
On Monotonicity Testing and Boolean Isoperimetric type Theorems

Subhash Khot∗ Dor Minzer† Muli Safra‡

January 22, 2015

Abstract

We show a directed and robust analogue of a boolean isoperimetric type theorem of Talagrand [15].
As an application, we give a monotonicity testing algorithm that makes Õ(

√
n/ε2) non-adaptive queries

to a function f : {0, 1}n 7→ {0, 1}, always accepts a monotone function and rejects a function that is
ε-far from being monotone with constant probability.

1 Introduction

In this paper, we study the problem of testing whether a given boolean function f : {0, 1}n 7→ {0, 1}
is monotone. We also study certain isoperimetric type theorems on the boolean hypercube that are closely
related. Our main results are: (1) a directed and robust analogue of a theorem of Talagrand [15], generalizing
many prior related theorems and (2) a monotonicity tester that is optimal in terms of its query complexity
(see Section 1.5.2 for subtle issues regarding its optimality).

1.1 Boolean Isoperimetric Type Theorems

Given a function f : {0, 1}n 7→ {0, 1}, define the variance of the function as var(f) = p(1− p) where p =
Prx[f(x) = 1]. Let Sf denote the set of sensitive edges, i.e. the set of pairs (x, y) such that x, y ∈ {0, 1}n

differ in exactly one co-ordinate, f(x) = 1 and f(y) = 0. Let If =
|Sf |
2n denote the “total influence” of the

function. A folk-lore theorem states:1

Theorem 1.1.
If > Ω(var(f)).

The parameter If reflects the size of the edge boundary of the function f (or more precisely of the subset
{x|f(x) = 1} of the hypercube). The size of the vertex boundary Γf is defined as

Γf =
1

2n
· |{x|f(x) = 1,∃(x, y) ∈ Sf}| .

Margulis [13] shows that the size of the edge boundary and that of the vertex boundary cannot both be small.
Specifically,
∗Department of Computer Science, Courant Institute of Mathematical Sciences, New York University. Research supported by

NSF grants CCF 1422159, 1061938, 0832795 and Simons Collaboration on Algorithms and Geometry grant.
†School of Computer Science, Tel Aviv University.
‡School of Computer Science, Tel Aviv University.
1A Fourier analytic proof: var(f) =

∑
S⊆{1,...,n},S 6=φ f̂(S)

2 whereas If = 2 ·
∑
S⊆{1,...,n},S 6=φ f̂(S)

2 · |S|.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 11 (2015)

Theorem 1.2.
If · Γf > Ω(var(f)2).

It is instructive to note that the inequality above is tight up to a constant factor, as shown by a dictatorship
function as well as the majority function. Both functions have a constant variance. For the dictatorship
function, both If and Γf are Θ(1). For the majority function, If = Θ(

√
n) and Γf = Θ(1√

n
).

For x ∈ {0, 1}n, the sensitive edges incident on x are precisely the edges in Sf that are incident on x.
Let If (x) be equal to 0 if f(x) = 0 and equal to the number of sensitive edges incident on x if f(x) = 1.
Talagrand [15] shows that:

Theorem 1.3.
Ex
[√

If (x)

]
> Ω(var(f)).

It is easily seen that Theorem 1.1 is implied by Theorem 1.2 which in turn is implied by Theorem 1.3.
For the former implication, one observes that (here 1(·) denotes indicator of an event)

If = Ex [If (x)] > Ex
[
1If (x)>0

]
= Γf .

For the latter, one observes using Cauchy-Schwartz that

If · Γf = Ex [If (x)] · Ex
[
1If (x)>0

]
> Ex

[√
If (x)

]2

> Ω(var(f)2).

1.2 Directed Analogues of Boolean Isoperimetric Type Theorems

A function h : {0, 1}n 7→ {0, 1} is called monotone if for any two inputs x and y where y is obtained by
changing a co-ordinate of x from 0 to 1 it holds that h(x) = 1 =⇒ h(y) = 1. Equivalently, writing x 6 y
to mean that xi 6 yi for every co-ordinate i ∈ {1, . . . , n}, f is monotone if and only if

∀ x, y ∈ {0, 1}n, x 6 y =⇒ f(x) 6 f(y).

For a function f : {0, 1}n 7→ {0, 1}, let ε(f) denote the distance of f from the class of monotone functions,
i.e. minimum fraction of its values that need to be changed to turn f into a monotone function. The
monotonicity testing problem asks for an algorithm that queries a given function f at a “few” places and
distinguishes whether the function is monotone or is far from being monotone (more on this later). The
problem has been very well-studied since late 1990s, on the boolean hypercube as well as over more general
posets, for functions that take non-negative integer values instead of boolean values, and also in the context
of related problems such as estimating distance to monotonicity, approximating total influence and shortest
path routing on the hypercube [11, 3, 7, 2, 9, 1, 14, 4, 5, 12]. Still, designing an optimal tester for boolean
functions on the boolean hypercube (the most basic and interesting case in our opinion) remained open.

Let S−f denote the set of negatively sensitive edges, i.e. the set of pairs (x, y) such that y is obtained
by changing a single co-ordinate of x from 0 to 1 and f(x) = 1, f(y) = 0. These are precisely the edges

that violate the monotonicity property. Let I−f =
|S−f |
2n be the “total negative influence”. Motivated by an

application to the monotonicity testing problem, Goldreich et al [11] show that:

Theorem 1.4.
I−f > Ω(ε(f)).

2

A hypercube can be thought of as a directed graph by orienting all its edges “monotonically upwards”.
In hindsight, Theorem 1.4 is viewed as a “directed” analogue of Theorem 1.1, where If is replaced by its
analogue I−f and var(f) is replaced by its analogue ε(f). As far as we know, Chakrabarty and Seshadhri [3]
are the first to suggest this analogy. Also motivated by an application to the monotonicity testing problem,
they show the following directed analogue of Margulis’ Theorem 1.2:

Theorem 1.5.
I−f · Γ

−
f > Ω(ε(f)2).

We note that again If is replaced by its analogue I−f (which sounds intuitive) and var(f) is replaced
by its analogue ε(f) (which is not so intuitive, and hence quite remarkable, in our opinion). Lastly, Γf is
replaced by its analogue Γ−f , size of the negative vertex boundary, defined as:

Γ−f =
1

2n
·
∣∣∣{x|f(x) = 1,∃(x, y) ∈ S−f

}∣∣∣ .
For x ∈ {0, 1}n, the negatively sensitive edges incident on x are precisely the edges in S−f that are

incident on x. Let I−f (x) be equal to 0 if f(x) = 0 and equal to the number of negatively sensitive edges
incident on x if f(x) = 1. Carrying the analogy between the undirected and directed case further and still
motivated by an application to the monotonicity testing problem, we show a directed analogue of Talagrand’s
Theorem 1.3:

Theorem 1.6.
Ex
[√

I−f (x)
]
> Ω̃(ε(f)).

Here the notation Ω̃(ε(f)) hides factors that are poly-logarithmic in n and 1
ε . The precise lower bound

we obtain is Ω
(

ε(f)
logn+log(1/ε(f))

)
. Note that unlike previous theorems, our lower bound has dependence on

the dimension n, which might just be an artifact of our proof method and not inherent.
Just like the undirected case, it is easily observed that Theorem 1.6 implies Theorem 1.5 (up to the

poly-log factor), which in turn implies Theorem 1.4. We note that even though an informal analogy holds
between the theorems in the undirected and directed settings, the proofs in the directed setting are completely
different and much more involved (as an aside, we do show that the theorems in the directed setting imply
the corresponding theorems in the undirected setting and hence are more general, see Section 9.4). One
difficulty is that the parameter ε(f) is not too friendly to work with (as opposed to its analogue var(f)). In
particular, there is no straightforward way to characterize or estimate ε(f). Proofs of Theorems 1.4, 1.5, 1.6
proceed in reverse: assuming an upper bound on the L.H.S. of the respective inequality, one gives a sequence
of transformations that turns the given function f into a monotone function and hence upper bounding ε(f).

We also remark that our proof of Theorem 1.6 is very different from that of Theorems 1.4 and 1.5 and
involves several new technical ingredients that might be useful towards further research. In particular, our
proof does not use routing schemes on the hypercube as in [12, 3] and instead relies on a new “split operator”
on functions. The split operator and its properties are presented in Section 3 and the main proof appears in
Section 4. The proof involves applying the split operator on random restrictions of f .

Towards an application to the monotonicity testing problem, Chakrabarty and Seshadhri [3] actually
need and prove a stronger form of Theorem 1.5. Let Γ−f,matching denote the size of the maximum matching
among the edges in S−f (divided by a normalizing factor of 2n), which is clearly at most Γ−f since the
endpoints x of the matching with f(x) = 1 are also points on the negative vertex boundary. Chakrabarty
and Seshadhri [3] show that:

3

Theorem 1.7.
I−f · Γ

−
f,matching > Ω(ε(f)2).

In this paper, we are faced with a similar issue. We do not know how to use Theorem 1.6 directly
towards an application to the monotonicity testing problem. Also, we do not know how to deduce Theorem
1.7 from Theorem 1.6. However it turns out that a “robust” version holds both for Theorem 1.3 (i.e. the
undirected case) and Theorem 1.6 (i.e. the directed case). The latter is now enough for our application to the
monotonicity testing problem and if one wishes, to deduce Theorem 1.7 (up to the poly-log factor). Since
the specific robust version wasn’t considered before, we first describe it in an undirected setting.

1.3 Robust version of Talagrand’s Theorem

The robust version concerns the scenario when the sensitive edges are colored with two colors, red or blue.
Let col : Sf 7→ {red, blue} be an arbitrary 2-coloring of the edges in Sf . For x ∈ {0, 1}n, let If,red(x)
be equal to 0 if f(x) = 0 and equal to the number of red sensitive edges incident on x if f(x) = 1. For
y ∈ {0, 1}n, let If,blue(y) be equal to 0 if f(y) = 1 and equal to the number of blue sensitive edges incident
on y if f(y) = 0. The robust version of Talagrand’s Theorem 1.3 is as follows:

Theorem 1.8. For a function f : {0, 1}n 7→ {0, 1} and an arbitrary coloring col : Sf 7→ {red, blue},

Ex
[√

If,red(x)

]
+ Ey

[√
If,blue(y)

]
> Ω(var(f)).

We note that this theorem implies Theorem 1.3 by considering the coloring that colors all sensitive edges
red. The theorem is proved by adapting Talagrand’s proof appropriately, see Section 2. Our presentation
is a bit different (in addition to being a proof of the more general robust version) and more reader-friendly
in our opinion. Also, the theorem is needed in the proof of the robust version of the directed analogue of
Talagrand’s Theorem (i.e. of Theorem 1.6), stated next.

1.4 A Robust and Directed Analogue of Talagrand’s Theorem

We finally state the robust and directed analogue of Talagrand’s Theorem, which is what we really need
towards an application to the monotonicity testing problem.

As before, let S−f denote the set of negatively sensitive edges. The robust version concerns the scenario
when the negatively sensitive edges are colored with two colors, red and blue. Let col : S−f 7→ {red, blue}
be an arbitrary 2-coloring of the edges in S−f . For x ∈ {0, 1}n, let I−f,red(x) be equal to 0 if f(x) = 0
and equal to the number of red negatively sensitive edges incident on x if f(x) = 1. For y ∈ {0, 1}n, let
I−f,blue(y) be equal to 0 if f(y) = 1 and equal to the number of blue negatively sensitive edges incident on y
if f(y) = 0. The robust and directed analogue of Talagrand’s Theorem is as follows:

Theorem 1.9. For a function f : {0, 1}n 7→ {0, 1} and an arbitrary coloring col : S−f 7→ {red, blue},

Ex
[√

I−f,red(x)
]

+ Ey
[√

I−f,blue(y)
]
> Ω̃(ε(f)).

Again the precise bound is Ω
(

ε(f)
logn+log(1/ε(f))

)
. This theorem is proved by combining (part of) proof

of Theorem 1.6 along with a careful manipulation of underlying edge-coloring and the undirected robust
version, i.e. Theorem 1.8. The theorem implies Theorem 1.6 by considering a coloring that colors all
negatively sensitive edges red. It also implies Theorem 1.7 (up to the poly-log factor), see Section 9.3.

4

1.5 Monotonicity Testing

As mentioned before, the monotonicity testing problem asks for a randomized algorithm that queries a given
function f : {0, 1}n 7→ {0, 1} at a few places and distinguishes whether the function is monotone or is far
from being monotone. Let us focus on the case when the tester is non-adaptive, has perfect completeness
and is a “pair tester” (all testers studied, including one in this paper, have all the three properties). Here non-
adaptive means that the queries of the tester do not depend on the answers to the previous queries. Perfect
completeness means that a monotone function must be accepted with probability 1. A “pair tester” picks a
pair of inputs (x, y) from a pre-determined distribution such that y is monotonically above x and rejects if
a violation to monotonicity is detected, i.e. if f(x) = 1 and f(y) = 0. For a pair tester, a measure of its
quality is its rejection probability rej(n, ε(f)) expressed in terms of n and the distance of f from the class of
monotone functions. If one desires, one can (non-adaptively) repeat a pair tester 1

rej(n,ε(f)) times and achieve
a constant rejection probability. Thus, the number of queries is often expressed as 1

rej(n,ε(f)) , with a constant
rejection probability as the stated goal.

Goldreich et al [11] present a pair tester that picks a uniformly random edge (x, y) of the hypercube (i.e.
x and y differ in one co-ordinate). This is referred to as an “edge tester”. The rejection probability is exactly
I−f
n and hence Ω(ε(f)

n) by their Theorem 1.4. Chakrabarty and Seshadhri [3] present a pair tester that picks
a number τ ∈ {1, 2, . . . ,

√
n} with a certain distribution and then a pair (x, y) is picked, roughly uniformly,

so that y is monotonically above x by a distance τ . This is referred to as a “path tester” and its rejection
probability is Ω̃(ε(f)3/2

n7/8). As far as dependence on n is concerned, this is the first improvement over the

work of Goldreich et al [11], further improved to Ω̃(ε(f)4

n5/6) by Chen et al [7]. The analysis of the tester relies
on their Theorem 1.5. In this paper, equipped with our Theorem 1.9, we present and analyze a path tester2

whose rejection probability is Ω̃(ε(f)2√
n

):

Theorem 1.10. Given a function f : {0, 1}n 7→ {0, 1}, there is a path tester that is non-adaptive, has
perfect completeness and rejection probability Ω̃(ε(f)2√

n
).

In next sections, we elaborate a bit on how Theorem 1.9 leads to the said tester and then comment on
the optimality of our tester.

1.5.1 Monotonicity Testing from Good Subgraphs

Given a function f : {0, 1}n 7→ {0, 1}, let G−f (V,W,E) denote the bipartite graph of negatively sensitive
edges, i.e. V,W ⊆ {0, 1}n, ∀x ∈ V f(x) = 1, ∀y ∈ W f(y) = 0, E is precisely the set of negatively
sensitive edges S−f , and every vertex in V ∪W has at least one negatively sensitive edge incident on it.

Roughly speaking, Chakrabarty and Seshadhri [3] use their Theorem 1.5 to deduce that the graph
G−f (V,W,E) has a large matching and analyze their tester with reference to this matching. We, on the
other hand, use our Theorem 1.9 to deduce that the graph G−f (V,W,E) has a “(K, d)-good subgraph”
with appropriate parameters K and d (a matching corresponds to the case d = 1 and then K is the size
of the matching). We analyze our tester with reference to this good subgraph. Here, a bipartite graph
G′(V ′,W ′, E′) is called (K, d)-good if |W ′| = K, every vertex in W ′ has degree d and every vertex in V ′

2Our path tester chooses τ uniformly from {1, 2, 4, 8, . . . , 2b
log n

2
c}, attempting to guess the “correct” value for τ . A simi-

lar guess is made in [7] and their distribution of τ is, morally speaking, the same as ours. In [3], τ is chosen uniformly from
{1, 2, 3, . . . , n1/8} with probability 1

2
and τ = 1 with probability 1

2
. This apparent difference, however, is only because the

authors did not try to guess τ , which is later fixed in [7].

5

has degree at most 2d (or the symmetric case with the roles of the two sides of the bipartite graph reversed).
Leaving out some important details and caveats, the analysis of our tester is informally stated as:

Theorem 1.11. (Informal) If for a function f : {0, 1}n 7→ {0, 1}, the graph G−f (V,W,E) has a (σ ·2n, d)-

good subgraph, then there is a pair tester with rejection probability Ω̃(σ
2d√
n

).

We use Theorem 1.9 to deduce that G−f (V,W,E) has a (σ · 2n, d)-good subgraph with σ
√
d > Ω̃(ε(f))

(see Section 6 for the necessary combinatorial argument). Combined with the informal statement of our
tester above, we get a tester with rejection probability Ω̃(ε(f)2√

n
) as claimed. Additional new ingredients used

are bounds on the total influence of the function and on the fraction of “non-persistent” inputs (see Sections
9.1 and 9.2 respectively). We would like to emphasize that the analysis of our tester is qualitatively different
and a bit simpler than that of Chakrabarty and Seshadhri [3]. We do not elaborate this point further, but as a
demonstration, we note (omitting the proof) that just using the large matching as in [3] as a good subgraph,
we already get a tester with rejection probability Ω̃(ε

4/3

n5/6), improving the bound in both [3, 7].

1.5.2 Lower Bounds for Monotonicity Testing

We now give an overview of lower bounds on the number of queries required by a monotonicity testing
algorithm and compare our tester against these (and new) lower bounds. Towards a uniform comparison of
known bounds, for a parameter ε, let us require that a tester rejects any function that is ε-far from being
monotone with a constant probability. Seemingly, the dependence of the number of queries on the two
parameters n and ε can be traded against each other, so the situation is a bit subtle.

Let us first consider the case of pair testers that are non-adaptive and have perfect completeness (the most
interesting case in our opinion, especially since all known testers are of this kind). The tester of Goldreich
et al [11] achieves O(n/ε) queries and Briet et al [2] show that if a pair tester has F (n)

ε query complexity,
then the dependence on n must be F (n) > Ω(n). We show that if a pair tester makes O(nα/εβ) queries,
then α+ β

2 > 3
2 . This follows from:

Theorem 1.12. For ε = Θ(1/
√
n), a pair tester that is non-adaptive, has perfect completeness and rejects

a function that is ε-far from being monotone with constant probability must make Ω(n3/2) queries.

We note that for any α, β > 0 such that α + β
2 > 3

2 , we have nα

εβ
> min

{
n
ε ,
√
n
ε2

}
. Hence, for any

setting of α, β, either the O(n/ε)-tester of Goldreich et al [11] or our Õ(
√
n/ε2)-tester performs as well as

a potential O(nα/εβ)-tester. Thus, our tester in conjunction with Goldreich et al’s tester is optimal. Also,
if only the dependence on n is concerned (which is more interesting in our opinion than the dependence on
ε), our tester is optimal even if compared against testers that possibly have imperfect completeness and not
necessarily pair testers (see below).

Now we turn to more general testers, where there are still gaps between the upper and lower bounds. We
already stated all the upper bounds before. We do not know a scenario where it helps to be adaptive, have
imperfect completeness, or not be a pair tester. From the lower bound side, if a tester is non-adaptive and
has perfect completeness (but is not necessarily a pair tester), a lower bound of Ω(

√
n) is shown by Fischer

et al [9] for a constant ε. For non-adaptive testers that possibly have imperfect completeness, a lower bound
of Ω̃(n1/5) is shown by Chen et al [7] for a constant ε and further improved to Ω(n

1
2
−o(1)) by Chen et al

[6]. The lower bounds in [9, 7, 6] for non-adaptive testers immediately imply a lower bound of Ω(log n) for
possibly adaptive testers.

6

2 Proof of Theorem 1.8

In this section, we present a proof of Theorem 1.8. The proof is an easy adaptation of Talagrand’s proof [15]
of Theorem 1.3. Our presentation is a bit different and more reader-friendly in our opinion.

We recall that for a function f : {0, 1}n 7→ {0, 1}, Sf denotes the set of sensitive edges. Let col : Sf 7→
{red, blue} be an arbitrary 2-coloring of the edges in Sf . For x ∈ {0, 1}n, If,red(x) is equal to 0 if f(x) = 0
and equal to the number of red sensitive edges incident on x if f(x) = 1. For y ∈ {0, 1}n, If,blue(y) is
equal to 0 if f(y) = 1 and equal to the number of blue sensitive edges incident on y if f(y) = 0. We intend
to show that

Ex
[√

If,red(x)

]
+ Ey

[√
If,blue(y)

]
> Ω(var(f)). (1)

The proof is by induction on n. We show that the L.H.S. of the inequality above is lower bounded by
1
8 · var(f). The claim is correct when n = 1. For any n > 2, let f : {0, 1}n 7→ {0, 1} be the given function
and f0 = f(0, x2, . . . , xn) and f1 = f(1, x2, . . . , xn) be the two sub-functions on n − 1 co-ordinates. Let
H0 and H1 denote the “bottom” and the “top” hypercubes on which the functions f0 and f1 are defined so
that {0, 1}n = H0 ∪H1. Let I be the set of sensitive edges along the first co-ordinate so that:

Sf = Sf0 ∪ Sf1 ∪ I.

Also, a given coloring of edges in Sf induces a coloring of edges in Sf0 , Sf1 and I. Let s = |I|
2n−1 be the

influence of the first co-ordinate. By Lemma 2.1,

var(f) 6
1

2
· var(f0) +

1

2
· var(f1) +

1

4
· s2.

The main idea is to express the L.H.S. of Equation (1), denoted T , as a sum of four terms A,B,C,D
denoting similar quantities from functions f0 and f1 and in addition, a term Φ that corresponds to the
“incremental contribution” from the edges in I (along the first co-ordinate). Towards this end, let

A = Ex
[√

If0,red(x)

]
, B = Ey

[√
If0,blue(y)

]
,

C = Ez
[√

If1,red(z)

]
, D = Ew

[√
If1,blue(w)

]
.

In the following x, y will always denote vertices in the bottom hypercube H0 and z, w will always denote
vertices in the top hypercube H1. Also, f(x) = f(z) = 1 and we are concerned about the number of red
edges incident on them. Similarly, f(y) = f(w) = 0 and we are concerned about the number of blue edges
incident on them. We may assume, inductively, that

A+B >
1

8
· var(f0),

C +D >
1

8
· var(f1).

It is clear that T , i.e. the L.H.S. of Equation (1), equals

T =
1

2
(A+B) +

1

2
(C +D) + Φ,

7

where Φ denotes the incremental contribution from edges in I as follows. The edges in I have the effect
that for vertices x, y ∈ H0 and z, w ∈ H1, the relevant degrees If0,red(x), If0,blue(y), If1,red(z), If1,blue(w)
may increase by one. Each (colored) edge in I leads to an increase in the degree of exactly one vertex
x, y, z or w. Partition the edges in I as I = IA ∪ IB ∪ IC ∪ ID depending on whether an edge leads to
an increase in the degree of x, y, z or w “type” of vertex. Defining sA = |IA|

2n−1 and similarly sB, sC , sD, we
have s = sA + sB + sC + sD.

Let us focus on the edges in IA. For d = 1, 2, . . . , n, consider the vertices x ∈ H0 such that the edges
in IA increase their degree from d− 1 to d and let the number of such vertices be sd · 2n−1. Specifically, for
such a vertex If0,red(x) = d− 1 and If,red(x) = d (when x is viewed as a vertex from {0, 1}n = H0 ∪H1).
The incremental contribution of x is:√

If,red(x)−
√
If0,red(x) =

√
d−
√
d− 1 >

1

4
√
d
.

We note that sA =
∑n

d=1 sd. Denoting by ΦA the incremental contribution averaged over all x ∈ H0, we
get

ΦA >
n∑
d=1

sd ·
1

4
√
d
.

We also note that (by considering the contribution to T from only the x “type” vertices)

T >
1

2
·
n∑
d=1

sd
√
d.

By Cauchy-Schwartz, we have

ΦA · T >
1

2
·

(
n∑
d=1

sd ·
1

4
√
d

)(
n∑
d=1

sd
√
d

)
>

1

8
·

(
n∑
d=1

sd

)2

=
1

8
· s2
A.

If T > 1
8 we are done, since we only intend to prove a lower bound of T > 1

8 ·var(f). Thus we may assume
that ΦA > s2

A. Similarly we may assume that ΦB > s2
B , ΦC > s2

C , ΦD > s2
D and

Φ =
1

2
· (ΦA + ΦB + ΦC + ΦD) >

1

2
· (s2

A + s2
B + s2

C + s2
D) >

1

8
· (sA + sB + sC + sD)2 =

1

8
s2.

Finally, we get inductively that

T =
1

2
(A+B) +

1

2
(C +D) + Φ

>
1

2

(
1

8
· var(f0)

)
+

1

2

(
1

8
· var(f1)

)
+

1

8
· s2

>
1

8
·
(

1

2
· var(f0) +

1

2
· var(f0) +

1

4
· s2

)
>

1

8
· var(f).

This completes the inductive proof.

8

Lemma 2.1. For a function f : {0, 1}n 7→ {0, 1}, let s denote the influence of the first co-ordinate and f0

and f1 denote the sub-functions on the remaining n− 1 co-ordinates. Then

var(f) 6
1

2
· var(f0) +

1

2
· var(f1) +

1

4
· s2.

Proof. Let p0 = Ex[f0(x)] and p1 = Ex[f1(x)] so that Ez[f(z)] = p0+p1
2 . We have, by definition, var(f0) =

p0(1− p0) and var(f1) = p1(1− p1). Thus we have the identity:

var(f) =
p0 + p1

2

(
1− p0 + p1

2

)
=

1

2
· var(f0) +

1

2
· var(f1) +

1

4
(p0 − p1)2.

The proof is complete by observing that

|p0 − p1| = |Ex[f0(x)]− Ex[f1(x)]| 6 Ex[|f0(x)− f1(x)|] = s.

3 The Switch and the Split Operators

Goldreich et al [11] define a “switch operator” Si for a co-ordinate i ∈ {1, . . . , n} that constructs a function
Si(f) : {0, 1}n 7→ {0, 1} from a given function f : {0, 1}n 7→ {0, 1}. In this paper, we define a new
operator that we call a “split operator” ∇i for a co-ordinate i ∈ {1, . . . , n} that constructs a function
∇i(f) : {0, 1}n+1 7→ {0, 1} from a given function f : {0, 1}n 7→ {0, 1}. Note that ∇i(f) is a function
of n + 1 co-ordinates. Both the operators Si and ∇i are “applied” on co-ordinate i and can be sequentially
applied on co-ordinates 1 through n in any desired order. The operators are non-commutative in the sense
that the resulting function, in general, depends on the order in which the operators are applied on multiple
co-ordinates. In this section, we define both the operators and prove several important properties of the
latter.

3.1 The Switch Operator

Definition 3.1. For a function f : {0, 1}n → {0, 1} and a co-ordinate i ∈ {1, . . . , n}, the function
Si(f) : {0, 1}n → {0, 1} is defined as follows. For each α ∈ {0, 1}i−1, β ∈ {0, 1}n−i, and a co-ordinate
variable xi ∈ {0, 1},

Si(f)(α, xi, β)
def
=

{
min {f(α, 0, β), f(α, 1, β)} if xi = 0

max {f(α, 0, β), f(α, 1, β)} if xi = 1.

In the following, we will abuse notation for the sake of conciseness and convenience: with the under-
standing that for x−i ∈ {0, 1}n−1, written as x−i = α ◦ β, α ∈ {0, 1}i−1, β ∈ {0, 1}n−i, and that the
co-ordinate xi is inserted in the ith position as α ◦ xi ◦ β, we will write the above definition of the switch
operator as:

Si(f)(xi, x−i)
def
=

{
min {f(0, x−i), f(1, x−i)} if xi = 0

max {f(0, x−i), f(1, x−i)} if xi = 1.

The switch operator considers the edges of the hypercube along the ith dimension and for every edge that
violates the monotonicity of f in that dimension, switches the values of the function at the two endpoints

9

of that edge. The “corrected” function Si(f) is now monotone along the ith dimension. A remarkable
property of the switch operator, as shown by Goldreich et al [11], is that if another switch is now applied
on co-ordinate j 6= i, the resulting function (i.e. Sj(Si(f))) stays monotone along the ith dimension. In
particular, if the switch operator is applied on co-ordinates 1 through n, one after another in some order, the
final function is monotone. Another remarkable property is that the Hamming distance between a pair of
functions can only decrease after applying the switch operator to both. We state and prove these properties
below.

Lemma 3.2. If f : {0, 1}n 7→ {0, 1} is monotone in the jth co-ordinate, then so is Si(f) for a co-ordinate
i ∈ {1, . . . , n}, i 6= j.

Proof. It is enough to fix a setting x−i−j ∈ {0, 1}n−2 of co-ordinates except i and j and consider the
behavior of four values

a = f(xi = 0, xj = 0, x−i−j), b = f(xi = 1, xj = 0, x−i−j),

c = f(xi = 0, xj = 1, x−i−j), d = f(xi = 1, xj = 1, x−i−j).

Monotonicity of f in the jth co-ordinate implies that a 6 c, b 6 d. After the switch on the ith co-ordinate,
the four values change to

Si(f)(0, 0, x−i−j) = min{a, b}, Si(f)(1, 0, x−i−j) = max{a, b},

Si(f)(0, 1, x−i−j) = min{c, d}, Si(f)(1, 1, x−i−j) = max{c, d}.
Now the monotonicity of Si(f) in the jth co-ordinate amounts to saying that

min{a, b} 6 min{c, d}, max{a, b} 6 max{c, d},

which follows since min{·, ·},max{·, ·} are monotone functions and (a, b) 6 (c, d) by hypothesis.

Definition 3.3. For functions f1, f2 : {0, 1}n 7→ {0, 1}, their Hamming distance is

∆(f1, f2)
def
= Ex

[
1f1(x) 6=f2(x)

]
.

Lemma 3.4. For functions f, h : {0, 1}n 7→ {0, 1} and a co-ordinate i ∈ {1, . . . , n},

∆(Si(f), Si(h)) 6 ∆(f, h).

Proof. For any fixed setting of x−i ∈ {0, 1}n−1, we show that the inequality holds as far as contribution
from that setting of x−i is concerned. Indeed, denoting

a = f(0, x−i), b = f(1, x−i),

c = h(0, x−i), d = h(1, x−i),

we see that the contribution to the R.H.S. is

1a6=c + 1b 6=d,

whereas the contribution to the L.H.S. is

1min{a,b}6=min{c,d} + 1max{a,b}6=max{c,d}.

The inequality can be checked by case analysis. For example, if a = b then L.H.S = R.H.S. The same holds
if c = d or if (a, b) = (c, d). The only remaining case is when (a, b) = (0, 1) ∧ (c, d) = (1, 0) (and the
other way round) in which case the Hamming distance actually decreases.

10

We recall that for a function f , the parameter ε(f) denotes the distance of f from the class of monotone
functions, i.e. the minimum fraction of values of f that need to be changed to turn f into a monotone
function. The parameter ε(f) seems difficult to characterize in a “constructive” manner. However it turns
out that it can be well-approximated in a constructive manner. Goldreich et al [11] show, thanks to Lemma
3.2, that if the switch operator is applied to a function f , on co-ordinates 1 through n, say in that order,
then the resulting function is monotone. We observe that this transformation is efficient in the sense that the
fraction of values of f changed is at most 2 ε(f). This observation also appears in a paper of Fattal and Ron
[8, Lemma 4.3], but several researchers (including us) seemed unaware of this (thanks to Andrej Bogdanov
for pointing out).

Lemma 3.5. For any function f : {0, 1}n 7→ {0, 1},

ε(f) 6 ∆(f, Sn(Sn−1(. . . S2(S1(f)) . . .))) 6 2 ε(f).

Proof. By a repeated application of Lemma 3.2, the function Sn(Sn−1(. . . S2(S1(f)) . . .)) is monotone and
hence the left inequality holds by definition of ε(f). Towards the right inequality, let h be a monotone
function such that ∆(f, h) = ε(f). By a repeated application of Lemma 3.4,

∆(Sn(Sn−1(. . . S2(S1(f)) . . .)), Sn(Sn−1(. . . S2(S1(h)) . . .))) 6 ∆(f, h).

We note however that since h is already monotone, applying switch operators keeps it unaffected. Thus, the
above inequality is same as

∆(Sn(Sn−1(. . . S2(S1(f)) . . .)), h) 6 ∆(f, h) = ε(f).

Now by triangle inequality,

∆(f, Sn(Sn−1(. . . S2(S1(f)) . . .))) 6 ∆(f, h) + ∆(Sn(Sn−1(. . . S2(S1(f)) . . .)), h) 6 2 ε(f).

In this paper, it will be useful to consider the scenario when the switch operator is applied to co-ordinates
1 through n in a random order. Let ρ ∈ Sn denote a permutation of {1, 2, . . . , n} and γ(f) denote the ex-
pected fraction of values of f changed by selecting ρ ∈ Sn at random and then applying switches according
to the order ρ. Since in the proof of Lemma 3.5, we didn’t use the fact that the switches were in a specific
order, it follows that γ(f) is sandwiched between ε(f) and 2 ε(f).

Definition 3.6. For a permutation ρ ∈ Sn, ρ◦f denotes the function Sρ(n)(Sρ(n−1)(. . . Sρ(2)(Sρ(1)(f)) . . .)).

γ(f)
def
= Eρ∈Sn [∆(f, ρ ◦ f)] .

We have
ε(f) 6 γ(f) 6 2 ε(f).

3.2 The Split Operator

Now we define the split operator ∇i applied on a co-ordinate i ∈ {1, . . . , n}. For a function f : {0, 1}n 7→
{0, 1}, the function ∇i(f) is a function of n + 1 co-ordinates. It is best to think that the ith co-ordinate is
now split into two co-ordinates indexed as (i,+) and (i,−).

11

Definition 3.7. For a function f : {0, 1}n → {0, 1} and a co-ordinate i ∈ {1, . . . , n}, the function ∇i(f)
is defined as follows. For each x−i ∈ {0, 1}n−1

∇i(f)(xi,+, xi,−, x−i)
def
=


f(0, x−i) if xi,+ = 0, xi,− = 0

min {f(0, x−i), f(1, x−i)} if xi,+ = 0, xi,− = 1

max {f(0, x−i), f(1, x−i)} if xi,+ = 1, xi,− = 0

f(1, x−i) if xi,+ = 1, xi,− = 1.

If the function f is written as f(x1, . . . , xi−1, xi, xi+1, . . . , xn), then the function ∇i(f) is written
as (∇i(f))(x1, . . . , xi−1, xi,+, xi,−, xi+1, . . . , xn). In particular, the co-ordinates of ∇i(f) have the same
indices as that of f , except that the co-ordinate i is split into two co-ordinates indexed as (i,+) and (i,−).
We start with a preliminary observation about the split operator.

Lemma 3.8. Let f : {0, 1}n → {0, 1}, and i, j ∈ {1, . . . , n} be co-ordinates such that i 6= j. Then:

1. ∇i(f) is monotone in co-ordinate (i,+).

2. ∇i(f) is anti-monotone in co-ordinate (i,−).

3. If f is monotone in co-ordinate j, then so is∇i(f).

4. If f is anti-monotone in co-ordinate j, then so is∇i(f).

Proof. We verify that∇i(f) is monotone in co-ordinate (i,+) by verifying its monotonicity for every fixing
of x−i ∈ {0, 1}n−1 and xi,− ∈ {0, 1}. Fix some x−i ∈ {0, 1}n−1. When xi,− = 0, by definition,

∇i(f)(xi,+ = 0, xi,− = 0, x−i) = f(0, x−i)

∇i(f)(xi,+ = 1, xi,− = 0, x−i) = max {f(0, x−i), f(1, x−i)},

and the first value is less or equal the second. When xi,− = 1, by definition,

∇i(f)(xi,+ = 0, xi,− = 1, x−i) = min {f(0, x−i), f(1, x−i)}
∇i(f)(xi,+ = 1, xi,− = 1, x−i) = f(1, x−i),

and again, the first value is less or equal the second. This confirms that ∇i(f) is monotone in co-ordinate
(i,+). Similarly we can confirm that∇i(f) is anti-monotone in co-ordinate (i,−).

Now suppose that f is monotone in co-ordinate j. We will show that ∇i(f) is also monotone in co-
ordinate j. We write ∇i(f) as ∇i(f)(xi,+, xi,−, xj , x−i−j) where x−i−j denotes all co-ordinates except i
and j. We verify monotonicity of ∇i(f) in co-ordinate j by going over all four fixings of xi,+ and xi,−.
When xi,+ = xi,− = 0, we have

∇i(f)(xi,+ = 0, xi,− = 0, xj , x−i−j) = f(xi = 0, xj , x−i−j),

and monotonicity of∇i(f) in co-ordinate j follows from that of f . Similarly we can verify the case xi,+ =
xi,− = 1. Now consider the case xi,+ = 1 and xi,− = 0. In this case,

∇i(f)(xi,+ = 1, xi,− = 0, xj = 0, x−i−j) = max {f(xi = 0, xj = 0, x−i−j), f(xi = 1, xj = 0, x−i−j)},
∇i(f)(xi,+ = 1, xi,− = 0, xj = 1, x−i−j) = max {f(xi = 0, xj = 1, x−i−j), f(xi = 1, xj = 1, x−i−j)},

12

and using monotonicity of f in co-ordinate j, the first value is less or equal the second (as written, there
appears to be a 2 × 2 array of values such that each column is increasing downwards; this implies that the
maximum of the two values in the upper row is less or equal the maximum of the two values in the lower
row). Lastly, the case when xi,+ = 0 and xi,− = 1 is handled similarly, confirming the monotonicity of
∇i(f) in co-ordinate j.

Finally, a similar argument shows that if f is anti-monotone in co-ordinate j, then so is∇i(f), complet-
ing the proof of the lemma.

Though we do not need the following fact, we do note that applying the split operator (just like the
switch operator, see Lemma 3.4) can only decrease the distance to monotonicity.

Lemma 3.9.
ε(∇i(f)) 6 ε(f).

Proof. Let h be a monotone function nearest to f , i.e. ε(f) = ∆(f, h). Since h is monotone, so is ∇i(h)
and it is enough to show that

∆(∇i(f),∇i(h)) 6 ∆(f, h).

We observe that the inequality above holds for every fixed setting of x−i ∈ {0, 1}n. Indeed, letting

a0 = f(xi = 0, x−i), a1 = f(xi = 1, x−i),

b0 = h(xi = 0, x−i), b1 = h(xi = 1, x−i),

the contribution to ∆(f, h) is ∆((a0, a1), (b0, b1)), whereas the contribution to ∆(∇i(f),∇i(h)) is

∆ ((a0,min{a0, a1},max{a0, a1}, a1), (b0,min{b0, b1},max{b0, b1}, b1)) .

It can be checked by easy case analysis that the former always dominates the latter.

3.3 Pure Functions

We will need to consider functions gf,S,ρ that are obtained from function f : {0, 1}n 7→ {0, 1} by applying
the split operator on co-ordinates in some index set S ⊆ {1, . . . , n} in an order specified by a permutation
ρ on the set S. In particular if S = {1, . . . , n} and ρ is arbitrary, then applying the split operator n times
successively in the order ρ yields a function

g(x1,+, x1,−, x2,+, x2,−, . . . , xn,+, xn,−),

which, by re-arranging the co-ordinates can be written as

g(x1,+, x2,+, . . . , xn,+, x1,−, x2,−, xn,−).

We may write the function as g(x, y) where x, y ∈ {0, 1}n, x denotes the ‘+’ co-ordinates and y denotes
the ‘−’ co-ordinates. By Lemma 3.8, g(x, y) is monotone in the x-co-ordinates and anti-monotone in the
y-co-ordinates. Functions with this property will be important for us and we call them “pure”.

Definition 3.10. A function g : {0, 1}n×{0, 1}n 7→ {0, 1}, written as g(x, y), is called pure if it is monotone
in every x-co-ordinate and anti-monotone in every y-co-ordinate.

13

As we said, pure functions will arise as intermediate functions during our proof and the main point is
that pure functions are also “simple” in the sense that several of the parameters and theorems are easily
characterized and proved respectively for pure functions. We start with the observation that ε(g) has a easy
characterization for a pure function g(x, y) (although this is not the case for a general function). For a fixed
x ∈ {0, 1}n, let g(x, ·) denote the restriction of g when the first argument is fixed to x.

Lemma 3.11. For a pure function g(x, y),

ε(g) = Θ

(
E
x

[var(g(x, ·))]
)
.

Proof. Define px = Ey [g(x, y)], and define a function h(x, y) as

h(x, y) =

{
1 if px >

1
2

0 if px 6 1
2 .

We note that h(x, y) depends only on x. Since g is monotone in x, whenever x 6 x′, it holds that g(x, y) 6
g(x′, y) and then taking expectation over y, one gets px 6 px′ . Thus h is monotone and

ε(g) 6 ∆(h, g) = E
x

[∆(h(x, ·), g(x, ·))] 6 2 · E
x

[var(g(x, ·))].

On the other hand if h′ is any monotone function, then since g(x, ·) is anti-monotone, by Lemma 3.12,

∆(h′, g) = E
x

[
∆(h′(x, ·), g(x, ·))

]
> E

x
[var(g(x, ·))].

Lemma 3.12. If ψ,ψ′ : {0, 1}n 7→ {0, 1} are such that ψ is monotone and ψ′ is anti-monotone, then

∆(ψ,ψ′) > max{var(ψ), var(ψ′)}.

Proof. Let p = E[ψ] and p′ = E[ψ′]. We note that (ψ, 1− ψ′) is a pair of monotone functions. The lemma
follows using FKG inequality [10],

∆(ψ,ψ′) = Pr[ψ = 1, ψ′ = 0] + Pr[ψ = 0, ψ′ = 1]

= Pr[ψ = 1, (1− ψ′) = 1] + Pr[ψ = 0, (1− ψ′) = 0]

> p(1− p′) + (1− p)p′

> p(1− p) + p′(1− p′) = var(ψ) + var(ψ′).

We now show that Theorem 1.6 holds for a pure function g(x, y), which has a simple enough structure
that it follows immediately from the undirected version of the theorem, i.e. Talagrand’s Theorem 1.3. We
note that for a pure function, we do not lose any poly-log factor.

Lemma 3.13. For a pure function g(x, y),

E
x,y

[√
I−g (x, y)

]
> Ω(ε(g)).

14

Proof. Since g(x, y) is monotone in x, all its negatively sensitive edges are incident on the y-co-ordinates.
Moreover, since g(x, y) is anti-monotone in y, all sensitive edges incident on the y-co-ordinates are actually
negatively sensitive. Thus,

E
x,y

[√
I−g (x, y)

]
= E

x

[
E
y

[√
Ig(x,·)(y)

]]
.

Using Theorem 1.3 on function g(x, ·) along with Lemma 3.11, we have

E
x

[
E
y

[√
Ig(x,·)(y)

]]
> E

x
[Ω(var(g(x, ·)))] > Ω(ε(g)).

Similarly, Theorem 1.9 holds for a pure function g(x, y), which is noted as the lemma below. This
follows in a similar manner from the undirected version of the theorem i.e. Theorem 1.8. We skip the proof.
We note again that for a pure function, we do not lose any poly-log factor.

Lemma 3.14. For a pure function g(x, y) and for an arbitrary coloring col : S−g 7→ {red, blue},

Ex,y
[√

I−g,red(x, y)
]

+ Ex,y
[√

I−g,blue(x, y)
]
> Ω(ε(g)).

Finally, we will need the notion of a strongly monotone function, which is defined only for functions of
the type

h(x1,+, x1,−, x2,+, x2,−, . . . , xn,+, xn,−),

i.e. for functions for which the co-ordinates are paired and in each pair, one co-ordinate is designated as ‘+’
and the other as ‘−’.

Definition 3.15. A function h : {0, 1}2n 7→ {0, 1}, written as,

h(x1,+, x1,−, x2,+, x2,−, . . . , xn,+, xn,−),

is strongly monotone if it is monotone and moreover, for any i ∈ {1, . . . , n}, changing the pair of co-
ordinates ((i,+), (i,−)) from 01 to 10 can only change the function from 0 to 1.

For a function g(x1,+, x1,−, x2,+, x2,−, . . . , xn,+, xn,−), let δ(g) denote the minimum distance of g from
any strongly monotone function. Clearly δ(g) > ε(g), but it turns out that if g = g(x, y) is a pure function,
then δ(g) is same as ε(g) up to a constant factor. Here, it is understood that we re-arrange the co-ordinates
of g as

g(x1,+, x2,+, . . . , xn,+, x1,−, x2,−, . . . , xn,−),

and write g = g(x, y) with x and y denoting the ‘+’ inputs and ‘−’ inputs respectively (and vice versa;
from the representation g(x, y) one can go back to the representation in terms of pairs of co-ordinates).

Lemma 3.16. For a pure function g(x, y),

ε(g) > Ω(δ(g)).

Proof. The lemma can be equivalently stated as δ(g) 6 O(ε(g)). By Lemma 3.11, and also examining its
proof, we see that for a pure function g(x, y),

ε(g) = Θ (Ex [var(g(x, ·))]) ,

i.e. the most efficient way to turn g into a monotone function (up to a constant factor) is to change g(x, ·)
to identically 0 or identically 1 depending on whether g(x, ·) is more likely to be 0 or 1. Note that, once
this is done, the new function h(x, y) does not depend on the y co-ordinates at all and hence is a strongly
monotone function.

15

3.4 Splitting only Decreases Talagrand Objective

In this section, we show that the “Talagrand objective”, i.e. the L.H.S. of the inequality in Theorem 1.6 (and
later the robust Theorem 1.9) can only decrease when a split operator is applied to f .

Lemma 3.17. For a co-ordinate i ∈ {1, . . . , n},

E
x

[√
I−f (x)

]
> E

x′

[√
I−∇i(f)(x

′)
]
.

Proof. First we examine how a typical contribution to the L.H.S. looks like. Fix some setting x−i of co-
ordinates except i and we look at the value of I−f (·) at the two inputs (xi = 0, x−i) and (xi = 1, x−i).
Consider values of f at these two inputs:

a = f(xi = 0, x−i), b = f(xi = 1, x−i).

Let j ∈ {1, . . . , n}, j 6= i be any co-ordinate such that the jth co-ordinate of x−i equals 0. Changing this
co-ordinate to 1, let the values of f at the two new inputs be:

a′ = f(xi = 0, xj = 1, x−i−j), b′ = f(xi = 1, xj = 1, x−i−j).

Consider the notation:

(a, b) 7→ [(0, 0),#α], [(1, 0),#β], [(0, 1),#γ], [(1, 1),#δ],

meaning that the number of co-ordinates j for which (a′, b′) = (0, 0) is exactly α, the number of co-ordinates
j for which (a′, b′) = (1, 0) is exactly β, and so on. Recall that the value of I−f (·) at an input equals zero if
f = 0 at the input and the number of negatively sensitive edges on the input otherwise. The values of I−f (·)
at the two inputs (xi = 0, x−i) and (xi = 1, x−i) depend on the values of f at these inputs, i.e. a and b, and
the numbers α, β, γ, δ in the following manner (the extra +1 at one place takes into account a negatively
sensitive edge contributed by co-ordinate i itself):

I−f (xi = 0, x−i), I
−
f (xi = 1, x−i) =


0, 0 if a = 0, b = 0
α+ γ + 1, 0 if a = 1, b = 0
0, α+ β if a = 0, b = 1
α+ γ, α+ β if a = 1, b = 1

Now we consider the effect of applying the split operator on the co-ordinate i. Under the action of the
operator, the two inputs (xi = 0, x−i) and (xi = 1, x−i) give rise to four inputs, namely

(xi,+ = 0, xi,− = 0, x−i), (xi,+ = 0, xi,− = 1, x−i), (xi,+ = 1, xi,− = 0, x−i), (xi,+ = 1, xi,− = 1, x−i),

with the values of∇i(f) at these inputs respectively as

a, min{a, b}, max{a, b}, b.

As before, we investigate the scenario when, for some j ∈ {1, . . . , n}, j 6= i, the jth co-ordinate of these
four inputs is changed from 0 to 1. It is not difficult to see that the values of ∇i(f) at these four new inputs
are:

a′, min{a′, b′}, max{a′, b′}, b′,

16

if the values of f at the two new inputs are (a′, b′) as discussed above. Using a similar notation as before:

(a,min{a, b},max{a, b}, b) 7→ [(0, 0, 0, 0),#α], [(1, 0, 1, 0),#β], [(0, 0, 1, 1),#γ], [(1, 1, 1, 1),#δ],

meaning that the number of co-ordinates j for which (a′,min{a′, b′},max{a′, b′}, b′) = (0, 0, 0, 0) is ex-
actly α and so on. Now we are ready to complete the proof considering the four cases depending on values a
and b. In each case, we compare the contribution of I−f (·) at the two relevant inputs against the contribution
of I−∇i(f)(·) at the four relevant inputs to the inequality in the statement of the lemma.

When a = 0, b = 0, values of I−∇i(f)(·) are:

0, 0, 0, 0,

and the inequality in the statement of the lemma amounts to saying that:
√

0 +
√

0

2
>

√
0 +
√

0 +
√

0 +
√

0

4
.

When a = 1, b = 0, values of I−∇i(f)(·) are:

α+ γ + 1, 0, α+ 1, 0,

and the inequality in the statement of the lemma amounts to saying that:
√
α+ γ + 1 +

√
0

2
>

√
α+ γ + 1 +

√
0 +
√
α+ 1 +

√
0

4
.

When a = 0, b = 1, values of I−∇i(f)(·) are:

0, 0, α, α+ β,

and the inequality in the statement of the lemma amounts to saying that:
√

0 +
√
α+ β

2
>

√
0 +
√

0 +
√
α+
√
α+ β

4
.

When a = 1, b = 1, values of I−∇i(f)(·) are:

α+ γ, α+ β + γ, α, α+ β,

and the inequality in the statement of the lemma amounts to saying that:
√
α+ γ +

√
α+ β

2
>

√
α+ γ +

√
α+ β + γ +

√
α+
√
α+ β

4
.

The lemma below shows that the L.H.S. of inequality in the robust Theorem 1.9 can only decrease when
a split operator is applied to f . This is a bit subtle as one shows that for any coloring of the negatively
sensitive edges of f , there is a coloring of the negatively sensitive edges of ∇i(f) such that the objective
can only decrease.

17

Lemma 3.18. For any coloring col : S−f 7→ {red, blue} and co-ordinate i ∈ {1, . . . , n}, there exists a
coloring col : S−∇i(f) 7→ {red, blue} such that

Ex
[√

I−f,red(x)
]

+ Ex
[√

I−f,blue(x)
]

> Ex′
[√

I−∇i(f),red(x′)
]

+ Ex′
[√

I−∇i(f),blue(x
′)
]
.

Proof. After defining the appropriate coloring col : S−∇i(f) 7→ {red, blue}, we will in fact show two separate
inequalities:

Ex
[√

I−f,red(x)
]

> Ex′
[√

I−∇i(f),red(x′)
]
,

Ex
[√

I−f,blue(x)
]

> Ex′
[√

I−∇i(f),blue(x
′)
]
.

The coloring col : S−∇i(f) 7→ {red, blue} is derived naturally from the coloring col : S−f 7→ {red, blue} in

the following manner. Fix a setting of x−i ∈ {0, 1}n−1 for the rest of the proof. We recall that there are two
relevant inputs for f with values

a = f(xi = 0, x−i), b = f(xi = 1, x−i),

and four relevant inputs for∇i(f) with values

a = (∇i(f))(xi,+ = 0, xi,− = 0, x−i), min{a, b} = (∇i(f))(xi,+ = 0, xi,− = 1, x−i),

max{a, b} = (∇i(f))(xi,+ = 1, xi,− = 0, x−i), b = (∇i(f))(xi,+ = 1, xi,− = 1, x−i).

Towards the desired coloring, we first consider the potential, negatively sensitive edge between inputs (xi =
0, x−i) and (xi = 1, x−i). This edge, denoted e, is negatively sensitive if and only if a = 1, b = 0 and in
that case, it induces two negatively sensitive edges of ∇i(f), between two inputs in the same row, for each
of the two rows above, and these two edges are colored with the same color as e.

Next, we consider potential, negatively sensitive edges along dimension j ∈ {1, . . . , n}, j 6= i. We
assume, w.l.o.g. that the jth co-ordinate of x−i equals 0. When this co-ordinate is changed to 1, let us
denote the values of f at the two new inputs as (a′, b′) and the values of∇i(f) at the four new inputs as

a′, min{a′, b′},
max{a′, b′}, b′.

Let e0 denote the edge whose endpoints have f -values (a, a′) and e1 denote the edge whose endpoints have
f -values (b, b′). Similarly, Let e00, emin , emax , e11 denote the edges whose endpoints have (∇i)(f))-values
(a, a′), (min{a, b},min{a′, b′}), (max{a, b},max{a′, b′}), (b, b′) respectively. We now assign colors to
e00, emin , emax , e11 depending on the colors of e0 and e1. We note that colors are assigned to only negatively
sensitive edges.

• If e0 and e1 are uncolored, so are e00, emin , emax , e11.

• If exactly one of the two edges e0 and e1 is colored, say by color c ∈ {red, blue}, then all negatively
sensitive edges among e00, emin, emax, e11 are colored with the same color c (depending on the case,
there are one or two such negatively sensitive edges).

• If both the edges e0 and e1 are colored (which happens if and only if a = b = 1, a′ = b′ = 0), then:

18

– If e0 and e1 are colored with the same color, say c ∈ {red, blue}, then e00, emin , emax , e11 all
get the same color c.

– If e0 and e1 are colored with different colors, then e00 gets the color of e0, e11 gets the color of
e1, emin is colored red and emax is colored blue.

We now prove that (the other “blue inequality” being symmetric):

Ex
[√

I−f,red(x)
]

> Ex′
[√

I−∇i(f),red(x′)
]
. (2)

We note that the above inequality only concerns the number of red, negatively sensitive edges that are inci-
dent on an input with f or ∇i(f)-value equal to 1. For the fixed setting of x−i we examine the contribution
to L.H.S. of the inputs (xi ∈ {0, 1}, x−i) and to R.H.S. of the inputs (xi,+ ∈ {0, 1}, xi,− ∈ {0, 1}, x−i),
depending on four cases according to values of a and b. Also, in the following, co-ordinate j always refers
to a co-ordinate j ∈ {1, . . . , n}, j 6= i such that the jth co-ordinate of x−i equals 0.

Case a = b = 0:

In this case, since the relevant inputs have f and ∇i(f) values equal to 0, there is no contribution to
either side of inequality (2).

Case a = b = 1:

We partition the set of co-ordinates j as in proof of Lemma 3.17, however we need a finer partition. Let
α be the number of co-ordinates j such that (a, b) 7→ (0, 1) and the edge e0 is red. Let β1, β2, β3 be the
number of co-ordinates j such that (a, b) 7→ (0, 0), and the coloring of (e0, e1) is (red,red), (blue,red), or
(red,blue) respectively. Let γ be the number of co-ordinates j such that (a, b) 7→ (1, 0) and the edge e1 is
red. Then,

I−f,red(xi = 0, x−i) = α+ β1 + β3, I
−
f,red(xi = 1, x−i) = β1 + β2 + γ

I−∇i(f),red(xi,+, xi,−, x) =


α+ β1 + β3 if xi,+ = 0, xi,− = 0

α+ β1 + β2 + β3 + γ if xi,+ = 0, xi,− = 1

β1 if xi,+ = 1, xi,− = 0

β1 + β2 + γ if xi,+ = 1, xi,− = 1

So the inequality (2) amounts to saying
√
α+ β1 + β3 +

√
β1 + β2 + γ

2
>

√
α+ β1 + β3 +

√
α+ β1 + β2 + β3 + γ +

√
β1 +

√
β1 + β2 + γ

4
.

Case a = 0, b = 1:

In this case, only (xi = 1, x−i) contributes to the L.H.S. of inequality (2) and only (xi,+ = 1, xi,− ∈
{0, 1}, x−i) contributes to the R.H.S. Again, we look at a partition of the co-ordinates j. Let α be the number
of co-ordinates j such that (a, b) 7→ (0, 0) and the edge e1 is red. Let β be the number of co-ordinates j
such that (a, b) 7→ (1, 0) and the edge e1 is red. Then,

I−f,red(xi = 1, x−i) = α+ β.

I−∇i(f),red(xi,+ = 1, xi,−, x−i) =

{
α if xi,− = 0

α+ β if xi,− = 1

19

So the inequality (2) amounts to saying
√

0 +
√
α+ β

2
>

√
0 +
√

0 +
√
α+
√
α+ β

4
.

Case a = 1, b = 0:
In this case, only (xi = 0, x−i) contributes to the L.H.S. of inequality (2) and only (xi,+ ∈ {0, 1}, xi,− =

0, x−i) contributes to the R.H.S. Again, we look at a partition of the co-ordinates j. Let α be the number
of co-ordinates j such that (a, b) 7→ (0, 0) and the edge e0 is red. Let β be the number of co-ordinates j
such that (a, b) 7→ (0, 1) and the edge e0 is red. We note that in this case, we also have negatively sensitive
edges along dimension i itself. Let χ = 1 if the negatively sensitive edge with endpoints (xi = 0, x−i) and
(xi = 1, x−i) is red and χ = 0 otherwise. Then,

I−f,red(xi = 0, x−i) = α+ β + χ.

I−∇i(f),red(xi,+, xi,− = 0, x−i) =

{
α+ β + χ if xi,+ = 0

α+ χ if xi,+ = 1

So the inequality (2) amounts to saying
√
α+ β + χ+

√
0

2
>

√
α+ β + χ+

√
0 +
√
α+ χ+

√
0

4
.

4 Proof of Theorem 1.6

In this section, we present a proof of Theorem 1.6, which we consider the most interesting part of the paper.
The first subsection describes an informal overview of the proof and the formal proof appears in the next
subsection. The overview omits several of the key ingredients and is meant for intuition only, and the reader
should expect the formal proof to be quite different in terms of notation, additional ideas etc.

4.1 An Overview

We recall that for a function f : {0, 1}n 7→ {0, 1} and input x, I−f (x) is equal to 0 if f(x) = 0 and equal to
the number of negatively sensitive edges incident on x if f(x) = 1. The minimum distance of f from any
monotone function is denoted as ε(f). We intend to show that (ignoring the difference between Ω and Ω̃
notations):

Ex
[√

I−f (x)
]
> Ω(ε(f)). (3)

We start by describing a preliminary attempt towards a proof, then point out why it doesn’t quite work,
and then describe how to extend this preliminary attempt to a correct proof. We attempt to “reduce” the
inequality (3) concerning function f to the same inequality concerning the function g : {0, 1}2n 7→ {0, 1}
that is obtained by applying the split operator to f , successively on co-ordinates 1 through n, say in that
order. Partitioning the set of co-ordinates of g into two blocks of size n each, we use the notation g = g(x, y).
As in Section 3.3, g(x, y) is a pure function in the sense that g is monotone in x-co-ordinates and anti-
monotone in y-co-ordinates. Let ε(g) be the minimum distance of g from any monotone function. Towards
proving inequality (3), we observe that:

20

• when one replaces the function f by the pure function g, the L.H.S. of the inequality (3) can only
decrease (this is by Lemma 3.17; splits can only decrease the Talagrand objective).

• the inequality (3) holds for the pure function g(x, y) (this is by Lemma 3.13).

Thus, we can conclude

Ex
[√

I−f (x)
]
> Ex,y

[√
I−g (x, y)

]
> Ω(ε(g)). (4)

Now, the inequality (3) would be proved if it were (always) the case that ε(g) > Ω(ε(f)). Though we do
not present a counter-example here, this turns out to be incorrect. Still, by a careful examination of the split
operator and relating it to the switch operator, we are able to show a lower bound (up to a constant factor)

ε(g) > ∆(f, πn ◦ f) − Eπn/2 [∆(f, πn/2 ◦ f)]. (5)

We elaborate more on this lower bound. Here πn ◦ f denotes the function obtained from f by applying the
switch operator on all n co-ordinates (and πn denotes the full set {1, . . . n}). Also, πn/2 denotes a (random)
subset of n2 co-ordinates and πn/2 ◦ f denotes the function obtained from f by applying the switch operator
on precisely the co-ordinates in πn/2. We certainly know that πn ◦ f is a monotone function and we think
of applying the switch operator on co-ordinates, one by one, as “progressing” towards the “target function”
πn ◦ f . By definition, applying the switch operator on all n co-ordinates, attains the target. However, it is
possible that applying the switch operator on only (random) n2 co-ordinates gets us very close to the target. If
so, πn/2 ◦ f ≈ πn ◦ f for almost every choice of πn/2 and one does not get a good lower bound in inequality
(5). Nevertheless, combining inequalities (4), (5) and thinking of πn itself as a random set of size n (though
there is only one set of size n and no randomness is involved), we get

Ex
[√

I−f (x)
]
> Eπn [∆(f, πn ◦ f)] − Eπn/2 [∆(f, πn/2 ◦ f)].

This inequality now suggests that we ought to get another inequality,

Ex
[√

I−f (x)
]
> Eπn/2 [∆(f, πn/2 ◦ f)] − Eπn/4 [∆(f, πn/4 ◦ f)],

that reflects the difference between applying the switch operator on random n
2 co-ordinates versus applying

it on random n
4 co-ordinates. Indeed, we do obtain such an inequality. Instead of working with the function

g = gn that is obtained by applying the split operator to f on all n co-ordinates, we work with the function
gn/2 that is obtained by applying the split operator to f on (random) n/2 co-ordinates. More generally, we
are able to obtain similar inequalities for i = 0, 1, 2, . . . , blog nc as

Ex
[√

I−f (x)
]
> Eπn/2i [∆(f, πn/2i ◦ f)] − Eπn/2i+1 [∆(f, πn/2i+1 ◦ f)].

Summing up these inequalities in a telescoping manner and ignoring the negative term for the last inequal-
ity numbered i = blog nc (corresponding to not applying switch operator at all and the term amounts to
∆(f, f) = 0), we get

blog nc · Ex
[√

I−f (x)
]
> ∆(f, πn ◦ f) > ε(f),

since πn ◦ f is a monotone function. This proves inequality (3), but with a loss of log-factor.

21

4.2 The Formal Proof

We now prove Theorem 1.6 formally. Let f : {0, 1}n 7→ {0, 1} be the given function. Fix a non-empty
set S ⊆ {1, . . . , n} and partition the set of co-ordinates {1, . . . , n} as S ∪ S. We write f(x) = f(w, z)
where the input x is partitioned into w, z denoting the inputs on co-ordinates in sets S and S respectively.
For every fixed z, we will consider the function f(·, z), apply switch and split operators on it, obtain certain
inequalities and finally take expectation over z. We start by observing that

Ex
[√

I−f (x)
]
> Ez

[
Ew
[√

I−f(·,z)(w)
]]
.

We elaborate more on this inequality. The function f(·, z) is considered to be a function of only the co-
ordinates in S. The inequality follows by observing that for any input x = (w, z),

I−f (x) > I−f(·,z)(w).

Indeed, if f(x) = f(w, z) = 0, both sides equal zero. Otherwise the L.H.S. equals the number of negatively
sensitive edges of f incident on x = (w, z), whereas the R.H.S. equals the number of negatively sensitive
edges of f(·, z) incident on w, which is same as the number of negatively sensitive edges of f incident on
x = (w, z), but only considering the edges along co-ordinates in S.

Now we consider the function gS,ρ that is obtained from f by applying the split operator on co-ordinates
in S in the order given by the permutation ρ of the set S. Since f = f(w, z) and the split operator does
not “touch” the co-ordinates in S, we may write gS,ρ = gS,ρ((u, v), z) where (u, v) denote the ‘+’ and ‘−’
co-ordinates obtained after splitting the co-ordinates of w. For every fixed z, the function gS,ρ((·, ·), z) is
pure in the sense that, regarded only as function of u and v, it is monotone in the u-co-ordinates and anti-
monotone in the v-co-ordinates. Moreover, for every fixed z, we can consider gS,ρ((·, ·), z) as the function
obtained from f(·, z) by applying the split operator on co-ordinates in S in the order ρ. By Lemma 3.17,
splitting can only decrease the Talagrand objective, and hence for every fixed z,

Ew
[√

I−f(·,z)(w)
]
> Eu,v

[√
I−gS,ρ((·,·),z)(u, v)

]
.

Since gS,ρ((·, ·), z) is a pure function, by Lemma 3.13, Definition 3.15 of strong monotonicity, and Lemma
3.16 regarding distance to strong monotonicity, we have

Eu,v
[√

I−gS,ρ((·,·),z)(u, v)
]
> Ω (δ(gS,ρ((·, ·), z))) .

Combining the inequalities above, we have, for some absolute constant C,

C · Ex
[√

I−f (x)
]
> Ez [δ(gS,ρ((·, ·), z))] . (6)

4.2.1 Relating Splits to Switches

Now we take a closer look at the function gS,ρ((·, ·), z). This function is defined on input (u, v) where |u| =
|v| = |S|. Re-arranging the input co-ordinates into (+,−) pairs, and denoting by Σ = {00, 01, 10, 11} as
the four possible values that a pair of co-ordinates may take, we view the function as:

gS,ρ(·, z) : Σ|S| 7→ {0, 1}.

22

We also write gS,ρ(σ, z) where σ ∈ Σ|S| and denote co-ordinates of σ as σi for i ∈ S. To avoid confusion,
we emphasize that when we write gS,ρ(σ, z), the co-ordinates of σ are understood to be re-ordered according
to the permutation ρ. For example, if S = {1, 2, 3, 4, 5, 6, 7, 8} and ρ = (5, 4, 8, 1, 7, 2, 3, 6), then gS,ρ(σ, z)
is interpreted as:

gS,ρ(σ5, σ4, σ8, σ1, σ7, σ2, σ3, σ6, z).

Let π : Σ = {00, 01, 10, 11} 7→ {Y,N} be defined as π(00) = π(11) = N and π(01) = π(10) = Y .
We extend π to π : Σi 7→ {Y,N}i for integer i by its application on each co-ordinate. Let ϕ : Σ =
{00, 01, 10, 11} 7→ {0, 1} be defined as ϕ(00) = ϕ(01) = 0 and ϕ(10) = ϕ(11) = 1. Thus ϕ simply
selects the first co-ordinate of a pair of co-ordinates. We extend ϕ : Σi 7→ {0, 1}i for integer i by its
application on each co-ordinate.

The lemma below shows that gS,ρ(·, z) is actually composed of copies of f(·, z) with suitable switch
operators applied. Before stating the lemma, we need to explain further notation. For a permutation ρ of set
S and a vector π ∈ {Y,N}|S|, we denote by ρ?π, the permutation ρ with the elements whose π-co-ordinate
is ‘N ’ “dropped”. More explicitly, we think of the permutation ρ as an ordered list (t1, . . . , t|S|) of elements
of S ⊆ {1, . . . , n} and then ρ ? π is this ordered list with element ti dropped if πi = N . Thus ρ ? π is also
a ordered list and then (ρ ? π) ◦ f(·, z) denotes the function obtained from f(·, z) by applying the switch
operator on co-ordinates in the ordered list ρ ? π. As an illustration, suppose

S = {1, 2, 3, 4, 5, 6, 7, 8},
ρ = (5, 4, 8, 1, 7, 2, 3, 6),

π = (Y,N,N, Y,N, Y, Y,N),

so that ρ ? π = (5, 1, 2, 3) and (ρ ? π) ◦ f(·, z) is the function obtained from f(·, z) by applying the switch
operator on co-ordinates in the order 5, 1, 2, 3. Now we are ready to state the lemma.

Lemma 4.1. For σ ∈ Σ|S|,
gS,ρ(σ, z) = ((ρ ? π(σ)) ◦ f)(ϕ(σ), z).

Proof. Since the input z is “auxiliary” and just “floats around”, we can drop it from the notation. Equiva-
lently, we can assume that S = {1, . . . , n} is the full set. Also, we can assume w.l.o.g. that the permutation
ρ is the identity permutation, i.e. the ordered list (1, 2, . . . , n). Thus the function gS,ρ is the function ob-
tained from f by applying the split operator on co-ordinates 1 through n, in that order. We write g = gS,ρ
and drop S and ρ from the notation. Further, for π ∈ {Y,N}n, by denoting π ◦ f as the function obtained
from f by considering the co-ordinates 1 through n in that order, and applying the switch operator on jth

co-ordinate if and only if πj = Y , the lemma amounts to saying

∀ σ ∈ Σn, g(σ) = (π(σ) ◦ f)(ϕ(σ)). (7)

Using the short-form∇[1,...,i](f) to denote the “prefix”

∇i(∇i−1(. . .∇2(∇1(f)) . . .)),

we note that g = ∇[1,...,n](f). Also, ∇[1,...,i](f) is a function

∇[1,...,i](f) : Σi × {0, 1}n−i 7→ {0, 1}.

23

We prove by induction on i that

∀ σ ∈ Σi, x ∈ {0, 1}n−i, ∇[1,...,i](f)(σ, x) = (π(σ) ◦ f)(ϕ(σ), x), (8)

and the lemma follows from the case i = n. We note that in the inductive statement above, σ ∈ Σi,
π(σ) ∈ {Y,N}i and π(σ) ◦ f denotes the function obtained from f by considering the co-ordinates 1
through i in that order, and applying the switch operator on jth co-ordinate if and only if πj = Y .

For i = 0, there is nothing to prove as the statement is f(x1, . . . , xn) = f(x1, . . . , xn). Assume the
statement (8) for some 0 6 i 6 n − 1 and for convenience, write x = (xi+1, y) where y = (yi+2, . . . , yn)
is a vector of formal boolean variables. Thus the inductive hypothesis is that:

∇[1,...,i](f)(σ, xi+1, y) = (π(σ) ◦ f)(ϕ(σ), xi+1, y).

By applying the split operator∇i+1 to the L.H.S.

∇[1,...,i+1](f)(σ, σi+1, y) =


∇[1,...,i](f)(σ, 0, y) σi+1 = 00

min
{
∇[1,...,i](f)(σ, 0, y),∇[1,...,i](f)(σ, 1, y)

}
σi+1 = 01

max
{
∇[1,...,i](f)(σ, 0, y),∇[1,...,i](f)(σ, 1, y)

}
σi+1 = 10

∇[1,...,i](f)(σ, 1, y) σi+1 = 11.

By inductive hypothesis, the R.H.S. can be replaced as

∇[1,...,i+1](f)(σ, σi+1, y) =


(π(σ) ◦ f)(ϕ(σ), 0, y) σi+1 = 00

min {(π(σ) ◦ f)(ϕ(σ), 0, y), (π(σ) ◦ f)(ϕ(σ), 1, y)} σi+1 = 01

max {(π(σ) ◦ f)(ϕ(σ), 0, y), (π(σ) ◦ f)(ϕ(σ), 1, y)} σi+1 = 10

(π(σ) ◦ f)(ϕ(σ), 1, y) σi+1 = 11.

The R.H.S. can be further replaced, by the definition of the switch operator, as

∇[1,...,i+1](f)(σ, σi+1, y) =


(π(σ) ◦ f)(ϕ(σ), 0, y) σi+1 = 00

Si+1((π(σ) ◦ f)(ϕ(σ), 0, y) σi+1 = 01

Si+1((π(σ) ◦ f)(ϕ(σ), 1, y) σi+1 = 10

(π(σ) ◦ f)((ϕ(σ), 1, y) σi+1 = 11.

The R.H.S. can be written succinctly as

((π(σ), N) ◦ f)(ϕ(σ), ϕ(σi+1), y) for σi+1 = 00, 11,

((π(σ), Y) ◦ f)(ϕ(σ), ϕ(σi+1), y) for σi+1 = 01, 10,

which can be written even more succinctly as

((π(σ), π(σi+1)) ◦ f)(ϕ(σ), ϕ(σi+1), y),

completing the inductive step.

Using Lemma 4.1, it is now easy to lower bound the distance of gS,ρ(·, z) to strong monotonicity by the
average distance of (ρ ? π) ◦ f(·, z) to monotonicity, averaged over a random choice of π ∈ {Y,N}|S|.

24

Lemma 4.2.
δ(gS,ρ(·, z)) > E

π∈{Y,N}|S|
[ε((ρ ? π) ◦ f(·, z))].

Proof. As before, we may drop z, assume that S = {1, . . . , n}, that ρ is the identity permutation, so that
gS,ρ = g = ∇[1,...,n](f) : Σn 7→ {0, 1} and prove that

δ(g) > E
π∈{Y,N}n

[ε(π ◦ f)].

Let h : Σn 7→ {0, 1} be a strongly monotone function that is δ(g)-close to g. Identify each π ∈ {Y,N}n
with the sub-cube V = Vπ ⊆ Σn defined as

V =
∏

π[i]=Y

{01, 10} ×
∏

π[i]=N

{00, 11}.

We look at the restriction of functions g, h, ϕ to the sub-cube V . The map ϕ|V : V 7→ {0, 1}n is a bijection
and Lemma 4.1 (or rather the specialized statement (7)) implies that

g|V (σ) = (π ◦ f)(ϕ|V (σ)).

Since h : Σn 7→ {0, 1}n is strongly monotone, i.e. monotone under the ordering 00 6 01 6 10 6 11 on Σ,
it follows that h|V (ϕ|−1

V (·)) viewed as a function on {0, 1}n is monotone. Thus

ε(π ◦ f) 6 ∆(π ◦ f, h|V (ϕ|−1
V (·))) = ∆((π ◦ f)(ϕ|V (·)), h|V (·)) = ∆(g|V , h|V).

Now taking expectations over the choice of π, we get as desired

E
π∈{Y,N}n

[ε(π ◦ f)] 6 E
π∈{Y,N}n

[∆(g|Vπ , h|Vπ)] = δ(g).

4.2.2 The Telescoping Argument

We are now ready to complete the proof of Theorem 1.6. Combining inequality (6) and Lemma 4.2, we get

C · Ex
[√

I−f (x)
]
> E

z

[
E
π

[ε ((ρ ? π) ◦ f(·, z))]
]
.

Note that on the R.H.S, it is understood that there is a underlying set S of co-ordinates, f(·, z) is regarded
as a function of co-ordinates in S, ρ is a permutation of S and π ∈ {Y,N}|S|. Using Definition 3.6, we can
replace ε(·) by γ(·) and write

2 C · Ex
[√

I−f (x)
]
> E

z

[
E
π

[γ ((ρ ? π) ◦ f(·, z))]
]
. (9)

By definition of γ(·), denoting by τ a random permutation on S, we have

γ ((ρ ? π) ◦ f(·, z)) = Eτ [∆ ((ρ ? π) ◦ f(·, z), τ ◦ (ρ ? π) ◦ f(·, z))] ,

25

which by triangle inequality is at least

Eτ [∆ (f(·, z), τ ◦ (ρ ? π) ◦ f(·, z))] − ∆ (f(·, z), (ρ ? π) ◦ f(·, z)) .

Now we look at the function τ ◦ (ρ ? π) ◦ f(·, z) closely. Here, after applying the switch operator according
to ρ?π, one applies the switch operator again according to τ . The co-ordinates on which the switch operator
was applied in the first phase, i.e. according to ρ?π, are already “monotonized” and these co-ordinates do not
really participate when the switch operator is applied in the second phase, i.e. according to τ . The combined
effect of the two phases is same as that of applying the switch operator according to some permutation λ that
depends on τ, ρ, π. As an illustrative example, suppose S = {1, 2, 3, 4, 5, 6, 7, 8}, ρ = (5, 4, 8, 1, 7, 2, 3, 6),
π = {Y,N,N, Y,N, Y, Y,N} so that ρ ? π = (5, 1, 2, 3). Suppose τ = (2, 8, 6, 1, 4, 5, 3, 7). In that case

λ = λ(τ, ρ, π) = (5, 1, 2, 3, 8, 6, 4, 7).

Clearly, if τ, ρ, π were selected uniformly at random, then λ is also distributed as a uniformly random
permutation of S. Taking the expectation of inequality (9) over a random choice of ρ, we thus see that
2 C · Ex

[√
I−f (x)

]
is lower bounded by

Ez [Eλ [∆ (f(·, z), λ ◦ f(·, z))]] − Ez [Eρ,π [∆ (f(·, z), (ρ ? π) ◦ f(·, z))]] .

Finally, we take expectation of the lower bound above over the choice of a random set S ⊆ {1, . . . , n}
where each co-ordinate is in S with probability p independently. It is easily seen that we now get a lower
bound

2 C · Ex
[√

I−f (x)
]
> Ψf (p)−Ψf

(p
2

)
,

where Ψf (p) denotes the expected change in f by considering the co-ordinates 1 through n in a random
order and applying the switch operator on each co-ordinate with probability p independently. Considering
this lower bound for p = 1, 1

2 ,
1
4 , . . . ,

1
2s where s = d5 log n + 5 log(1/ε(f))e, and using telescoping sum,

we get that

(s+ 1) · 2 C · Ex
[√

I−f (x)
]
> Ψf (p = 1)−Ψf

(
p =

1

2s+1

)
> ε(f)− 1

2
· ε(f) >

1

2
· ε(f),

and hence

Ex
[√

I−f (x)
]
> Ω

(
ε(f)

log n+ log(1/ε(f))

)
,

proving Theorem 1.6. We noted that Ψf (p = 1) = γ(f) > ε(f) and for the choice of s, with probability
1− 1

2 · ε(f), no switch is applied at all (not even on a single co-ordinate), so Ψf

(
p = 1

2s+1

)
6 1

2 · ε(f).

5 Proof of Theorem 1.9

Now that we have proved Theorem 1.6, we observe that the proof of Theorem 1.9 follows in essentially the
same manner. We only point out the minor differences. Let col : S−f 7→ {red, blue} be any coloring of the
negatively sensitive edges of f . We intend to lower bound

Ex
[√

I−f,red(x)
]

+ Ex
[√

I−f,blue(x)
]
.

26

Similar to the beginning of Section 4.2, thinking of the input x as x = (w, z) w.r.t. an underlying partition
of the co-ordinates as S ∪ S, we get the lower bound

Ez
[
Ew
[√

I−f(·,z),red(w)
]

+ Ew
[√

I−f(·,z),blue(w)
]]
.

The reason is the same as before, that we are now ignoring edges along the co-ordinates in S. We now
consider the function gS,ρ as before. Using Lemma 3.18, there is a coloring of negatively sensitive edges of
gS,ρ(·, z) so that we get a lower bound

Ez
[
Eσ
[√

I−gS,ρ(·,z),red(σ)
]

+ Eσ
[√

I−gS,ρ(·,z),blue(σ)
]]
.

By Lemma 3.14 and 3.16, we get a lower bound, up to a constant factor,

Ez [δ(gS,ρ((·, ·), z))] .

Now Sections 4.2.1 and 4.2.2 only concern a lower bound on this last quantity (and taking expectation
over the choice of S, ρ and telescoping) and we are done. We note that even though the proof in Section
4.2.2 is written with reference to the quantity Ex

[√
I−f (x)

]
, one only needs to replace it with the analogue

Ex
[√

I−f,red(x)
]

+ Ex
[√

I−f,blue(x)
]

everywhere.

6 A Combinatorial Fact

Definition 6.1. A bipartite graph G(V,W,E) is called right-(K, d)-good if |W | > K, degree of every
vertex in W is in the range [d, 2d] and degree of every vertex in V is at most 2d.

Definition 6.2. A bipartite graph G(V,W,E) is called left-(K, d)-good if |V | > K, degree of every vertex
in V is in the range [d, 2d] and degree of every vertex in W is at most 2d.

Definition 6.3. A bipartite graph G(V,W,E) is called (K, d)-good if it is either right-(K, d)-good or left-
(K, d)-good.

Definition 6.4. A bipartite graph G(V,W,E) is called L-robust if for any 2-coloring of its edges col : E 7→
{red, blue}, we have ∑

v∈V

√
Dred(v) +

∑
w∈W

√
Dblue(w) > L.

HereDred(v) denotes the number of red edges incident on v andDblue(w) denotes the number of blue edges
incident on w.

Lemma 6.5. If a bipartite graph G(V,W,E) is L-robust and all its vertices have degree less than 2s, then
it has a subgraph that is (K, d)-good with K

√
d > L

8s .

Proof. We search for the desired good subgraph by looking at a decreasing sequence of subgraphs of
G(V,W,E). Let G0(V0,W0, E0) = G(V,W,E) be the starting graph. For j = 0, 1, 2, . . ., we assume
that Gj(Vj ,Wj , Ej) is

(
L− j · L2s

)
-robust and all its vertices have degree less than 2s−j . Then we show

that either Gj(Vj ,Wj , Ej) has a subgraph that is (K, d)-good with K
√
d > L

8s (in which case we are done
and we can stop) or else has a subgraph Gj+1(Vj+1,Wj+1, Ej+1) that is

(
L− (j + 1) · L2s

)
-robust and

27

has all degrees less than 2s−j−1 and we resume the next iteration. This iterative process must find a good
subgraph since otherwise for j = s, the graph Gs will have no edges and still be L

2 -robust.
We prove the iterative claim. In the graph Gj(Vj ,Wj , Ej), let A ⊆ Vj , B ⊆ Wj be the sets of vertices

whose degree is in the range [2s−j−1, 2s−j). Let Vj+1 = Vj\A,Wj+1 = Wj\B, andGj+1(Vj+1,Wj+1, Ej+1)
be the induced subgraph of Gj(Vj ,Wj , Ej) on vertex set (Vj+1,Wj+1). Note that the degrees of vertices in
Gj+1 are less than 2s−j−1.

Let H(A,Wj , EH) be the induced subgraph of Gj(Vj ,Wj , Ej) on the vertex set (A,Wj). With d =
2s−j−1, note that in the graph H(A,Wj , EH), every vertex in A has degree in the range [d, 2d] and every
vertex in Wj has degree at most 2d. Thus H is left-(|A|, d)-good and if |A|

√
d > L

8s , we are done. Hence
we may assume that |A|

√
d 6 L

8s . Similarly, we may assume that |B|
√
d 6 L

8s . Now we prove that
Gj+1(Vj+1,Wj+1, Ej+1) is

(
L− (j + 1) · L2s

)
-robust.

Consider any {red, blue}-coloring of edges of Gj+1(Vj+1,Wj+1, Ej+1). Extend this to a coloring of
edges of Gj(Vj ,Wj , Ej) by coloring all edges between A and Wj+1 as red, all edges between B and Vj+1

as blue, and coloring edges between A and B arbitrarily. Using the fact that Gj is
(
L− j · L2s

)
-robust, we

get (degrees below are degrees in Gj):

L− j · L
2s

6
∑
v∈Vj

√
Dred(v) +

∑
w∈Wj

√
Dblue(w)

=
∑

v∈Vj+1

√
Dred(v) +

∑
v∈A

√
Dred(v) +

∑
w∈Wj+1

√
Dblue(w) +

∑
w∈B

√
Dblue(w)

6
∑

v∈Vj+1

√
Dred(v) + |A| ·

√
2d +

∑
w∈Wj+1

√
Dblue(w) + |B| ·

√
2d.

Using the upper bound on |A| and |B| as above, we get∑
v∈Vj+1

√
Dred(v) +

∑
w∈Wj+1

√
Dblue(w) > L− (j + 1) · L

2s
.

Noting that for vertices in Vj+1 (resp. Wj+1) their red-degree (resp. blue-degree) is same in the graphs Gj
and Gj+1, the claim follows.

7 Algorithm for Monotonicity Testing

In this section, we present our monotonicity testing algorithm. Let f : {0, 1}n 7→ {0, 1} be the given
function that is ε(f)-far from being monotone. The tester is a simple path tester that picks a distance
parameter τ ∈ {1, . . . , b

√
nc} from a certain distribution and tries to detect a violation to monotonicity on

a pair (x, y) of inputs such that y is monotonically above x at distance τ . Using Theorem 1.9, we deduce
existence of a good subgraph of violated edges and then the tester is analyzed with reference to this good
subgraph (note that the good subgraph is used for purposes of the analysis only).

As we will see, we only need to consider the case when ε(f) > 1√
n

, hence we make this assumption
henceforth and in particular, log(1/ε(f)) is O(log n). Secondly, we can ignore “atypical” inputs, i.e. those
whose Hamming weight is outside the range n

2 ± 10
√
n log n. The fraction of these inputs is at most, say

1
n10 , and ignoring them does not affect the analysis. One can get around this issue in a formal manner also,
as follows. One may pretend that instead of a query access to the given function f , we have a query access to

28

the function f̃ that is same as f except that on inputs of Hamming weight less than n
2 − 10

√
n log n, f̃ = 0

and on inputs of Hamming weight greater than n
2 + 10

√
n log n, f̃ = 1. It is easily seen that the atypical

inputs do not participate in any violating pair (x, y) for f̃ . One may carry out the analysis for f̃ giving a
lower bound on the rejection probability. Since the rejection probability amounts to detecting a violating
pair and any violating pair for f̃ is also a violating pair for f , the same lower bound on rejection probability
applies to f .

7.1 Existence of a Good Subgraph

We recall that G−f (V,W,E) denotes the bipartite graph of negatively sensitive edges, i.e. V,W ⊆ {0, 1}n,
∀x ∈ V f(x) = 1, ∀y ∈ W f(y) = 0, E is precisely the set of negatively sensitive edges S−f , and every
vertex in V ∪W has at least one negatively sensitive edge incident on it.

Theorem 1.9 amounts to saying that the graph G−f (V,W,E) is Ω(2n · ε(f)
logn)-robust. We note that the

degrees of vertices in G−f are at most n, hence less than 2s with s = dlog ne+ 1. Applying Lemma 6.5, we

get that G−f (V,W,E) has a subgraph Ggood(A,B,EAB) that is (K, d)-good where K
√
d > Ω(2n·ε(f)

log2 n
).

We assume w.l.o.g. that Ggood is a right-(K, d)-good graph with |B| = K. By definition of a good
graph, every vertex in A has degree at most 2d and every vertex in B has degree in the range [d, 2d]. By
deleting some edges if necessary, we may assume that every vertex in B has degree exactly d. By deleting
some vertices from B if necessary, we may assume that K

√
d = Θ(2n·ε(f)

log2 n
). Finally, we write K = σ · 2n

for convenience. We summarize the conclusion below.

Lemma 7.1. G−f (V,W,E) contains a subgraph Ggood(A,B,EAB) such that |B| = σ · 2n, vertices in B

have degree exactly d, vertices in A have degree at most 2d and σ
√
d = Θ(ε(f)

log2 n
).

7.2 The Tester

Let p be the largest integer such that 2p 6
√

n
logn . Our tester works as follows:

1. Pick an integer k ∈ {0, 1, 2, . . . , p} uniformly at random and let τ = 2k.

2. Pick an input x ∈ {0, 1}n uniformly at random.

3. Let S ⊆ {1, . . . , n} be the set of 0-co-ordinates of x. Pick a random subset T ⊆ S, |T | = τ and
obtain z by changing co-ordinates of x in T to 1.

4. Reject if and only if f(x) = 1 and f(z) = 0.

Remark 7.2. (i) In Step (3), as remarked before, we may assume that the Hamming weight of x is in the
range n

2 ± 10
√
n log n, so x does have enough 0-co-ordinates. (ii) The description of the tester and the

analysis are written assuming that the good subgraph, as in Lemma 7.1, is a right-good subgraph. If it were
a left-good subgraph, the tester (and the analysis) would work in the anti-symmetric manner, by letting the
input y to be monotonically below x by a distance τ and then rejecting if f(x) = 0, f(y) = 1. Formally, the
tester would pick one of the two options with probability 1

2 each and proceed.

29

7.3 The Analysis of the Tester

We intend to show that the tester rejects with probability Ω̃(ε(f)2√
n

). We first make a series of preliminary
observations and then proceed to the main analysis. We note first that the tester, when τ = 1, actually runs
the edge tester and this happens with probability Θ(1

logn) over the choice of τ . Thus our tester already
includes, implicitly, the edge tester.

The Lower Bound ε(f) > 1√
n

:

The edge tester has rejection probability Ω(ε(f)
n) as shown by Goldreich et al [11] and when ε(f) 6 1√

n
, it

also qualifies as a tester with rejection probability Ω(ε(f)2√
n

). Thus we assume henceforth that ε(f) > 1√
n

.

The Upper Bound If 6 6
√
n:

If the total negative influence I−f is large, i.e. if I−f >
√
n, then the edge tester rejects with probability

I−f
n

which is Ω(1√
n

) and we are done. Thus we assume henceforth that I−f 6
√
n. By Theorem 9.1, we then

have an upper bound on the total influence, i.e. If 6 max{3 · I−f , 6
√
n} = 6

√
n.

The Lower Bound σ > logn√
n

:

We know that σ
√
d = Θ(ε(f)

log2 n
). If σ 6 logn√

n
, we get that

σ · d =
(σ
√
d)2

σ
> Ω

(
ε(f)2 ·

√
n

log5 n

)
.

The graph Ggood(A,B,EAB) has exactly |B| · d = σ · 2n · d edges and all these are violating edges. Thus

I−f > σ · d > Ω̃(ε(f)2 ·
√
n). As before, the edge tester rejects with probability

I−f
n which is Ω̃(ε(f)2√

n
) and

we are done. Thus we assume henceforth that σ > logn√
n

.

Choosing τ that “Works” and Persistence of B-vertices:

Since τ takes values that are powers of 2, we can fix a value of τ such that

τ 6 σ

√
n

log n
6 2 τ.

Using the bounds logn√
n

6 σ 6 1, it holds that 1
2 ·
√

log n 6 τ 6
√

n
logn . We will show that the tester

“works” when this specific value of τ is chosen by the tester, which happens with probability Θ(1
logn).

We call a vertex y ∈ B “(τ − 1)-persistent” if changing τ − 1 of its co-ordinates at random from 0 to
1 changes the value of the function from 0 to 1 with probability at most 1

10 . By Lemma 9.3, the fraction of
vertices y ∈ {0, 1}n that are not (τ − 1)-persistent is bounded by O(

If
n · τ), which is using upper bounds

If 6 6
√
n and τ 6 σ

√
n

logn , is upper bounded by σ
100 . Since B constitutes σ fraction of vertices in {0, 1}n,

at least a 99
100 fraction of the vertices in B are (τ − 1)-persistent. We retain only the persistent vertices in B

and assume henceforth that all vertices in B are (τ − 1)-persistent, redefining the parameter σ to reflect the
new, slightly reduced, size of B.

30

Main Analysis

We are now ready to present the main argument in our analysis. Let Ggood(A,B,EAB) be the good graph
of violated edges. Let τ be the specifically chosen parameter as above. The tester picks an input x ∈ {0, 1}n
uniformly at random and then picks input z at random that is monotonically above x by a distance τ . We
consider the probability of the following event R. We note that in case of event R, the tester does detect a
violation of monotonicity and rejects. Naturally, the probability of eventR is a lower bound on the rejection
probability of the tester, however, one needs to be careful to avoid “double-counting” as explained towards
the end of the analysis.

The eventR

• x ∈ A and hence f(x) = 1.

• There is a unique y such that (x, y) ∈ EAB (i.e. x 6 y and y ∈ B) and moreover y 6 z.

• f(y) = f(z) = 0.

Fix some x ∈ A. Let s = degA(x) 6 2d be the degree of x in the graph Ggood(A,B,EAB) and let
{y1, . . . , ys} be the set of neighbors of x in this graph. We note that d 6 n and

s · τ 6 2d · σ
√

n

log n
= O(σ

√
d) ·

√
dn

log n
6 O

(
1

log2 n

)
· n√

log n
.

Consider the choice of a random z that is monotonically above x by a distance τ . This amounts to changing,
at random, τ of the co-ordinates of x from 0 to 1. The probability that yi 6 z for some i ∈ {1, . . . , s} is
Ω(s·τn). This reflects the probability that while changing τ of the co-ordinates from≈ n

2 0-co-ordinates of x,
one of the s relevant co-ordinates corresponding to its neighbors y1, . . . , ys gets changed. It is important that
s · τ � n for this argument to work. On the other hand, the probability that yi 6 z for two or more indices
i ∈ {1, . . . , s} is at most O(s2 · τ2

n2), which is negligible compared to the probability that there is at least
one such index. In other words, whenver yi 6 z for some i ∈ {1, . . . , s}, such an index i is likely unique.
Moreover, for any fixed i ∈ {1, . . . , s}, conditioning the choice of z so that yi 6 z, the choice of z amounts
to changing, at random, τ − 1 of the co-ordinates of yi from 0 to 1. Since yi ∈ B is (τ − 1)-persistent, with
probability 9

10 over the choice of z (conditional on yi 6 z), it holds that f(z) = f(yi) = 0.

The discussion above shows that for a fixed x ∈ A, the probability of event R over the choice of z is
Ω(degA(x)·τ

n). Hence the overall probability of eventR can be lower bounded as:

Pr[R] =
1

2n

∑
x∈A

Ω

(
degA(x) · τ

n

)
= Ω

(τ
n

)
· 1

2n

∑
x∈A

degA(x) = Ω
(τ
n

)
· |B| · d

2n
= Ω

(τ
n

)
· σ · d,

which by substituting τ = Θ(σ
√

n
logn) and σ2d = (σ

√
d)2 > Ω((ε(f)

log2 n
)2), gives a lower bound of Ω̃(ε(f)2√

n
)

on Pr[R]. We now note that whenever the event R occurs, the tester detects that (x, z) is a violating pair.
Moreover, the pair (x, z) uniquely determines the edge (x, yi) ∈ EAB with x 6 yi 6 z and the violating
pair (x, z) can be “credited” to the edge (x, yi) ∈ EAB . The sets of violating pairs credited to different
edges in EAB are disjoint and there is no “double-counting”. This shows that Pr[R] is also a lower bound
on the rejection probability of the tester.

31

8 A Lower Bound for Monotonicity Testing

In this section, we prove Theorem 1.12. For a subset S ⊆ {1, 2, . . . , 4n}, |S| = 2n and an index j ∈
{1, 2, . . . , 4n}, j 6∈ S, define a function fS,j : {0, 1}4n 7→ {0, 1} as follows: for input x ∈ {0, 1}4n,
denoting by xS , its restriction to co-ordinates in S,

• If xS has Hamming weight less than n, f(x) = 0.

• If xS has Hamming weight larger than n, f(x) = 1.

• If xS has Hamming weight exactly n, f(x) = 1− xj .

In short, fS,j(x) is the majority function on xS except in the “middle layer” where it is the anti-dictatorship
of co-ordinate j. It is easily seen that ε(fS,j) = Θ(1√

n
) (to turn fS,j into a monotone function, the best

strategy, up to a constant factor, is to make it 0 in the middle layer). Consider the family F of functions fS,j
over all choices of S, |S| = 2n and j 6∈ S.

We show that for any “reasonable” pair of inputs (x, y) such that y is monotonically above x, the
probability that (x, y) is a violating pair for the function fS,j is O(1/n3/2) over a randomly chosen function
fS,j ∈ F . It then follows that any pair tester that queries o(n3/2) pairs, has only o(1) rejection probability on
some function in F , completing the proof. A pair (x, y) is “reasonable” if Hamming weights of x, y are in
the range 2n±O(

√
n log n). The fraction of inputs that participate in an unreasonable pair is polynomially

small in n and hence we may ignore unreasonable pairs without affecting our argument.
Fix any reasonable pair (x, y) where y is monotonically above x by a distance τ . Note that the pair is

violating pair for the function fS,j if and only if xS = yS with Hamming weight exactly n, xj = 0 and
yj = 1. Denoting by Dx,y the set of co-ordinates where x and y differ, |Dx,y| = τ and this is a violating
pair if and only if

xS has Hamming weight n and S ∩Dx,y = φ and j ∈ Dx,y.

The probability that the above event happens for a random choice of S, j is at most O(1√
n
· 2−Ω(τ) · τn),

where the three events indicated above have probabilities roughly 1√
n

, 2−Ω(τ) and τ
n respectively and are

nearly independent. This probability is maximized when τ = 1 and is at most O(1/n3/2).

9 Some Useful Results and Additional Observations

9.1 Bound on Total Influence

Recall that for a function f : {0, 1}n 7→ {0, 1}, Sf denotes the set of sensitive edges and S−f ⊆ Sf denotes

the set of negatively sensitive edges. The total influence is If =
|Sf |
2n and the total negative influence is

I−f =
|S−f |
2n . We show that if I−f � If then If is at most O(

√
n). This upper bound on the total influence is

very useful in the analysis of our monotonicity tester. Formally:

Theorem 9.1.
I−f 6

1

3
· If =⇒ If 6 6

√
n.

32

Proof. For co-ordinate i ∈ {1, . . . , n}, let (x−i, b) denote an input that equals b in the ith co-ordinate and
x−i ∈ {0, 1}n−1 in the remaining co-ordinates. Let 1(·) denote the indicator of an event. One observes that
the Fourier coefficient f̂({i}) is, by definition:

2 · f̂({i}) = E[f(x−i, 0)− f(x−i, 1)] = E[2 · 1f(x−i,0)>f(x−i,1) − 1f(x−i,0)6=f(x−i,1)].

Rearranging and summing over i ∈ {1, . . . , n} gives

n∑
i=1

E[1f(x−i,0) 6=f(x−i,1)] = 2 ·
n∑
i=1

E[1f(x−i,0)>f(x−i,1)]− 2 ·
n∑
i=1

f̂({i}).

Observing that the first and the second sums are precisely If and I−f respectively and taking absolute values,

If 6 2 · I−f + 2 ·
n∑
i=1

|f̂({i})|.

Now if I−f 6 1
3 If , it follows that If is at most 6 ·

∑n
i=1 |f̂({i})|, which by Cauchy-Schwartz is at most

6
√
n
√∑n

i=1 f̂({i})2 6 6
√
n.

9.2 Bound on Fraction of Non-persistent Inputs

Fix an integer parameter τ ∈
[
1,
√

n
logn

]
and a function f : {0, 1}n 7→ {0, 1}. For an input x ∈ {0, 1}n,

a random input y that is monotonically above x at distance τ is picked by changing τ co-ordinates of x
from 0 to 1, picked uniformly at random from the set of 0-co-ordinates of x. In the following, we assume
that all inputs under consideration have Hamming weight in the range 1

2n±O(
√
n log n), since the fraction

of remaining “atypical” inputs is at most, say 1
n10 , and ignoring these atypical inputs has no effect on our

arguments.

Definition 9.2. An input x ∈ {0, 1}n is called τ -persistent if over the choice of a random input y that is
monotonically above x at distance τ ,

Pry[f(x) 6= f(y)] 6
1

10
.

The following lemma bounds the fraction of non-persistent inputs in terms of the total influence of the
function. Here is an intuitive argument. For a non-persistent input, changing τ of its co-ordinates changes
the value of the function with a constant probability. Thus, roughly speaking, changing one of its co-
ordinates changes the value of the function with probability Ω(1/τ) and hence, the total influence is at least
the fraction of non-persistent inputs multiplied by Ω(n/τ). However, a formal proof offers some subtleties.

Lemma 9.3. Let τ ∈
[
1,
√

n
logn

]
. The fraction of τ -non-persistent inputs is at most O(

If
n · τ).

Proof. Let α be the fraction of non-persistent inputs. Consider the random process that picks input x
uniformly at random and then picks, at random, input y that is monotonically above x by distance τ . We
consider the probability that f(x) 6= f(y). Clearly,

Prx,y[f(x) 6= f(y)] =
1

2n
·
∑

x∈{0,1}n
Pry[f(x) 6= f(y)] > α · 1

10
, (10)

33

since for a non-persistent input x, the probability Pry[f(x) 6= f(y)] is at least 1
10 . Let x = x0, x1, . . . , xτ =

y denote the sequence of inputs, starting with x and changing one co-ordinate at a time (from ‘0’ to ‘1’) till
one reaches y. The order in which the co-ordinates are changed is itself random. Clearly,

Prx,y[f(x) 6= f(y)] 6
τ−1∑
`=0

Pr[f(x`) 6= f(x`+1)]. (11)

We note that while moving from x` to x`+1 the co-ordinate that is changed is itself random among the ‘0’-
co-ordinates of x`. The distribution of the input x` is not necessarily uniform (but close to it, as we will
see). We observe that the lemma follows immediately if we were to assume that the distribution of x` is
uniform. Indeed, supposing so, the distribution of the pair (x`, x`+1) is same as the distribution of the pair
(u, v) where u is uniformly random and v is obtained by changing a random ‘0’ co-ordinate of u to ‘1’.
Thus, we would have, combining Equations (10), (11),

α

10
6

τ−1∑
`=0

Pru,v[f(u) 6= f(v)] = τ ·
If
n
,

completing the proof of the lemma. We now show how to handle the issue that the distribution of x` is
not necessarily uniform. We show that for any fixed input z ∈ {0, 1}n with Hamming weight in the range
1
2n±O(

√
n log n),

Pr[z = x`] 6 C · Pr[z = u],

for some constant C, i.e. the probability of sampling z from the distribution corresponding to that of x` is
at most a constant times the probability of sampling z from the uniform distribution. Indeed, suppose the
Hamming weight of z is 1

2n+ k for some k ∈ [−O(
√
n log n), O(

√
n log n)]. We note that if z = x`, then

x must have Hamming weight 1
2n+ k − ` and since x is uniformly random,

Pr[z = x`] =

(
1

2n
·
(

n
1
2n+ k − `

))
· 1(

n
1
2
n+k

) .
Here the first factor reflects the probability that x has Hamming weight 1

2n + k − ` and the second factor
reflects the probability that z happens to be one specific input among all inputs with Hamming weight 1

2n+k.
By Lemma 9.4, Pr[z = x`] is at most a constant times 1

2n = Pr[z = u] as claimed. Combining Equations
(10), (11) as before,

α

10
6

τ−1∑
`=0

Pr[f(x`) 6= f(x`+1)] 6
τ−1∑
`=0

C · Pr[f(u) 6= f(v)] = τ · C ·
If
n
,

completing the proof of the lemma.

Lemma 9.4. Consider integers ` ∈
[
0,
√

n
logn

]
and k ∈ [−O(

√
n log n), O(

√
n log n)]. Then layers

1
2n+ k and 1

2n+ k − ` of the n-dimensional hypercube have the same number of vertices up to a constant
factor. That is: (

n
1
2
n+k−`

)(
n

1
2
n+k

) = Θ(1).

34

Proof.(
n

1
2
n+k−`

)(
n

1
2
n+k

) =
(1

2n+ k)!(1
2n− k)!

(1
2n+ k − `)!(1

2n− k + `)!
=

(1
2n+ k)(1

2n+ k − 1)...(1
2n+ k − `+ 1)

(1
2n− k + `)(1

2n− k + `− 1)...(1
2n− k + 1)

=

=

`−1∏
j=0

(
1 +

2k − `
1
2n− k + `− j

)
=

(
1±O

(√
log n

n

))`
= Θ(1),

since |2k − `| and |k − `+ j| are O(
√
n log n) and ` is at most

√
n

logn .

9.3 Theorem 1.9 =⇒ Theorem 1.7

We show how to derive Theorem 1.7 from Theorem 1.9 (up to the poly-log factor). For a function f :
{0, 1}n 7→ {0, 1}, Let G−f (V,W,E) denote the bipartite graph of negatively sensitive edges as before (i.e.

E = S−f). We note that I−f =
|S−f |
2n and Γ−f,matching is the maximum size of a matching in G−f divided by 2n.

We intend to show that
I−f · Γ

−
f,matching > Ω̃(ε(f)2).

Towards this end, for subsets A ⊆ V, B ⊆ W , let (A,B) be a minimum vertex cover in G−f so that its
size |A| + |B| is also the maximum size of a matching. Color the edges of G−f with two colors so that all
edges incident on A are colored red and all remaining edges (which must be incident on B) blue. Applying
Theorem 1.9, we get that ∑

x∈A

√
I−f,red(x) +

∑
y∈B

√
I−f,blue(x) > 2n · Ω̃(ε(f)).

Using Cauchy-Schwartz, the L.H.S. is upper bounded by√
|A|+ |B| ·

√∑
x∈A

I−f,red(x) +
∑
y∈B

I−f,blue(x) =
√

Γ−f,matching · 2n ·
√
|S−f |.

Combining these two observations and squaring both sides of the inequality gives the desired result.

9.4 Undirected Theorems from Directed Theorems

In this section, we show that Theorems 1.1, 1.2, 1.3, 1.8 follow from the corresponding directed versions of
these theorems, namely, Theorems 1.4, 1.5, 1.6, 1.9 respectively (possibly up-to poly-log factor). Thus the
directed versions are indeed generalizations of the undirected versions (as ought to be the case).

Definition 9.5. For input x ∈ {0, 1}n, let x∗ ∈ {0, 1}n denote the input with all the bits of x flipped. For a
function f : {0, 1}n 7→ {0, 1}, let f∗ : {0, 1}n 7→ {0, 1} denote the function defined so that

∀x ∈ {0, 1}n, f(x) = f∗(x∗).

Lemma 9.6. For a function f : {0, 1}n 7→ {0, 1},

ε(f) + ε(f∗) > Ω(var(f)).

35

Proof. Let h be a monotone function that is nearest to f so that ε(f) = ∆(f, h). Let p = E[f] and q = E[h]
so that |p− q| 6 ε(f). Thus

var(h) = q(1− q) > p(1− p)− 2 |p− q| > var(f)− 2 ε(f).

If ε(f) > 1
4 · var(f) we are done. Otherwise, we get var(h) > 1

2 · var(f). Now let g be a monotone function
that is nearest to f∗ so that ε(f∗) = ∆(f∗, g) = ∆(f, g∗). Since h is monotone and g∗ is anti-monotone,
using Lemma 3.12,

ε(f) + ε(f∗) = ∆(f, h) + ∆(f, g∗) > ∆(h, g∗) > var(h) >
1

2
· var(f),

and we are done.

We make some preliminary observations and then all the implications will follow immediately. Let
G(V,W,E) denote the graph of sensitive edges of f , i.e. f(V) ≡ 1, f(W) ≡ 0, E is precisely the set
of sensitive edges of f and every vertex in V ∪W has at least one sensitive edge of f incident on it. By
definition:

If =
|E|
2n
, Γf =

|V |
2n
, Ex

[√
If (x)

]
=

1

2n
·
∑
x∈V

√
degG(x).

G1(V1,W1, E1) be the graph of negatively sensitive edges of f . This is a subgraph of G induced by
precisely the negatively sensitive edges, i.e. (x, y) ∈ E1 if and only if (x, y) ∈ E and x 6 y. Also,
V1 ⊆ V, W1 ⊆ W are precisely the subsets of vertices that have at least one negatively sensitive edge on
them. By definition:

I−f =
|E1|
2n

, Γ−f =
|V1|
2n

, Ex
[√

I−f (x)
]

=
1

2n
·
∑
x∈V1

√
degG1

(x).

Let E2 = E \ E1 and let G2(V2,W2, E2) be the subgraph of G induced by edges in E2. Thus V2,W2 are
subsets of vertices that have at least one edge in E2 incident on them. We may write

G(V,W,E) = G1(V1,W1, E1) ∪ G2(V2,W2, E2),

noting that E1 ∩ E2 = φ, but V1, V2 and similarly W1,W2 need not be disjoint.

Consider the mapping ϕ : x 7→ x∗. This is clearly an isomorphism of the hypercube and let us denote the
isomorphic copy of G2(V2,W2, E2) under this isomorphism as G∗2(V ∗2 ,W

∗
2 , E

∗
2). The main observation is

thatG∗2(V ∗2 ,W
∗
2 , E

∗
2) is precisely the graph of negatively sensitive edges of the function f∗. Indeed, an edge

e = (x, y) ∈ E2 satisfies f(x) = 1, f(y) = 0, x > y. So its isomorphic copy e∗ = (x∗, y∗) ∈ E∗2 satisfies
f∗(x∗) = 1, f∗(y∗) = 0, x∗ 6 y∗ and hence is a negatively sensitive edge of f∗. The same argument works
backwards.

The isoperimetric parameters for f∗ concerning the graph G∗2(V ∗2 ,W
∗
2 , E

∗
2) can now be expressed in

terms of its isomorphic copy G2(V2,W2, E2) as:

I−f∗ =
|E2|
2n

, Γ−f∗ =
|V2|
2n

, Ex
[√

I−f∗(x)
]

=
1

2n
·
∑
x∈V2

√
degG2

(x).

Theorem 1.1 now follows from Theorem 1.4 and Lemma 9.6 as:

If =
|E|
2n

=
|E1|
2n

+
|E2|
2n

= I−f + I−f∗ > Ω(ε(f)) + Ω(ε(f∗)) > Ω(var(f)).

36

Theorem 1.2 follows from Theorem 1.5 as:

If · Γf = (I−f + I−f∗) ·
|V |
2n

> (I−f + I−f∗) ·
1

2
·
(
|V1|
2n

+
|V2|
2n

)
= (I−f + I−f∗) ·

1

2
·
(

Γ−f + Γ−f∗
)
,

which is lower bounded, up to the factor 1
2 , by

I−f · Γ
−
f + I−f∗ · Γ

−
f∗ > Ω(ε(f)2) + Ω(ε(f∗)2) > Ω((ε(f) + ε(f∗))2) > Ω(var(f)2).

Theorem 1.3 follows from Theorem 1.6 (up to a poly-log factor) as:

Ex
[√

If (x)

]
=

1

2n
·
∑
x∈V

√
degG(x) >

1

2
· 1

2n
·

∑
x∈V1

√
degG1

(x) +
∑
x∈V2

√
degG2

(x)

 ,

which is same, up to the factor 1
2 , as

Ex
[√

I−f (x)
]

+ Ex
[√

I−f∗(x)
]
> Ω̃(ε(f)) + Ω̃(ε(f∗)) > Ω̃(var(f)).

Similarly, Theorem 1.8 follows from Theorem 1.9 (up to a poly-log factor), where a coloring of edges
of E induces a coloring of edges of E1 and E2. We omit the straightforward proof.

10 Acknowledgment

We sincerely thank Andrej Bogdanov, Deeparnab Chakrabarty, Seshadhri Comandur, Oded Goldreich, Guy
Kindler, Dana Ron, Ronitt Rubinfeld, Rocco Servedio, and Omri Weinstein for their valuable comments on
an earlier draft of the paper and many discussions over the years.

References

[1] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the distance to a mono-
tone function. Random Struct. Algorithms, 31(3):371–383, 2007.

[2] Jop Briët, Sourav Chakraborty, David Garcı́a-Soriano, and Arie Matsliah. Monotonicity testing and
shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012.

[3] Deeparnab Chakrabarty and C. Seshadhri. A o(n) monotonicity tester for boolean functions over the
hypercube. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June
1-4, 2013, pages 411–418, 2013.

[4] Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and lipschitz testing over
hypercubes and hypergrids. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto,
CA, USA, June 1-4, 2013, pages 419–428, 2013.

[5] Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity testing over hy-
pergrids. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques - 16th International Workshop, APPROX 2013, and 17th International Workshop, RANDOM
2013, Berkeley, CA, USA, August 21-23, 2013. Proceedings, pages 425–435, 2013.

37

[6] Xi Chen, Anindya De, Rocco Servedio, and Li-Yang Tan. Boolean function monotonicity testing
requires (almost) n1/2 non-adaptive queries. arXiv, Report 1412.5657, 2014.

[7] Xi Chen, Rocco Servedio, and Li-Yang Tan. New algorithms and lower bounds for monotonicity
testing. In Annual Symposium on Foundations of Computer Science, FOCS ’14, 2014.

[8] Shahar Fattal and Dana Ron. Approximating the distance to monotonicity in high dimensions. ACM
Trans. Algorithms, 6(3):Art. 52, 37, 2010.

[9] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and Alex
Samorodnitsky. Monotonicity testing over general poset domains. In Proceedings on 34th Annual
ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 474–
483, 2002.

[10] C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre. Correlation inequalities on some partially ordered sets.
Comm. Math. Phys., 22:89–103, 1971.

[11] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky. Testing mono-
tonicity. Combinatorica, 20(3):301–337, 2000.

[12] Eric Lehman and Dana Ron. On disjoint chains of subsets. J. Comb. Theory, Ser. A, 94(2):399–404,
2001.

[13] G. A. Margulis. Probabilistic characteristics of graphs with large connectivity. Problemy Peredači
Informacii, 10(2):101–108, 1974.

[14] Dana Ron, Ronitt Rubinfeld, Muli Safra, Alex Samorodnitsky, and Omri Weinstein. Approximating
the influence of monotone boolean functions in o(

√
n) query complexity. TOCT, 4(4):11, 2012.

[15] M. Talagrand. Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and Margulis’ graph
connectivity theorem. Geom. Funct. Anal., 3(3):295–314, 1993.

38

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

