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Abstract. This paper takes a fresh look at security notions for steganography – the art of encoding
secret messages into unsuspicious covertexts such that an adversary cannot distinguish the resulting
stegotexts from original covertexts. Stegosystems that fulfill the security notion used so far, however,
are quite inefficient. This setting is not able to quantify the power of the adversary and thus leads
to extremely high requirements. We will show that there exist stegosystems that are not secure with
respect to the measure considered so far, still cannot be detected by the adversary in practice.
This indicates that a different notion of security is needed which we call undetectability. We propose
different variants of (un)-detectability and discuss their appropriateness. By constructing concrete ex-
amples of stegosystems and covertext distributions it is shown that among these measures only one
manages to clearly and correctly differentiate different levels of security when compared to an intuitive
understanding in real life situations. We have termed this detectability on average.
As main technical contribution we design a framework for steganography that exploits the difficulty to
learn the covertext distribution. This way, for the first time a tight analytical relationship between the
task of discovering the use of stegosystems and the task of differentiating between possible covertext
distributions is obtained.
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1 Introduction

In cryptography the notion of security is well understood. Roughly speaking, a secure cryptosystem
is defined by the property that an adversary with bounded resources cannot decipher a secret
message. If a cryptosystem is not secure then there exists such an adversary with a significant
advantage over random guessing. Considering a cryptosystem as a game between the encoder Alice
and an adversary, this dichotomy looks natural: either there is an opponent with an advantage to
decipher the secret message or not.

Security becomes a much more challenging property if one considers steganography, where
secret messages are hidden into unsuspicious covertexts (see [4, 9, 1, 2, 8, 5, 11, 13] for theoretical
foundations of steganography and some of the achievements of recent years). Here the adversary
should not be able to distinguish between the resulting stegotexts and original covertexts that
are exchanged between the stegoencoder Alice and the recipient Bob. Steganographic security
crucially depends on properties of the covertext channel, also called the covertext distribution – a
stegosystem might be much more secure for one channel than another, even if both look similar.
If the covertext distribution is uniformly random over the channel alphabet, secure steganography
becomes almost trivial. Thus, for this particular channel efficient and secure steganography is
possible. However, in practice meaningful covertexts like natural pictures or speech do not allow
arbitrary combinations of pixels or tones to make up a meaningful covertext. Requiring that a
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stegosystem should work for every channel is quite a strong demand. We will argue that under this
condition secure steganography cannot be efficient. Therefore, it is important to analyse precisely
the setting of the game between the stegoencoder and the adversary, and in particular to determine
the level of influence that the stegoencoder has in choosing the covertext channel. In cryptography,
to the contrary, the channel distribution is simply determined by the cryptosystem and the chosen
key. By Kerckhoffs’ principle it is assumed that the distribution is completely known to all parties.

We will show below that the use of a stegosystem that is insecure according to the definition
used so far might still not be detected by an adversary. Up to now, a stegosystem is defined as
insecure if the strongest possible adversary can detect the use of steganography. It suffices if this
is true for a single channel chosen among all possible channels. However, there might be channels
for which the adversary does not have a good chance for detection. It seems unrealistic that a
stegoencoder would only make use of covertext channels that are easy to detect. This observation
leads us to the question how an appropriate notion of security should look like and when to call a
stegosystem insecure in practice.

Why do we see the need for considering insecure stegosystems (according to the current def-
inition), although secure stegosystems have already been established (see e.g. Hopper et al. [9])?
The answer is that security is only one of several desirable properties of a stegosystem. A “use-
ful” stegosystem should also be reliable (i.e., with high probability, embedded messages can be
reconstructed correctly), efficient (i.e., the time, space and oracle query complexities should be
polynomial in the length of the hidden message) and achieve a good transmission rate for the hid-
den messages (i.e., the ratio between message bits per covertext and covertext entropy should not
be too small).

Previously proposed stegosystems fail to meet all these criteria simultaneously. The formal
model for stegosystems makes use of a conditional sampling oracle. Such an oracle receives as input
a history H of previously drawn covertext documents and returns the next document based on this
history. In order to maintain a good transmission rate, in each covertext document one should be
able to embed an amount of information that grows with the document entropy. Since the stegosys-
tem in [9] embeds only 1 bit of hidden information per document, Dedić et al. [5] have analysed
the case where b bits have to be embedded per covertext in order to keep a good transmission rate.
For a natural adaptation of the stegosystem in [9] they have obtained an exponential (in b) query
complexity for the covertext oracle. Thus, the resulting stegosystem has a good rate, is secure and
reliable, but very inefficient. In fact, they have shown that in the common black-box setting this
exponential sampling complexity holds for all secure stegosystems. In this model the stegoencoder
has no knowledge whatsoever about the covertext channel (except its min-entropy) and can only
access it via a sampling oracle while the adversary is supposed to know everything about the chan-
nel. In particular, this leads to the strong conclusion that all schemes used in practice are insecure
if security is defined based on this extreme setting.

Thus, due to the results in [5] there is no hope for efficient, practically usable steganography that
can be proven secure, according to the definition used so far. But does this mean that in practice
a steganalyst will be successful? In particular, can one conclude that every stegosystem, like e.g.
the popular F5 scheme designed to hide information in JPEG images [15], is always breakable? In
[12] we have discussed these questions and proposed a new model to resolve the highly unbalanced
knowledge about the covertext channel by the adversary and the encoder. In the steganographic
grey-box model the encoder starts with some partial knowledge at least about the type of covertext
channel. In this paper we further elaborate on these problems and take the perspective of the
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Insecurity

Detectability on Average Specific Detectability

Universal Detectability

0

Knowledge about channel
Alice Adversary

Insecurity − ×
Detectability on Average − −
Specific Detectability × ×
Universal Detectability × −

Fig. 1. Relationship among different security levels for a stegosystem S and the state of knowledge about the cover-
text channel by the stegoencoder Alice and the adversary. The arrows indicate the relation between values of the
corresponding (in)security measures for S, where 1 and 0 denote the highest, resp. lowest values. The dashes and
crosses in the table mean ’no knowledge’, resp. ’full knowledge’ about the covertext channel. According to the defi-
nition of Insecurity used so far, S is insecure, if there exists a single channel C0 such that the adversary using some
specific strategy which may depend on S and on C0, can detect the stegosystem S over C0. However, this does not
imply that the adversary can detect the usage of S for any other channel C.

adversary in order to investigate how successful he can be in detecting steganography. This deficit
has also been noticed in [10] trying to move steganalysis from the laboratory into the real world.
The authors state that almost all current steganalysis literature adheres to the model . . . so that
the steganalyst can only learn about the cover source by empirical samples.

To further develop a suitable formal model we introduce the concept of detectability and give
three possible definitions channel universal detectability, channel specific detectability and detectabil-
ity on average (see Fig. 1). They will be used in analysing the interplay between insecurity and
detectability of stegosystems. Investigating possible definitions of detectability, we show how these
measures relate to each other and that one of them, detectability on average, clearly outperforms the
others. This measure also corresponds better to real life intuition of insecurity than the definition
used so far and in fact, its assumptions are already used implicitly in applied steganalysis.

We construct an efficient stegosystem for the family of channels used by Dedić et al. for which
the insecurity has to be large according to [5]. But we will show that its detectability on average
is small, i.e., such a stegosystem can still be considered secure enough, as most of the time the
adversary has no better chance than random guessing.

The paper is organised as follows. Basic notation and concepts of steganography are given in
the next section. A review of common definitions of security in steganography and the introduction
of our new measures for detectability is presented in Section 3. Then a tight relationship with the
ability to distinguish different channels is established. In Section 5 we consider a natural family of
so-called flat h-channels and stegosystems for this family to compare these measures. The analysis in
this section is quite technical, and the reader should be familiar with the concepts introduced in [5].
Finally, in Section 7 we make some concluding remarks and indicate future research directions.
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2 Basic Notation and Definitions

The definitions of the basic steganography concepts: channel, stegosystem, reliability, and insecurity
of a stegosystem used in this paper are essentially those of [9] with modifications as proposed in [5].

Let Σ be a finite alphabet, Σ` (resp. Σ?) the set of strings of length ` (resp. finite length)
over Σ, and σ := log |Σ|. We denote the length of a string u by |u| and the concatenation of two
strings u1 and u2 by u1||u2, or by u1u2 if this does not lead to ambiguities. Symbols u ∈ Σ will be
called documents and a finite concatenation of documents a communication sequence or covertext.
Typically, the document models a piece of data (e.g. a digital image or fragment of the image)
while the communication sequence c ∈ Σ? models the complete message sent to the receiver in a
single communication exchange. If D is a probability distribution with finite support denoted by
supp(D), we define the min-entropy Hπ(D) of D as the value Hπ(D) = minx∈supp(D)− log PrD[x].

Definition 1 (Channel). A channel C is a function that takes a history H ∈ Σ? as input and
produces a probability distribution DH on Σ. A history H = c1c2 . . . cm is legal if each subsequent
symbol is obtainable given the previous ones, i.e., PrDc1c2...ci−1

[ci] > 0 for all i ≤ m. The min-

entropy of C is the value minHHπ(DH) where the minimum is taken over all legal histories H.

This gives a very general definition of covertext distributions which allows dependencies between
individual documents that are present in typical real-world communications.

Example 1. Let us assume our channel C describes valid, meaningful sentences in the English lan-
guage (ignoring punctuation marks). The set of documents consists of all possible English words.
Now, let the history H consist of the following beginning of a sentence: “I am standing on the”.
The distribution produced by C will probably give words like “grass”, “peak” or “right” a high
probability, as these words would likely be expected given H. Less likely, but still with positive
probability (because they are grammatically correct given H) would be words like “needle”, “door”
or “justice”. However, words like “an”, “make” or “why” would be grammatically incorrect in the
context of H and therefore associated with probability 0. Note, that the history H is legal since
each subsequent word of H is obtainable given the previous ones, e.g. “I am” can be extended, with
a positive probability, with word “standing”.

In order to embed additional information into covertexts, one has to assume that the covertext
channel distribution has a sufficiently large min-entropy. To get information about the covertext
distribution sampling oracles can be used. EXC(H) denotes an oracle that generates documents
according to a channel C with history H, i.e. each call of EXC(H) returns a document c with
probability PrDH [c] and the responses are independent of each other. A steganographic information
transmission is thought of as taking a finite sequence C1, C2, . . . ∈ Σ? of covertexts and based on
them to construct a stegotext S ∈ Σ? such that the sequence additionally encodes an independent
message M . This encoding is done by Alice who then sends the stegotext to the receiver Bob over
a public channel. Let b denote the message encoding rate, i.e. a single stegodocument can encode
up to b bits of M . Longer messages M have to be split into blocks of b bits each and for each block
a separate stegodocument is generated. Their concatenation yields the stegotext.

Definition 2 (Stegosystem). In the following, let n = ` · b denote the length of the messages to
be embedded, thus ` stegodocuments each hiding b bits are needed. A stegosystem S for the message
space {0, 1}n is a pair of probabilistic algorithms [SE,SD] with the following functionality:
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– SE = SE(K,M,H) is the encoding algorithm that takes as input a randomly chosen secret
key K ∈ {0, 1}κ of length κ, where κ is a security parameter that depends on n, a message
M ∈ {0, 1}n (called hiddentext), a channel history H, and accesses the sampling oracle EXC()
of a given covertext channel C and returns a stegotext S ∈ Σ`;

– SD = SD(K,S,H) is the decoding algorithm that takes K, S, and H, and having access to the
sampling oracle EXC() returns a message M ′.

S is called a black-box stegosystem if SE and SD have no a priori knowledge about the distribution of
the covertext channel (except its min-entropy) and can obtain information about it only by querying
the sampling oracle1.

The key K is shared by Alice and Bob beforehand and is kept secret from an adversary. All
further actions of Alice are specified by SE, those of Bob by SD. The time complexities of the
algorithms SE,SD are measured with respect to n, κ, and σ, where an oracle query is charged as
one unit step. A stegosystem is computationally efficient if its time complexities are polynomially
bounded. By convention, the running time of an algorithm includes the so-called description size
of that algorithm with respect to some standard encoding.

Ideally, one would expect that the decoder always succeeds in extracting the original message M
from the stegotext. Since this may not always be possible, we define for M ∈ {0, 1}n the unreliability
of a stegosystem.

Definition 3 (Unreliability). Given a covertext channel C, the unreliability of S is given by

UnRelC,S := max
H

max
M∈{0,1}n

PrK∈R{0,1}κ [SD(K,SE(K,M,H),H) 6= M ] .

Before analysing different notions of security in steganography in the computational setting, we have
to define the scenario of steganographic analysis. An adversary, called the warden W , tries to find
out whether or not the communicating parties are using steganography. This is the standard model
of a (passive) adversary. Let SE(K,M,H) with access to EXC(H) be denoted by SEC(K,M,H).
We define the oracle OC that for a given message M ∈ {0, 1}n and channel history H returns a
truly random covertext c1c2 . . . c` of length ` = |SEC(K,M,H)| from C with history H, i.e., each ci
is drawn according to DH||c1c2...ci−1

.

Definition 4 (Advantage of a warden performing a chosen hiddentext attack).
A probabilistic algorithm W is a (t, q, λ)-warden for the stegosystem S = [SE,SD] if

– W runs in time t and accesses a reference oracle EXC() that he can query for samples from the
covertext channel C with a history H;

– W can make q queries of total bit length λ to a challenge oracle CH which is either SEC(K,M,H)
or OC(M,H), where M of length n and H can be chosen by W ;

– the task of W is to determine the use of the stegosystem S with the help of the challenge oracle:
W C,CH = 1 means that W decides on “stegotext”, resp. W C,CH = 0 on “covertext”.

The advantage of W for a stegosystem S using a covertext channel C is defined as

AdvchaC,S(W ) := PrK∈R{0,1}κ [W C,SE
C(K,·,·) = 1]− Pr[W C,OC(·,·) = 1] . (1)

1 As usual, we assume that for each legal history H the encoding or decoding algorithm can query an arbitrary
number of samples from the covertext channel with history H.
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Note that for technical reasons we do not take the absolute value of the difference of probabilities,
thus a bad warden may even have a negative advantage. By complementing the decision of such a
bad W we get another warden which achieves the same positive amount of advantage. Since the
security measures considered here are always based on the best warden negative advantages have
no influence.

For maximising the advantage, W may depend on the channel C. In the most favourable case,
W may possess a complete specification of C, so that he even does not need to query the reference
oracle. Such information about C is part of the description of W .2 This makes the adversary
extremely powerful in the black-box stegosystem setting.

Random Permutations

Below we recall some notions from cryptography required for the specification of the encoding
function SE. Let F : {0, 1}k × {0, 1}l → {0, 1}L be a function. Here {0, 1}k is considered as the
key space of F . For each key K ∈ {0, 1}k we define the subfunction FK : {0, 1}l → {0, 1}L by
FK(x) = F (K,x). F is called a family of permutations if l = L and for each key K the subfunction
FK is a permutation on {0, 1}l. Let PERM(l) denotes the family of all permutations on {0, 1}l.

Following [3] we define a security notion for pseudorandom permutations with the help of a
distinguisher, who is comparable to a warden for detecting steganography.

Definition 5. For a family F of permutations the advantage of a probabilistic distinguisher D
having access to a challenge oracle that returns either values according to FK for unknown K or
according to a random permutation P is given by

PRP-AdvF (D) = PrK∈R{0,1}k [DFK(·) = 1]− PrP∈RPERM(l)[D
P (·) = 1],

The insecurity of a family of permutations F is defined as

PRP-InSecF (t, q) := max
D

PRP-AdvF (D) ,

where the maximum is taken over all probabilistic distinguishers D running in at most t steps and
making at most q oracle queries.

A sequence {Fk}k∈IN is called pseudorandom if for all polynomially bounded D, PRP-AdvF (D)
is negligible in k.

For our constructions given below we assume the existence of families of pseudorandom func-
tions.

3 Security Levels of Stegosystems

In this section different notions of security will be discussed and their specific strength for both
opponents in the game will be investigated. We consider arbitrary restricted families F of covertext
channels instead of simply all channels over the alphabet Σ, which has typically been done in theo-
retical studies so far (few papers have studied specific families, like e.g. memoryless channels [13]).

2 In contrast to [5] we do not explicitly mention the description size of the warden, but assume this to be included
in the running time t (W has to read this information at least once).
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Restricting the set of channels allows a finer differentiation and models the practical situation
in steganography and steganalysis better. For example, any specifically designed stegosystem S for
embedding hidden information in digital images is likely to give the stegoanalyst a much better
advantage when used for other channels that deviate significantly from images like, e.g. music.
But this property seems to be useless for a stegoanalyst if S is never used other than for images.
Commonly used as an (in)security measure, see e.g. [9, 5], is the following quantity.

Definition 6. The insecurity of a stegosystem S with respect to a channel family F is defined
as follows, where for given complexity bounds (t, q, λ) we take into account all (t, q, λ)-wardens W :

InSecF ,S(t, q, λ) := max
W

max
C∈F

AdvchaC,S(W ) .

The security of a system S with respect to F is defined as 1−InSecF ,S . If a system S generates
a small value for InSecF ,S then it achieves the highest security level: For every channel from the
family no warden can detect the stegosystem with a significant advantage. Thus, S is a good
universal system for F . However, currently no secure and efficient stegosystems are known for
any non-trivial channel family. Even more, it has been proven that for a specific simple family
of channels such universal systems do not exist [5]. But does this result mean that the warden
can control steganography for such channel families? The problem is that if a stegosystem S is
insecure, then there exists a single channel C0 in F such that some specific strategy W0 can detect
steganography over C0. However, this does not imply that the warden can detect the usage of the
stegosystem S for any other channel in F . Therefore the above measure does not fit well from the
point of view of a steganalyst: an insecure stegosystem S can remain undetectable for almost all
channels in F . One could modify the above definition in a natural way such that it reflects the
necessities of steganalysis.

Definition 7. The channel-universal detectability of a stegosystem S with respect to a channel
family F is defined as follows, where the maximum is taken over all (t, q, λ)-wardens W :

UnivDetectF ,S(t, q, λ) := max
W

min
C∈F

AdvchaC,S(W ) .

If a stegosystem S is channel-universally detectable with respect to the family F , then using
some universal strategy W can detect the usage of the stegosystem S for many other channels C in
F . This guarantees the highest detectability level. But it is unclear how such a level of detectability
can be achieved. Moreover, if for some stegosystem S the value UnivDetectF ,S is small, one cannot
guarantee that S is secure for every channel in F . One may construct a stegosystem S0 that works
well for only one channel C0 ∈ F – yielding a small value AdvchaC0,S0(W ). Such a stegosystem is not
channel-universally detectable since for C0 no strategy of the warden is able to detect S0 with a
significant advantage. But the system can still be easily detectable for most other channels in F .

Thus, for a security analysis it is extremely important who selects the covertext channel – the
encoder or the warden. For most applications it seems unrealistic to assume that the warden can
dictate to the encoder which covertext channel to use. In case that neither opponent has a free
choice, one should take into account how much knowledge about the covertext distribution each
one is given a priori (see Fig. 1). This may be helpful despite the sampling oracle.

Let us summarize the discussion so far as follows. For any channel family F and for every
stegosystem S and all t, q, λ it holds:

0 ≤ UnivDetectF ,S(t, q, λ) ≤ InSecF ,S(t, q, λ) ≤ 1 .
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For most non-trivial families F and reasonable stegosystems S one typically observes that
UnivDetectF ,S is small and InSecF ,S is large. But in such a case we are not able to provide
any reasonable degree of insecurity/detectability of the system. Our goal will be to give and to
analyse more appropriate measures for insecurity/detectability of stegosystems. From the definition
of channel-universal detectability it is natural to derive channel-specific detectability, which we
define as follows.

Definition 8. The channel-specific detectability of a stegosystem S with respect to a channel
family F is defined as follows with the maximum taken over all (t, q, λ)-wardens W :

SpecDetectF ,S(t, q, λ) := min
C∈F

max
W

AdvchaC,S(W ) .

From the order of the min- and max-operators we get immediately

max
W

min
C∈F

AdvchaC,S(W ) ≤ min
C∈F

max
W

AdvchaC,S(W ) ≤ max
C∈F

max
W

AdvchaC,S(W ) = max
W

max
C∈F

AdvchaC,S(W ) ,

which implies

Lemma 1. For every channel family F and stegosystem S and parameters t, q, λ it holds:

UnivDetectF ,S(t, q, λ) ≤ SpecDetectF ,S(t, q, λ) ≤ InSecF ,S(t, q, λ) .

Now, if the value of SpecDetectF ,S is large, then for every channel C in F there exists some
warden which can detect the use of steganography for this particular channel C by exploiting his
specific strategy W . This definition relaxes the strong assumption of universality with respect to
the covertext channel in use. However, while each W might work well for his particular C, W may
perform poorly on all other channels of F . Thus, in contrast to a high value for UnivDetectF ,S ,
giving the warden good confidence in his power, a high value of SpecDetectF ,S does not really say
much about the power of a warden, unless he knows Alice’s choice of a channel. On the other hand,
for a small value of SpecDetectF ,S the stegosystem S may work well for most channels in F .

It should be apparent that a different security definition is desirable which takes into account
that neither the warden nor the steganographer may be universal for all channels in F , but perhaps
still be able to perform well on average. Therefore, assuming a probability distribution of channels
C in the family F , we will generalise the notion of advantage given in (1) from a fixed channel to a
channel chosen at random:

AdvchaF ,S(W ) := PrC∈RF AdvchaC,S(W )

= PrC∈RF ,K∈R{0,1}κ [W C,SE
C(K,·,·) = 1]− PrC∈RF [W C,OC(·,·) = 1] .

Definition 9. The detectability on average of a stegosystem S with respect to the channel
family F is given as follows, where the maximum is taken over all (t, q, λ)-wardens W :

AvgDetectF ,S(t, q, λ) : := max
W

AdvchaF ,S(W ) .

This definition has clear advantages over the previous ones. If for a stegosystem S the value of
AvgDetectF ,S is low, then Alice can be assured that W in most cases will not be able to detect
steganography, whereas a high value indicates that W is likely to catch her. Thus, AvgDetectF ,S
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provides a measure that can be used by both Alice and W to assess their expected performance
in the game if neither has complete control over the channel. It should be noted that a family
of channels F with a distribution on the family cannot simply be aggregated to a single, more
complicated channel CF . This would be a quite different situation for Alice and Warden.3

This new measure for insecurity/detectability of stegosystems corresponds better to real life
intuition of insecurity than the commonly used definition. In fact, in real life steganalysis, our
approach is already implicitly used in empirical analyses of particular stegosystems. For example,
it is not difficult to see that the steganographic algorithm F5 used to embed hidden information in
JPEG images [15] is insecure with respect to the common insecurity definition. But this observation
seems to be useless to a stegoanalyst, for whom a much more appropriate approach to analyse the
insecurity would be to use the new definition and consider a universal algorithm to detect the use of
F5, like it was done e.g. in [6]. In this example one could specify formally F as a family of channels
Cω of JPEG-compressed images of different scenes or taken by different types of digital cameras
specified by ω.

In the rest of this paper, we will discuss and analyse scenarios showing that AvgDetectF ,S is
indeed much better suited than the other security notions. Detectability on average is related to
the previously defined security measures as follows (cf. Fig. 1):

Lemma 2. For every channel family F , every stegosystem S and all t, q, λ it holds:

UnivDetectF ,S(t, q, λ) ≤ AvgDetectF ,S(t, q, λ) ≤ InSecF ,S(t, q, λ) .

Proof. If UnivDetectF ,S(t, q, λ) = minC∈F maxW AdvchaC,S(W ) = ε there must be a warden W0 with
bounds t, q, λ that achieves an advantage of at least ε for every channel in F . For this warden and
any probability distribution µ on F its expected advantage

∑
C µ(C) AdvchaC,S(W0) will be at least

ε. Thus,

AvgDetectF ,S(t, q, λ) = max
W

∑
C

µ(C) AdvchaC,S(W ) ≥
∑
C

µ(C) AdvchaC,S(W0) ≥ ε .

Furthermore, the average advantage over F is upper-bounded by the maximum advantage, thus
AvgDetectF ,S(t, q, λ) ≤ InSecF ,S(t, q, λ).

ut
From our analysis given below it follows that SpecDetectF ,S and AvgDetectF ,S are incompa-

rable. By construction a specific family of channels we will show:

Theorem 1. There exists a channel family F and stegosystems SF and S ω̂F such that for appro-
priate parameters t, q, λ:

AvgDetectF ,SF (t, q, λ)� SpecDetectF ,SF (t, q, λ) and

SpecDetectF ,Sω̂F
(t, q, λ)� AvgDetectF ,Sω̂F

(t, q, λ) .

This property will follow from the bounds shown in Theorems 4 to 7.

3 For example, a family of quite restricted channels may aggregate to the uniform distribution on the document
space. For such a channel Alice can achieve perfect secure steganography easily using a random permutation,
whereas this is not guaranteed for the individual channels.
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4 Undetectable Stegosystems

In steganography there are two extreme cases of channel families: in the first case, using the sampling
oracle the encoder can obtain full knowledge about the covertext distribution; in the second case it is
extremely difficult for the encoder to deduce anything about the covertext distribution. For families
of the first type secure stegosystems (with low InSec) can be built. This is not possible for the
second type of families, since the encoder cannot even perform some simple tests for the constructed
stegotext, whereas, according to the definition of InSec, the warden can have full knowledge about
the covertext distribution used. In this section we show that the situation changes drastically if a
symmetry in knowledge about the channel is given to both opponents. In particular, we prove that
it is possible to construct undetectable stegosystems if it is difficult to deduce something about the
covertext distribution. We construct a stegosystem SF that works for a given channel family F ,
i.e., we assume Alice and Bob know that a fixed covertext channel C is chosen from F , but they
have no additional knowledge about C. Thus, although the system is not universal for all channels,
it is universal for all channels in the family F . The system works for families F of channels with
finite descriptions and efficiently computable distribution functions defined as follows.

Definition 10. Let F be a family of channels Cω indexed by strings ω ∈ {0, 1}?. These channels
share a document space Σ that has an arbitrary linear ordering “≤”, e.g. lexicographic order. Dω

H
denotes the probability distribution of the channel Cω with respect to history H, i.e. PrDωH [x] is
the probability that document x is generated by Cω with history H. The (cumulative) distribution
functions of F defined by FωH(c) :=

∑
x≤c PrDωH [x] are called efficiently computable if there exists a

polynomially time bounded algorithm that on input ω, H and c outputs FωH(c).

4.1 Interval Encoding

Assume that we want to encode b bits. We number the bitstrings from 0 to 2b − 1 and consider
the ρ-th bitstring. To encode ρ we can use all documents c with a value FωH(c) in the interval
Iρ := ]ρ · 2−b, (ρ+ 1) · 2−b]. Next we choose a random number zρ in this interval and select among
all documents with positive probability PrDωH [c] the minimum c such that zρ ≤ FωH(c). Let us
denote this mapping by IntervalEncode(ω,H, ρ). If we first select a value ρ uniformly at random
and then apply IntervalEncode(ω,H, ρ), it is guaranteed that each document c ∈ Σ is chosen with
probability exactly PrDωH [c], thus we generate the same distribution as Cω.

The decoding works as follows. Receiving document c, Bob computes the value ρ′ such that
FωH(c) ∈ Iρ′ . The value ρ′ differs from the correct value ρ if in the encoding of zρ ∈ Iρ there was
no document c′ with zρ ≤ FωH(c′) such that FωH(c′) belongs to Iρ, too. In other words, zρ is a value
such that in the interval [zρ, (ρ + 1) · 2−b] the distribution function FωH does not increase. If the
min-entropy of the channels in F is at least h, in any subinterval of Iρ of length at least 2−h FωH
must be strictly increasing. The probability to select a bad zρ is therefore less than 2−(h−b). Thus,
for each of the b bits, the probability that this bit is incorrectly decoded is bounded by 2−(h−b).

4.2 A Strong Private Key Stegosystem

The stegosystem SF specified in Fig. 2 uses this interval coding technique . Recall that ` = n/b is
an integer specifying the number of blocks into which a message M is split. To encrypt a message
M , we use families of pseudorandom permutations PRP : {0, 1}k × {0, 1}n → {0, 1}n to spread M

10



uniformly. The private key K = ω||K1 ∈ {0, 1}η+k for encoder and decoder is chosen uniformly at
random. The prefix ω of the key K is a random string of length η that is used to select a random
element Cω of F . The length η depends on the Family F . The suffix K1 is used to specify which
pseudorandom permutation PRP(K1, ·) = PRPK1(·) is selected.

Procedure SF -Encode(K, H, M)
Input: private key K = ω||K1; history H;

hiddentext M ∈ {0, 1}n
choose T0 ∈R {0, 1}n;
let T1 := PRPK1(T0 ⊕M);
parse T0T1 into u1u2 . . . u2`, where |ui| = b;
for j := 1, . . . , 2` do

let ρj be the integer with binary repr. uj ;
sj := IntervalEncode(ω,H, ρj);
H := H||sj ;

Output: s1s2 . . . s2`

Procedure SF -Decode(K, H, s)
Input: private key K = ω||K1; history H;

stegotext s = s1, . . . , s2`;
for j := 1, . . . , 2` do

determine ρj s.t.
ρj
2b
< FωH(sj) ≤ ρj+1

2b
;

let uj be the b-bit binary repr. of ρj ;
let T0 := u1 . . . u` and T1 := u`+1 . . . u2`;
M := PRP−1

K1
(T1)⊕ T0;

Output: M

Fig. 2. The stegosystem SF based on interval encoding of a random channel

The crucial property of SF is that the random choice of ω for the channel Cω is independent
of the real channel C generating the covertexts. Alice and Bob just randomly select a channel to
work with, knowing that with high probability it is a wrong one. For this reason, the stegosystem
SF may output samples that are not in the support of C, which may make it insecure for many
families F . However, we will show that this system is not channel-universally detectable since the
correct channel may be picked by chance.

4.3 Distinguishing Channels

Below we will describe a new framework for analysing the security of stegosystems in a realistic
environment where covertext channels are not completely known to any opponent. Security is based
on the hardness for distinguishing channels of a channel family F .

Definition 11 (Channel distinguisher).
A probabilistic algorithm Q is a (t, q, λ)-distinguisher for a channel family F if

– Q runs in time t and accesses a reference oracle EXC(), for some covertext channel C ∈ F ,
which it can query for samples from C with a history H that can be chosen by Q;

– Q can make a number of q queries of total bit length λ to a challenge oracle CH which is
either EXC() or EXC′() for some other covertext channel C′ ∈ F ;

– Q has to determine whether the channel defining the challenge oracle CH is the same as the
channel C of the reference oracle EXC() formalized as: QC,CH outputs 1 if he thinks that they
differ, whereas QC,CH = 0 means that they are identical.

The distinguishability for a channel family F is defined as follows, where the maximum is
taken over all (t, q, λ)-distinguishers Q and C, C′ ∈R F are chosen independently:

DistF (t, q, λ) := max
Q

PrC,C′∈RF [QC,C
′

= 1]− PrC∈RF [QC,C = 1] .
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If it is infeasible to distinguish two random elements from F then Alice, of course, has a problem to
find out the real channel. She may either guess a document in Σ and hope that it is in the support of
the real channel, or she may ask for a number of covertexts that is (on average) exponential in b, until
she gets one that codes the hiddentext M . But the adversary faces the same problem to determine
the correct channel unless this information is directly given to him, which seems unrealistic in
practice. The following theorem establishes a tight relationship between the distinguishability of a
channel family F and detectability on average for the above stegosystem applied to F . To shorten
the notion define

ξ(λ, n) :=

(
λ2

n2
− λ

n

)
· 2−n .

Theorem 2. Let F be a family of channels Cω (indexed by strings ω ∈ {0, 1}η) over an alphabet Σ
of size 2σ with efficiently computable distribution functions and min-entropy h larger than the rate b.
The elements of F are selected uniformly at random as covertext channels. Then the stegosystem
SF described above achieves rate b, unreliability bounded by n2−(h−b), and runs in time polynomial
with respect to η, σ, and the message length n. Furthermore, there is a fixed polynomial p such that

AvgDetectF ,SF (t, q, λ) ≥ DistF (t, q, λ)− 2 PRP-InSecPRP(p(t), λ/n)− ξ(λ, n) ,

AvgDetectF ,SF (t, q, λ) ≤ DistF (p(t), q, λ) + 2 PRP-InSecPRP(p(t), λ/n) + ξ(λ, n) .

These bounds show that the average detectability of the stegosystem SF is basically identical
to the distinguishability of the channel family modulo the insecurity of the pseudorandom permu-
tations.

Proof. To show the upper bound let W be a (t, q, λ)-warden of maximum average advantage, that
means

AvgDetectF ,SF (t, q, λ) = PrC,K [W C,SE
C(K,·,·) = 1]− PrC [W

C,C = 1] .

Recall that W uses a reference oracle for a random channel C from F and as challenge oracle
either an oracle for SEC , the encoding procedure SF -Encode working with covertext channel C, or
simply an oracle for C itself. We bound the advantage of W for differentiating between SEC and C
indirectly by considering a random channel in between. Let W C,Cω denote W with oracles for the
channels C and Cω. The oracle for Cω, given message M ∈ {0, 1}n and history H, returns a truly
random sequence c1c2 . . . c2` of length 2` = |SEC(K,M,H)| from Cω with history H. This way we
can expand the formula to

AvgDetectF ,SF (t, q, λ) =

PrC,K [W C,SE
C(K,·,·) = 1]− PrC,ω[W C,Cω = 1] + PrC,ω[W C,Cω = 1]− PrC [W

C,C = 1] .

For a suitable polynomial p, a (p(t), q, λ)-distinguisher QC,CH for the channel family F can simply
be obtained by simulating the warden W with challenge oracle either C or Cω. Thus,

PrC,ω[W C,Cω = 1]− PrC [W
C,C = 1] ≤ DistF (p(t), q, λ) ,

since the probability distribution of ω over descriptions of channels in F is equal to the probability
distribution C ∈R F . It remains to bound

PrC,K [W C,SE
C(K,·,·) = 1]− PrC,ω[W C,Cω = 1] .
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Let PRP be the family of pseudorandom permutations used in the stegosystem SF , and CBC[PRP]
the symmetric encryption scheme with encryption procedure EK1 and decryption procedure DK1 ,
defined in Fig. 3, where K1 is a secret key.

Procedure EK1(M)
Input: plaintext M ∈ {0, 1}n
T0 ∈R {0, 1}n;
T1 := PRPK1(T0 ⊕M);
Output: T = T0||T1

Procedure DK1(T )
Input: ciphertext T ∈ {0, 1}2n
parse T as T0||T1;
M := PRP−1

K1
(T1)⊕ T0;

Output: M

Fig. 3. A symmetric cryptosystem

We will apply (EK1 ,DK1) to simulate the encryption and decryption of messages M used by the
stegosystem SF .

The real-or-random insecurity ES-InSecrorES(t′, q′, λ′) of an encryption scheme ES = (EK1 ,DK1)
is defined as the maximum advantage ES-AdvrorES(A) over all probabilistic adversaries A running in
at most t′ steps and making at most q′ oracle queries of total length λ′, where the advantage is
given by

ES-AdvrorES(A) = PrK1 [AEK1
(·) = 1]− PrK1 [AEK1

($) = 1] .

Here, the (real encryption) oracle EK1(·) on input M , returns EK1(M), while the (random) oracle
EK1($) on input M , returns EK1(r) with r ∈R {0, 1}|M |.

In [3] the following bound on the real-or-random insecurity of a system like CBC[PRP] has been
shown:

ES-InSecrorCBC[PRP](t
′, q′, λ′) ≤ 2 · PRP-InSecPRP(t′′, q′′) + ξ(λ′, n) , (2)

with t′′ = t′ + cλ′ for some constant c and q′′ = λ′/n. ξ(x, n) :=
(
x2

n2 − x
n

)
· 2−n

Using the warden W , we will now design an adversary A against the symmetric encryption scheme
CBC[PRP] working as follows. First, A chooses a random covertext channel C and a random private
key K = ω||K1. Then it simulates the computation of W with reference oracle C and challenge
oracle either SEC(K, ·, ·) or OC(·, ·).
Whenever W tries to query the challenge oracle CH with M and H, A does the following:

1. it queries its oracle for EK1 with M ;
2. with the answer T̂0T̂1, A simulates the procedure SF -Encode with key ω, history H, but skips

the computation of T0T1 and sets the string T0T1 to T̂0T̂1;

A passes the output s1 . . . s2` of the simulation as an answer of the challenge oracle to W .
Finally, A returns the output value of W .

If W obeys the complexity bounds (t, q, λ) then A can work in time p′(t) for some polynomial
p′ depending on the complexity of the pseudorandom permutations and the evaluation of the
distribution functions. It needs at most q oracle questions. Since the stegosystem SF uses the
encryption scheme (EK1 ,DK1) the probabilities PrK1 [AEK1

(·) = 1] and PrC,K=ω||K1
[W C,SE

C(K,·,·) = 1]
are equal.
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Similarly, PrK1 [AEK1
($) = 1] = PrC,ω[W C,Cω = 1]. Then, using the estimation (2), for an

appropriate polynomial p we can conclude

PrC,K=ω||K1
[W C,SE

C(K,·,·) = 1]− PrC,ω[W C,Cω = 1]

= PrK1 [AEK1
(·) = 1]− PrK1 [AEK1

($) = 1]

= ES-AdvrorCBC[PRP](A) ≤ ES-InSecrorCBC[PRP](p
′(t), q, λ)

≤ 2 · PRP-InSecPRP(p(t), λ/n) + ξ(λ, n) .

This completes the proof of the upper bound.

To prove the lower bound

AvgDetectF ,SF (t, q, λ) ≥ DistF (t, q, λ)− 2 · PRP-InSecPRP(p(t), λ/n)− ξ(λ, n)

first note that the last estimation does not only hold for W , but for any adversary Q with the same
complexity bounds (t, q, λ), thus

PrC,K=ω||K1
[QC,SE

C(K,·,·) = 1]− PrC,ω[QC,Cω = 1] ≤ 2 · PRP-InSecPRP(p(t), λ/n) + ξ(λ, n) .

Let Q be a (t, q, λ)-distinguisher such that

DistF (t, q, λ) = PrC,ω[QC,Cω = 1]− PrC [Q
C,C = 1] .

We can split this advantage – now with the help of an oracle for SEC – into

DistF (t, q, λ) ≤

PrC,ω[QC,Cω = 1]− PrC,K [QC,SE
C(K,·,·) = 1] + PrC,K [QC,SE

C(K,·,·) = 1]− PrC [Q
C,C = 1] .

In the second term Q acts like a (t, q, λ)-bounded warden, thus his advantage is bounded by
AvgDetectF ,SF (t, q, λ). This gives

DistF (t, q, λ) ≤ 2 · PRP-InSecPRP(p(t), λ/n) + ξ(λ, n) + AvgDetectF ,SF (t, q, λ) .

ut

5 Insecurity versus Detectability

In [5] for a specific family F = PRCη of covertext channels, called pseudorandom flat h-channels,
the following result is shown, where the parameter η describes the length of a random seed and h
the entropy of the channels.

For every stegosystem S of small unreliability UnRelF ,S and small insecurity InSecF ,S(t, q, λ),
for polynomially bounded t, q, λ, there exists a channel C in F such that the query complexity
of S has to be large.

14



This implies that a secure, reliable and efficient stegosystem does not exist for this channel family
– for every efficient stegosystem S the value InSecF ,S is large if Alice has to fight against arbitrary
polynomially bounded wardens. Obviously, one can conclude that for every channel family F ′ that
includes pseudorandom flat h-channels PRCη, every efficient stegosystem is insecure.

However, this does not imply that for a given stegosystem S there exists a warden W that can
detect the use of S for every channel in the family F = PRCη. In section 5.3 we will apply the
stegosystem SF presented in the previous section and a slightly modified variant S ω̂F of SF to the
channel family F = PRCη to illustrate the properties of the measures for insecurity and detectability
introduced above. Both systems are efficient and reliable, thus according to [5] must be insecure. On
the other hand, the systems are not channel-universally detectable, which follows from Theorem 4
and Lemma 2, resp. Theorem 6 and Lemma 1 (assuming the existence of pseudorandom functions).
Thus, both systems are simultaneously insecure and not detectable according to these measures.
However, if one compares SF and S ω̂F more thoroughly, one comes to the conclusion that the degree
of insecurity/detectability should not be equal for the two systems: S ω̂F looks far more easy to break
in practice than SF . On the contrary, determining the channel-specific detectability we will show
in Theorem 5 and 6

SpecDetectF ,Sω̂F
(t, q, λ) = 0 and SpecDetectF ,SF (t, q, λ) ≥ 1− δ

for a small function δ. This runs counter to our intuition regarding the strength of S ω̂F and SF .
We therefore conclude that not only InSec and UnivDetect, but also SpecDetect faces serious
problems in providing a reasonable measure of steganographic security.

Average detectability, on the other hand, seems to agree with our intuition. Assuming the
existence of pseudorandom functions Theorem 4 and 5 imply for small functions δ and ε

AvgDetectF ,Sω̂F
(t, q, λ) ≥ 1− δ and AvgDetectPRCη ,SF (t, q, λ) ≤ ε .

These bounds also imply Theorem 1 stating that the two measures SpecDetect and AvgDetect

are incomparable.

5.1 Pseudorandom Flat h-Channels

Below we recall the construction and main properties of pseudorandom flat h-channels, as given in
[5]. Let Σ be an ordered alphabet of size 2σ and h ∈ [1..σ] be a chosen min-entropy. For simplicity
we may assume Σ = {0, 1, . . . , 2σ − 1}.

First we describe a (truly random) flat h-channel specified by a probabilistic Turing machine
R with a random tape containing an infinite random string π. For an integer tuple (σ, h, i, a, b) as
input with 0 < h ≤ σ and i > 0 and 0 ≤ a ≤ b < 2σ, the machine R does the following:
(1) it divides π into consecutive substrings of length ζ = 2σ each;
(2) it identifies those substrings that have exactly 2h ones: let yi be the i-th such substring;
(3) it returns the number of ones in yi between and including positions a and b (positions are
counted from 0 to 2σ − 1).

Let Dπ
i be the subset of Σ of cardinality 2h that has characteristic vector yi and let

−→
Dπ :=

Dπ
1 ×Dπ

2 ×Dπ
3 ×· · · . Obviously, querying R with tuple (σ, h, i, a, b) returns the number of elements

in Dπ
i ∩ [a..b]. Moreover, testing membership in Di for an element s can be done easily by a single

query to R, namely χDi(s) = R(S,H, i, s, s).
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The notation
−→
Dπ will also be used for the (memoryless) channel over Dπ

1 × Dπ
2 × Dπ

3 × · · ·
with uniform probability distributions, i.e. for any legal history H = s1s2 . . . si the probability

distribution
−→
Dπ
H is the uniform distribution over the set Dπ

i+1. Such a channel
−→
Dπ is called a truly

random flat h-channel.

Using techniques of Goldreich, Goldwasser, and Nussboim [7], Dedić et al. have constructed a
truthful pseudorandom implementation ofR [5]. In the construction above the truly random infinite
string π is replace by a pseudorandom string π′ that is generated by an appropriate pseudorandom
generator from a short random seed ω of length η. This creates a pseudorandom flat h-channel−→
Dω that is indistinguishable from the truly random flat h-channels

−→
Dπ. In addition, the construction

allows efficient counting, membership testing and random sampling. For a seed bound η, the family
of pseudorandom flat h-channels is then given by

PRCη := {
−→
Dω : |ω| = η} .

5.2 Security of Pseudorandom Functions and Channels

To analyse the quality of such a construction a security measure is needed for pseudorandom func-
tions. The insecurity of a family PRF η of pseudorandom functions PRF-InSecPRF η(d, t, q)
with seed length η is defined as the advantage of an adversary to distinguish a random member
of PRF η from a truly random function, where he has a priori information of size d about PRF η, is
t time-bounded and may ask up to q queries to a challenge oracle. Since in our setting it always
holds q ≤ t, we will skip the last parameter in PRF-InSec and write PRF-InSecPRF η(d, t) to shorten
the notation.

Stating the result of [5] more formally, the following has been shown.

Fact 1 Given a family of pseudorandom functions PRF η, for any h < σ one can construct a family

of pseudorandom flat h-channels
−→
Dω = Dω

1 ×Dω
2 ×Dω

3 × · · · over an alphabet of size 2σ, indexed
by strings ω of length η such that

1. counting the number of elements s, with a ≤ s ≤ b in Dω
i , can be done in time polynomial in η,

σ, and log i, given the tuple (ω, σ, h, i, a, b) as input;

2. sampling and membership testing for Dω
i can be done in time polynomial in η, σ and log i given

the tuple (ω, σ, h, i), resp. (ω, σ, h, i, s) as input;

3. there exists a polynomial p such that for every τ time-bounded oracle machine QO,χ(O) trying

to distinguish the truly random flat h-channel
−→
Dπ from

−→
Dω using a sampling oracle O and a

membership testing oracle χ(O) has only a small advantage:

Prπ[Q
−→
Dπ ,χ(

−→
Dπ) = 1]− Prω[Q

−→
Dω ,χ(

−→
Dω) = 1] ≤ PRF-InSecPRF η(η, p(τ, η)) +

τ

2η
. (3)
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5.3 Upper and Lower Bounds for Detectabilities

In the following we define two stegosystems for the family of pseudorandom flat h-channels F = PRCη
which may look quite similar at first glance. The first one is our generic stegosystem SF defined
in Fig. 2 applied to this family. By Theorem 2 SPRCη is efficient, i.e. running in polynomial time
with respect to the description size η, the length of the message n, and the size of documents σ.
This follows from the properties of pseudorandom flat h-channels, namely (1) PRCη is a family of
channels such that each channel in PRCη has description size η, (2) the distribution functions of
channels in PRCη are efficiently computable and (3) the selection of channels Cω is uniform.

Moreover, for every channel Cω in PRCη and for every history H the probability distribution
−→
Dω
H is uniform. Since the cardinality of the support of

−→
Dω
H is a power of two, the interval en-

coding works perfectly. Thus, the unreliability of SF is zero. By Theorem 2, the security measure
AvgDetectPRCη ,SPRCη is closely related to the distinguishability DistPRCη of flat h-channels.

The second stegosystem, denoted by S ω̂F , works in the same manner as SF except the selection
of the channel Cω for the interval encoding. Now this is a fixed value ω̂, thus a predefined part of
S ω̂F . Formally, the only difference between SF and S ω̂F is that in the system SF both encoder and
decoder use a secret (random) key ω to select a channel Cω at random while in the system S ω̂F
encoder and decoder use a predetermined value ω̂. According to Kerckhoffs’ principle we assume
that ω̂ is known to a warden attacking S ω̂F , while the value ω used in SF remains unknown since
it is part of the private key. Again ω̂ by S ω̂F is independent of the “real” description ωC for the
covertext channel C. In SF Alice and Bob randomly select ω for the interval encoding, whereas in
S ω̂F they cannot even choose ω̂ – it is built into the system.

We have already mentioned that both stegosystems SF and S ω̂F may output samples that are
not in the support of the covertext channel C. However, the question remains how a warden can
notice this in case of a complex family of channels if his computational power is limited.

Using the lower bound on the query complexity in [5], one can deduce that in both cases
the insecurity InSecPRCη ,Sω̂F

, resp. InSecPRCη ,SF has to be large since the encoding complexity and
unreliability are small. One can even construct quite efficient wardens that achieve a large advan-
tage. On the other hand, it will follow from the bounds below that for all polynomial wardens the
detectability UnivDetectPRCη ,Sω̂PRCη

, resp. UnivDetectF ,SPRCη is small.

Moreover, by relating the distinguishability of pseudorandom functions from random functions
to the advantage of a distinguisher between random and pseudorandom flat h-channels, we can
bound the distinguishability of PRCη.

Theorem 3. Using a family of pseudorandom functions PRF η for the family PRCη of pseudorandom
flat channels with parameters (h, η), there exists a fixed polynomial p such that

DistPRCη(t, q, λ) ≤ 3 · PRF-InSecPRF η(η, p(t, η)) +
9 q2

2h+1
+

3 t

2η
.

We postpone the proof to the next section and rather continue the comparison of the two
stegosystems. Combining this theorem with Theorem 2
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Theorem 4. Applied to the channel family PRCη of pseudorandom flat h-channel that is generated
by a family PRF η of pseudorandom functions, the stegosystem SPRCη based on a family PRP of random
permutations achieves reliability

AvgDetectPRCη,SPRCη(t, q, λ) ≤ 3 PRF-InSecPRF η(η, p(t, η)) + 2 PRP-InSecPRP(p(t), λ/n) +

(λ2/n2 − λ/n) · 2−n + 9 q2 2−(h+1) + 3 t 2−η .

Thus, if pseudorandom functions and permutations with exponential small insecurity exist the
average detectability of this stegosystem can also be made exponentially small. Since by Lemma 2
the relation UnivDetectF ,SF ≤ AvgDetectF ,SF holds, the channel universal detectability of SPRCη
applied to PRCη is small, too. On the other hand, the specific detectability measure gives a value
arbitrarily close to 1 for SPRCη.

Theorem 5. There exist polynomials p1, p2 such that for t = p1(η, σ, n, q)

SpecDetectPRCη,SPRCη(t, q, nq) ≥ 1− PRF-InSecPRF η(η, p2(t))− t 2−η − 2(h−σ) q ` − (q `)2 2−h .

Now let us perform the same estimation for the second stegosystem S ω̂PRCη. Both measures change
their values drastically.

Theorem 6. There exist a polynomial p such that

SpecDetectPRCη,Sω̂PRCη
(t, q, λ) ≤ PRP-InSecPRP(p(t), q) .

Theorem 7. For suitable polynomials p1, p2 and t = p1(η, σ, n, q) holds

AvgDetectPRCη,Sω̂PRCη
(t, q, nq) ≥ 1− PRF-InSecPRF η(η, p2(t)) + t 2−η + 2(h−σ) q ` + (q `)2 2−h .

In practice, the system S ω̂F is easy to break when knowing its encoding channel Cω̂, whereas SF
seems to be strong against any kind of attacks. As our results show these properties are reflected
only by the measure detectability on average.

6 Formal Analysis of Distinguishability and Detectability

This section gives proofs of the main theorems.

6.1 Proof of Theorem 3

Let γ(q, h) := q2 2−h. For the channel family F = PRCη, in order to prove

DistF (t, q, λ) ≤ 3 · PRF-InSecPRF η(η, p(t, η)) +
9

2
γ(q, h) +

3 t

2η

let Q be a (t, q, λ)-distinguisher achieving maximum advantage, that means

DistF (t, q, λ) = max
Q

PrCω ,Cω′∈RPRCη [QCω ,Cω′ = 1]− PrCω∈RPRCη [QCω ,Cω = 1] ,
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where Cω, Cω′ are random elements of PRCη with seed ω, resp. ω′. To simplify the notation, a channel

Cω and its support
−→
Dω will be associated. Thus instead of PrCω ,Cω′∈RPRCη [QC,ω ,Cω′ = 1] we simply

write Prω,ω′ [Q
−→
Dω ,
−→
Dω′

= 1].
Based on Q we will construct a distinguisher R working in in time p(t, η) for some polynomial p

that can detect differences between pseudorandom and truly random flat h-channels with advantage
at least

1

3
·
(

Prω,ω′ [Q
−→
Dω ,
−→
Dω′

= 1]− Prω[Q
−→
Dω ,
−→
Dω

= 1]
)
− 3

2
γ(q, h) .

Then the relation (3) in Fact 1 gives the bound stated in Theorem 3:

PRF-InSecPRF η(η, p(t, η)) ≥ Pr−→
D

[R
−→
D,χ(

−→
D) = 1]− Prω[R

−→
Dω ,χ(

−→
Dω) = 1] − t

2η

≥ 1

3
·
∣∣∣Prω,ω′ [Q

−→
Dω ,
−→
Dω′

= 1]− Prω[Q
−→
Dω ,
−→
Dω

= 1]
∣∣∣− 3

2
γ(q, h)− t

2η

=
1

3
· DistF (t, q, λ)− 3

2

q2

2h
− t

2η
.

In the following let us abbreviate the notation by

α0 := Prω[Q
−→
Dω ,
−→
Dω

= 1] , α1 := Prω,ω′ [Q
−→
Dω ,
−→
Dω′

= 1] and ∆ := α1 − α0 = DistF (t, q, λ) .

We split the advantage ∆ for differentiating between the pair of oracles (
−→
Dω,
−→
Dω) and (

−→
Dω,
−→
Dω′)

into several intermediate steps involving random h-sets and random sequences. At least one of
these steps must give a significant advantage in order to gain total advantage ∆. Such a step will
be exploited to design a distinguisher for the family of pseudorandom permutations generating flat
h-channels.

Consider the behaviour of the distinguisher Q in cases when instead of sample sequences from

oracles (
−→
Dω,
−→
Dω) or (

−→
Dω,
−→
Dω′) sequences from some other sets, namely either from truly random

flat h-sets
−→
Dπ = D1 ×D2 × · · · or random sequences from

−→
Σ = Σ ×Σ × . . . are given. Note that

in such cases Q can behave quite arbitrarily.

For
−→
Y = Y1×Y2× . . . and

−→
Z = Z1×Z2× . . . with Yi, Zi ⊆ Σ for all i, let Q

−→
Y ,
−→
Z denote Q with

access to two oracles: the first one provides sequences (s1,1, s2,1, . . . , s`1,1), (s1,2, s2,2, . . . , s`2,2), . . .
of examples with si,j ∈R Yj , the second sequences (s′1,1, s

′
2,1, . . . , s

′
`′1,1

), (s′1,2, s
′
2,2, . . . , s

′
`′2,2

), . . . with

s′i,j ∈R Zj , where all elements are chosen uniformly and independently at random.

Let us first compare the advantage Q can achieve for (
−→
Dπ,
−→
Dω′) against (

−→
Σ,
−→
Dω). Since the

challenge oracle in both cases is a random element from the family PRCη and unrelated to the
reference oracle it suffices to bound the advantage derived from the reference oracle, that means

the distance between
−→
Dπ and

−→
Σ . Let

α2 := Prπ,ω′ [Q
−→
Dπ ,
−→
Dω′

= 1] and α3 := Prω[Q
−→
Σ,
−→
Dω

= 1] .

Lemma 3. For every (t, q, λ)-distinguisher and flat h-channels holds:

α2 − α3 = Prπ,ω′ [Q
−→
Dπ ,
−→
Dω′

= 1]− Prω[Q
−→
Σ,
−→
Dω

= 1] ≤ 2 γ(q, h) .
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Proof. Define ψ := |Σ| = 2σ and H := 2h. If the reference oracle is
−→
Σ the elements of a sample

sequence s = s1, s2, . . . , sq are completely independent. The same holds for the reference oracle
−→
Dπ

for elements that come from different Di. Thus, the best advantage will be obtained if all examples
are taken from the same channel D = Di for some i. Let X = x1, . . . , xq be a random variable
denoting the outcome of the following experiment: randomly choose D ⊆ Σ of cardinality H and
then uniformly and independently choose xj ∈R D. Similarly, we define X ′ = x′1, . . . , x

′
q where now

x′j ∈R Σ. Then,

|α2 − α3| ≤
∑
s∈Σq

∣∣Pr[X = s]− Pr[X ′ = s]
∣∣ .

Let us call a sequence X injective if it does not contain duplicates. Then,

Pr[X = s] = Pr[X = s | X injective] · Pr[X injective] +

Pr[X = s | X not injective] · Pr[X not injective] ,

and similarly for X ′. It holds

Pr[X injective] =

q−1∏
j=0

(1− j

H
) ≥

(
1− q

H

)q
≥ 1− q2

H
.

Let s be an injective sequence. Obviously

Pr[X = s | X not injective] = 0 = Pr[X ′ = s | X ′ not injective] .

Furthermore, the two probabilities are also equal for X,X ′ injective, that is

Pr[X = s | X injective] = Pr[X ′ = s | X ′ injective] .

This follows from

Pr[X ′ = s | X ′ injective] =
1

ψ
· 1

ψ − 1
· 1

ψ − 2
. . .

1

ψ − q + 1
.

and the calculation

Pr[X = s | X injective] =

(
ψ−q
H−q

)(
ψ
H

) · 1

H
· 1

H − 1
· . . . 1

H − q + 1
=

1

ψ
· 1

ψ − 1
· 1

ψ − 2
. . .

1

ψ − q + 1
.
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Since the domain ofX is smaller than the one ofX ′ it hold Pr[X not injective] ≥ Pr[X ′ not injective].
This implies∑
s∈Σq

∣∣Pr[X = s]− Pr[X ′ = s]
∣∣

=
∑

s injective

∣∣Pr[X = s | X inj.] · Pr[X inj.]− Pr[X ′ = s | X ′ inj.] · Pr[X ′ inj.]
∣∣

+
∑

s not injective

∣∣Pr[X = s | X not inj.] · Pr[X not inj.]− Pr[X ′ = s | X ′ not inj.] · Pr[X ′ not inj.]
∣∣

≤
∑

s injective

Pr[X = s | X inj.] ·
∣∣Pr[X inj.]− Pr[X ′ inj.]

∣∣ + Pr[X not injective]

≤
∣∣Pr[X ′ injective]− Pr[X injective]

∣∣ + Pr[X not injective]

≤
∣∣∣∣1− (1− q2

H

)∣∣∣∣ +
q2

H
= 2

q2

2h
= 2 γ(q, h) .

ut

A similar estimation bounds the advantage for (
−→
Dπ,
−→
Dπ) against (

−→
Σ,
−→
Dπ). Let

α4 := Prπ[Q
−→
Dπ ,
−→
Dπ

= 1] and α5 := Prπ[Q
−→
Σ,
−→
Dπ

= 1] .

Lemma 4. For every (t, q, λ)-distinguisher and flat h-channels holds:

α4 − α5 = Prπ[Q
−→
Dπ ,
−→
Dπ

= 1]− Prπ[Q
−→
Σ,
−→
Dπ

= 1] ≤ 2 γ(q, h) .

Now we design a distinguisher R with advantage

Prω[R
−→
Dω , χ(

−→
Dω) = 1]− Prπ[R

−→
Dπ , χ(

−→
Dπ) = 1] ≥ ∆

3
− 3

2
γ(q, h) .

R will not make use of membership queries at all, thus we can simplify this advantage to

Prω[R
−→
Dω

= 1]− Prπ[R
−→
Dπ

= 1] ≥ ∆

3
− 3

2
γ(q, h) . (4)

1. If α0−α4 ≥ ∆
3 −

3
2 γ(q, h), thenR

−→
X with

−→
X either

−→
Dω or

−→
Dπ simulatesQ

−→
Dω ,
−→
Dω

, resp. Q
−→
Dπ ,
−→
Dπ

as
follows. Whenever Q requires an example of length ` from either oracle, R obtains an example

sequence (s1, s2, . . . , s`), with si ∈ Xi from
−→
X , and provides this sequence to Q. Finally, R

outputs the value that Q has returned. This means

Prω[R
−→
Dω

= 1] = Prω[Q
−→
Dω ,
−→
Dω

= 1] and Prπ[R
−→
Dπ

= 1] = Prπ[Q
−→
Dπ ,
−→
Dπ

= 1] ,

which implies

Prπ[R
−→
Dπ

= 1]− Prω[R
−→
Dω

= 1] = α0 − α4 ≥
∆

3
− 3

2
γ(q, h) .
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2. If α1 − α2 ≥ ∆
3 −

3
2 γ(q, h), then R

−→
X with

−→
X either

−→
Dω or

−→
Dπ simulates Q

−→
X,
−→
Dω′

by choosing
ω′ randomly. Whenever Q requires an example of length ` from the first oracle, R, similarly as
in the previous case, obtains an example sequence (s1, s2, . . . , s`) from X1 ×X2 × . . .×X` and

provides it to Q. If Q needs an example from the second oracle, then R uses ω′ to simulate
−→
Dω′

and provides (s1, s2, . . . , s`) to Q. As before, R outputs the same value as Q. It holds

Prω[R
−→
Dω

= 1] = Prω,ω′ [Q
−→
Dω ,
−→
Dω′

= 1] and Prπ[R
−→
Dπ

= 1] = Prπ,ω′ [Q
−→
Dπ ,
−→
Dω′

= 1] ,

thus Prπ[R
−→
Dπ

= 1]− Prω[R
−→
Dω

= 1] = α1 − α2 ≥
∆

3
− 3

2
γ(q, h) .

3. If α3 − α5 ≥ ∆
3 −

3
2 γ(q, h), then R

−→
X with

−→
X either

−→
Dω or

−→
Dπ simulates Q

−→
Σ,
−→
X . During the

simulation, wheneverQ requires an example of length ` from the first oracle, R chooses uniformly
and independently at random elements si ∈R Σ for i = 1, . . . , ` and provides (s1, s2, . . . , s`) to
Q. For an example sequence from the second oracle R passes a sequence (s1, s2, . . . , s`) from
X1 ×X2 × . . .×X` to Q and outputs what Q has returned. It follows

Prω[R
−→
Dω

= 1] = Prω[Q
−→
Σ,
−→
Dω

= 1] and Prπ[R
−→
Dπ

= 1] = Prπ[Q
−→
Σ,
−→
Dπ

= 1] , thus

Pr−→
D

[R
−→
D = 1]− Prω[R

−→
Dω

= 1] = α3 − α5 ≥
∆

3
− 3

2
γ(q, h) .

Thus, in each case we are able to provide a distinguisher that achieves the advantage stated in (4).
Finally we show that at least one of these cases has to occur. Assume to the contrary that this does
no hold, that means

max{α0 − α4, α1 − α2, α3 − α5} <
∆

3
− 3

2
γ(q, h) .

Then, using Lemma 3 to bound the difference between α2 and α3 one can deduce

α1 − α5 = (α1 − α2) + (α2 − α3) + (α3 − α5) <
2 ∆

3
− 3 γ(q, h) + 2 γ(q, h) =

2 ∆

3
− γ(q, h) .

On the other hand, applying Lemma 4 we get

α0 − α5 = (α0 − α4) + (α4 − α5) <
∆

3
+

1

2
γ(q, h) .

Since ∆ = α1 − α0 this gives the contradiction

∆ = α1 − α0 = (α1 − α5) + (α0 − α5) < ∆− 1

2
γ(q, h) .

ut
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6.2 Proof of Theorem 5

We have to show for suitable polynomials p1 and p2 and t = p1(η, σ, n, q)

SpecDetectPRCη,SPRCη(t, q, nq) ≥ 1− PRF-InSecPRF η(η, p2(t))− t 2−η − 2(h−σ) q ` − (q `)2 2−h .

This means for an arbitrary, but fixed channel C ∈ PRCη we have to construct a (t, q, nq)-warden
W with advantage AdvchaC,SF (W ) ≥ 1− δ′ where

δ′ := PRF-InSecPRF η(η, p2(t)) + t 2−η + 2(h−σ) q ` + (q `)2 2−h .

Let ωC be the seed of C. W makes q queries to the challenge oracle CH which is either SF -
EncodeCω(K,M,H) or OC(M,H). To achieve the required advantage, he chooses an arbitrary
message M ∈ {0, 1}n and queries the challenge oracle with M and the empty history H.

For the analysis it will be important that the return s1, . . . , s2` of SF -EncodeCω(K,M,H)
has the following property: the first ` elements s1, . . . , s` are random elements from the support
DωC

1 × . . .×D
ωC
` . Only this part of each sample sequence will be used by W . Formally, using ωC as

a predefined parameter he executes the following steps:

1. choose an arbitrary message M ∈ {0, 1}n;
2. for i = 1, . . . , q do:

(a) query the challenge oracle CH with M and the empty history H; let Si = si,1, . . . , si,2` be
the output of CH;

(b) use the membership test for ωC on the first ` elements si,1, . . . , si,`;

(c) if there exists some si,j /∈
−→
Dj

ωC , then terminate and output 1 (for “stego”);

3. finally output 0 (for “no stego”) if termination has not occurred before.

W takes time polynomial in η, σ, n and q and makes q queries of total length λ = qn. By the con-
struction of the stegosystem SF we know that the probability distribution of the strings si,1, . . . , si,`
is exactly the same as in the channel Cω, where ω is the private key of Alice used for the encoding in
SF . W will always correctly output 0 if it sees original samples from C, therefore Pr[W C,C = 1] = 0.
Thus, the advantage of W is given by

AdvchaPRCη,SPRCη(W ) = Prω[W C,Cω = 1]− Pr[W C,C = 1] = 1− Prω[W C,Cω = 0] ,

Again we associate a channel and its support, thus it remains to show

Lemma 5.
Prω[W C,Cω = 0] = Prω[W

−→
DωC ,

−→
Dω

= 0] ≤ δ′ .

Proof. By the construction of W it holds

Prω[W
−→
DωC ,

−→
Dω

= 0] = Pr
ω; S1,...,Sq∈R

−→
Dω [S1, . . . , Sq ∈

−→
DωC ] .

If this probability were high one could distinguish easily between a truly random flat h-channel
−→
Dπ

and a pseudorandom
−→
Dω because Pr−→

Dπ ; S1,...,Sq∈R
−→
Dπ [S1, . . . , Sq ∈

−→
DωC ] is negligible:
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Lemma 6. Pr
π; S1,...,Sq∈R

−→
Dπ [S1, . . . , Sq ∈

−→
DωC ] ≤ 2(h−σ) q ` + (q `)2 2−h .

Proof. If the collection of the first ` elements of all Si does not contain any duplicates the probability

that a single element si,j with i ∈ [1..q] and j ∈ [1..`] belongs to
−→
Dj

ωC is simply 2h−σ. The probability
that no duplicates occur is at most

q`−1∏
u=0

(
1− u

2h

)
≥
(

1− q `

2h

)q `
≥ exp

(
−(q `)2

2h

)
≥ 1− (q `)2

2h
.

ut
Using this observation we construct a distinguisher Q which simulates W in order to distinguish

the truly random flat h-channels from pseudorandom ones. Then we can use the upper bound (3)
on the advantage of such a distinguisher. Q only queries the sample oracle O that can be either

a truly random
−→
Dπ or a pseudorandom

−→
Dω. It does not use the membership oracle χ(O) at all.

Q asks the oracle O to give q samples S′1, . . . , S
′
q, each of length 2`. Next Q simulates q iterations

of the warden W skipping W ’s queries to the challenge oracle CH and using S′1, . . . , S
′
q instead of

S1, . . . , Sq. If the warden outputs 0 for “no stego”, the distinguisher Q outputs 1 for “
−→
Dω”; if the

warden outputs 1, the distinguisher Q outputs 0 for “
−→
Dπ”. This way, we can bound the advantage

as follows:

Adv(Q) = Prπ[Q
−→
Dπ

= 1]− Prω[Q
−→
Dω

= 1]

= Prπ[W
−→
DωC ,

−→
Dπ

= 0]− Prω[W
−→
DωC ,

−→
Dω

= 0] .

Using Lemma 6 and the bound (3) on the advantage we can conclude for suitable polynomials p1
and p2 and t = p1(η, σ, n, q):

Prω[W
−→
DωC ,

−→
Dω

= 0] = Probπ[W
−→
DωC ,

−→
Dπ

= 0] + Adv(Q)

≤ 2(h−σ) q ` + (q `)2 2−h + PRF-InSecPRF η(η, p2(t)) + t 2−η .
ut

6.3 Proof of Theorem 6

To bound SpecDetectF ,Sω̂F
(t, q, λ) from above consider S ω̂F applied to the covertext channel Cω̂. In

this situation IntervalEncode(ω,H, ρ) produces only stegotexts that belong to the support of Cω̂.
If all uj of the procedure SF -Encode in Fig. 2 were truly random the same would hold for the ρj .
Then the distribution generated by the procedure IntervalEncode would be identical to the one of
the real channel Cω̂. This, however, only holds for the first half of the uj generated by the random
string T0. The second half is functionally dependent on T0⊕M and the random permutation chosen
by Alice’s secret key K1.

Consider a (t, q, λ)-warden Ŵ that achieves an optimal advantage for the covertext channel Cω̂.
Because the channel is fixed the adversary is assumed to know ω̂. Thus, he can easily generate
samples of Cω̂ by himself and does not need the reference oracle at all. His advantage can therefore
simply be estimated by

PrK1∈R{0,1}κ [ŴF (K1,·,·) = 1]− Pr[ŴOC(·,·) = 1] ,
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where F (K1,H,M) denotes the result produced by SF -Encode on input (ω̂||K1,H,M). Using Ŵ
we construct a distinguisher D̂ for the family of pseudorandom permutations PRPK1 . The distin-
guisher simulates Ŵ as follows. Whenever Ŵ asks his challenge oracle to either get an element of
F (K1,H,M) or a random element of Cω̂, D̂ chooses a random T0 ∈ {0, 1}n and provides T0⊕M to
his challenge oracle. This will answer either with a string T1 = PRPK1(T0 ⊕M) or a random string
of length n. Then D̂ executes the for-loop of SF -Encode to compute the output s1, . . . , s2`. This
output is passed on to Ŵ . Finally, D̂ makes the same decision as Ŵ .

If the challenge oracle of D̂ is PRPK1 then by construction D̂ produces the same distribution for
Ŵ as his challenge oracle, thus

PrK1∈R{0,1}κ [D̂PRPK1
(·) = 1] = PrK1∈R{0,1}κ [ŴF (K1,·,·) = 1] .

If on the other hand D̂ gets random strings T1 from his oracle then the outputs si are completely
random strings of Cω̂. Thus,

PrP∈RPERM(l)[D̂
P (·) = 1] = Pr[ŴOC(·,·) = 1] .

Thus, D̂ achieves the same advantage as Ŵ . Furthermore, he asks exactly the same number of
questions as Ŵ . Let p(t) be an upper time bound for D̂ to simulate a t-time bounded warden Ŵ
plus the time to compute the outputs of SF -Encode. Then we can conclude

SpecDetectF ,Sω̂F
(t, q, λ) = min

C∈F
max
W

AdvchaC,S(W )

≤ max
W

AdvchaCω̂ ,S(W ) = AdvchaCω̂ ,S(Ŵ ) = PRP-AdvPRPK1
(D̂)

≤ max
D

PRP-AdvPRPK1
(D) = PRP-InSecPRPK1

(p(t), q) .

ut

6.4 Proof of Theorem 7

Concerning the detectability on average, for arbitrary q we have to show

AvgDetectPRCη,Sω̂PRCη
(t, n, q) ≥ 1− PRF-InSecPRF η(η, p2(t)) + t 2−η + 2(h−σ) q ` + (q `)2 2−h

with t = p1(η, σ, n, q). To get a warden Ŵ with a large advantage we can make a similar construction
as in the proof of Theorem 5 except that the warden now knows the seed ω̂ used by Alice, while
the real covertext channel remains unknown to him. In the proof of Theorem 5 just the opposite
situation occurs.

Ŵ makes q queries to the challenge oracle CH, which is either S ω̂PRCη-Encode(K,M,H) or
OC(M,H). In detail, he performs the following steps.

1. Chose an arbitrary message M ∈ {0, 1}n;
2. for i = 1, . . . , q do

(a) query the challenge oracle CH with M and the empty history H; let si,1, . . . , si,2` be the
output of CH;

(b) use the membership test for ω̂ on the first ` elements si,1, . . . , si,`;

(c) if there exists some si,j /∈
−→
Dj

ω̂, then terminate and output 0 (for “no stego”);
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3. finally output 1 (for “stego”) if it has not terminated before.

In the stego case Ŵ will always decide 1 because all si,j belong to
−→
Dj

ω̂ by construction. The only
wrong decision can occur in the nonstego case when all covertext samples by chance fall in the
support of Cω̂ and Ŵ decides 1. Notice that Ŵ faces a dual situation compared to W constructed
in the proof of Theorem 5. Ŵ knows the coding channel, but not the covertext channel, whereas
W knows the covertext channel, but not the coding channel chosen by Alice, and the unknown
channel in both situations is uniformly distributed. W only makes a wrong decision in the stego
case if all stegotexts by chance fall into the support of the channel C. Therefore, the probability
that Ŵ decides 1 in case of nonstego is identical to W deciding 0 in case of stego:

Prω[Ŵ Cω ,Cω = 1] = Prω[W C,Cω = 0] .

By Lemma 5 this is bounded by δ′. Hence, the advantage can be estimated by

Advcha
PRCη,Sω̂PRCη

(Ŵ ) = PrC∈RPRCη,K [Ŵ C,S
ω̂
PRCη-Encode

C(K,·,·) = 1]− PrC∈RPRCη[Ŵ
C,OC(·,·) = 1]

= Prω[Ŵ Cω ,Cω̂ = 1]− Prω[Ŵ Cω ,Cω = 1]

= 1− Prω[Ŵ Cω ,Cω = 1]

≥ 1− δ′ .

ut

7 Conclusions and Future Work

A meaningful security measure for stegosystems should account for universality with respect to
covertext channels as well as detection since typically neither the stegoencoder nor the stegode-
tector have precise knowledge about the channel. We propose to replace the notion of insecurity
by detectability. Comparing three possible variants specific detectability, universal detectability and
detectability on average that model different preconditions of the battle between the stegoencoder
and the detector we have shown that only the last one can provide meaningful results. Further-
more, the detectability of a stegosystem is closely related to the difficulty to learn the covertext
distribution. We have proven a tight analytical relationship between these tasks.

For a particular family of covertext channels, the pseudorandom flat h-channels, two stegosys-
tems SF and S ω̂F have been constructed with the properties: (1) both are insecure, (2) SF is not
universally detectable, but specifically detectable and (3) S ω̂F is neither universally detectable nor
specifically detectable. However, low universal detectability is easy to achieve since S ω̂F only needs
to be secure for a single channel. Low specific detectability can be a misleading property, too: in
practice, S ω̂F is much easier to detect than SF . Therefore, we settle on detectability on average as a
“reasonable” measure for security.

It is shown that S ω̂F is highly detectable on average, whereas SF is just the extreme opposite.
This makes SF an interesting candidate for a stegosystem with desirable properties: it is reliable,
efficient – in contrast to systems based on rejection sampling [9, 5], its sampling complexity is linear,
not exponential – and still provides a good amount of security, since on average the chances that an
adversary running in polynomial time can detect it are extremely low. We have given an analytical
proof for this property relating the advantage of an adversary to the chance of distinguishing
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different channels of the family and the chance to recognize pseudorandom permutations that are
used for the construction of the stegotexts. Thus, similar to many primitives in cryptography secure
steganography depends on the existence of secure pseudorandom functions. This issue needs further
clarification in a strict analytical sense.

Furthermore, we propose to design and investigate other stegosystems in this setting. Can one
get similar results if the pseudorandom functions used in the constructions here are replaced by
cryptographic functions?
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