
On the Complexity of Noncommutative Polynomial

Factorization

V. Arvind∗ Pushkar S Joglekar† Gaurav Rattan‡

Abstract

In this paper we study the complexity of factorization of polynomials in the free
noncommutative ring F〈x1, x2, . . . , xn〉 of polynomials over the field F and noncommuting
variables x1, x2, . . . , xn. Our main results are the following:

• Although F〈x1, . . . , xn〉 is not a unique factorization ring, we note that variable-
disjoint factorization in F〈x1, . . . , xn〉 has the uniqueness property. Furthermore, we
prove that computing the variable-disjoint factorization is polynomial-time equiva-
lent to Polynomial Identity Testing (both when the input polynomial is given by an
arithmetic circuit or an algebraic branching program). We also show that variable-
disjoint factorization in the black-box setting can be efficiently computed (where the
factors computed will be also given by black-boxes, analogous to the work [KT90]
in the commutative setting).

• As a consequence of the previous result we show that homogeneous noncommuta-
tive polynomials and multilinear noncommutative polynomials have unique factor-
izations in the usual sense, which can be efficiently computed.

• Finally, we discuss a polynomial decomposition problem in F〈x1, . . . , xn〉 which is
a natural generalization of homogeneous polynomial factorization and prove some
complexity bounds for it.

1 Introduction

Let F be any field and X = {x1, x2, . . . , xn} be a set of n free noncommuting variables.
Let X∗ denote the set of all free words (which are monomials) over the alphabet X with
concatenation of words as the monoid operation and the empty word ε as identity element.

The free noncommutative ring F〈X〉 consists of all finite F-linear combinations of mono-
mials in X∗, where the ring addition + is coefficient-wise addition and the ring multiplication
∗ is the usual convolution product. More precisely, let f, g ∈ F〈X〉 and let f(m) ∈ F denote
the coefficient of monomial m in polynomial f . Then we can write f =

∑
m f(m)m and

g =
∑

m g(m)m, and in the product polynomial fg for each monomial m we have

fg(m) =
∑

m1m2=m

f(m1)g(m2).

∗Institute of Mathematical Sciences, Chennai, India, email: arvind@imsc.res.in
†Vishwakarma Institute of Technology, Pune, India, email: joglekar.pushkar@gmail.com
‡Institute of Mathematical Sciences, Chennai, India, email: grattan@imsc.res.in

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 4 (2015)

The degree of a monomial m ∈ X∗ is the length of the monomial m, and the degree
deg f of a polynomial f ∈ F〈X〉 is the degree of a largest degree monomial in f with nonzero
coefficient. For polynomials f, g ∈ F〈X〉 we clearly have deg(fg) = deg f + deg g.

A nontrivial factorization of a polynomial f ∈ F〈X〉 is an expression of f as a product
f = gh of polynomials g, h ∈ F〈X〉 such that deg g > 0 and deg h > 0. A polynomial
f ∈ F〈X〉 is irreducible if it has no nontrivial factorization and is reducible otherwise. For
instance, all degree 1 polynomials in F〈X〉 are irreducible. Clearly, by repeated factorization
every polynomial in F〈X〉 can be expressed as a product of irreducibles.

In this paper we study the algorithmic complexity of polynomial factorization in the free
ring F〈X〉.

Polynomial Factorization Problem

The problem of polynomial factorization in the commutative polynomial ring F[x1, x2, . . . , xn]
is a classical well-studied problem in algorithmic complexity culminating in Kaltofen’s cele-
brated efficient factorization algorithm [Ka89]. Kaltofen’s algorithm builds on efficient algo-
rithms for univariate polynomial factorization; there are deterministic polynomial-time algo-
rithms over rationals and over fields of unary characteristic and randomized polynomial-time
over large characteristic fields (the textbook [GG] contains a comprehensive excellent treat-
ment of the subject). The basic idea in Kaltofen’s algorithm is essentially a randomized reduc-
tion from multivariate factorization to univariate factorization using Hilbert’s irreducibility
theorem. Thus, we can say that Kaltofen’s algorithm uses randomization in two ways: the
first is in the application of Hilbert’s irreducibility theorem, and the second is in dealing
with univariate polynomial factorization over fields of large characteristic. In a recent paper
Kopparty et al [KSS14] have shown that the first of these requirements of randomness can
be eliminated, assuming an efficient algorithm as subroutine for the problem of polynomial
identity testing for small degree polynomials given by circuits. More precisely, it is shown in
[KSS14] that over finite fields of unary characteristic (or over rationals) polynomial identity
testing is deterministic polynomial-time equivalent to multivariate polynomial factorization.

Thus, in the commutative setting it turns out that the complexity of multivariate poly-
nomial factorization is closely related to polynomial identity testing (whose deterministic
complexity is known to be related to proving superpolynomial size arithmetic circuit lower
bounds).

Noncommutative Polynomial Factorization

The study of noncommutative arithmetic computation was initiated by Nisan [N91] in which
he showed exponential size lower bounds for algebraic branching programs that compute the
noncommutative permanent or the noncommutative determinant. Noncommutative polyno-
mial identity testing was studied in [BW05, RS05]. In [BW05] a randomized polynomial
time algorithm is shown for identity testing of polynomial degree noncommutative arith-
metic circuits. For algebraic branching programs [RS05] give a deterministic polynomial-time
algorithm. Proving superpolynomial size lower bounds for noncommutative arithmetic cir-
cuits computing the noncommutative permanent is open. Likewise, obtaining a deterministic
polynomial-time identity test for polynomial degree noncommutative circuits is open.

In this context, it is interesting to ask if we can relate the complexity of noncommutative

2

factorization to noncommutative polynomial identity testing. However, there are various
mathematical issues that arise in the study of noncommutative polynomial factorization.

Unlike in the commutative setting, the noncommutative polynomial ring F〈X〉 is not a
unique factorization ring. A well-known example is the polynomial

xyx+ x

which has two factorizations: x(yx+ 1) and (xy+ 1)x. Both xy+ 1 and yx+ 1 are irreducible
polynomials in F〈X〉.

There is a detailed theory of factorization in noncommutative rings [Co85, Co]. We will
mention an interesting result on the structure of polynomial factorizations in the ring R =
F〈X〉.

Two elements a, b ∈ R are similar if there are elements a′, b′ ∈ R such that ab′ = a′b, and
(i) a and a′ do not have common nontrivial left factors, (ii) b and b′ do not have common
nontrivial right factors.

Among other results, Cohn [Co] has shown the following interesting theorem about fac-
torizations in the ring R = F〈X〉.

Theorem 1.1 (Cohn’s theorem) For a polynomial a ∈ F〈X〉 let

a = a1a2 . . . ar and a = b1b2 . . . bs

be any two factorizations of a into irreducible polynomials in F〈X〉. Then r = s, and there is
a permutation π of the indices {1, 2, . . . , r} such that ai and bπ(i) are similar polynomials for
1 ≤ i ≤ r.

For instance, consider the two factorizations of xyx+ x above. We note that polynomials
xy + 1 and yx + 1 are similar. It is easy to construct examples of degree d polynomials in
F〈X〉 that have 2Ω(d) distinct factorizations. Cohn [Co85] discusses a number of interesting
properties of factorizations in F〈X〉. But it is not clear how to algorithmically exploit these
to obtain an efficient algorithm in the general case.

Our Results

In this paper, we study some restricted cases of polynomial factorization in the ring F〈X〉
and prove the following results.

• We consider variable-disjoint factorization of polynomials in F〈X〉 into variable-disjoint
irreducibles. It turns out that such factorizations are unique and computing them is
polynomial-time equivalent to polynomial identity testing (for both noncommutative
arithmetic circuits and algebraic branching programs).

• It turns out that we can apply the algorithm for variable-disjoint factorization to two
special cases of factorization in F〈X〉: homogeneous polynomials and multilinear poly-
nomials. These polynomials do have unique factorizations and we obtain efficient algo-
rithms for computing them.

• We also study a natural polynomial decomposition problem for noncommutative poly-
nomials and obtain complexity results.

3

2 Variable-disjoint Factorization Problem

In this section we consider the problem of factorizing a noncommutative polynomial f ∈ F〈X〉
into variable disjoint factors.

For a polynomial f ∈ F〈X〉 let V ar(f) ⊆ X denote the set of all variables occurring in
nonzero monomials of f .

Definition 2.1 A nontrivial variable-disjoint factorization of a polynomial f ∈ F〈X〉 is a
factorization

f = gh

such that deg g > 0 and deg h > 0, and V ar(g) ∩ V ar(h) = ∅.
A polynomial f is variable-disjoint irreducible if does not have a nontrivial variable-

disjoint factorization.

Clearly, all irreducible polynomials are also variable-disjoint irreducible. But the converse
is not true. For instance, the familiar polynomial xyx + x is variable-disjoint irreducible
but not irreducible. Furthermore, all univariate polynomials in F〈X〉 are variable-disjoint
irreducible.

We will study the complexity of variable-disjoint factorization for noncommutative polyno-
mials. First of all, it is interesting that although we do not have the usual unique factorization
in the ring F〈X〉, we can prove that every polynomial in F〈X〉 has a unique variable-disjoint
factorization into variable-disjoint irreducible polynomials.1

We can exploit the properties we use to show uniqueness of variable-disjoint factorization
for computing the variable-disjoint factorization. Given f ∈ F〈X〉 as input by a noncommu-
tative arithmetic circuit the problem of computing arithmetic circuits for the variable-disjoint
irreducible factors of f is polynomial-time reducible to PIT for noncommutative arithmetic
circuits. An analogous result holds for f given by an algebraic branching programs (ABPs).
Hence, there is a deterministic polynomial-time algorithm for computing the variable-disjoint
factorization of f given by an ABP. Also in the case when the polynomial f ∈ F〈X〉 is
given as input by a black-box (appropriately defined) we give an efficient algorithm that gives
black-box access to each variable-disjoint irreducible factor of f .

Remark 2.2 Factorization of commutative polynomials into variable-disjoint factors is stud-
ied by Shpilka and Volkovich in [SV10]. They show a deterministic reduction to polynomial
identity testing. However, the techniques used in their paper are specific to commutative
rings, involving scalar substitutions, and do not appear useful in the noncommutative case.
Our techniques for factorization are simple, essentially based on computing left and right
partial derivatives of noncommutative polynomials given by circuits or branching programs.

2.1 Uniqueness of variable-disjoint factorization

Although the ring F〈X〉 is not a unique factorization domain we show that factorization into
variable-disjoint irreducible factors is unique.

For a polynomial f ∈ F〈X〉 let mon(f) denote the set of nonzero monomials occurring in
f .

1Uniqueness of the factors is upto scalar multiplication.

4

Lemma 2.3 Let f = gh such that V ar(g) ∩ V ar(h) = φ and |V ar(g)|, |V ar(h)| ≥ 1. Then

mon(f) = {mw|m ∈ mon(g), w ∈ mon(h)}.

Moreover, the coefficient of mw in f is the product of the coefficients of m in g and w in h.

Proof. Let m ∈ mon(g) and w ∈ mon(h). We will argue that the monomial mw is in mon(f)
and can be obtained in a unique way in the product gh. Namely, by multiplying m ∈ mon(g)
with w ∈ mon(h).

Assume to the contrary that for some u ∈ mon(g) and v ∈ mon(h), u 6= m we have
mw = uv. Note that m and u are words over V ar(g) and w, v are words over V ar(h).
Clearly, |m| 6= |u| because m 6= u. Without loss of generality, we assume that |u| > |m|. As
mw = uv, it follows that for some word s ∈ X∗, |s| > 0, we have u = ms and w = sv.

That implies V ar(s) ⊆ V ar(g) ∩ V ar(h) which contradicts variable disjointness of g and
h. �

Lemma 2.4 Let f = g.h and f = u.v be two nontrivial variable-disjoint factorizations of f .
That is,

V ar(g) ∩ V ar(h) = φ

V ar(u) ∩ V ar(v) = φ.

Then either V ar(g) ⊆ V ar(u) and V ar(h) ⊇ V ar(v) or V ar(u) ⊆ V ar(g) and V ar(v) ⊇
V ar(h).

Proof. Suppose to the contrary that x ∈ V ar(g) \ V ar(u) and y ∈ V ar(u) \ V ar(g). Let m
be any monomial of f in which variable y occurs, and let m = m1m2 such that m1 ∈ mon(g)
and m2 ∈ mon(h). Clearly, y must occur in m2. Similarly, for any monomial m′ of f in
which variable x occurs, if m′ = m′1m

′
2, for m′1 ∈ mon(g) and m′2 ∈ mon(h), then x must

occur in m′1. Thus, x ∈ V ar(g) and y ∈ V ar(h). Similarly, it also holds that y ∈ V ar(u) and
x ∈ V ar(v). Thus we have:

1. x ∈ V ar(g) and y ∈ V ar(h)

2. y ∈ V ar(u) and x ∈ V ar(v).

Hence, there are monomials of f in which both x and y occur. Furthermore, (1) above
implies that in each monomial of f containing both x and y, x always occurs before y. On
the other hand, (2) implies y occurs before x in each such monomial of f . This contradicts
our assumption. �

Lemma 2.5 Let f ∈ F〈X〉 and suppose f = gh and f = uv are two variable-disjoint factor-
izations of f such that V ar(g) = V ar(u). Then g = αu and h = βv for scalars α, β ∈ F.

Proof. As f = gh = uv are variable-disjoint factorizations, by Lemma 2.3 each monomial
m ∈ mon(f) is uniquely expressible as a product m = m1m2 for m1 ∈ mon(g) and m2 ∈
mon(h), and as a product m = m′1m

′
2 for m′1 ∈ mon(u) and m′2 ∈ mon(v).

5

As V ar(g) = V ar(u), we notice that V ar(h) = V ar(v), because V ar(f) = V ar(g)]
V ar(h) and V ar(f) = V ar(u)] V ar(v). Now, from m = m1m2 = m′1m

′
2 it immediately

follows that m1 = m′1 and m2 = m′2. Hence, mon(g) = mon(u) and mon(h) = mon(v).
Furthermore, if m is a monomial of maximum degree in g, by taking the left partial

derivative of f w.r.t. m we have
∂`f

∂m
= α′h = β′v,

where α′ and β′ are coefficient of m in g and u respectively. It follows that h = βv for
some β ∈ F. Similarly, by taking the right partial derivative of f w.r.t. a maximum degree
monomial in h we can see that g = αu for α ∈ F. �

We now prove the uniqueness of variable-disjoint factorizations in F〈X〉.

Theorem 2.6 Every polynomial in F〈X〉 has a unique variable-disjoint factorization as a
product of variable-disjoint irreducible factors, where the uniqueness is upto scalar multiples
of the irreducible factors.

Proof. We prove the theorem by induction on the degree d of polynomials in F〈X〉. The
base case d = 1 is obvious, since degree 1 polynomials are irreducible and hence also variable-
disjoint irreducible. Assume as induction hypothesis that the theorem holds for polynomials
of degree less than d. Let f ∈ F〈X〉 be a polynomial of degree d. If f is variable-disjoint
irreducible there is nothing to prove. Suppose f has nontrivial variable-disjoint factors. Let
f = gh be a nontrivial variable-disjoint factorization such that V ar(g) is minimum. Such
a factorization must exist because of Lemmas 2.3 and 2.4. Furthermore, the set V ar(g) is
uniquely defined and by Lemma 2.5 the left factor g is unique upto scalar multiples. Applying
induction hypothesis to the polynomial h now completes the induction step. �

2.2 Equivalence with PIT

Theorem 2.7 Let f ∈ F〈X〉 be a polynomial as input instance for variable-disjoint factor-
ization. Then

1. If f is input by an arithmetic circuit of degree d and size s there is a randomized
poly(s, d) time algorithm that factorizes f into variable-disjoint irreducible factors.

2. If f is input by an algebraic branching program there is a deterministic polynomial-time
algorithm that factorizes f into its variable-disjoint irreducible factors.

Proof. We first consider the most general case of the algorithm when f ∈ F〈X〉 is given by an
arithmetic circuit of polynomially bounded syntactic degree. The algorithm specializes to the
other cases too. The algorithm must compute an arithmetic circuit for each variable-disjoint
factor of f . We explain the polynomial-time reduction to Polynomial Identity Testing (PIT)
for noncommutative arithmetic circuits.

Let d = deg f which can be computed by first computing circuits for the polynomially
many homogeneous parts of f , and then using PIT as subroutine on each of them.

Next, we compute a monomial m ∈ mon(f) of maximum degree d with polynomially many
subroutine calls to PIT. The basic idea here is to do a prefix search for m. More precisely,

suppose we have computed a prefix m′ such that the left partial derivative ∂`f
∂m′ computes a

6

polynomial of degree d − |m′| then we extend m′ with the first variable xi ∈ X such that
∂`f
∂m′x computes a polynomial of degree d − |m′| − 1. Proceeding thus, we will compute the
lexicographically first monomial m ∈ mon(f) of degree d.

Now, starting with d1 = 1 we look at all factorizations m = m1.m2 of monomial m with
|m1| = d1.

Let h = ∂`f
∂m1

and g = ∂rf
∂m2

, circuits for which can be efficiently computed from the given
circuit for f . Let α, β and γ be the coefficients of m in f , m1 in g, and m2 in h, respectively
(which can be computed in deterministic polynomial time [AMS10]).

Next we compute V ar(g) and V ar(h). Notice that xi 6∈ V ar(g) if and only if g and g|xi=0

are not identical polynomials. Thus, we can easily determine V ar(g) and V ar(h) with n
subroutine calls to PIT.

Clearly, if V ar(g) ∩ V ar(h) 6= ∅ then we do not have a candidate variable-disjoint factor-
ization that splits m as m1m2 and we continue with incrementing the value of d1. Else, we
check if

f =
α

βγ
gh, (1)

with a subroutine call to PIT. If f = α
βγ gh then α

βγ g is the unique leftmost variable-
disjoint irreducible factor of f(upto scalar multiplication), and we continue the computation.
Otherwise, we continue the search with incrementing the value of d1.

In the general step, suppose we have already computed f = g1g2 . . . gihi, where g1, g2, . . . , gi
are the successive variable-disjoint irreducible factors from the left. There will be a corre-
sponding factorization of the monomial m as

m = m1m2 . . .mim
′
i

where mj occurs in gj , 1 ≤ j ≤ i and m′i occurs in hi. Notice that the polynomial

hi = ∂`f
∂m1m2...mi

can be computed by a small noncommutative arithmetic circuit obtained
from f by partial derivatives. This describes the overall algorithm proving that variable-
disjoint factorization of f is deterministic polynomial-time reducible to PIT when f is given
by arithmetic circuits. The algorithm outputs arithmetic circuits for each of the variable-
disjoint irreducible factors of f .

We note that the algorithm specializes to the case when f is given by an ABP. The
variable-disjoint irreducible factors are computed by ABPs in this case.

Finally, to complete the proof we note that in the case of noncommutative arithmetic cir-
cuits of polynomial degree there is a randomized polynomial time PIT algorithm [BW05]. For
polynomials given as ABPs, there is a deterministic polynomial-time PIT algorithm [RS05].

�

Next we consider variable-disjoint factorization of polynomials input in sparse representa-
tion and show that the problem is solvable in deterministic logspace (even by constant-depth
circuits). Recall that AC0 circuits mean a family of circuits {Cn}, where Cn for length
n inputs, such that Cn has polynomially bounded size and constant-depth and is allowed
unbounded fanin AND and OR gates. The class of TC0 circuits is similarly defined, but
is additionally allowed unbounded fanin majority gates. The logspace uniformity condition
means that there is a logspace transducer that outputs Cn on input 1n for each n.

Theorem 2.8 Let f ∈ F〈X〉 be a polynomial input instance for variable-disjoint factorization
given in sparse representation.

7

(a) When F is a fixed finite field the variable-disjoint factorization is computable in deter-
ministic logspace (more precisely, even by logspace-uniform AC0 circuits).

(b) When F is the field of rationals the variable-disjoint factorization is computable in de-
terministic logspace (even by logspace-uniform TC0 circuits).

Proof. We briefly sketch the simple circuit constructions. Let us first consider the case when
F is a fixed finite field. The idea behind the AC0 circuit for it is to try all pairs of indices
1 ≤ a < b < d in parallel and check if f has an irreducible factor of degree b−a+ 1 located in
the (a, b) range. More precisely, we will check in parallel for a variable-disjoint factorization
f = g1g2g3, where g1 is of degree a− 1, g2 is variable-disjoint irreducible of degree b− a+ 1,
and g3 is of degree d− b. If such a factorization exists then we will compute the unique (upto
scalar multiples) irreducible polynomial g3 located in the (a, b) range of degrees.

In order to carry out this computation, we take a highest degree nonzero monomial m of
f and factor it as m = m1m2m3, where m2 is located in the (a, b) range of m. Clearly, the
polynomial

∂`

∂m1

(
∂rf

∂m3

)
has to be g2 upto a scalar multiple. Likewise, ∂`f

∂m1m2
is g3 and ∂rf

∂m2m3
is g1 upto scalar

multiples. Since f is given in sparse representation, we can compute these partial derivatives
for each monomial in parallel in constant depth.

We can then check using a polynomial size constant-depth circuit if f = g1g2g3 upto an
overall scalar multiple (since we have assumed F is a constant size finite field). For a given a,
the least b for which such a factorization occurs will give us the variable-disjoint irreducible
factor located in the (a, b) range. For each a < d we can carry out this logspace computation
looking for the variable-disjoint irreducible factor (if there is one) located at (a, b) range for
some b > a.

In this manner, the entire constant-depth circuit computation will output all variable-
disjoint irreducible factors of f from left to right. This concludes the proof for the constant
size finite field case.

Over the field of rationals, we use the same approach as above. The problem of checking
if f = g1g2g3 upto an overall scalar multiple will require integer multiplication of a constant
number of integers. This can be carried out by a constant-depth threshold circuit. This gives
the TC0 upper bound. �

We now observe that PIT for noncommutative arithmetic circuits is also deterministic
polynomial-time reducible to variable-disjoint factorization, making the problems polynomial-
time equivalent.

Theorem 2.9 Polynomial identity testing for noncommutative polynomials f ∈ F〈X〉 given
by arithmetic circuits (of polynomial degree) is deterministic polynomial-time equivalent to
variable-disjoint factorization of polynomials given by noncommutative arithmetic circuits.

Proof. Clearly proof of Theorem 2.7 gives a reduction from variable-disjoint factorization
to PIT. To see the other direction, let f ∈ F〈X〉 and y, z 6∈ X be two new variables. We
observe that the polynomial f ∈ F〈X〉 is identically zero iff the polynomial f + y.z has a
nontrivial variable-disjoint factorization. This gives a reduction from PIT to variable-disjoint
factorization. �

8

2.3 Black-Box Variable-Disjoint Factorization Algorithm

In this subsection we give an algorithm for variable-disjoint factorization when the input
polynomial f ∈ F〈X〉 is given by black-box access. We explain the black-box model below:

In this model, the polynomial f ∈ F〈X〉 can be evaluated on any n-tuple of matrices
(M1,M2, . . . ,Mn) where each Mi is a t× t matrix over F (or a suitable extension field of F)
and get the resulting t× t matrix f(M1,M2, . . . ,Mn) as output.

The algorithm for black-box variable-disjoint factorization takes as input such a black-box
access for f and outputs black-boxes for each variable-disjoint irreducible factor of f . More
precisely, the factorization algorithm, on input i, makes calls to the black-box for f and works
as black-box for the ith variable-disjoint irreducible factor of f , for each i.

The efficiency of the algorithm is measured in terms of the number of calls to the black-box
and the size t of the matrices. In this section we will design a variable disjoint factorization
algorithm that makes polynomially many black-box queries to f on matrices of polynomially
bounded dimension. We state the theorem formally and then prove it in the rest of this
section.

Theorem 2.10 Suppose f ∈ F〈X〉 is a polynomial of degree bounded by D, given as input
via black-box access. Let f = f1f2 . . . fr be the variable-disjoint factorization of f . Then there
is a polynomial-time algorithm that, on input i, computes black-box access to the ith factor fi.

Proof. In the proof we sketch the algorithm to give an overview. We then explain the
main technical parts in the next two lemmas. The black-box algorithm closely follows the
white-box algorithm already described in the first part of this section. The main steps of the
algorithm are:

1. We compute a nonzero monomial m of highest degree d ≤ D in f by making black-box
queries to f . We can also compute the coefficient f(m) of m by making black-box
queries to f .

2. Then we compute the factorization of this monomial

m = m1m2 . . .mr

which, as in the white-box case, is precisely how the monomial m factorizes according
to the unique variable-disjoint factorization f = f1f2 . . . fr of f (that is mi ∈ mon(fi)).

3. In order to find this factorization of the monomial m, it suffices to compute all factor-

izations m = m′m′′ of m such that f = (∂
`f

∂m′)(
∂rf
∂m′′) is a variable disjoint factorization

(this is done using Equation 1, exactly as in the proof of Theorem 2.7).

Finding all such factorizations will allow us to compute the mi. However, since we have
only black-box access to f we will achieve this by creating and working with black-box access

to the partial derivatives ∂`f
∂m′ and ∂rf

∂m′′) for each factorization m = m′m′′. We explain the
entire procedure in detail.

Starting with d1 = 1 we look at all factorizationsm = m′m′′ of monomialm with |m′| = d1.

Suppose we have computed black-boxes for h = ∂`f
∂m′ and g = ∂rf

∂m′′ . Let α, β and γ be the
coefficients of m in f , m′ in g, and m′′ in h, which can be computed using black-box queries
to f , g and h, respectively.

9

Next we compute V ar(g) and V ar(h). Notice that xi 6∈ V ar(g) if and only if g and g|xi=0

are not identical polynomials. This amounts to performing PIT with black-box access to g.
Thus, we can easily determine V ar(g) and V ar(h) by appropriately using black-box PIT.

Clearly, if V ar(g) ∩ V ar(h) 6= ∅ then we do not have a candidate variable-disjoint factor-
ization that splits m as m1m2 and we continue with incrementing the value of d1. Else, we
check if

f =
α

βγ
gh, (2)

with a subroutine call to PIT (like Equation 1 in Theorem 2.7). If f = α
βγ gh then α

βγ g is
the unique leftmost variable-disjoint irreducible factor of f (upto scalar multiplication), and
we continue the computation. Otherwise, we continue the search with incrementing the value
of d1.

Suppose we have computed the monomial factorization m = m1m2 . . .mim
′
i. There is a

corresponding factorization of f as f = f1f2 . . . fihi, where f1, f2, . . . , fi are the successive
variable-disjoint irreducible factors from the left, and mj occurs in fj , 1 ≤ j ≤ i and m′i
occurs in hi. Then we have black-box access to hi = ∂`f

∂m1m2...mi
and we can find its leftmost

irreducible variable-disjoint factor as explained above. This completes the overall algorithm
sketch for efficiently computing black-boxes for the irreducible variable-disjoint factors of f
given by black-box. �

Remark 2.11 The variable-disjoint irreducible factors of f are unique only upto scalar mul-
tiples. However, we note that the algorithm in Theorem 2.10 computes as black-box some
fixed scalar multiple for each variable-disjoint irreducible factor fi. Since we can compute the
coefficient of the monomial m in f (where m is computed in the proof of Theorem 2.10), we
can even ensure that the product f1f2 . . . fr equals f by appropriate scaling.

Lemma 2.12 Given a polynomial f of degree d with black-box access, we can compute a
degree-d nonzero monomial of f , if it exists, with at most nd calls to the black-box on (D +
1)2d× (D + 1)2d matrices.

Proof. Similar to the white-box case, we will do a prefix search for a nonzero degree-d
monomial m. We explain the matrix-valued queries we will make to the black-box for f in
two stages. In the first stage the query matrices will have the noncommuting variables from
X as entries. In the second stage, which we will actually use to query f , we will substitute
matrices (with scalar entries) for the variables occurring in the query matrices.

In order to check if there is a non-zero degree d monomial in f with xi as first variable,
we evaluate f on (D + 1)× (D + 1) matrices X1, . . . , Xn defined as follows.

X1 =



0 1 0 . . . 0
... 0 x1

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . 0 x1

0 0



10

and for i > 1,

Xi =



0 0 0
... 0 xi

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . 0 xi
0 0


.

Therefore, f(X1, . . . , Xn) is a (D+1)×(D+1) matrix with entries in F〈X〉. In particular,
by our choice of the matrices above, the (1, d+ 1)th entry of f(X1, . . . , Xn) will precisely be
∂`fd
∂x1

, where fd is the degree d homogeneous part of f . To check if ∂`fd
∂x1

is nonzero, we can
substitute random t×t matrices for each variable xi occurring in the matrices Xi and evaluate
f to obtain a ((D + 1)t) × ((D + 1)t) matrix. In this matrix (1, d + 1)th block of size t × t
will be nonzero with high probability for t = 2d [BW05]. In general, suppose m′ is a degree
d monomial that is nonzero in f . We search for the first variable xi such that m′xi is a

prefix of some degree d nonzero monomial by similarly creating black-box access to ∂`fd
∂m′xi

and then substituting random t × t matrices for the variables and evaluating f to obtain
a ((D + 1)t) × ((D + 1)t) matrix. The (1, d + 1)th block of size t × t is nonzero with high
probability [BW05] if m′xi is a prefix for some nonzero degree d monomial. Continuing thus,
we can obtain a nonzero monomial of highest degree d in f . �

We now describe an efficient algorithm that creates black box access for left and right
partial derivatives of f w.r.t. monomials. Let m ∈ X∗ be a monomial. We recall that the left

partial derivative ∂`f
∂m of f w.r.t. m is the polynomial

∂`f

∂m
=

∑
f(mm′) 6=0

f(mm′)m′.

Similarly, the right partial derivative ∂rf
∂m of f w.r.t. m is the polynomial

∂rf

∂m
=

∑
f(m′m)6=0

f(m′m)m′.

Lemma 2.13 Given a polynomial f of degree d with black-box access, there are efficient

algorithms that give black-box access to the polynomials ∂`f
∂m1

, ∂rf
∂m2

for any monomials m1,m2 ∈
X∗. Furthermore, there is also an efficient algorithm giving black-box access to the polynomial
∂`

∂m1

(
∂rf
∂m2

)
.

Proof. Given the polynomial f and a monomial m1, we first show how to create black-box

access to ∂`f
∂m1

. Let the monomial m1 be xi1 . . . xik . Define matrices X1, . . . , Xn as follows:

11

Xi =



0 Ti[1] 0 . . . 0 0
... 0 Ti[2]

. . .
. . .

... . . .
...

...
. . . 0 Ti[k] 0 0

0 0 xi 0
...

... 0 xi 0 0
...

...
...

. . .
. . .

...
...

...
...

. . .
. . . xi

0 0 0 0


.

For 1 ≤ r ≤ k, the entry Ti[r] = 1 if xir = xi and Ti[r] = 0 otherwise.

The black-box access to ∂`f
∂m1

on input matrices M1, . . . ,Mn of size t × t can be created

as follows. Note that in the (D + 1) × (D + 1) matrix f(X1, . . . , Xn), the (1, j + 1)th lo-

cation contains
∂`fj
∂m1

, where fj is the degree jth homogeneous part of f . Now, suppose for
each variable xi in the matrix Xi we substitute a t × t scalar-entry matrix Mi and compute
the resulting f(X1, . . . , Xn) which is now a (D + 1) × (D + 1) block matrix whose entries
are t × t scalar-entry matrices. Then the block matrix located at the (1, j + 1)st entry for

j ∈ {2, . . . , d+1} is the evaluation of
∂`fj
∂m1

on M1, . . . ,Mn. We output the sum of these matrix
entries over 2 ≤ j ≤ d+ 1 as the black-box output.

Next, we show how to create black-box access to ∂rf
∂m2

. Let the monomialm2 = xi1xi2 . . . xik .

We will define matrices X
(j)
i for i ∈ [n], j ∈ {k, k + 1 . . . , D} as follows:

X
(j)
i =



0 xi 0 . . . 0 0
...

...
. . .

. . .
...

...
...

. . . 0 xi 0 0

0 0 Ti[1] 0
...

... 0 Ti[2] 0 0
...

...
...

. . .
. . .

...
...

...
...

. . .
. . . Ti[k]

0 0 0 0


.

The matrix X
(j)
i is a (j + 1)× (j + 1) matrix where, in the figure above the top left block

is of dimension (j − k)× (j − k + 1). Here Ti[r] = 1 if xir = xi and Ti[r] = 0 otherwise.

Finally, define the block diagonal matrix Xi = diag(X
(k)
i , . . . , X

(D)
i).

We now describe the black-box access to ∂rf
∂m2

. Let xi ← Mi be the input assignment of

t × t matrices Mi to the variables xi. This results in matrices X̂i, 1 ≤ i ≤ n, where X̂i is
obtained from Xi by replacing xi by Mi.

The query f(X̂1, X̂2, . . . , X̂n) to f gives a block diagonal matrix diag(Nk, Nk+1, . . . , ND).
Here the matrix Nj is a (j + 1) × (j + 1) block matrix with entries that are t × t matrices

(over F). The (1, j + 1)th block in Nj is
∂rfj
∂m2

evaluated at M1,M2, . . . ,Mn.

12

Hence the sum of the (1, j + 1)th blocks of the different Nj , k ≤ k ≤ D gives the desired

black-box access to
∂rfj
∂m2

.
�

3 Factorization of Multilinear and Homogeneous Polynomials

In this section we briefly discuss two interesting special cases of the standard factorization
problem for polynomials in F〈X〉. Namely, the factorization of multilinear polynomials and
the factorization of homogeneous polynomials. It turns out, as we show, that factorization
of multilinear polynomials coincides with their variable-disjoint factorization. In the case of
homogeneous polynomials, it turns out that by renaming variables we can reduce the problem
to variable-disjoint factorization.

In summary, multilinear polynomials as well as homogeneous polynomials have unique
factorizations in F〈X〉, and by the results of the previous section these can be efficiently
computed.

A polynomial f ∈ F〈X〉 is multilinear if in every nonzero monomial of f every variable inX
occurs at most once. We begin by observing some properties of multilinear polynomials. Let
Var(f) denote the set of all indeterminates from X which appear in some nonzero monomial
of f .

It turns out that factorization and variable-disjoint factorization of multilinear polynomials
coincide.

Lemma 3.1 Let f ∈ F〈X〉 be a multilinear polynomial and f = gh be any nontrivial factor-
ization of f . Then, V ar(g) ∩ V ar(h) = ∅.

Proof. Suppose xi ∈ V ar(g) ∩ V ar(h) for some xi ∈ X. Let m1 be a monomial in g of
maximal degree which also has the indeterminate xi occurring in it. Similarly, let monomial
m2 be of maximal degree in h with xi occurring in it. The product monomial m1m2 is not
multilinear and it cannot be nonzero in f . This monomial must therefore be cancelled in
the product gh, which means there are nonzero monomials m′1 of g and m′2 of h such that
m1m2 = m′1m

′
2. Since deg(m′1) ≤ deg(m1) and deg(m′2) ≤ deg(m2) the only possibility is that

m1 = m′1 and m2 = m′2 which means the product monomial m1m2 has a nonzero coefficient
in f , contradicting the multilinearity of f . This completes the proof. �

Thus, by Theorem 2.6 multilinear polynomials in F〈X〉 have unique factorization. Further-
more, the algorithms described in Section 2.2 can be applied to efficiently factorize multilinear
polynomials.

We now briefly consider factorization of homogeneous polynomials in F〈X〉.

Definition 3.2 A polynomial f ∈ F〈X〉 is said to be homogeneous of degree d if every
nonzero monomial of f is of degree d.

Homogeneous polynomials do have the unique factorization property. This is attributed to
J.H. Davenport in [Ca10]. However, we argue this by reducing the problem to variable-disjoint
factorization.

Given a degree-d homogeneous polynomial f ∈ F〈X〉, we apply the following simple
transformation to f : For each variable xi ∈ X we introduce d variables xi1, xi2, . . . , xid. For

13

each monomial m ∈ mon(f), we replace the occurrence of variable xi in the jth position of m
by variable xij . The new polynomial f ′ is in F〈{xij}〉. The crucial property of homogeneous
polynomials we use is that for any factorization f = gh both g and h must be homogeneous.

Lemma 3.3 Let f ∈ F〈X〉 be a homogeneous degree d polynomial and f ′ be the polynomial
in F〈{xij}〉 obtained as above. Then

• The polynomial f ′ is variable-disjoint irreducible iff f is irreducible.

• If f ′ = g′1g
′
2 . . . g

′
t is the variable-disjoint factorization of f ′, where each g′k is variable-

disjoint irreducible then, correspondingly f = g1g2 . . . gt is a factorization of f into
irreducibles gk, where gk is obtained from g′k by replacing each variable xij in g′k by xi.

Proof. The first part follows because if f is reducible and f = gh then f ′ = g′h′, where g′ is
obtained from g by replacing the variables xi by xij , and h′ is obtained from h by replacing
the variables xi by xi,j+s, where s = deg g.

For the second part, consider the product g1g2 . . . gt. As all the factors gk are homogeneous,
it follows that each gk is irreducible for otherwise gk is not variable disjoint irreducible.
Furthermore, any monomial m in g1g2 . . . gt can be uniquely expressed as m = m1m2 . . .mt,
where mk ∈ mon(gk) for each k. Thus, for each i and j, replacing the jth occurrence of xi by
xij in the product g1g2 . . . gt will give us f ′ again. Hence g1g2 . . . gt is f . �

It follows easily that factorization of homogeneous polynomials is reducible to variable-
disjoint factorization and we can solve it efficiently using Theorems 2.7 and 2.8, depending
on how the polynomial is input. We summarize this formally.

Theorem 3.4 Homogeneous polynomials f ∈ F〈X〉 have unique factorizations into irre-
ducible polynomials. Moreover, this factorization can be efficiently computed:

• Computing the factorization of a homogeneous polynomial f given by an arithmetic cir-
cuit of polynomial degree is polynomial-time reducible to computing the variable-disjoint
factorization of a polynomial given by an arithmetic circuit.

• Factorization of f given by an ABP is constant-depth reducible to variable-disjoint fac-
torization of polynomials given by ABPs.

• Factorization of f given in sparse representation is constant-depth reducible to variable-
disjoint factorization of polynomials given by sparse representation.

4 A Polynomial Decomposition Problem

Given a degree d homogeneous noncommutative polynomial f ∈ F〈X〉, a number k in unary
as input we consider the following decomposition problem, denoted by SOP (for sum of
products decomposition):

Does f admit a decomposition of the form

f = g1h1 + · · ·+ gkhk?

where each gi ∈ F〈X〉 is a homogeneous polynomial of degree d1 and each hi ∈ F〈X〉 is
a homogeneous polynomial of degree d2. Notice that this problem is a generalization of
homogeneous polynomial factorization. Indeed, homogeneous factorization is simply the case
when k = 1.

14

Remark 4.1 As mentioned in [Ar14], it is interesting to note that for commutative polyno-
mials the complexity of SOP is open even in the case k = 2. However, when f is of constant
degree then it can be solved efficiently by applying a very general algorithm [Ar14] based on a
regularity lemma for polynomials.

When the input polynomial f is given by an arithmetic circuit, we show that SOP is in
MA ∩ coNP. On the other hand, when f is given by an algebraic branching program then
SOP can be solved in deterministic polynomial time by some well-known techniques (we can
even compute ABPs for the gi and hi for the minimum k).

Theorem 4.2 Suppose a degree d homogeneous noncommutative polynomial f ∈ F〈X〉, and
positive integer k encoded in unary are the input to SOP:

(a) If f is given by a polynomial degree arithmetic circuit then SOP is in MA ∩ coNP.

(b) If f is given by an algebraic branching program then SOP is in deterministic polynomial
time (even in randomized NC2).

(c) If f is given in the sparse representation then SOP is equivalent to the problem of
checking if the rank of a given matrix is at most k. In particular, if F is the field of
rationals, SOP is complete for the complexity class C=L.2

We first focus on proving part (a) of the theorem. If (f, k) is a “yes” instance to SOP,
then we claim that there exist small arithmetic circuits for the polynomials gi, hi, i ∈ [k].

We define the partial derivative matrix Af for the polynomial f as follows. The rows of
Af are indexed by degree d1 monomials and the columns of Af by degree d2 monomials (over
variables in X). For the row labeled m and column labeled m′, the entry Am,m′ is defined as

Am,m′ = f(mm′).

The key to analyzing the decomposition of f is the rank of the matrix Af .

Claim 4.3 Let f ∈ F〈X〉 be a homogeneous degree d polynomial.

(a) Then f can be decomposed as f = g1h1 + · · · + gkhk for homogeneous degree d1 poly-
nomials gi and homogeneous degree d2 polynomials hi if and only if the rank of Af is
bounded by k.

(b) Furthermore, if f is computed by a noncommutative arithmetic circuit C then if the
rank of Af is bounded by k there exist polynomials gi, hi ∈ F〈X〉, i ∈ [k], such that
f = g1h1 + · · ·+ gkhk, where gi and hi have noncommutative arithmetic circuits of size
poly(|C|, n, k) satisfying the above conditions.

Proof of Claim 4.3.
For a homogeneous degree d1 polynomial g let ḡ denote its coefficient column vector

whose rows are indexed by degree d1 monomials exactly as the rows of Af . Similarly, for a
homogeneous degree d2 polynomial h there is a coefficient row vector [̄h with columns indexed
by degree d2 monomials (as the columns of Af).

2The logspace counting class C=L captures the complexity of matrix rank over rationals [ABO99].

15

Observe that if f can be decomposed as the sum of products f = g1h1 + · · ·+ gkhk, where
each gi is degree d1 homogeneous and each hi is degree d2 homogeneous then the matrix Af
can be decomposed into a sum of k rank-one matrices:

Af = ḡ1h̄1
T

+ · · ·+ ḡkh̄k
T
.

It follows that the rank of Af is bounded by k. Conversely, if the rank of Af is k then Af
can be written as the sum of k rank 1 matrices. Since each rank one matrix is of the form ḡh̄T ,
we obtain an expression as above which implies the decomposition of f as g1h1 + · · ·+ gkhk.

Now, if the rank of Af is k then there are degree d1 monomials m1, . . . ,mk and degree
d2 monomials m′1, . . . ,m

′
k such that the k × k minor of Af corresponding to these rows and

columns is an invertible matrix K. W.l.o.g, we can write the p× q matrix Af as(
K ∆2

∆1 J

)
for suitable matrices ∆1,∆2, J . Moreover, since Af is rank k, we can row-reduce to obtain(

I O
−∆1K

−1 I

)(
K ∆2

∆1 J

)
=

(
K ∆2

O O

)
and column reduce to obtain(

I O
−∆1K

−1 I

)(
K ∆2

∆1 J

)(
I −K−1∆2

O I

)
=

(
K O
O O

)
It is easy to verify that this yields the following factorization for Af = UIkV

Af =

(
K O
∆1 I

)(
I O
O O

)(
I K−1∆2

O I

)
Since we can write Ik as the sum e1e

′T
1 + · · · + eke

′T
k for standard basis vectors of suitable

dimensions, we can express Af as the sum of k rank-one matrices (Uei)(e
′T
i V). We observe

that the column vector Uei is the ith column of matrix U , which is identical to the ith

column of matrix Af . Therefore, the polynomial represented by this vector corresponds
to the partial derivative of f w.r.t the monomial mi, which can computed by a circuit of
desired size. Similarly, any row vector e′Ti V is the ith row of matrix V , which is identical to
the ith row of matrix Af , scaled by the transformation K−1. Moreover, the entries of K−1

are efficiently computable, and have size bounded by polynomial in the input size for the
fields of our interest. Therefore, the polynomial represented by this vector corresponds to a
linear combination of the partial derivatives of f w.r.t the monomials m′1, . . . ,m

′
k, which can

computed by a circuit of desired size. Therefore, there exist polynomials gi, hi for i ∈ [k]
which satisfy the conditions of the second part of the claim. �

Proof of Theorem 4.2.

Part (a). We first show that SOP is in MA. Given as input polynomial f ∈ F〈X〉 by
an arithmetic circuit, the MA protocol works as follows. Merlin sends the description of
arithmetic circuits for the polynomials gi, hi, 1 ≤ i ≤ k. By the second part of Claim 4.3, this
message is polynomial sized as the polynomials gi and gi have circuits of size poly(|C|, n, k).

16

Arthur verifies that f = g1h1 + g2h2 + · · · + gkhk using a randomized noncommutative PIT
algorithm with suitable success probability. This establishes the MA upper bound.

Next, we show that the complement problem SOP is in NP. I.e. given as input a polyno-
mial f ∈ F〈X〉 such that f is not in SOP, we show that there is a poly(|C|, n, k)-sized proof,
verifiable in polynomial time, that f cannot be written as f = g1h1 + · · ·+ gkhk. It suffices to
exhibit a short proof of the fact that the rank of matrix Af is at least k+1. This can be done
by listing k + 1 degree d1 monomials m1, . . . ,mk+1 and degree d2 monomials m′1, . . . ,m

′
k+1

such that the (k + 1)× (k + 1) minor of Af indexed by these monomials has full rank. This
condition can be checked in polynomial time by verifying the determinant of the minor to be
non-zero.

Part (b). When the polynomial is given as an ABP P , we sketch the simple polynomial-time
algorithm for SOP.

Our goal is to compute a decomposition

f = g1h1 + · · ·+ gkhk (3)

for minimum k, where deg(gi) = d1 and deg(hi) = d2. In order to compute this decom-
position, we can suitably adapt the multiplicity automaton learning algorithm of Beimel et
al [BB+00]. We can consider the input homogeneous degree-d polynomial f ∈ F〈X〉 as a
function f : Xd → F, where f(m) is the coefficient of m in the polynomial f . The learn-
ing algorithm works in Angluin’s model. More precisely, when given black-box access to the
function f(m) for monomial queries m, it uses equivalence queries with counterexamples and
learns the minimum size ABP computing f in polynomial time. Given a hypothesis ABP
P ′ for f , we can simulate the equivalence queries and finding a counterexample by using the
Raz-Shpilka PIT algorithm [RS05] on P − P ′. The minimized ABP that is finally output by
the learning algorithm will have the optimal number of nodes at each layer. In particular,
layer d1 will have the minimum number of nodes k which will give the decomposition in
Equation 3. Furthermore, the ABPs for the polynomials gi and hi can also be immediately
obtained from the minimum size ABP.

Part (c). When the polynomial f ∈ F〈X〉 is given in sparse representation, we can explicitly
write down the partial derivative matrix Af and check its rank. Moreover, we can even
compute the decomposition by computing a rank-one decomposition of the partial derivative
matrix. The equivalence arises from the fact that the rank of a matrix A is equal to the
minimum number of summands in the decomposition of the noncommutative polynomial∑
i,j∈[n]

aijxixj as a sum of products of homogeneous linear forms.

�

An NP-hard decomposition problem

We now briefly discuss a generalization of SOP. Given a polynomial f ∈ F〈X〉 as input
along with k in unary, can we decompose it as a k-sum of products of three homogeneous
polynomials:

f = a1b1c1 + a2b2c2 + · · ·+ akbkck,

where each ai is degree d1, each bi is degree d2, and each ci is degree d3?

17

It turns out that even in the simplest case when f is a cubic polynomial and the ai, bi, ci
are all homogeneous linear forms, this problem is NP-hard. The tensor rank problem: given
a 3-dimensional tensor Aijk, 1 ≤ i, j, k ≤ n checking if the tensor rank of A is bounded by
k, which is known to be NP-hard [Has90] is easily shown to be polynomial-time reducible to
this decomposition problem.

Indeed, we can encode a three-dimensional tensor Aijk as a homogeneous cubic noncom-
mutative polynomial f =

∑
i,j,k∈[n]Aijkxiyjzk, such that any summand in the decomposition,

which is product of three homogeneous linear forms, corresponds to a rank-one tensor. This
allows us to test whether a tensor can be decomposed into at most k rank-one tensors, which
is equivalent to testing whether the rank of the tensor is at most k.

5 Concluding Remarks and Open Problems

The main open problem is the complexity of noncommutative polynomial factorization in the
general case. Even when the input polynomial f ∈ F〈X〉 is given in sparse representation
we do not have an efficient algorithm nor any nontrivial complexity-theoretic upper bound.
Although polynomials in F〈X〉 do not have unique factorization, there is interesting structure
to the factorizations [Co85, Co] which can perhaps be exploited to obtain efficient algorithms.

In the case of irreducibility testing of polynomials in F〈X〉 we have the following obser-
vation that contrasts it with commutative polynomials. Let F be a fixed finite field. We note
that checking if f ∈ F〈X〉 given in sparse representation is irreducible is in coNP. To see this,
suppose f is s-sparse of degree D. If f is reducible and f = gh is any factorization then
each monomial in g or h is either a prefix or a suffix of some monomial of f . Hence, both g
and h are sD-sparse polynomials. An NP machine can guess g and h (since coefficients are
constant-sized) and we can verify if f = gh in deterministic polynomial time.

On the other hand, it is an interesting contrast to note that given an s-sparse polynomial f
in the commutative ring F[x1, x2, . . . , xn] we do not know if checking irreducibility is in coNP.
However, checking irreducibility is known to be in RP (randomized polynomial time with one
sided-error) as a consequence of the Hilbert irreducibility criterion [Ka89]. If the polynomial
f is irreducible, then if we assign random values from a suitably large extension field of F
to variables x2, . . . , xn (say, xi ← ri) the resulting univariate polynomial f(x1, r2, . . . , rn) is
irreducible with high probability.

Another interesting open problem that seems closely related to noncommutative sparse
polynomial factorization is the problem of finite language factorization [SY00]. Given as
input a finite list of words L = {w1, w2, . . . , ws} over the alphabet X the problem is to
check if we can factorize L as L = L1L2, where L1 and L2 are finite sets of words over X
and L1L2 consists of all strings uv for u ∈ L1 and v ∈ L2. This problem can be seen as
noncommutative sparse polynomial factorization problem where the coefficients come from
the Boolean ring {0, 1}. No efficient algorithm is known for this problem in general, neither
is any nontrivial complexity bound known for it [SY00]. On the other hand, analogous to
factorization in F〈X〉, we can solve it efficiently when L is homogeneous (i.e. all words in L
are of the same length). Factorizing L as L1L2, where L1 and L2 are variable-disjoint can
also be efficiently done by adapting our approach from Section 2. It would be interesting if
we can relate language factorization to sparse polynomial factorization in F〈X〉 for a field F.
Is one efficiently reducible to the other?

18

References

[ABO99] E. Allender, R. Beals, M. Ogihara, The complexity of matrix rank and fea-
sible systems of linear equations. Computational Complexity, 8:2, 99-126, 1999.

[Ar14] Arnab Bhattacharya, Polynomial Decompositions in Polynomial Time. Proceed-
ings of the ESA Conference, pages 125-136, 2014.

[AMS10] V. Arvind, P. Mukhopadhyay, S. Srinivasan, New Results on Noncommuta-
tive and Commutative Polynomial Identity Testing. Computational Complexity, 19(4):521-
558 (2010).

[BB+00] A. Beimel, F. Bergadano, N.q H. Bshouty, E. Kushilevitz, S. Varric-
chio, Learning functions represented as multiplicity automata. Journal of the ACM, 47(3):
506-530 (2000).

[BW05] A. Bogdanov, H. Wee More on Noncommutative Polynomial Identity Testing In
Proc. of 20th Annual Conference on Computational Complexity, 92-99, 2005.

[Ca10] F. Caruso, Factorization of Noncommutative Polynomials, CoRR abs/1002.3180,
2010.

[Co85] P. M. Cohn, Free rings and their relations, Academic Press, London Mathematical
Society Monograph No. 19, 1985.

[Co] P. M. Cohn, Noncommutative unique factorization domains, Transactions of the Amer-
ican Math. Society, 313-331: 109 (1963).

[GG] J. Gathen, J. Gerhard, Modern Computer Algebra 2nd edition, Cambridge Univer-
sity Press.

[Has90] Johan Hastad, Tensor rank is NP-complete. Journal of Algorithms, 11(4):644-
654,1990.

[Ka89] E. Kaltofen, Factorization of Polynomials given by straight-line programs, Ran-
domness in Computation, vol. 5 of Advances in Computing Research, 375-412, 1989.

[KT90] E. Kaltofen and B. Trager, Computing with polynomials given by black-boxes
for their evaluations: Greatest common divisors, factorization, separation of numerators
and denominators. J. Symbolic Comput., 9(3):301-320, 1990.

[KSS14] S. Kopparty, S. Saraf, A. Shpilka,Equivalence of Polynomial Identity Test-
ing and Deterministic Multivariate Polynomial, Electronic Colloquium on Computational
Complexity (ECCC) 21:1, 2014.

[N91] N. Nisan, Lower bounds for noncommutative computation In Proc. of 23rd ACM Sym.
on Theory of Computing, 410-418, 1991.

[RS05] R. Raz, A. Shpilka, Deterministic polynomial identity testing in non commutative
models, Computational Complexity,14(1):1-19, 2005.

[SV10] A. Shpilka, I. Volkovich, On the Relation between Polynomial Identity Testing
and Finding Variable Disjoint Factors, ICALP , 2010.

19

[SY00] Arto Salomaa and Sheng Yu, On the decomposition of finite languages, In Proc.
Developments in Language Theory, Foundations, Applications, and Perspectives, editors
Grzegorz Rozenberg and Wolfgang Thomas, World Scientific,, 22-31, 2000.

20

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

