, the bits of x are affine combinations of the non-fized bits of 2, where 2’ is the (n”,én" /2,0")-
block-fizing source that is n=“M -close to (21, ey 2n). Since the affine transformation of z' to x has
rank at least n — m in the non-fived variables of Z', our claim follows.

We now improve the construction asserted by Theorem 5.7 in two ways. First we show that the error
of the extraction can be reduced (to a negligible in n level), and then we show that poly(logn) bits
can be extracted (rather than a single one). We start by observing that XORing values extracted
from disjoint portions of a bit-fixing source yields an extractor of smaller error (alas it is guaranteed
to work only for bit-fixing sources of a larger amount of min-entropy).?*

Theorem 5.9 (error reduction for deterministic extraction from bit-fixing sources): Suppose that
E :{0,1}"™ — {0,1} is an e-error extractor for (n, k)-bit-firzing sources. Then, for every t € N, the
function E": {0,1}'" — {0, 1}, given by E'(x1, ..., x¢) = ®ic E(x:) is an eltk/n] _error extractor for
(tn, 2tk)-bit-fixing sources.

Indeed, as detailed in Corollary 5.10 below, applying Theorem 5.9 to Theorem 5.7 yields a similar
deterministic AC® extractor but for error rates that are smaller than 1/poly(n).

Proof: Letting 6 = k/n, we note that the existence of 26tn random bits in the source (X1, ..., X¢) €
({0,1}™)! implies that for at least a § fraction of the indices i € [t] the source X; is a (n, dn)-bit-fixing
source (whereas the ¢ sources are independent of one another). Since each of these [0t] extractions
yields a bit that is e-close to uniform (whereas the ¢ bits are independent of one another), the claim
follows. I

Corollary 5.10 (improved error in deterministic AC% extractors for bit-fixing sources): For every
k(n) > n/poly(logn) and every e(n) > exp(—poly(logn)), there exist deterministic e-error extrac-
tors E : {0,1}"™ — {0,1} for (n,k)-bit-fizing sources such that the extractors are computable in
ACY.

Proof: Let Ep : {0,1}" — {0,1} be the 0.1-error extractor for (ng, k(ko)/2)-bit-fixing sources
provided by Theorem 5.7. Letting ¢t = ©((no/k(ng))log(1/e(ng))) = poly(logng) and n = t - ng,
and applying Theorem 5.9, the claim follows, since t-wise XOR, can be computed by constant-depth
circuits of poly(n)-size. W

Extracting slightly more bits. Applying the same idea as underlying the proof of Theorem 5.9,
we can extract poly-logarithmically many bits rather than one.

Theorem 5.11 (Corollary 5.10, revisited): For every k(n) > n/poly(logn) and every e(n) >
exp(—poly(logn)), there exist deterministic e-error extractors E : {0,1}* — {0,1}Pe(osn) for
(n, k)-bit-fizing sources such that the extractors are computable in ACP.

24Indeed, there is a trade-off, which we do not elaborate, between the amount of error reduction and the increase
in the required min-entropy.
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Proof: We proceed in two steps, first obtaining an extractor that outputs double-logarithmically
many bits, and next using it to establish the claim of the theorem. As in the proof of Corollary 5.10
(and other results), we shall use the fact that ¢-wise sums can be computed by constant-depth
circuits of exp(t©)-size, for any constant ¢ > 0.

Claim 5.11.1 (Corollary 5.10, revisited): For every k(n) > n/poly(logn), e(n) > exp(—poly(logn)),
and 01(n) = O(loglogn), there exist deterministic e-error extractors E : {0,1}" — {0,110 for
(n, k)-bit-fizing sources such that the extractors are computable in ACC.

Proof: Letting § = k(n?)/n? and t = 221§~ log(1/e(n?)) = poly(logn), we note that the existence
of tn random bits in the source (X1, ..., X;) € ({0,1}")! implies that for at least a 6/2 fraction of the
indices ¢ € [t] the source X; is a (n,dn/2)-bit-fixing source (whereas the ¢ sources are independent
of one another). Applying the extractor of Corollary 5.10 to each of the ¢ sources, we obtain a
(t,6t/2)-bit-fixing source (or rather a ¢-bit string that is exp(—poly(logn))-close to such a source).
Computing the sum of these ¢ outputs modulo 2 (and invoking again the result of Kamp and
Zuckerman [40]), we obtain a value that is exp(—Q(5t/2%1))-close (i.e., €/2-close) to uniform over
Zqe, . This yields an e-error extractor of ¢1 bits for (tn, dtn)-bit-fixing sources, and the claim follows.
|

Extracting poly(logn) many bits. For any ¢(n) = poly(logn), we will use an 0.1-biased sample
space S C {0,1}* of size poly(¢) (cf., e.g., [26, Sec. 8.5.2]), and let £; = log|S| = O(loglogn).
For any €(n) > exp(—poly(logn)), and k(n) > n/poly(logn), we again let § = k/n. This time
we set t = O(¢ + log(1/¢€))/d = poly(logn), and consider a (tn,dtn)-bit-fixing source, denoted
(X1,...,Xy) € ({0,1}"), inferring that at least 6/2 fraction of the n-bit long X;’s are (n,dn/2)-
bit-fixing sources. Applying the extractor of Claim 5.11.1 to each of these ¢ sources, we obtain ¢
strings, each of length ¢, such that at least dt/2 of these strings are e-close to being uniformly
distributed in {0,1}**. In other words, we obtain a (¢, §t/2, £1)-block fixing source. Denoting the 7*®
block in this source by ;, and viewing it as an element of [21] = {0,1}%, we just output DBic[]Syi»
where s; is the j™ string in S. This £-bit output is 0.1%/2-biased, since for any o € {0,1}* it
holds that (o, D[Sy )y = Die[] (% Sy; )9, Where (-, ), denotes inner product mod 2. It follows that
the output is (22 - 0.1%%/2)-close to the uniform distribution over {0,1}¢, and the theorem follows
(using sufficiently large ¢t = O(¢ +1log(1/¢))/5). N

Extracting many more bits. Using the composition theorem of Gabizon et al. [25, Thm. 7.1],
we obtain deterministic extractors that are computable in AC® and extract n/poly(logn) bits.
The aforementioned composition result requires three ingredients: (1) an adequate deterministic
extractor (provided by Theorem 5.11), (2) an adequate seeded extractor (provided by Theorem 5.2),
and (3) an adequate averaging sampler (provided by Theorem 3.6). We shall rely on the fact that
the composition theorem of [25, Thm. 7.1] preserves AC® complexity.

Theorem 5.12 (deterministic ACY extraction of n/poly(logn) bits from bit-fixing sources): For
every k(n) > n/poly(logn) and every e(n) > 1/poly(n), there exist deterministic e-error extractors
E :{0,1}" — {0,1}/poly(logn) o1 (n, k)-bit-firing sources such that the extractors are computable
in ACY.
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Proof: We start by reviewing the composition theorem of Gabizon et al. [25, Thm. 7.1], which
is pivotal to our proof. The composition theorem of Gabizon et al. [25, Thm. 7.1] requires three
ingredients (for some parameters y, i, €, ¢’ etc):?°

1. A deterministic ¢-error extractor E’ : {0,1}" — {0,1}""" for (n, y/t)-bit-fixing sources;

2. A seeded €”-error extractor E” : {0,1}" x {0,1}"" — {0,1}™ for (n, un — t)-bit-fixing sources;

3. An (u, i/, 7)-averaging sampler S : {0,1}" — [n]’.

It yields a deterministic e-error extractor E : {0,1}" — {0,1}™ for (n, un)-bit-fixing sources and
€ = €’ + 273 . ¢ 4 3y that operates as follows. Denoting the first r (resp., last ") bits of E’ by
Ej(z) (vesp., Ey(x)), it holds that E(z) = E" () s(& () © 0, E5(x)). Hence, if each of the three
ingredients is computable by constant-depth poly(n)-size circuits, then E is in AC.

Setting i = k(n)/n = 1/poly(logn), we shall use p/ = pu/2 and t = k(n)/2 so that u't =
n/poly(logn) and pun —t = n/poly(logn). Furthermore, we shall use ¢ = g-log’n o — 4 =
1/poly(n), m = n/poly(logn), r"" = O(logn) and r = O(logn)?. The required deterministic
extractor is provided by Theorem 5.11, the seeded extractor is provided by Theorem 5.2, and the
required averaging sampler is provided by Theorem 3.6. Hence we obtain AC° circuits computing
E : {0,1}" — {0,1}"™, which is a deterministic e-error extractor for ¢ = 2"+3 . ¢ + 1/poly(n) =

1/poly(n). N

An explicit disperser. Recall that a deterministic disperser for a class of sources is a function
that defines an onto mapping from the support of each source in the class to the range of the
function. That is, D : {0,1}" — {0,1}"™ is a deterministic disperser for a class of sources if for
every source X in the class and over every v € {0,1}™ it holds taht Pr[D(X)=v] > 0.

Theorem 5.13 (deterministic disperser in AC? for bit-fixing sources): For every k(n) > n/poly(logn),
there exist explicit AC® circuits D : {0,1}"* — {0,1} that constitute a disperser for (n, k)-bit-fiving
sources.

Proof: The first observation is that the Hamming weight of the outcome of any (n, k)-bit-fixing
source is spread (unevenly) over an interval of k values. Hence, if we partition [n] into consecutive
intervals of length k/10, then at least ten of these intervals will be assigned non-zero weight.20
Our disperser outputs the least significant bit of the index of the interval in which the source’s
outcome resides. The second observation is that for outcomes that reside in the middle portion of
the interval we can determine the relevant index by approximate counting. Details follow.

25 Actually, we present a special case of [25, Thm. 7.1], whereas the original version refers to a generalization of the
notion of an averaging sampler. Loosely speaking, a (u, u, 1", v)-averaging sampler is defined as in Definition 2.6,
except that it refers to functions f : [n] — [0, 1] such that p(f) = p and also requires that Pr[}>,c g, ) f(i) >
t-u"] <+. Indeed, such an (u, i, 1,7)-averaging sampler is an (p, p’, y)-averaging sampler as in Definition 2.6. We
comment that using the original form of [25, Thm. 7.1] allows to obtain somewhat better parameters, by showing
that a small variant on the construction establishing Theorem 3.6 yields the required (u, ', p”’, y)-averaging sampler.
(Specifically, we shall set the parameters of the pairwise independent sampler, used in the latter proof, so that its
error probability is o(u) rather than a constant, and establish the assertion for u” = 2¢-  and v = 1/poly(n), where
¢ = O(log(1/7)).)

25Indeed, it is likely that almost all the probability mass is concentrated in one interval (since the probability mass
is concentrated in an interval of length 0(k2/3), but this does not contradict the foregoing.

42



Let p = k/n = 1/poly(logn) and € = p/50, and recall that Ajtai [2] (see also [58]) provided ex-
plicit AC circuits that compute the Hamming weight of n-bit strings up to an additive deviation of
en. Denoting this circuit by C, consider the circuit C’(z) that computes |C(z)/en] € {0,1,...,1/€}.
Then, C'(z) € [[wt(z)/en] +2], where wt(z) f > _ic[n) Ti- Hence, for every v € [10/p] it holds that

Sv+4

Y Pr[C(X) =i] > Pr[[wt(X)/en] = 5v + 2],

i=5v
which means that if the latter term is positive then so if the former. Our disperser D outputs the
least significant bit of [C'(z)/5].

For an arbitrary (n,k)-bit fixing source X, let u = |50E[wt(X)]/k]. Then, for every u' €

[u £ 10], it holds that Pr[|50wt(X)/k] =u'] > 0. It follows that Pr[|C'(X)/5] =|u/5]] > 0 and
Pr[[C'(X)/5] =|u/5] & 1] > 0, whereas in these two cases D outputs different values (since the
least significant bit of |u/5] is different from the least significant bit of |u/5] £1). W

5.4 Extraction from zero-fixing sources

The impossibility results regarding bit-fixing sources (presented in Section 5.2) do not hold for a
restricted class of such sources that was recently introduced by Cohen and Shinkar [18]. This class,
called zero-fixing sources, consists of bit-fixing sources in which all fixed bits are set to zero.

Definition 5.14 (zero-fixing sources [18]): An (n, k)-zero-fixing source is a sequence of random
variables X = (X1, ..., Xy) € {0,1}" such that there exists a set of at least k indices I C [n] such
that X1 is uniformly distributed over {0, 11! and X; = 0 for every i € [n]\ I.

As shown next, there exist strong AC%-extractors for zero-fixing sources of logarithmic min-entropy,
which was shown to be impossible for bit-fixing sources (see Theorem 5.3).

Theorem 5.15 (seeded AC-extractor for zero-fixing sources): Let k,m : N — N and ¢ : N — [0, 1]
be such that m(n) = O(logn) and k(n) = 2m(n) + O(log(1/¢€)) < poly(logn). Then, there ezists a
function E : {0,1}" x {0,1}000e) — 10,1} that is computable in uniform AC® and constitutes
a strong e-error extractor for (n, k)-zero-fizing sources.

Proof: On input z € {0,1}" and a seed s € {0,1}°0°6™) the proposed extractor operates in two
stages. In the first stage, which is deterministic, the extractor determines the first £ = k(n) locations

that are assigned the value 1in 2’ = (27, ..., 2, ;) def x1F; that is, it determines i1 < --- < i < n+k
such that the ij-bit long prefix of 2’ equals 0°1~110%2~%~11 . 0% ~%-1-11 In other words, for each

j € [k], the extractor determines i; as the smallest i such that ;2 = j. (This is done using

counters that count up to k+ 1 < poly(logn), while applying such counters to the strings « - - - 27,
for i € [n+ k].)

In the second stage, which uses the seed s, we apply a (k, €)-extractor to the sequence (i1, ..., i),
which is viewed as a string of length klogn. Here, again, we can use the extractor of [28, Sec. 5],
while relying on the fact that klogn = poly(logn).

Note that if X is a (n, k)-zero-fixing extractor, then the sequence determined by the first stage
has min-entropy at least k. To verify the claim, consider the set I of the first k non-fixed (i.e.,
random) bits in X. Then, the random set {i € I : X; = 1} has min-entropy k, since each of the 2*

possible subsets is equally likely. W
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Deterministic extraction. While our deterministic AC%-extractors for bit-fixing sources are not
explicit (see Section 5.3), we show a very simple explicit construction for the case of zero-fixing
sources (of comparable min-entropy rate). In fact, we prove a stronger result.

Theorem 5.16 (deterministic AC-extractors for zero-fixing sources):

1. Let k : N — N and € : N — [0, 1] be such that k(n) > n/poly(logn) and e(n) > 1/poly(n).
Then, there exists a function E : {0,1}"* — {0,1}/Poly(oen) that s computable in uniform
AC° and constitutes an e-error extractor for (n, k)-zero-fizing sources.

2. Let k : N = N and ¢ : N — [0,1] be such that k(n) = O(e(n)~3logn) = poly(logn). Then,
there exists a function E : {0,1}"* — {0, 1} that is computable in uniform AC® and constitutes
an e-error extractor for (n, k)-zero-fixing sources.

Proof Sketch: Starting with Part 1 and letting 6 = k(n)/n > 1/poly(logn), we first present
a simple extractor that outputs a single bit (and later apply the transformations underlying the
proofs of Theorems 5.11 and 5.12). We consider a partition of the source into consecutive 3t/J-bit
long blocks, where ¢t = O(¢, 3log n) for any desired constant ey > 0. The extractor picks the first
block that contains at least ¢ ones, and outputs the parity of the bits in that block. (Recall that
the block length is 3t/0 = poly(logn).)

Towards the analysis, we fix an arbitrary (n, k)-zero-fixing source, and let k; denote the number
of random bits in the i*" block, where i = 1, ..., n /3t. We consider corresponding random variables,
Y1, .., Y5536, such that Y; denotes the sum of the bits in the i*h block. Clearly, there exists a block i
such that k; > 3t. Note that if k; < ¢, then the i™® block will never be selected. On the other hand,
if k; > t, then, with probability at least 1 — o(1/n), it holds that Y; = (0.5 £ €o) - k;. Hence, with
probability at least 1—o(1), some block i is selected, and it holds that k; > (2—2¢)-t. Furthermore,
for such a block i (i.e., k; > 2t — 2¢ept), the parity of the bits in the block (i.e., ¥; mod 2) has bias
O(e€p), also when conditioned on Y; > ¢. To verify the last claim consider a pairing of the odd-parity
strings of length k; > 2t — 2¢gt with the even-parity strings obtained by flipping the last bit. Now
omit the strings that have Hamming weight smaller than ¢, and note that only an O(ey) fraction
of the remaining strings are left unmatched (since this omission may leave unmatched only strings
of Hamming weight ¢, whereas Pr[Y;=t] = (1 + O(ep))’ - Pr[Y; =t + j] for every j € [e;']).

Part 1 follows by applying the transformations that underlie the proofs of Theorems 5.9, 5.11
and 5.12. Each of these transformations improves some parameter (i.e., error or output length)
of deterministic AC -extractors for bit-fixing sources of min-entropy n/poly(logn). The point is
that these transformation only use the fact that certain sub-sources derived from the given bit-
fixing source are bit-fixing sources with certain parameters (where sub-sources are projections of
the source on some locations).?” The same holds for zero-fixing sources.

Turning to Part 2, we consider the following extractor, which, for every ¢ = 0,1, ..., log(n/k(n)),
uses a family of n? pairwise independent hashing functions & : [n] — [2{]. On input z € {0, 1}",
the extractor finds £ such that for most & : [n] — [2¢] it holds that Sy, o {ie[n]:x;=1&h(i)=1}
has cardinality at least (1 —e€(n)) - k(n) and at most (2+¢€(n)) - k(n). It then picks the first of these
(majority) h’s, and outputs the parity of |Sy|. (This is done by using a counter that counts till
3k(n) = poly(logn); note that hashing functions in these families can be computed by depth-two
circuits of size poly(n).)

2"This holds also for [25, Thm. 7.1], which is used within the proof of Theorem 5.12.
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Towards the analysis, we fix an arbitrary (n, k)-zero-fixing source X, and let I denote the set of
random (i.e., non-fixed) bit locations in it. Then, there exists an £ such that || is in [2¢+1-k, 2¢2.k),
where k = k(n), and a hashing function A : [n] — [2] such that [{i€ ] : h(i)=1}| € (2k — ek, 4k +e¢),
where € = ¢(n). Using an analysis as in Part 1, we infer that with high probability the pair (¢, h)
chosen by the extractor satisfies [{i € : h(i)=1}| € (2k —2¢k, 4k 4 2¢k), where here we use the fact
that for the majority of the h’s it holds that |Sp| € [(1 —€) - k, (2 + €) - k]. Similarly, we conclude
that, for the selected h, the parity of |Sy| has bias O(e), and Part 2 follows. [l

Remark 5.17 (zero-block-fixing sources, generalizing Definition 5.14): An (n, k, £)-zero-block-fixing
source is a sequence of random variables X = (X1,..., Xy,) € {0,1} such that there exists a set
of at least k indices I C [n] such that X is uniformly distributed over {0,1}1 and X; = 0° for
every i € [n] \ I. Eztraction from such a source is quite easy, since each non-fixed block is clearly
identified as such (and is uniformly distributed on {0,1}¢\ {0}).

6 Extraction with long seeds

In this section we present extractors that use very long seeds, which is indeed uncustomary in the
studies of extractors, but the point is that these extractors establish the tightness of Theorem 5.4.
Recall that (Part 1 of) of Theorem 5.4 establishes lower bounds on the relationship between the min-
entropy k(n) and the seed-length r(n) for any non-trivial extractor computable in AC. Specifically,
it asserts that k(n) - r(n) > n/poly(logn) must hold (for any non-trivial extraction in AC°). The
point of the current section is showing that these bounds are tight. Specifically, we shall show that
k(n) - 7(n) > n/poly(logn) suffices for trivial extraction in ACP.

We shall first show (see Section 6.1) that AC° circuits can extract n + poly(logn) bits using a
seed of length n, provided that k(n) > poly(logn). Actually, we show that r(n) + poly(logn) bits
can be extracted in AC? provided that k(n)-r(n) > n/poly(logn) (and k(n) > poly(logn)). This is
a special case of a more general result (presented in Section 6.2) that asserts that r(n) +m/(n) bits
can be extracted in AC provided that k(n)-r(n) > m’(n)-n/poly(logn) (and m’(n) < k(n)/2 and
k(n) > poly(logn)). The latter result is obtained by combining extractors presented in previous
part of this write-up (including the one presented in Section 6.1) with a simple scheme that amounts
to repeated extraction with independent seeds.

6.1 Extraction with a seed of linear length

The following construction generalizes an AC’-computable extractor presented by Viola [57, Lem. 4.3],
where the original construction corresponded to the case £ = 1.

Theorem 6.1 (the inner product extractor): Let n,¢ € N such that ¢/2 is a power of 3 and
¢ < poly(logn). Then, there exists a (£ + 3log(2/€), €)-extractor, E : {0,1}" x {0,1}" — {0,1}"*,
computable by uniform AC.

The requirement that ¢ be of a special form (i.e., £/2 is a power of 3) can be dropped when
¢ = O(logn). This special form is only used for asserting the existence of (uniform) circuits of
constant depth and size poly(n) for computing inverses in GF(2¢).

Proof: Our starting point is the strong extractor E' : {0,1}" x {0,1}" — {0,1}* that views its
input source z and seed r as n/¢-long sequences over GF(2E) and outputs their inner product, where
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the arithmetics is of the said field. That is, E'(2,7) = ;¢
r = (r1,...,r¢). Note that for a random r, the mapping x — FE’(x,r) is pairwise independent, and
so E' is a strong (¢ + 3log(2/e), €)-error extractor (by the Leftover Hashing Lemma, see, e.g., [26,
Thm. D.4]). Hence, E"(x,r) = roE'(x,r) is an ({+3log(2/¢€), €)-error extractor with output length
n—+4£.

Wishing to obtain ACC circuits, we define E(x,s) = E"(x, f(x,s)) = (f(z,s), E'(z, f(x,s))),
where f(x,s) = (fi(z,5), ..., fi(z,5)) € GF(2%)! is defined as follows.

4 TiTis wheret = n/l, z = (x1,...,2¢) and

e Fictitiously define sp = 0 € GF(2%) and zy = 1 € GF(2°).

e Let prv, (i) =5 € {0,1,...,i — 1} denote the index of the last non-zero element that precedes
i; that is, prv, (i) = j € {0,1,...,i — 1} if z; # 0 and zj41 = --- = z;—1 = 0.

e Finally, define fi(z,s) = s; if z; = 0 and fi(x, s) = (i — Sppv, (i) /Ti otherwise.

In particular, f(0,s) = s and fi(1,s) = s; — ;-1 (for every i € [t]). Note that for £ = 1, we have
fi(z,8) = s; if x; = 0 and fi(x,s) = 8; — Sprv_(5) Otherwise.

Before showing that E is in AC?, we analyze its output distribution. Note that, for every
fixed z, the mapping s — f(z,s) is a bijection, and it follows that f(x,U,) is distributed identi-
cally to U,. Hence, E(z,U,) = (f(x,Uy,), E'(z, f(x,U,)) is distributed identically to E”(x,U,) =
(U, E'(x,U,)), since in both distributions the last ¢ bits are obtained by applying the same func-
tion (i.e., E'(x,-)) to the first n bits. It follows that E” is an (¢ + 3log(2/e), €)-error extractor with
output length n + £. It is left to show that E can be computed in uniform AC°.

Turning to the complexity of F, we first consider the computation of E'(z, f(x,s)). Note that
E'(0',7) = 0 € GF(2%) for every r, whereas for 2 # 0%, it holds that E'(x, f(z,s)) equals

Z$ifi<1'73) = Z .CL‘Z'fi({L‘,S)

iclt] i, #0
= D @i (5 = Sprv, ()
32,70
= 2 s D Sl
3.2 70 1:x;7#0

which equals s; for the largest i such that z; # 0. Hence, E'(z, f(z,s)) = \/ie[n] X;i * Si, where
Xi = (i # 0) A Njcgen(zr = 0)) and o - (11,...,7) = (0 A T1,...,0 A 7g) for every o € {0,1} and
(T1, ..., 70) € {0, 1} = GF(2%).

Finally, we consider the computation of the f;’s. We first note that prv,(:) can be computed by
uniform AC (by computing the bits ((z; # 0) A Nj<k<i(p = 0)) for j € {0,1,...,i— 1}). Next, we
note that for £ = poly(logn), addition and multiplication in GF(2¢) are computable by (uniform)
constant-depth circuits of poly(n)-size.?® We can take inverses in GF(2%) by raising to the power
2¢ — 2, but the question is whether this can be done in by (uniform) circuits of constant depth and
size exp(£¢) for any desired ¢ > 0. Fortunately, for £ of the form 2 - 3¢, the answer is positive —
see [32, Cor. 6 (2)]. W

28In particular, recall that multiplication in GF(QZ) reduces to computing inner products mod 2 of ¢-bit long vectors,
whereas such computation can be carried out by depth d = O(1) circuits of size exp(€1/<d71)) = poly(n).
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An alternative construction. As an alternative generalization of the extractor presented by
Viola [57, Lem. 4.3], consider using the seed (which will now have length 2n rather than n) as a
description of a sequence of n’ = n/¢ Toeplitz matrices, denoted T' = (11, ..., T,;/), where each T; is a
(-by-¢ matrix.?® Likewise, we view the source x as a sequence (1, ..., Z,/) € ({0,1})", and output
E'(z,T) = (T,Tz), where Tz = 37,1 Tizi. Recall that E' is a strong (£ + 3log(2/e), €)-error
extractor; again, this follows by the the Leftover Hashing Lemma (using the fact that x — E'(z, Uy,)
is pairwise independent).

It is simpler to implement this extractor in ACY when using affine transformations based on
(-by-¢ Toeplitz matrices; that is, rather than the T}’s we use A; = (T3, b;)’s, where b; € {0,1}¢, and
output the pair ((4q, ..., A,/),v) such that v = Zie[n/] (Tyz; + b;). That is, for A = (Aq, ..., Ap),
where A; = (13,0;), the extractor is defined by E(z,A4) = (A, ;cp(Tizi + b)) Indeed, v =
Zie[n'] Tix; + Zie[n’] b;, but it is useful to have this redundancy. Specifically, the ACY imple-
mentation of E uses its seed to determine (Ai,..., A,), where A; = (T;,b;), but then outputs
(((Tl,bll), e (Tn/,b;ﬂ)),Tn/xn/ + b,) such that b; =b; + (Ti—1xi—1 + bi—1), where Toxzo + by = 0.
The key observation is that Tz, + b, equals the last £ bits of E(z, ((T1,b}), ..., (Tn,b),))). This
holds because

> (T +b) = Y (Tiwi+bi+ Tyqaiq + bi1)
i€[n/] i€[n/]
= Tn/xn/ =+ bn/.

Turning back to the construction that uses linear (rather than affine) transformations, we mention
that it can be implemented by using the first column in each matrix 7; that corresponds to a 1-entry
in x;.

Using a shorter seed when the min-entropy is w(log®n). Combining the extractor of The-
orem 6.1 with a suitable averaging sampler, we obtain the following.

Corollary 6.2 (on the tightness of Theorem 5.4): For any k = Q(logn) andr > T e min(n, O(nlog®n)/k),
there exists a (k,poly(1/n))-extractor, E : {0,1}" x {0,1}" — {0, 1}7+min(@(k).poly(logn)) = 4pq¢ s
computable by uniform AC.

We stress the fact that Corollary 6.2 implies an extractor that outputs m(n) = r(n) + Q(logn) >
r(n) bits using a seed of length r(n) = O(nlog®n)/k(n) (provided that k(n) = Q(logn)). Hence,
non-trivial extraction in AC° (i.e., m(n) > r(n)) is possible whenever k(n) - r(n) = O(nlog®n)
(provided k(n) = Q(logn)). Recall that (Part 1 of) Theorem 5.4 asserts that k(n) - m(n) =
Q(n/poly(logn)) must hold for any non-trivial extraction in AC®. Loosely speaking, the combina-
tion of these results implies that non-trivial extraction in ACC is possible if and only if k(n)-m(n) =

O(n).

Proof: (The case of T'= n follows immediately from Theorem 6.1, and we focus on the case that
T < 0.1n (since otherwise, we can artificially increase T' to n and act accordingly).) Assuming that
T < 0.1n, we combine an adequate averaging sampler with the extractor of Theorem 6.1, where the
combination uses the sample-then-extract paradigm (as stated in Corollary 2.8). Actually, we plug

29 As usual, each Toeplitz matrix is represented by its first row and its first column. For notational simplicity we
view strings as either row or column vectors, according to their use.
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the extractor of Theorem 6.1 into Corollary 3.7, which already incorporate the adequate sampler.
Specifically, when invoking Corollary 3.7, we set 79 = t = r — O(logn)? and § = k(n)/n (and use
e = 1/poly(n) and (say) 3=1/2)3" N

6.2 Repeated extraction with independent seeds

The following straightforward scheme for repeated extraction is wasteful in its use of the seed, but
its appeal lies in the fact that it preserves the computational complexity of the original extractor.
The key observation underlying its analysis is that (typical) conditioning on m’ bits extracted from
an (n, k)-source yields an (n,k — m’ — 1)-source; this observation is at least implicit in numerous
works regarding randomness extraction.

Theorem 6.3 (repeated extraction): Let n,k,r,m,t € N and e € [0,1]. If E: {0,1}" x {0,1}" —
{0,1}™ is a (k,e€)-extractor, then Ey : {0,1}" x {0,1}" — {0, 1}'™ defined by FEi(z,s1 00 st) =
E(x,s1)0---0oE(x,s) is a (k+ (t—1)-(m+1),(2t — 1) - €)-extractor. An analogous statement
holds for strong extractors.

(Hence, the quality of extraction is harmed in a small manner, especially when ¢ < k/m. Indeed,
the result is meaningful only if £ + (¢t — 1)(m + 1) < n.)

Proof: We first prove the version that refers to ordinary extractors.>® We proceed by induction
on t, proving that for any (n,k + (t — 1)(m + 1))-source X the statistical distance between Uy,
and E;(X,Uy) is at most (2t — 1) - e. The base case (of ¢ = 1) is immediate by the hypothesis
regarding F. In the induction step we proceed as follows, while writing FEy(z,s1 0 --- 0 8;) =
Ei 1(z,810---08t_1)0 E(x,s):

A[Et(X, Utr) 3 Utm]

) E
< A[E (X, Uy—qy) o E
U,

AN
P
IS

|
>
=

\
%

o

&
la
s
S

—1ym © BE(X,Up)] + A[E(X, Ur) ; Un], (13)

where the last inequality uses A[II(Y);II(Z)] < A[Y ; Z] (for any random process II). Using the
hypothesis regarding E, the second term of Eq. (13) is upper bounded by e. So we turn to analyze
the first term of Eq. (13). We shall use the following notation:

e Welet ¥ =k+ (t—1)(m + 1) and recall that X is an (n, k’)-source;
e We let Y denote the distribution of F(X,U,);

e For any y in the support of Y, we let Xé denote the distribution of X conditioned on
EX,U,) =y.

30We mention that an essentially weaker statement, which refers only to k > n?/3, follows by instantiating Corol-
lary 3.3 with the extractor of Theorem 6.1. In this case, the resulting extractor has seed length r = ¢ + O(logn)
rather than ¢ + O(logn)?, but this gain is insignificant because in both cases t = Q(log® n).

31The proof of the version that refers to strong extraction is very similar, and will be presented later.
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Using these notations we have

A[Et—l(Xv U(t—l)r) ° E(Xv UT) ’ U(t—l)m © E(X, Ur)]
= EW—Y [A[Etfl(Xéa U(t—l)r) > U(t—l)m]]

= y;HOO(XI?)a;;:/_m_l {A[Etfl(Xgl;a Ur) H U(t—l)m]} (14)

+Pryy[Hoo(X,) <k —m —1], (15)
where the inequality uses the fact that A[;] is upper bounded by 1. We upper bound Eq. (14) by
using the induction hypothesis, while noting that in this case X is an (n,k+(t—1)(m+1) —m—1)-

source. Hence, Eq. (14) is upper bounded by (2(t — 1) — 1) - e. To bound Eq. (15), we first observe
that

Pr, y [Pr[E(X,U;) =y] <0.5-27"] <, (16)

because otherwise the hypothesis regarding F is violated. (Specifically, let B = {y : Pr[E(X,U,) =
y] < 0.5-27™} then Pr[U,, = y| = 27™ > 2. Pr[Y = y] for every y € B, which implies
Pr[U,, € B] > 2-Pr[Y € B], and so Pr[Y € B| > ¢ implies A[Y ;U,,] > €¢.) Now, using Eq. (16),
it follows that

Pry y[He(X,) <k —m—1]
< Pryey[Pr[E(X,U,)=y] <27 1]
+Pr,. vy [Eia: s.t. Pr(X) =x] > 27k1+m+1‘Pr[E(X, Ur)=y] > Q*mfl}

< e+Pry vy [H:U st. Pr[X =z|E(X,U,)=y] > 27 ¥+t Pr[B(X, u)=y] > 2_m_1] (17)

Next, note that for every z € {0,1}" and y € {0,1}", it holds that

, B B Pr(X = z]
Pr[X] = 2] = Pr[X = 2|B(X,U,) = y] < PrE(X,U,) — 4]

where equality holds if and only if Pr[F(z,U,) = y| = 1. Hence, for y such that Pr[E(X,U,) =
y] > 27™~1 and for every x, it holds that

< Pr[X = z]
- PrlE(X,U,) =
< 2—k'+m+1

Pr(X =z|E(X,U,) = y] i

which means that the second term in Eq. (17) is zero. Hence, Eq. (15) is upper bounded by ¢, and
the induction claim follows, since Eq. (13) is upper bounded by e+ (2(t —1) — 1) - e +e.

The case of strong extractors. We now turn to the version that refers to strong extractors, and
proceed as in the ordinary case subject to adequate modifications. (Indeed, the reader may want to
skip the rest of the proof.) Denoting E/(z,u) = Ei(z,u) ou (and E'(x,u) = E(z,u) o u), we prove
(by induction on t) that for any (n,k + (¢ — 1)(m + 1))-source X the statistical distance between
Upm+tr and Ej (X, Uy,) is at most (2t — 1) - . Here we use:
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A[Eé (Xa Utr) H Uthrtr]
= A[Ez{—l(Xa U(t—l)r) ° EI(X’ Ur)s U(t—l)(m+r) o Unr]
< A[Eé_l(X, U(t—l)r) © E/(X’ Ur) ; U(t—l)(m—l—r) o E/(X, Ur)] + A[E/(X, Ur) 5 Um-l—r]- (18)

Using the (strong) hypothesis regarding E, the second term of Eq. (18) is upper bounded by €. So
we turn to analyze the first term of Eq. (18). We shall use the following notation:

e For any u € {0,1}", we let Y,, denote the distribution of E(X,u);

e For any u € {0,1}" and y in the support of Y, we let X{L,y denote the distribution of X
conditioned on E(X,u) = y.

Using these notations we have

A[Eéfl(Xﬂ U(tfl)r‘) ° E/(X7 UT) ) U(tfl)(err) o E/<X7 UT)]
= Buc v, [ALEL1 (X4 Ug—1)r) 5 Ut—1)(man))]

< u,y:Hoo(szlfﬁ(zk’fmfl {A[E (X4 Ur) s U—1)(men)1 } (19)
+Pruc v, ey, [Hoo(Xy,) <k —m—1]. (20)

We upper bound Eq. (19) by using the induction hypothesis, while noting that in this case X{t,y is
an (n,k+ (t —1)(m + 1) — m — 1)-source. Hence, Eq. (19) is upper bounded by (2(t — 1) — 1) - €.
To bound Eq. (20), we first observe that

Prycu,yev, [PrlE(X,u) =y] <0.5-27"] <e (21)

because otherwise the hypothesis regarding F is violated. (Specifically, let B = {(u,y) : Pr[E(X,u) =
y] < 0.5-27™} then Pr{U,1,, € B] > 2-Pr[(U,,Yy,) € B], since Pr[U,, =y| > 2 Pr[Y, = y] for
every (u,y) € B.) It follows that

Prycu,yev, [Hoo (X’llt,y) <k —m—1]
< Prycu,yey, [PrlE(X,u)=y] <277 (22)
+Pruc U, ey, [ax s.t. Pr(X)  =x] > 2_k/+m+1‘Pr[E(X, w)y=y] >27""H,  (23)

where Eq. (22) is upper bounded by e. Next, note that for every z € {0,1}", u € {0,1}" and
y € {0,1}™ it holds that

;L B _ Pr[X = z]
PI‘[Xuvy = $] = PI'[X = z|E(X,u) = y] < PI‘[E(X, u) _ y]

where equality holds if and only if F(z,u) = y. Hence, for v and y such that Pr[E(X,u) = y] >
2-m=1 and for every z, it holds that

< Pr[X = z]

~— Pr[E(X,u) =y]

< 9~ K+m+l

Pr[X = z|E(X,u) = y]

which means that the the second term in Eq. (23) is zero. Hence, Eq. (20) is upper bounded by e,
and the induction claim follows (since Eq. (18) is upper bounded by e+ (2(t —1) —1)-e+¢). W
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Applications to the study of extraction in AC". Combining Theorem 6.3 with the various
extractors presented in this work, we obtain.

Corollary 6.4 (on extraction in AC? using a long seed): For every e : N — (0,1] such that
e(n) > 1/poly(n) and every constant o < 1, there exist explicit AC° circuits that compute (k, e€)-
extractors, E : {0,1}" x {0,1}") — {0, 1Y) for the following relation between r,m and k.

1. For any k(n) = Q(n), we can have any m(n) < a-k(n) with any r(n) = max(8-m(n), Q(logn)),
for any constant B > 0. Furthermore, the extractor is strong and the AC® circuits have depth
three.

2. For any k(n) > n/poly(logn), we can have any m(n) < « - k(n) with r(n) = max(f -
m(n), Q(logn)), for any constant B > 0. Furthermore, the extractor is strong and the AC°

log(n/k(n)

circuits have depth 4 + log log

3. For any constant ¢ > 0 and k(n) > O(logn)°*3, we can have any m'(n) = m(n) — r(n) <
a - k(n) with r(n) - k(n) =m’(n) -n/(logn)°. In particular:

e We can have m'(n) = a - k(n) and r(n) = n/(logn)°.
min(a - k(n), (logn)¢) and r(n) = n/k(n).

e We can have m/(n)

In addition, for any k(n) = Q(logn) we can have m'(n) = m(n)—r(n) = min(a-k(n), poly(logn))
and r(n) = n.

Note that in Part 1 the output length exceeds the seed length, whereas in the other parts the output
is shorter. The extractors in Parts 1 and 2 are strong, but this is not the case (and cannot be the
case) in Part 3. The additional claim (in Part 3) is merely a restating of Theorem 6.1, which also
appears as a special case of Corollary 6.2.

Proof: In all parts, ¢t = t(n) denotes the number of times that the basic extractor Ey : {0,1}" x
{0,1}70() — {0,1}™0(") is invokes; that is, we will derive m(n) = t(n)-mg(n) and r(n) = t(n)-ro(m).

Part 1 (resp., Part 2) is obtained by combining Theorem 2.4 (resp., Theorem 3.1) with the
second part of Theorem 6.3 (i.e., the part referring to strong extractors). In both parts we have
ro(n) = O(logn); in Part 1 we can have any mg(n) = ro/8 = O(ro(n)), whereas in Part 2 we have
some mo(n) = Q(ro(n)). Note that the extractor asserted in Theorem 2.4 can be implemented by
depth-three AC° circuits.

Part 3 combines Corollary 6.2 with the first part of Theorem 6.3 (i.e., the part referring to ordi-
nary extractors). Here we use rg = min(n, O(nlog®n)/k(n)) and m}, = mg—ry = min(ak(n), (logn)*3).
Hence, for k(n) > O(logn)t3, we have rq - k(n) = m{ - n/O(logn)¢, which yields r(n) - k(n) =
m/(n) - n/O(logn)¢ for r(n) =t(n) - ro(n) and m'(n) = t(n) - my(n) < ak(n). N

7 Extraction from several independent sources

While deterministic extraction is not possible from a single general (n,n — 1)-source, it is known
to be possible when having a constant number of independent sources (cf., e.g., [16, 6, 7, 37]).
We ask whether such extraction is possible in AC?, provided that the min-entropy rate is at least
1/poly(logn). Considering extraction from a constant number of independent sources, note that the
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impossibility results in Section 5.2 can be adapted to rule out min-entropy rates below 1/poly(logn).
Details follow.

We view the ¢ sources as a single source of length ¢n in which the n-bit long parts are independent
of one another. Applying the proof of Theorem 5.3 to such a generic source, yields a bit-fixing source
of length cn in which ck bits are random. These ck positions are “typical” (w.r.t an averaging
argument) and so we can make sure that there are approximately k& random bits in each n-bit
long part of the source. This proves that AC’-extraction from a constant number of sources is
impossible if all sources have min-entropy rate below n/poly(logn). However, above that level
of min-entropy, AC’-extraction is possible when using a seed of logarithmic length. Hence, it is
reasonable to ask whether deterministic AC%-extractors can meet this performance (as in the case
of bit-fixing sources).

7.1 Extraction from two independent sources

In this section, we consider AC%-extractors for pairs of independent sources, a model first considered
by Vazirani [55] (for Santha-Vazirani sources [51]). Recall that Chor and Goldreich [16] showed
that inner-product mod 2 yields a good extractor for pairs of independent sources provided that
each source has min-entropy rate above half; in fact, it yields an e-extractor for any pair consisting
of an (n, k1)-source and an (n, k2)-source such that ki + ko > n+1+2log(1/€). A natural question
that arises is whether such a seedless extractor can operate in AC°. Specifically:

Definition 7.1 (a (seedless) two-source extractor): The function E : {0,1}" x {0,1}" — {0,1}™
is called a ((k1,k2), €)-extractor if for every pair of independent random variables (X,Y') such that
X is a (n,ky)-source and Y is a (n, ka)-source it holds that A[E(X,Y);Up] <e.

We ask whether a ((0.51n,0.51n), 0.01)-extractor can be computed in AC°. So far, we only know
of ((k,k),0.01)-extractors in AC° for k(n) = n — (n/log*n) and m = 1.

Theorem 7.2 (two-source deterministic extractor in AC?): For k(n) = n— (n/logn) and e(n) =
n=“W) | there exists a ((k, k), €)-extractor in AC® (extracting a single bit).

The constant 4 in the exponent is an arbitrary constant greater than three.

Proof: First, we shall see how to extract a single bit with error O(1/logn) from sources of rate
1 —log™3n. Consider a partition of each of the two sources into blocks of length ¢ = log?n;
that is, let X = (X1,..., X;,/¢) and Y = (Y1,..., Y, /) such that [X;| = |Y;| = £. We shall prove (see
Claim 7.2.1 below) that each source is exp(—(¥))-close to a source in which at least a 1—10log ™3 n
fraction of the blocks have min-entropy rate at least 0.7 conditioned on the previous blocks.

Next, we apply the inner-product mod 2 extractor [16] on each pair of corresponding blocks,

obtaining a sequence Z of n’ L /¢ bits such that at least 1—20 log =3 n of them are “quasi-random”

conditioned on the previous bits; that is, Z; is the inner-product mod 2 of X; and Y; and for all but
at most 20n’/log®n of the indices i € [n/] it holds that Pr[Z; = Zjj—y=a] = 0.5 + exp(—Q({))
for every o € {0,1}*~'. Applying the extractor of Theorem 5.6 (which was used in the proof
of Theorem 5.7) to Z, we extract a bit with bias O(1/logn). (Indeed, a sequence as above is
n - exp(—Q(¢))-close to a non-oblivious bit-fixing source of length n/¢ with 20n/(¢log®n) bits that
are fixed as an arbitrary function of the random bits.)3?

32Given a sequence of n’ = n/f bits in which k' bits are quasi-random conditioned on the previous bits, note that
the subsequence of quasi-random bits is close to being uniformly distributed in {0, 1}’“'.
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Finally, to reduce the error of the extractor, we use a source of higher min-entropy rate (1 —
log*4 n), which we break into logn parts such that each part has conditional min-entropy rate at
least 1 —log™®n. Applying the foregoing extractor to each part, we get logn bits such that each
bit has bias O(1/logn) conditioned on the previous ones. XORing these bits, we obtain a bit with
bias O(1/logn)'°e™ = n=<(1) The proof is completed once we prove the following claim.

Claim 7.2.1 (on the number of blocks with high conditional min-entropy): Let X = (X, ..., X,/)
be a (n,dn)-source such that | X;| =€ =mn/n', and §',¢ € (0,1) such that €4 > logn. Then, X is
exp(—Q(€'0))-close to a source X' for which there exists a set I C [n'] of cardinality at least 3=
such that for every i € I and x € {0,1}" it holds that Pr[X —:L‘Z|X[Z 1 =y <27 G 26')4.

5'”

g6 _ g _ 1=0

For the above application we set § = 1 —log ™2 n, ¢ = 0.9, and ¢ = 0.1. Hence, = =

1-10-(1—¢) and ¢’ — 2¢' = 0.7.

Proof: As in many known cases, the proof proceeds via analyzing the collision probability. Recall
that the collision probability of a random variable Z, denoted CP[Z], equals Pr[Z() = Z(?)], where
ZW and Z?) are two independent copies of the random variable Z; that is, CP[Z] = Y., Pr[Z =2].
Using the fact that X has min-entropy dn, we infer that CP[X] < 2797 Hence, it holds that

2 —on’-
[T prixV=xP|x{V =xP ] < 27, (24)
i€[n’]
where X and X® are two independent copies of X. We call i good if Pr[X; xW = |X 1]
X, [(Z )1}] <2- —o't , and infer that at least a 5, fraction of the i’s are good. 33 We next observe that,

for every good i, there exists a set S;_1 Q {0,1}G-D¢ such that Pr(X;_ € 84]>1-27¢ " and
for every z € S;_1 it holds that

PrixV=x|x[V =X =2 <27 (25)

[i—-1 [

Moving back to a min-entropy upper bound, for any good i and every z € S;_1, let H; . def {z; :
Pr[X; =2 X;_yy=2] > 27 (0'=2¢961  Then, Pr[X; €EH; | Xjj_yy=2] <27 L holds (for any good i
and z € S;_ 1) 34 Let X’ = X if for every good ¢ it holds that Xji—1) € Si—1 and X; € Hyx,_,,
and X’ be uniform otherwise. Then, X’ is O(n’ - 27¢ E) close to X, and for every good ¢ and every
x € {0,1}" it holds that PI‘[X/—.%'Z’XZ 1 =2fi-1)] < 2~ (0"=2)¢ " The claim follows. m

This completes the proof of the theorem. W

Digest. Note that the sequence Z extracted at the first part (of the main step) is apparently
more restricted than a non-oblivious bit-fixing source, but it is not an (oblivious) bit-fixing source.
Hence, we applied the extractor of Theorem 5.6 to Z, rather than applying the AC%-extractors for
bit-fixing sources that can handle lower min-entropy. Of course, there is room in between, and

33Denoting the set of good i’s by G, we have (27¢)I€! . (2_‘”)"/_‘0‘ < 279" and it follows that (1-8)G| >
(6 —8")n'.

3Let Y and Y’ be distributed independently and identically to X; conditioned on X};_q) = z (i.e., Pr[Y =
y] = Pr[X; = y| X1 = 2]), and "1 {y Pr[Y =y] > 27<5/726,)[}. Then, Pr[Y =Y'] < 9= (8'=<e implies
Pr[Y € H] <27 See farther discussion in Remark 7.3.
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one may capitalize on it, but currently we do not see a way of doing so. Indeed, the point is
trying to obtain AC%extraction for two independent sources of some constant min-entropy rate.
(In Section 7.2, we achieve the corresponding goal for four sources.)

Remark 7.3 (from conditional collision probability to conditional min-entropy): The proof of
Claim 7.2.1 relies on transforming an upper bound on conditional collision probability to a lower
bound on conditional min-entropy. For the benefit of future applications, we distill the corresponding
claim here.

Let XM and X® be two independent copies of X, and let f,¢g: {0,1}* — {0,1}".
If Prif(XM)=f(X@P)|g(XD)=g(X®)] < e-27F, then X is 2y/e-close to X’ such
that Pr[f(X')=v|g(X")=u] < 27F for every u,v.

The proof of this claim proceeds in two steps. First, we infer that there exists a set S such that
Pr(g(X) € S] > 1 — /e and Pr[f(XW) = f(XP)|g(XD) = g(XP)=5] < fe-27F for every
s € S. Neat, for every s € S and every v, we show that X is \/e-close to X' that satisfies
Pr(f(X")=v|g(X')=s] < 27*. This is shown by considering the random variable Xy defined as
f(X) conditioned on g(X) = s, letting H = {v : Pr[Xs=0v] > 27%}, and noting that CP[X,] >
Pr[X, € H] - min,e g {Pr[Xs=v]}, which implies \/e27% > CP[X,] > Pr[X,€ H]-27%. The claim
follows by letting X' be X conditioned on both g(x) € S and f(X) & H.

Remark 7.4 (reducing two-source extraction to extraction from non-oblivious block-fixing sources):
As stated above, the core of the proof of Theorem 7.2 is a transformation of a pair of independent
sources, each having min-entropy rate § > 0.75, into a non-oblivious bit-fizing source of min-entropy
rate at least 1 —4 - (1 — &) — o(1), where here we use Claim 7.2.1 with any constant &' > 0.5 and
¢ = 1/logn (rather than with ¢’ = 0.9 and € = 0.1). Similarly, we can transform such a pair of
sources into a non-oblivious block-fixing source with block length Q(log2 n), by using an extractor
that outputs QL) bits [16, 19]. Hence, deterministic two-source AC®-extractors for some constant
min-entropy rate exist if such extractors exist for a mon-oblivious block-fixing source of some con-
stant rate and super-logarithmic block length.

Recall that there exist no deterministic extractors for non-oblivious bit-fixing source of any (non-
trivial) constant min-entropy rate [39]. Such a result is not known for extraction from non-oblivious
block-fixing source of (any constant min-entropy rate and) super-logarithmic block length, although
it was conjectured more than a decade ago in [22, Conj. 2.2]. Hence, ruling out two-source extractors
for any constant rates requires settling the latter conjecture.

7.2 Extraction from four independent sources

In this section, we consider AC%-extractors from a constant number of independent sources, showing
that such extractor exist for four independent sources of some constant min-entropy rate. In
Section 7.3, we shall show how to extract from independent sources of any constant min-entropy
rate, but we shall use a larger number of sources (which depends on the rate). In both section, we
shall refer to the following definition, which generalizes Definition 7.1.

Definition 7.5 (a (seedless) multi-source extractor): For a constant integer ¢ > 2, the function
E:({0,1}™)° — {0,1}™ is called a ((ki, ..., kc), €)-extractor if for every sequence of ¢ independent
random variables (XM, ..., X)) such that X© is a (n,k;)-source for i = 1,..,.,¢, it holds that
A[E(XD, .. X©);U,] <e.
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Indeed, Definition 7.1 corresponds to the special case of ¢ = 2.

While Theorem 7.2 applies to (two) sources of min-entropy rate of the form 1—o(1), the following
result holds for (four) sources of min-entropy rate that is bounded away from 1. Furthermore, while
Theorem 7.2 does not assert uniform ACY circuits, the following result does assert such circuits.

Theorem 7.6 (four-source deterministic extractor in AC%): For k(n) = 0.99n and e(n) = n~«(),
there exists a ((k,k, k, k), €)-extractor in uniform AC° (extracting poly-logarithmically many bits).

Proof Sketch: The general strategy is to use the first two sources in order to sample polylogarith-
mically many bits of the third and fourth sources, and then extract out of the selected sub-sources.
Thus, in a sense, we construct a condenser that transforms the second pair of sources into a pair of
short sources that maintains a sufficiently high min-entropy rate; specifically, the resulting sources
have min-entropy rate at least 0.51 (whereas the original ones had min-entropy rate 0.99). This
conversion is performed using the imperfect randomness that exists in the first pair of sources.
Specifically, we will consider a partition of each source into n’ = n/¢ blocks of length ¢ = log? n,

denoted X = (Xfi), ...,X(i)), and apply a two-source extractor E’ : {0,1}* x {0,1}* — [n//],

n/
which is computable by constant-depth poly(n)-size circuits (e.g., E’ computes bilinear func-

tions [16, 19]), to the blocks of the first two sources. We view these n’ outcomes (i.e., E’(XJ(-I),X]@))

for j € [n']) as an assignment of blocks indexed by [n/] into n” = n'/¢ cells (i.e., block j is assigned
to cell E/(X ;1),X J@))), and pick a cell epin € [n//¢] with a minimal number of blocks (breaking ties
arbitrarily).?® Finally, we apply a second two-source extractor E” : {0,1}* x {0,1}** — {0,1}2
to the sub-sources X J(f) e X J(f,) and X J(f) e X ](j,), where (j1,...,J¢) is the sequence of blocks as-
signed to cell ¢y and ¢ < £. (If ¢ < £, then we pad the said sequence of blocks to the full length
of £2.)

Intuitively, the first extractor £’ uses blocks in the first pair of sources (i.e., X() and X)) in
order to assign blocks of the second pair of sources into cells. Pairs of blocks of sufficiently high
min-entropy (in XM and X ®)) will assign the corresponding blocks (of X®) and X®)) to a random
cell, but other pairs of blocks (in X and X(®) may assign blocks (of X®) and X®)) arbitrarily.
Still, each cell is assigned many blocks that have sufficiently high min-entropy in the second pair of
sources. Hence, the smallest cell, denoted ¢min, contains blocks of X3 and X that have average
min-entropy rate that exceeds 0.5, and applying the extractor E” to these blocks (of X () and X (4))
will yield an almost random output. Note that the value ¢y, may not be random; it is merely
determined as the index of the smallest cell.

In order to analyze the quality of this construction, we first invoke Claim 7.2.1. Specifically,
for § = 0.99 and some constant ¢’,¢’ € (0,1), we say that a block index j € [n] is good for the
ith source if PrX] ij]ij_l] =zj_q)] < 2-(0"=2D for every x, where X' is exp(—Q(€'¢))-close

to X, Recall that at least a ‘t—gi =1- 11_;35, fraction of the blocks are good for each source.

We call j good if it is good for all four sources, and conclude that at least a 1 — 4 - 11:(§5, > 1/2

fraction of the blocks are good. Hence, with very high probability, each cell is assigned at least

35Indeed, this strategy is inspired by Feige’s protocol for leader election [21], and it was already employed in the
context of O(1)-source extraction by Li [37]. Here, we pick the smallest cell in order to guarantee that the total length
of the blocks assigned to it is small. This guarantees both that E” can be computed by constant-depth circuits of
poly(n)-size and that the min-entropy rate of blocks (of X®) and X(4)) in this cell exceeds half. Jumping ahead, we
mention that in the proof of Theorem 7.7 we shall only rely on the first implication (and the second implication will
not hold).
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(1—-4- 11:(?, —0(1)) - £ good blocks, and the min-entropy of the blocks assigned to each cell is at
least (1 —4- 11_;(?, —o(1)) - £- (0" — 2€¢")L. The analysis is completed by selecting ¢’ and € such that
(1—4-1=5)- (8" — 2€) is strictly larger than 1/2 (e.g., using ¢ = 0.9 and ¢ = 0.01 we get a lower
bound of 0.52).

We wish to emphasize a key point regarding the foregoing probabilistic analysis. Recall that
blocks are defined as “good” (for a particular source) based on their conditional min-entropy. That
is, the j' block (of the i*® source) is good if the conditional min-entropy of that block, conditioned
on the prior j —1 blocks of this source, exceeds a specific threshold. It follows that if the j* block is
good for both the first and second sources, then the j® block (of the third and fourth sources) will
be assigned a random cell, conditioned on the assignment of the prior j — 1 blocks. Similarly, the
blocks assigned to the smallest cell (i.e., ¢pmin) are defined as good in the same sense, which implies
that their total min-entropy is sufficiently high, since it is the sum of their individual conditional
min-entropies. Hence, if a p fraction of the blocks assigned to the smallest cell are good, then each
of these blocks has conditional min-entropy rate at least ¢” = ¢ — 2¢’ (conditioned on the prior
blocks), and the total min-entropy rate of the blocks in this cell is at least p - §”.

What remains is implementing the determination the smallest cell and its contents by constant-
depth circuits of poly(n)-size. This can be done using techniques as in the proof of Theorem 3.6.
Specifically, we refer to the ranking procedure applied in Step 3(b) of the proof.?6 Lastly, note that
the foregoing extractor outputs Q(¢) bits, where ¢ = log® n. The proof remains intact when setting
¢ to be any larger poly-logarithmic function. W

7.3 Extraction from poly(1/d) sources of rate §

Looking at the four-source extractor (presented in the proof of Theorem 7.6), one may notice that
there are two main reasons for the high constant lower bound on the min-entropy rate (i.e., 0.99)
used there. One is that we used a bilinear two-source extractor, whereas we have such extractors
only for rate greater than 0.5 (and, in general, explicit two-source extractors are known [12] only
for constant rate that is slightly smaller than 0.5).3” The second reason is that we use blocks that
are “good” (i.e., have sufficient min-entropy rate) with respect to all sources.

But if we are willing to use more sources, we may reach an arbitrary low constant rate. Firstly,
we will use the multi-source extractors of Barak et al. [6], which can extract from any constant rate
p > 0 using poly(1/p)-many sources of such rate. The crucial observation is that these extractors
compute polynomials (of degree that is smaller than the number of sources) over a finite field,
and they can be computed by constant-depth circuits of sub-exponential size. Since we shall be
applying these extractors to sub-sources of polylogarithmic (in n) length, we can afford this size,
which is poly(n).

Secondly, there is no need to insist on using only blocks that are good for all sources; we can
use blocks that are good for a constant fraction of the sources. This assertion relies on the fact that
the extractors of [6] work well also when applied to many (independent) sources such that only a
constant fraction of these sources are good (i.e., have sufficient min-entropy). The latter fact is
based on two observations:

36Recall that our ranking procedure amount to counting (in uniform AC°) the number of marked elements in an
array of length n’, when guaranteed that this number does not exceed poly(logn). An explicit construction of such
a counter was presented in [47], improving over [3, Sec. 5] (and subsequent works).

37The said constant is not specified in [12], and is estimated to be higher than 0.49.
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1. The extractors of [6] iterate the three-source extractor Es(x,y,z) = xy + 2z, where z,y, 2
are field elements. Hence, assuming that Pr[X = 0] = 0 and ditto for Y, the min-entropy
of E3(X,Y,Z) is at least the mazimum among the min-entropy of the three sources. (The
condition can be guaranteed by redefining each of the sources so that it never assumes the
value zero, while noting that this reduces the min-entropy of the source by at most one unit.)

2. By the entropy increasing lemma of [6], the min-entropy of Es(X,Y, Z) is at least a constant
factor larger than the minimum among the min-entropy of the three sources, as long at this
value does not exceed 0.9¢, where 2 is the size of the field. Using the following tree marking
game, this implies that the iterative extraction procedure of [6], which applies F3 at the
internal nodes of a ternary tree (while the sources are placed at the leaves), produces output
of min-entropy at least 0.9¢.

Consider a full ternary tree of height h such that a p fraction of the leaves are marked 1
(corresponding to good sources of sufficiently high min-entropy rate), and the other leaves
are marked 0 (corresponding to bad sources). Going from the leaves to the root, the following
marking rule is applied: If the children of a node are all marked 7 > 0, then the parent
is marked ¢ + 1 (corresponding to an application of the entropy increasing lemma of [6]),
otherwise the parent is marked by the maximum of its children (corresponding to preservation
of entropy asserted in Observation 1). Then, as shown in Claim 7.7.1 (below), for every fixed
p > 0 and any (allowed) marking of the leaves, the minimal possible marking of the root is
unbounded as a function of h.

Plugging these observations into the framework of the proof of Theorem 7.6, while replacing each
pair of sources by many independent sources, we get uniform AC’-extractors for poly(1/§)-sources
of min-entropy rate 9, for any § > 0.

Theorem 7.7 (deterministic extractor in AC® for poly(1/) sources of constant rate 6): For any
constants 6 > 0 and v > 1, setting t = poly(1/6), there exists a uniform AC° function E :
({0,1}™)t — {0,1}008" ™) that constitutes a ((on, ..., on),n~ W) -extractor.

Proof Sketch: We partition the ¢ sources into two sets; a set of ¢; sources will be used to select a
small cell, and the remaining to = t —¢; sources will be used for the actual extraction based on sub-
sources determined by the selected cell. That is, as in the proof of Theorem 7.6, we partition each
source into n’ = n/¢ blocks, each of length ¢ = log” n, and use two multi-source extractors, denoted
E" and E”, for sources of length ¢ and £2, respectively. However, here the first extractor (i.e., E')
uses t; > 2 sources and the second extractor (i.e., E”) uses t2 > 2 sources. Furthermore, here
E’ extracts a slightly longer string, which is interpreted as an element in [n'] x [n/f]. Specifically,
such (b, c) € [n'] x [n'/{] is interpreted as placing the b*" block in cell number ¢. That is, the pair
extracted from the ;' block (of the first ¢; sources) does not assign block j to some cell, but rather
assigns a hopefully random block to a hopefully random cell, where these hopes are materialized if
extraction from the j*® block succeeds (i.e., if this block has sufficient min-entropy in sufficiently
many sources).

Specifically, the first stage of the extractor will use the iterated extraction procedure of [6].
Recall that this procedure is based on the extractor F3 : F3 — F that operates over the finite
field F' (of prime cardinality) such that E3(z,y, 2) = zy + z and |F| ~ 2¢. Actually, we shall use a
minor modification of E3 that avoids zero elements by letting Ef(z,y, z) = g()g(y) + g(z), where
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g(0) =1 and g(z) = x for all z € F'\ {0}. Note that the behaviour of E% with respect to sources of
min-entropy k is captured by the behaviour of F3 with respect to sources of min-entropy k— 1, since
H(9(X)) > Hoo(X) — 1, where Hyo (V') denotes the min-entropy of the random variable V. The
extractor B’ : F* — F is defined recursively (as in [6]) by E'(z1,...,75:) = E4(y1,y2,y3), where
yj = E'(%(j_1).3i-141, - Tj3i-1). Actually, E'(zy,...,z4,) is redefined as the first 2logn’ — log/
bits of E'(z1,...,24,) (as defined above). Recall that E’ will be applied n’ times, where the j*™

application takes as input (XJQ), ...,XJ(-tl)), where Xj(-l) is the j" block of the i*" source. We shall
detail the second stage of the final extractor at a later point.

Towards analyzing this construction, we first invoke Claim 7.2.1 (using ¢’ = §/2 and €’ = §/12).
Saying that a block j is good for the i*" source if its conditional min-entropy rate exceeds 6/3, we
infer that at least §/2 of the blocks are good for each specific source (i.e., the i'" source). (Actually,
the bound refers to the conditional min-entropy of a source that is close to the itP source.) Hence,
at least 6/4 of the blocks are good for at least d/4 of the (first ¢;) sources. Let us call such a block
good, and analyze extraction from it using the two foregoing observations. We establish the second

observation by proving the following.

Claim 7.7.1 (analysis of the tree marking game): Consider a full ternary tree of height h such
that at least p - 3" leaves are assigned the value 1 and the other leaves are assigned the value 0.
Assign an internal node the value i+ 1 if all its children are assigned the value i > 0, and otherwise
assign it the mazimum value that is assigned to its children. Then, for every fived p > 0.9", the
value assigned to the root is at least h/100.

Proof: Let us turn the table around and denote by Nj (i) the maximal number of leaves that may
be assigned the value 1 in a ternary tree in which the root is assigned a value that is smaller or
equal to i. Clearly, Np(i) > Np(i — 1) and Np11(i) > Np(i). Note that for a tree consisting of
a single vertex (i.e., h = 0), it holds that Ny(0) = 0 and Ny(i) = 1 for every i > 1. The key
observation is that

Nh+1(i) = max(3 . Nh(i — 1), 2- Nh(l) + Nh(i — 1)) =2 Nh(Z) + Nh(i — 1).

It follows that Nj(i) = 2" + Zje[h] 2971 Np_;(i — 1), for every i > 1. Next, for h,i > 1,
one can prove by induction on i that Np(i) = Zj;%) 2h=i . (?) Our last technical claim is that

Np(i) > 2.7" implies i > h/100. Suppose, towards the contradiction that i < h/100. Then,
Np(i) = Z;;}) 2h_j-(?) < 2h.9H2(001)h \which is upper bounded by 2"101% < 2 9% in contradiction
to Np(i) > 2.7". Turning back to the main claim, we note that if a § > 0.9" fraction of the leaves
are assigned the value 1 and the root is assigned the value i, then Ny, (i) > 6 -3", which implies that
i>h/100. m

Now, assuming that the j** block is good, we claim that E’(X]Q), . X;tl)) is exp(—Q(¥))-close
to the uniform distribution over [n’] x [n’/¢] (independently of prior blocks). This is the case since
the j* block is good for at least an §/4 fraction of the sources, whereas the values analyzed in
Claim 7.7.1 (with p = 0/4) reflect the min-entropy of the corresponding extracted field element.
Specifically, leaves assigned the value 1 correspond to blocks with (conditional) min-entropy rate of
at least §/3; internal nodes with value ¢ 4+ 1 having children that have value i > 0 correspond to the
application of EY to random variables of min-entropy rate at least min((1+(1))*-§/3,0.9) (see [6,
Lem. 3.1]); whereas the other internal nodes correspond to the application of Ef that maintain
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the maximum min-entropy rate of the three random variables to which Ej is applied.®® Hence,
using h = ©(log(1/9)), we obtain at level h — 1 of the tree (i.e., at the children of the root) three
independent sources such that each of them has (conditional) min-entropy rate at least 0.9, where
the conditioning is over the values of prior blocks. Using [42, Lem. 13|, while relying on the fact
that Es(r,y,s) may be viewed as a universal hashing function mapping y to ry + s (based on the
key (r,s)), we are done.

Again, we wish to emphasize a key point regarding the foregoing probabilistic analysis. Recall
that blocks are defined as good for a specific source based on their conditional min-entropy in
that source. A block is globally good if it is good for sufficiently many sources (out of the first ¢;
sources). Hence, extaction from a good block yields a quasi-random outcome, conditioned on the
values of all prior blocks (and the corresponding outcomes that were extracted). As detailed next,
a similar analysis will apply to the blocks (of the remaining to sources) assigned to any specific cell.

It is time to detail the second stage of the final extractor. This stage uses the remaining to = t—t;
sources. First, the n’ outcomes obtained in the first stage are interpreted as an assignment of blocks
to cells; specifically, block b is assigned to cell ¢ if the pair (b, ¢) € [n/] x [n'/{] appears in this n’-long
sequence of outcomes. Then, a cell with a minimal number of assigned blocks is picked, and the
extractor E” (which is analogous to the extractor E’ that was used in the first stage) is applied to
the corresponding to sub-sources; specifically, if the selected cell was assigned the blocks j1, ..., jr,
Xj(fl-f-l) . X(t1+1) X(t) . X(t)

S X Y

Defining good blocks (for a specific source, and globally good bléizks) as in t]he first jsztage (albeit
for the last to sources), we infer that (with very high probability) each cell is assigned at least
((6/4)? — o(1)) - £ good blocks, since at least §/4 of the assignments are random and the density of
good blocks is at least d/4. (Recall that a block is good if it is good for at least a d/4 fraction of
the last to sources, and that being good for a source means having conditional min-entropy rate at
least §/3.) In this case (i.e., for a typical assignment of blocks to cells), the average min-entropy
rate of the blocks assigned to the smallest cell is at least ((§/4)% — o(1)) - §/3 = Q(6%), where the
average is taken over the last ¢o sources. It follows that €(5%) of the corresponding sub-sources (i.e.,
the sources restricted to the blocks assigned to a cell) have min-entropy rate of €2(6%). Applying
Claim 7.7.1 (this time with p = ©(§3) and again with h = O(log(1/p))), we infer that the final
output is close to uniform.

Finally, note that all operations (including the arithmetics in the finite fields, which have size
exp(poly(logn))) can be implemented by constant-depth circuits of size poly(n) (see [8, 49]).> W

where ¢/ < ¢, then E” is applied to the t5 sub-sources

Trading-off sources for error. Following Barak et al. [7], we can reduce the number of sources
to a fixed constant (i.e., five) independent of the constant min-entropy rate of these sources, but
this comes at the expense of increasing the extraction error to a larger o(1).

Theorem 7.8 (deterministic extractor in ACY for five sources of constant rate §): For any con-
stants & > 0 there exists a uniform ACC function E : ({0,1})° — {0,1}*() that constitutes a
((6n,dn,on,dén,dn),o(1))-extractor.

3%Recall that the min-entropy of g(X)g(Y) + g(Z) is at least the maximum of the min-entropy of these three
(independent) random variables, where we use the fact that Pr{g(X)=0] = 0 (and ditto for Y").

39 Alternatively, one can use constructions over finite fields of characteristic two, and use the bounds stated
in [Sec. 2.8]Z4 rather than [6, Lem. 3.14].
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Indeed, the three-source extractor in [7, Thm. 1.1] is only claimed to extract a constant number
of bits with constant error, but the proof (as is) establishes functions of the form 10g* M n and
log_Q(l) n, respectively. Our result just inherits these bounds.

Proof Sketch: We follow the strategy of the proof of Theorem 7.7, while implementing the two
stages of extraction in a different manner. Specifically, the first extraction stage (which used the
t1-sources extractor E’) will be performed by the two-source somewhere extractor of [7, Thm. 6.2],
whereas the second extraction stage (which used the to-sources extractor E”) will be performed by
the three-source extractor of [7, Thm. 1.1]. These two extractors will be applied to poly(log n)-bit
long blocks of the various sources, and they can be implemented by explicit constant-depth poly(n)-
size circuits, since the computations involved reduce to applications of the three-source extractor
FEs of [6] and the bilinear extractor of [16, 19].40

Note that the two-source somewhere extractor of [7, Thm. 6.2] outputs a constant number of
strings such that one of them is random (or rather an output-dependent choice of an element in
the output sequence yields a distribution that is close to being uniform). Nevertheless, if we assign
to cell ¢ all blocks with index b such that (b, ¢) appeared in the output sequence of some invocation
of the two-source somewhere extractor, then the analysis of the first stage remains valid, except
that now the total size of the cells is a constant factor bigger. (Indeed, if E’ : {0,1} x {0,1}* —
([n'] x [/ /€])°M) is the two-source somewhere extractor in use, then we use the O(1)-long output
sequence E’(X](-l),X](g)) for each j € [n'].)

In the second stage, we shall use a three-source extractor E” that can handle min-entropy rate
that is a constant factor smaller than the bound used in the proof of Theorem 7.7. Note that this
extractor only outputs a small number of bits with an o(1) deviation from the uniform distribution.

In the analysis of both stages, we invoke Claim 7.2.1 and infer that in each source at least §/2
of the blocks have (conditional) min-entropy rate of at least /3. The problem is that, in order
for extraction to work, we need (many) blocks that have sufficient min-entropy in each of the first
two sources (resp., each of the last three sources). This problem is solved for the first two sources
by using poly(1/d) matchings over [n'], rather than the single matching {(j,j)} . Specifically,
we use (partial) matchings that correspond to a partition of the edges of an expander graph into
partial monotone functions. Such expanders are called monotone [20] and were constructed in [13].
Monotonicity is important here because the definition of a good block refers to the conditional
min-entropy of the block, which in turn refers to a fixed order.

In light of the above, the first extraction stage is actually as follows. Let fi, ..., f; : [n/] = [n/] be
partial monotone functions such that ¢ = poly(1/§) and for any set S of density 6/2 it holds that
Uiepy fi(S) has density at least 1 — /4. (The second condition follows by applying the exapander
mixing lemma to the graph ([n/], Ueg{(v, fi(v)) : v € [n/]}.)*! For every j € [n] and i € [t'], where
t' = poly(1/6) is the length of the sequence output by E’: {0,1}¢ x {0,1}¢ — ([n] x [0’/ logn]),
we compute the t’-long sequence E'(X ](1),X}?()j
that sequence.

Now, letting By (resp., Bz) denote the set of blocks that are good for the first (resp., second)
source, it follows that |Byl, |Ba| > 6n'/2. Hence, (Uscpy fi(B1)) N Bz has density at least §/4, and
there exists ¢ € [t] such that {(j, fi(j)) : j€B1 A fi(j) € B2} has density at least §/4t. For this ¢ and

)), and assign block b to cell ¢ if (b, c) appeared in

“OFor the second extractor (i.e., the three-source extractor of [7, Thm. 1.1]) the corresponding construction in [7,
Thm. 1.1] also apply an optimal two-source extractor, but it is applied on strings of very short length.

4f f; is undefined on v, then fi(v) is ignored in the various expressions; for example f;(S U {v}) = £i(S) and
(v, i(L)UW =W.
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for every j € By N f;'(B2), it holds that the j'! block in the first source (resp., the f;(5)* block
in the second source) has min-entropy rate at least /3 conditioned on the prior blocks, where the
blocks are ordered according to j (and we use f;(j') < fi(j) for j/ < j). Hence, the corresponding
assignment (based on extraction from these two blocks (i.e., X j(-l) and X}Q)

i
random, conditioned on the prior assignment. It follows that at least 54,“ = poly(9) fraction of the

blocks will be assigned at random, which guarantees that (w.v.h.p.) every cell will be assigned at
least poly(d) - £ random blocks. (Recall that extraction from at least d/4¢ blocks will be somewhere
random, which essentially means that one of the ¢’ extracted outputs is random.)

In the second extraction stage we shall also use matchings of the blocks of one source with
blocks of the second source, but here we need to match the blocks of one source with blocks of
two other sources, which can be done just in the same manner. (Indeed, we shall use a Monotone
expander for density §/2 and monotone degree ¢ = poly(d) to determine the matching of blocks of
X @) and blocks of X (as done for X() and X)), but we shall use a Monotone expander for
density 6/4t and monotone degree ¢ = poly(d/t) to determine the matching of blocks of X®) and
blocks of X)) |

))) will be somewhere

8 Open Problems (collected and restated)

In this section we collect and restate open problems that are mentioned in various parts of the
paper. We start with problems regarding general min-entropy sources.

Extraction from general min-entropy sources. The main open problem was stated as Prob-
lem 1.6. It refers to extracting more than poly-logarithmically many bits from a source of constant
(or even 1/poly(logn)) min-entropy rate using a logarithmically long seed. More generally, we
have —

Open Problem 8.1 (Problem 1.6, restated): Can extractors computable in ACY achieve an ex-
traction rate that is greater than a poly-logarithmic function (i.e., m(n)/r(n) > poly(logn)) when
the min-entropy rate is at least 1/poly(logn) and r(n) = Q(logn)?

Recall that for k(n) > n/poly(logn) and r(n) = O(logn), we have ACY-extractors either for the
case of m(n) = r(n) + Q(logn) and e(n) = 1/poly(n) (see Part 1 of Corollary 3.4) or for the case
of m(n) = poly(logn) and e(n) = 1/poly(logn) (see Part 2 of Corollary 3.4). We left open the
following problem.

Open Problem 8.2 (closing a gap w.r.t the error parameter): For k(n) > n/poly(logn) and
r(n) = O(logn), can AC-extractors evtract more that logarithmically many bits with 1/poly(n)
error? Moreover, for any polynomial p, can they extract p(logn) bits with error e(n) = 1/p(n)?

Turning back to Problem 8.1, recall that a positive resolution of Problem 4.10 (which refers to
converting general sources to block sources) is a sufficient but unnecessary condition for a positive
resolution of a version of Problem 8.1 (when both are qualified with respect to constant min-entropy
rate).

Open Problem 8.3 (Problem 4.10, restated): Does there exist a (6,8, 0(1))-blockers S : {0,1}90ogm)
([n]*)™ for constants § € (0,1) and &' € (0,6) and some unbounded m = w(1)? What about
m = nM) and s = poly(logn)? And what about & > 1/poly(logn) and § — &' > 1/poly(logn)?
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Extraction from restricted sources. While we proved the existence of deterministic AC°-
extractors for bit-fixing sources and for pairs of independent sources, our results in these cases have
deficiencies.

Firstly, in the two-source model we only obtained deterministic AC-extractors for entropy rate
that tends to 1 (see Theorem 7.2). Recall that non-explicit functions (outside of AC°) can extract
from pairs of sources of logarithmic min-entropy [16, Thm. 7], but the impossibility results in
Section 5.2 can be adapted to rule out min-entropy rates below 1/poly(logn). On the other hand,
above that level of min-entropy AC%-extraction with logarithmic seed length is possible. Hence, it is
reasonable to ask whether deterministic AC%-extractors can meet this performance (as in the case
of bit-fixing sources).

Open Problem 8.4 (two-source deterministic extraction in ACY): Does there exists a ((k, k), €)-
extractor in AC® (even extracting just a single bit) for any k(n) = n/poly(logn) and e(n) =
1/poly(n)?

For starters, one may consider the case of constant min-entropy rate; that is, is any ((n), Q(n), Q(1))-
extractor computable in AC'? Recall that AC? circuits can extract from four sources of some con-
stant (i.e., 0.99) min-entropy rate (cf. Theorem 7.6), and they can extract from poly(1/d)-many
sources of any constant min-entropy rate 6 > 0 (cf. Theorem 7.7).

We mention that, as shown by Chor and Goldreich [16, Sec. 4], any function that is a (2(n), Q2(n), Q(1))-
extractor has Q(n) distributional communication complexity with respect to the uniform distribu-
tion. Whether such a function exists in AC is open. (Note that the Q(n) distributional communi-
cation complexity of set disjointness is not with respect to the uniform distribution.)

A second deficiency in the aforementioned results regarding deterministic extractors is that
these AC-extractors are non-explicit. Hence, we ask for explicit versions of these results. Since all
results for the bit-fixing source model are obtained by uniform AC%-reductions from Theorem 5.7,
it suffices to have an explicit version of the latter.

Open Problem 8.5 (explicit version of Theorem 5.7 — deterministic extraction in uniform AC?
for bit-fixing sources): For every k(n) > n/poly(logn) and every e(n) > 1/poly(logn), present
deterministic e-error extractors E : {0,1}" — {0,1} for (n,k)-bit-fixing sources such that the
extractors are computable in uniform AC°.

For extraction from pairs of sources, our first challenge is to provide an explicit construction that
matches the parameters of Theorem 7.2. However, since we believe that Theorem 7.2 can be
improved w.r.t the required min-entropy rate, we state a more general challenge.

Open Problem 8.6 (two-source deterministic extraction in uniform ACO): For every k,e such
that the existence of ((k, k), €)-extractor in AC® is established, provide an explicit construction (i.e.,
a construction in uniform AC?).

An intermediate step towards resolving Problems 8.5 and 8.6 is providing an explicit construction
of a deterministic extractor for non-oblivious bit-fixing sources with parameters matching those in
Theorem 5.6. Such an explicit construction would be of independent interest. Actually, for our
current applications, it will suffice to establish the following:
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Open Problem 8.7 (explicit version of Theorem 5.6 — deterministic extraction in uniform AC®
for non-oblivious bit-fixing sources): For some p = 1/poly(logn), provide uniform AC® circuits
C :{0,1}" — {0,1} such that C is balanced and the influence of every set of density p on C is at

most 0.1.

Recall that the non-explicit circuits of Ajtai and Linial [4] (i.e., Theorem 5.6) support p = 1/0(logn)?.
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Appendices

Appendix A.1 presents some observations made in passing, regarding a notion used in this work.
In contrast, Appendix A.2 presents a known (but not well-known) result that is used in this work.
Lastly, Appendix A.3 presents a somewhat different solution to the problem of counting upto
poly(logn) in AC°.

A.1 On the robustness of averaging samplers

We prove two “robustness claims” regarding the notion of (relaxed) averaging samplers (as in
Definition 2.6). These claims are not essential to the current write-up, but we consider it worthy
to present them. The first claim asserts that samplers that perform well for Boolean functions also
perform well for general functions.

Definition A.1 (Boolean averaging samplers, a restriction of Definition 2.6): A function S :

{0,1}" — [n]? is called a Boolean (u, u’,~)-averaging sampler if Eq. (1) holds for every f : [n] —
def

[0,1} such that p(f) < By /()] = p.
The aforementioned claim, stated and proved next, is analogous to the corresponding claim for
standard averaging samplers (cf. [27, Thm. 5.10]).

Claim A.2 (Boolean vs general averaging samplers): Let pu, pi/, ¢ € (0,1] andn >t = Q(ue2log(1/7)).
If S : {0,1}" — [n]* is a Boolean (u, u',y)-averaging sampler, then S is a (u+e€, u’' — ¢, 3v)-averaging
sampler.

The hypothesis n > t = Q(ue 2log(1/7)) is not a real restriction when € = Q(u — '), since any
(u, i, y)-sampler must satisfy it (cf., e.g., the discussion in [27]).42

Proof: The proof mimics the proof of the corresponding claim for standard averaging samplers
(cf. [27, Thm. 5.10]). For any function f : [n] — [0,1] such that p(f) > p + ¢, we consider a
mental experiment in which the sampler is invoked on a random Boolean function that reflects
f. Specifically, we consider a random Boolean function b : [n] — {0,1} such that b(i) = 1 with
probability f(i) and b(i) = 0 otherwise, for every i € [n| and independently of the setting of all
other values. Then, with probability at least 1 — exp(—(e/u)? - un) > 1 — v (over the choice of b),
it holds that p(b) > p(f) — € > p. In this case, with probability at least 1 — « (over the choice
of I when b is fixed arbitrarily), the sample I chosen by the Boolean averaging sampler satisfies
>ierb(i) > /. Lastly, with probability at least 1 — exp(—(e/p)? - ut) > 1 — ~ (over the choice of
b when I is fixed arbitrarily), it holds that Y, ; f(i) > >_,.qb(i) — € > p/ — €. The claim follows.
|

The second claim asserts an upwards translation of the performance guarantee of (relaxed)
averaging samplers. Note that the translation (from (u, p/,7) to (m - p,m-y';m-+)) preserves the
relative error (i.e., (u — p')/p) rather that the absolute error (i.e., u — u').

Claim A.3 (upward translation of the performance guarantee): If S : {0,1}" — [n]" is a (u, i, )-
averaging sampler, then for every m € N it holds that S is a (m-u, m- ', m-~)-averaging sampler.
The same holds with respect to Boolean averaging samplers.

42Indeed, one alternative ending of the proof of Claim 3.2.2 uses Claim A.2; in that application, p and g’ are both
constants in (0,1), and € = (1 —mu)/2.
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The claim holds trivially for any (u, i/, y)-averaging sampler that is actually a standard averaging
sampler (i.e., one that approximates the average value of any function up to an addition term of
wu— ' with error probability 1 — 7).

Proof: The claim is proved by considering auxiliary functions that share the “weight” of the target
function f such that each auxiliary function takes approximately an equal share of the weight of
[ Specifically, given f : [n] — [0,1] such that E;cp,)[f(i)] > m - i1, consider m auxiliary functions
fj +[n] = [0,1] such that f(i) = > () f5(4) and Eip[f;(i)] > p for every j € [m]. Note that if
f is Boolean then (w.l.o.g.) so are the f;’s. Now, by Eq. (1), for every j € [m] it holds that

%ij(i) <u’] <7

i€l

Pr; sw,

and the claim follows by a union bound. [

A.2 A standard high moment inequality

The following concentration bound for somewhat independent random variables is well known to
the experts, but is hard to find in standard texts.

Lemma A.4 (folklore): Let (i, ...,(, be identical random variables that are distributed in [0,1] in
a 2k-wise independent manner, and let M = E[Zie[n] Ci]- Then, for any € > 0, it holds that

Pr||Y G- M|>c M| < (2%2/M)"
i€[n]

Proof: Let (; = ¢; — E[¢;] and note that E[(;] = 0. By Markov’s inequality and linearity of

expectation, we have
—\ 2k
E [(Zie[n] Cz) }

(E . M)2k

it B [Hjepk] E@'j] 26
B (€- M)2k (26)

IN

Pr||Y ¢G—M|>e M

i€[n]

Now, the key observation is that terms in which some variable appears exactly once do not con-
tribute to the sum in Eq. (26). In general, by virtue of 2k-wise independence, for any ¢t < 2k, a term

in which variables indexed ji, ..., jy occur with multiplicities ey, ..., e; contributes E {H@e[t] Ejﬁ] =

ng[t] E[Zj:] Denoting by S(n,2k,j) the set of 2k-long sequences over [n] in which exactly j
variables appear and each of these variables appears with multiplicity at least two, we have

Z EHZZ] :Z Z EHZ%

il,...,i2k€[n] jG[Qk] je[k} (il,,..,igk)ES(n,%,j) jE[Qk’]

> 1S(n, 2k, §)| - (M/n)?
J€[k]

IN
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where the inequality uses the fact that for every e > 2 it holds that E[(;] < E[¢f] < E[G] = M/n.
Using |S(n, 2k, j)| < (?) 32k <t k%R )2) we get

0.5k2k .5 ond - (M/n)
L _ J€lk]
Pr ZCZ M|>e M| < (c- M)
i€[n]
kZQk
RGR

and the lemma follows.

A.3 Counting few ones in a long string

We consider the problem of counting the number of ones in a string, when guaranteed that this
number is small. Specifically, for £ = poly(logn), given an n-bit string x such that s def Zie[n} z; <

¢, we seek explicit AC°-circuits that compute s. A solution to this problem has been known for
decates; see [47], improving over [3, Sec. 5] (and subsequent works). For sake of elegancy, we
present a somewhat different solution here.

We use a small (i.e., poly(n)-sized) familty of pairwise independent hash functions mapping [n]
to [¢?]. Such functions can be described by string of length 2logn, and so they can be generically
evaluated by depth-two circuits of poly(n) size. A random function in such family H shatters any
set of size ¢ with constant probability; that is, for every set I C [n] such that |I]| < ¢ it holds that
Pricu(|h(I)] = |I|] = Q(1) (since the collision probability is 1/¢2).

Now, on input x as above, we enumerate all h € H, compute for every h the value of
> vefe2](Vien—1(v) %), and take the maximum value. Indeed, if  shatters I = {i: z;=1}, then the

value we computed equals z;. The above computation is in AC° since we compute a ¢2-wise

i€[n]

sum (of some unbounded ors).?

“3Indeed, Vien-1(v) ®i can be computed as V¢, (z: V (h(i) =v)).

70

ECCC ISSN 1433-8092

http://eccc.hpi-web.de




