
Lower Bounds for Clique vs. Independent Set

Mika Göös

Department of Computer Science, University of Toronto

January 24, 2015

Abstract

We prove an ω(log n) lower bound on the conondeterministic communication complexity of
the Clique vs. Independent Set problem introduced by Yannakakis (STOC 1988, JCSS 1991). As
a corollary, this implies superpolynomial lower bounds for the Alon–Saks–Seymour conjecture in
graph theory. Our approach is to first exhibit a query complexity separation for the decision tree
analogue of the UP vs. coNP question—namely, unambiguous DNF width vs. CNF width—and
then “lift” this separation over to communication complexity using a result from prior work.

1 Introduction

Yannakakis’s [Yan91] Clique vs. Independent Set problem, associated with an undirected n-node
graph G = ([n], E), is the following: Alice holds a clique x ⊆ [n] in G, Bob holds an independent
set y ⊆ [n] in G, and their goal is to decide whether x and y intersect. As the underlying graph
enforces |x ∩ y| ∈ {0, 1}, we may define a boolean function by CISG(x, y) := |x ∩ y|.

Upper bounds. For every G there is an dlog ne-bit nondeterministic communication protocol for
CISG that guesses the name of the unique node in the intersection x∩y. Recall (e.g., [KN97, Juk12])
that, combinatorially, this means that the 1-entries of the communication matrix of CISG can be
covered with n rectangles. We write this fact as NPcc(CISG) ≤ dlog ne. Yannakakis further proved
that Pcc(CISG) ≤ O(log2 n), where Pcc stands for deterministic communication complexity. In
particular, we have the same upper bound on the conondeterministic complexity:

coNPcc(CISG) ≤ O(log2 n).

Lower bounds. It has been a relatively long-standing open problem to prove (for some choice
of G) superlogarithmic lower bounds on Pcc(CISG), let alone on coNPcc(CISG). See, for instance,
the textbooks by Kushilevitz and Nisan [KN97, Exercise 1.8] and Jukna [Juk12, Research Problem
4.15]. See also Table 1 for a summary of previous bounds, and the works of Kushilevitz and
Weinreb [KW09a, KW09b] for indirect attacks on the problem.

Our main result is to obtain such superlogarithmic lower bounds.

Theorem 1. There is a family of graphs G such that

coNPcc(CISG) ≥ Ω(log1.128 n).

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 12 (2015)

Measure Lower bound Reference

Pcc 2 · log n Kushilevitz, Linial, and Ostrovsky [KLO99]

coNPcc 6/5 · log n Huang and Sudakov [HS12]

coNPcc 3/2 · log n Amano [Ama14]

coNPcc 2 · log n Shigeta and Amano [SA14]

coNPcc ω(log n) This work

Table 1: Lower bounds on the deterministic (Pcc) and conondeterministic (coNPcc) communication
complexities of the Clique vs. Independent Set problem.

Implications. The CIS problem admits several equivalent formulations, as explored in-depth by
Bousquet, Lagoutte, and Thomassé [BLT14]. In particular, Theorem 1 refutes a certain “polynomial”
version of the Alon–Saks–Seymour conjecture [BLT14, Conjecture 16]. The original conjecture
stated that χ(G) ≤ bp(G) + 1, that is, that the chromatic number of G can be bounded in terms of
the biclique packing number of G (minimum number of complete bipartite graphs needed to partition
the edges of G). Huang and Sudakov [HS12] disproved the original conjecture by showing that χ(G)
can be polynomially larger than bp(G). Theorem 1 implies that the gap can be superpolynomial.
See [BLT14] for more details about this and other connections.

1.1 Our approach

Unambiguity. The canonical dlog ne-cost nondeterministic protocol for CISG outlined above has
the additional property of being unambiguous: on each input the protocol can accept at most one
nondeterministic guess. That is, combinatorially, the rectangles covering the 1-entries do not overlap.
Thus dlog ne is an upper bound on the unambiguous communication complexity of CISG, which we
write as UPcc(CISG) ≤ dlog ne. In fact, it is known that the CISG family of problems is complete for
unambiguous communication: for every two-party function F : X × Y → {0, 1} there is a graph G
on n = 2UP

cc(F) nodes such that F appears as a subproblem of CISG. See Figure 1 for an illustration.
In particular, we have UPcc(F) = UPcc(CISG) = log n. Given this structural perspective, our goal
becomes to exhibit a total1 function with a large UPcc vs. coNPcc gap.

The following is a rephrasing of Theorem 1.

Theorem 2. There is an F such that coNPcc(F) ≥ UPcc(F)β where β > 1.128 is a constant.

Query complexity. Instead of attacking Theorem 2 head-on, we first show an analogous separation
in the simpler-to-understand world of decision tree complexity [BdW02]. Here one deals with plain
boolean functions f : {0, 1}n → {0, 1} (different n than above) without any two-party structure.
We use the superscript “dt” for query complexity measures. For example, NPdt(f) denotes the
nondeterministic decision tree complexity of f , or equivalently, the minimum k such that f can be
written as a k-DNF. We also set coNPdt(f) := NPdt(¬f). A DNF is unambiguous if on every input
at most one of its terms (a.k.a. certificates) evaluates to true. We define UPdt(f) as the minimum
k such that f can be written as an unambiguous k-DNF. (Unambiguous decision trees have been
studied at least in [Sav02].)

The following is the query analogue of Theorem 2.

1It is easy to give a partial function (promise problem) with an exponential UPcc vs. coNPcc gap: the unique
set-intersection function UINTER satisfies UPcc(UINTER) ≤ O(logn) but coNPcc(UINTER) ≥ Ω(n) [Raz92, KW14].

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

Partition of F−1(1) Graph G

;

Figure 1: Reduction F ≤ CISG [Yan91, Lemma 1]: Fix an optimal partition of the 1-inputs of F
using 2UP

cc(F) rectangles. The nodes of the graph G are the rectangles, and two nodes are connected
by an edge if the corresponding rectangles share a row. We have F ≤ CISG via the following map:
Alice maps her input x to the set of all rectangles intersecting row x, and Bob maps his input y to
the set of all rectangles intersecting column y.

Theorem 3. There is an f such that coNPdt(f) ≥ UPdt(f)α where α > 1.128 is a constant.

From query to communication. Given an f as above, we then apply a result from [GLM+14]
that allows us to convert f into a communication problem while preserving its conondeterministic
complexity. Specifically, we consider a composed function of the form F := f ◦ gn where g : {0, 1}b×
{0, 1}b → {0, 1} is a two-party “gadget” on a small number b = Θ(log n) of inputs. The inputs to
F are pairs (x, y) ∈ {0, 1}bn × {0, 1}bn, which we view as being partitioned into n disjoint blocks
x1, . . . , xn and y1, . . . , yn of b bits each. The task is to compute

F (x, y) := f(g(x1, y1), . . . , g(xn, yn)).

We use the following special case of a result proved in [GLM+14]—the full result there holds also for
many randomised models. (We include a proof of this special case in Appendix A for completeness.)

Theorem 4 ([GLM+14]). There is a gadget g on b = Θ(log n) bits so that for all f : {0, 1}n → {0, 1},

coNPcc(f ◦ gn) ≥ Ω(coNPdt(f) · b). (1)

This establishes the lower bound on coNPcc(F). For the upper bound on UPcc(F), we use the
simple fact that a protocol can always simulate a corresponding type of decision tree:

UPcc(f ◦ gn) ≤ O(UPdt(f) · b). (2)

Indeed, when a nondeterministic decision tree queries the i-th input of f , we simulate this query in a
nondeterministic protocol by a proof string of length Θ(b) = Θ(log n) that contains an encoding of i
(dlog ne bits), Alice’s i-th input xi (b bits), and Bob’s i-th input yi (b bits). Given this information,
both players can learn the output g(xi, yi) of the i-th gadget. Finally, it is straightforward to check
that the resulting protocol is unambiguous iff the decision tree is unambiguous.

To conclude, Theorem 3 together with (1) and (2) imply a gap of coNPcc(F) ≥ Ω(UPcc(F)α ·
log1−α n). Our F is actually going to satisfy UPcc(F) ≥ nΩ(1) so the previous bound can be written
as coNPcc(F) ≥ UPcc(F)α−o(1). This proves Theorem 2 for any β < α.

The rest of this paper is devoted to proving Theorem 3.

3

2 Definitions

A size-k certificate for “P (x)”—where P (·) is a predicate and x ∈ {0, 1}n is an input—is a partial
assignment C to inputs, setting at most k variables, such that x agrees with C (we also say that C
accepts x) and for every y agreeing with C it holds that P (y). The certificate complexity of “P (x)”
is the least size of a certificate for “P (x)”. A nondeterministic (NPdt) decision tree T of cost k
for “P (·)” is a collection of size-k certificates such that for every x, P (x) holds iff there exists an
C ∈ T that accepts x. We say that T is unambiguous (UPdt), if on every input x there is at most
one certificate C ∈ T that accepts x. We define NPdt(f) (resp. UPdt(f)) as the least cost of a NPdt

(resp. UPdt) decision tree for “f(·) = 1”. Also let coNPdt(f) := NPdt(¬f). Finally, Pdt(f) denotes
the deterministic decision tree complexity of f .

3 Warm-up discussion

The purpose of this section is to develop a “feel” for the UPdt vs. coNPdt question, and motivate
some of the choices that are made in the upcoming sections.

Upper bound on gap A well-known result for decision trees states that Pdt(f) ≤ NPdt(f) ·
coNPdt(f); see [Juk12, §14.2]. A similar argument shows that Pdt(f) ≤ UPdt(f)2. In particular,
coNPdt(f) ≤ UPdt(f)2, and hence the UPdt vs. coNPdt gap cannot be too large (as in communication
complexity). This argument is illuminating, so we present it here.

Proposition 5. Pdt(f) ≤ UPdt(f)2.

Proof. Let T be a UPdt decision tree for f . A key observation is that any two certificates of T must
intersect in variables—otherwise we could construct an input that satisfied two distinct certificates
of T , which contradicts unambiguity. The Pdt decision tree is this: Choose any certificate C ∈ T and
query all its variables (at most UPdt(f) many). Let ρ be a partial assignment recording the values
revealed, and let fρ be the restriction of f by ρ. If fρ is constant, we can output the corresponding
value. Otherwise recursively run a decision tree for fρ. Here UPdt(fρ) ≤ UPdt(f) − 1 as every
remaining certificate C ′ 6= C of T must intersect C in variables, so ρ already fixes at least one
variable from each C ′.

Recursive composition It is easy to exhibit a constant-size function with some UPdt vs. coNPdt

gap. For example, define a function on 3 bits by f(x) = 1 iff x has Hamming weight 1 or 2. We have
UPdt(f) = 2 since {x1x̄2, x2x̄3, x3x̄1} is an unambiguous collection of certificates for f . We also
have coNPdt(f) = 3 since the function is sensitive to flipping any of the bits on the all-0 input ~0.

A standard trick in boolean function complexity [NS94, NW95, Sav02] is to take a constant-size
function, such as f above, and to recursively compose it with itself: f i+1(·) := f(f i(·), f i(·), f i(·))).
The hope is that at every level of recursion the gap between the two complexity measures of interest
increases by some constant factor (e.g., 3/2 in the case of f). However, this approach works
straightforwardly only when the complexity measures are two-sided, that is, they do not distinguish
between f and ¬f . In our case of UPdt vs. coNPdt we are searching for a function whose 1-inputs
are easy, but 0-inputs are hard. An obstacle associated with a recursively defined function f i is that
the only way to certify “f i(·) = 1”—which should be easy—often involves recursively certifying
that “f i−1(·) = 0”—which should be hard!

4

(a)

1
23

2

1 2

3

12

1

3
1

3

2

3

2

1

3

1

2 3

(b)

Figure 2: (a) Fano plane with 7 nodes and 7 hyperedges, and (b) a symmetric incidence ordering.

Large alphabets Our construction will employ recursion. In order to avoid the obstacle described
above, we are going to enlarge the input/output alphabets of our functions. With large alphabets
we assume a decision tree model where queries are still atomic, and reading a symbol from any
input costs one query. We will study functions of the form f : ({0} ∪ Σ)n → {0} ∪ Σ, where the
symbols in Σ are intuitively thought of as “easy to certify”. The symbol 0 will be “hard to certify”,
and consequently we will always study the coNPdt complexity relative to the all-0 input ~0. The
idea is that certifying “f i(·) = σ” for σ ∈ Σ is easy as we only need to recursively certify the same
type of statements: “f i−1(·) = σ′” for σ′ ∈ Σ. In particular, we make sure that an UPdt decision
tree will never need to certify statements of the form “f i(·) = 0”. Such UPdt decision trees will be
called 0-avoiding later.

Note that if we have a function f : Σn → {0, 1} with a large input alphabet, we may always
convert it to a boolean function by composing it with n copies of some surjection g : {0, 1}dlog |Σ|e → Σ.
The following näıve bounds will suffice for our purposes:

C(f) ≤ C(f ◦ gn) ≤ C(f) · dlog |Σ|e for all C ∈ {UPdt, coNPdt}. (3)

4 Projective plane example

In this section we describe an example witnessing a constant-factor UPdt vs. coNPdt gap. The
example is based on projective planes, and it will be suitable for recursive composition later.

Finite projective planes. For our purposes, a finite projective plane H is a k-uniform hypergraph
with n = k2 − k + 1 nodes and n hyperedges. Each node is incident to k edges, and each edge is
incident to k nodes. Moreover, the edges are pairwise intersecting. See Figure 2a for an example of
the case k = 3. It is well known that finite projective planes exist whenever k − 1 is a prime power.

Symmetric incidence ordering. Given an H as above, we fix for each node v ∈ V (H) an
ordering of its incident edges, and for each edge e ∈ E(H) an ordering of its incident nodes. We
make sure that the two orderings are symmetric: e is the i-th incident edge of v ∈ e iff v is the
i-th incident node of e; see Figure 2b. Such symmetric orderings are guaranteed to exist by Hall’s

5

matching theorem [Die10, §2.1]. (Consider the k-regular bipartite incidence graph of H that has
the original nodes V (H) on the left and the original hyperedges E(H) on the right and there is
an edge {v, e} iff v ∈ e. Then by Hall’s theorem the edges of this graph can be partitioned into k
disjoint perfect matchings—this encodes the desired orderings.)

Unweighted function. To turn H into a query problem f , we make the nodes of H correspond
to input variables that take on values from {0} ∪ [k]. These values are interpreted as pointers: we
say that a node with input i ∈ [k] points to its i-th incident edge. A node with input 0 does not
point anywhere (0 is a null pointer). Moreover, we say that an assignment x : V (H)→ {0} ∪ [k]
satisfies an edge e ∈ E(H) if all the incident nodes v ∈ e point to e according to x. Note that each
x can satisfy at most a single edge, since every two edges share a node, and this node can only point
to one of the two edges.

The function f : ({0}∪ [k])n → {0, 1} is now defined so that f(x) = 1 iff x satisfies an edge. There
is an obvious cost-k UPdt decision tree for f whose certificates are in one-to-one correspondence
with the edges of H. Unfortunately, the certificate complexity of “f(~0) = 0” is not large: it is also k.
We will next fix this by assigning weights to the inputs.

Input weights. We are going to modify the function f defined above so that querying the inputs
xj to f becomes harder: to decide whether “xj = i” one needs to spend w(i) queries (instead of 1)
where w : [k]→ N is a weighting function of our choosing. We allow only positive weights, so we
agree that 0 /∈ N. Concretely, this is achieved by considering a composed function f ◦ gnw where gw is
a gadget that implements the weights w. More specifically, gw is of the form ({0}∪ [k])m → {0}∪ [k]
where m := maxw([k]) is the maximum weight and gw(x) is defined as follows: If x = ~0, output 0.
Otherwise let xj = i be the first non-0 coordinate of x. If j ≤ w(i), output i; otherwise output 0.

By construction, for deterministic decision trees and for every i ∈ [k], it is both necessary and
sufficient to make w(i) queries in order to decide whether “gw(·) = i”. Furthermore, we record for
later use the following two properties that also follow straightforwardly from the construction.

(P1) The certificate complexity of “gw(~0) 6= i” is w(i).
(P2) Suppose ŵ(i) := ` · w(i) for all i. Then coNPdt(fŵ) = ` · coNPdt(fw) for every f .

Weighted function. Define w by w(i) := i and consider fw := f ◦ gnw. We claim that

UPdt(fw) ≤ k(k + 1)/2,

coNPdt(fw) ≥ k2 − k + 1.

That is, we have asymptotically a factor 2 separation.
Upper bound. We can devise a UPdt decision tree for fw by simply composing a UPdt decision

tree for f and optimal deterministic decision trees for the gw’s. A certificate corresponding to an
edge e ∈ V (H) in the UPdt decision tree for “f(·) = 1” checks for each i ∈ [k] that the i-th incident
node of e is outputting i, which recursively involves checking that “gw(·) = i” for the corresponding
gadget. For each i this amounts to w(i) = i queries, which is

∑
i∈[k] i = k(k + 1)/2 in total.

Lower bound. Our goal is to lower bound coNPdt(fw) by analysing the 0-input ~0. We start by
highlighting a special property of the gadget that is afforded by our choice of w. The property
states that to certify—on input ~0—that none of a set of ` pointers appear as the output of gw, one
needs to make at least ` queries to the input variables.

6

Claim 6. Let S ⊆ [k]. The certificate complexity of “gw(~0) /∈ S” is at least |S|.

Proof. To certify “gw(~0) /∈ S” it is necessary to certify “gw(~0) 6= i” where i is the largest number
in S. But this latter task needs certificates of size w(i) = i ≥ |S| by (P1).

Our special property actually holds more generally across all the n gadgets. This generalised
property states that to certify—on input ~0—that none of a set of ` pointers (possibly associated
with different nodes of H) appear in the output of the n gadgets gnw, one needs to make at least
` queries to the input variables of gnw. To state this more precisely, write G := gnw and let Gv(·)
denote the output of the gadget corresponding to node v ∈ V (H).

Claim 7. For each v let Sv ⊆ [k]. The certificate complexity of “ ∀v : Gv(~0) /∈ Sv” is at least
∑

v |Sv|.

Proof. Claim 6 proves this for each fixed v, but since the gadgets are defined on disjoint sets of
variables, the individual certificate complexities sum up.

Finally, the lower bound follows from the fact that any certificate for “fw(~0) = 0” must certify
that each edge e ∈ E(H) lacks at least one pointer. This is n = k2 − k + 1 pointers (and hence
queries) in total.

5 Recursive composition

In this section we prove Theorem 3, restated below for convenience. In short, our idea is to recursively
compose the example of Section 4.

Theorem 3. There is an f such that coNPdt(f) ≥ UPdt(f)α where α > 1.128 is a constant.

Conventions. In what follows, we will consider pairs (f, w) where f : ({0} ∪ Σ)n → {0, 1} is a
function and w : Σ→ N assigns weights to the inputs of f . We also define fw := f ◦ gnw as before. A
0-avoiding UPdt decision tree for f is one whose certificates contain only values from Σ (i.e., not 0).
More generally, a 0-avoiding UPdt decision tree for a weighted function fw is a composition of a
0-avoiding UPdt decision tree for f and a deterministic decision tree for the gw’s; here a decision
tree for gw can—and indeed sometimes must—read 0’s from the inputs. We let UPdt

? (fw) stand for
the minimum cost of a 0-avoiding UPdt decision tree for fw. We prove our coNPdt lower bound by
considering the complexity of certifying “fw(~0) = 0”, that is, we only focus on the 0-input ~0. Hence
we introduce the notation coNPdt

? (fw) to stand for the certificate complexity of “fw(~0) = 0”.

Overview. Given a pair (f, w), we construct a new pair (f ′, w′) with the following properties.
(Here k is again a parameter, chosen later, such that k − 1 is a prime power.)

(A1) Unambiguous complexity: UPdt
? (f ′w′) ≤ k(k + 1)/2 · UPdt

? (fw).
(A2) Conondeterministic complexity: coNPdt

? (f ′w′) ≥ (k2 − k + 1) · coNPdt
? (fw).

We proceed in two steps. In the first step (Section 5.1), we transform (f, w) into a pair (f̂, ŵ)
where f̂ is a multi-valued function outputting values in {0} ∪ [k]. The key property is the following:

If fw exhibits a gap between unambiguously certifying “fw(·) = 1” vs. nondeterminis-
tically certifying “fw(~0) = 0”, then for all i ∈ [k], f̂ŵ exhibits the same gap between
unambiguously certifying “f̂ŵ(·) = i” vs. nondeterministically certifying “f̂ŵ(~0) 6= i”.

7

In the second step (Section 5.2), we begin thinking of f̂ŵ as a gadget outputting pointer values: we
plug several copies of f̂ŵ as inputs to the projective plane example of Section 4. This will amplify
the UPdt vs. coNPdt gap further and give us (f ′, w′).

From this construction it is easy to derive Theorem 3 (Section 5.3).

5.1 First step: Multi-valued outputs

From f : ({0} ∪ Σ)N → {0, 1} we will construct f̂ : ({0} ∪ Σ × [k])N → {0} ∪ [k]. For notation,
let π1 : Σ × [k] → Σ and π2 : Σ × [k] → [k] denote the natural projection maps, and extend
π1(0) = π2(0) = 0 for convenience. For x ∈ ({0} ∪ Σ × [k])N we write π1(x) and π2(x) for the
coordinate-wise application of π1 and π2 to x.

Definition of (f̂, ŵ). Fix some optimal 0-avoiding UPdt decision tree T for f . We define f̂ on
input x ∈ ({0} ∪ Σ × [k])N as follows: If f(π1(x)) = 0, output 0. Otherwise consider the unique
certificate of T that accepts π1(x). This certificate reads some subset S ⊆ [N] of inputs, where
xj 6= 0 for all j ∈ S, since T is 0-avoiding. If there is an i ∈ [k] such that π2(xj) = i for all j ∈ S,
then output i; otherwise output 0.

The input weights ŵ : Σ× [k]→ N are defined by ŵ(σ, i) := w(σ) · i.

Analysis. We claim that (f̂, ŵ) satisfies the following.

(B1) There is a 0-avoiding UPdt decision tree for “f̂ŵ(·) = i” with cost i · UPdt
? (fw).

(B2) The certificate complexity of “f̂ŵ(~0) 6= i” is at least i · coNPdt
? (fw).

(B1) holds: We can simply modify T slightly: to certify “f̂ŵ(·) = i” the modified decision tree
works as before but now additionally checks the new condition on π2(x) where x is the input to f̂
(as encoded by gŵ). The cost of the modified tree is i times that of T as the relevant inputs are
now i times heavier in the new ŵ than in the old w.

(B2) holds: We prove this by a reduction argument. Fix i ∈ [k]. Consider deleting all symbols

from the input alphabet of f̂ except {0} ∪ Σ× {i} and call the resulting subfunction ˆ̂f . Clearly the

certificate complexity of “f̂ŵ(~0) 6= i” (which we are interested in) is at least that of “ ˆ̂fŵ(~0) 6= i”.

Note that the range of ˆ̂f is just {0, i}. Moreover, ˆ̂f is isomorphic to f : identify the input alphabets
via the map π1, and the output alphabets via the map 0 7→ 0, i 7→ 1. Therefore the certificate

complexities of “ ˆ̂fŵ(~0) 6= i” and “fŵ(~0) = 0” are the same. (Here we abused notation by identifying
the alphabets of f and ŵ according to the isomorphism.) But ŵ is nothing but w scaled by a factor
of i (on the relevant alphabet Σ× {i}), so by (P2) the certificate complexity of “fŵ(~0) = 0” is i
times that of “fw(~0) = 0”, namely i · coNPdt

? (fw).

5.2 Second step: Composition with a projective plane

Take a k-uniform projective plane hypergraph H as in Section 4 and let its associated unweighted
function be h : ({0} ∪ [k])n → {0, 1} where n = k2 − k + 1. We define f ′ := h ◦ f̂n together with the
old weights w′ := ŵ (so f ′w′ = h ◦ f̂nŵ). We claim that (f ′, w′) satisfies (A1) and (A2).

(A1) holds: We do the natural thing: The 0-avoiding UPdt decision tree for f ′w′ has a certificate
for every edge e ∈ E(H) that, for every i ∈ [k], recursively checks that the i-th node incident to e
points to e. The i-th recursive check involves certifying “f̂ŵ(·) = i”, which we can do in a 0-avoiding
manner using (B1). This has total cost

∑
i∈[k] i · UP

dt
? (fw) = k(k + 1)/2 · UPdt

? (fw), as desired.

8

(A2) holds: We now begin thinking of the f̂ŵ’s as “gadgets”. Under this nomenclature, we can
simply repeat the argument from Section 4 verbatim. For example, our special property in the
case of a single gadget states the following: to certify—on input ~0—that none of a set of ` pointers
appear as the output of f̂ŵ, one needs to make at least ` · coNPdt

? (fw) queries to the inputs of f̂ŵ.

Claim 8. Let S ⊆ [k]. The certificate complexity of “f̂ŵ(~0) /∈ S” is at least |S| · coNPdt
? (fw).

Proof. To certify “f̂ŵ(~0) /∈ S” it is necessary to certify “f̂ŵ(~0) 6= i” where i is the largest number
in S. But this latter task needs certificates of size i · coNPdt

? (fw) ≥ |S| · coNPdt
? (fw) by (B2).

As before, because the n gadgets f̂nŵ are fed disjoint sets of variables, a more general property
holds: to certify—on input ~0—that none of a set of ` pointers (possibly associated with different
nodes of H) appear in the output of the n gadgets f̂nŵ, one needs to make at least ` · coNPdt

? (fw)

queries to the input variables of f̂nŵ.
Finally, the lower bound follows from the fact that any certificate for “f ′w′(~0) = 0” must certify

that each edge e ∈ E(H) lacks at least one pointer. This is n = k2 − k + 1 pointers that require
(k2 − k + 1) · coNPdt

? (fw) queries in total.

5.3 Putting everything together

Define a sequence of pairs (f i, wi) as follows: Initially, f0 : {0, 1} → {0, 1} is the identity function
and w0(1) := 1. Clearly the UPdt

? and coNPdt
? complexities for f0

w0 are both 1. Recursively define
(f i+1, wi+1) as the “primed” versions of (f i, wi).

By inspecting the construction, we have the following properties.

• Number of inputs to f i is (k2 − k + 1)i.
• Maximum weight of wi is ki.
• Therefore, the number of inputs to f i

wi is n := (k3 − k2 + k)i.
• Input alphabet {0} ∪ Σ of f i

wi has size |{0} ∪ Σ| = 1 + ki.

• (A1) implies: UPdt(f i
wi) ≤ (k(k + 1)/2)i.

• (A2) implies: coNPdt(f i
wi) ≥ (k2 − k + 1)i.

The last two items say that coNPdt(f i
wi) ≥ UPdt(f i

wi)
β for β := log(k2−k+1)/ log(k(k+1)/2). This

is maximised at k = 8 (among k such that k−1 is a prime power), which yields β = log36 57 > 1.128.
As a final step, we need to replace the input alphabet of f i

wi with a binary encoding. The

above parameters reveal that log |{0} ∪Σ| ≤ O(log n) while our estimates for both coNPdt(f i
wi) and

UPdt(f i
wi) are nΘ(1). Hence the loose bounds (3) give us the gap in Theorem 3 for any α < β.

A Appendix: Proof of Theorem 4

In this appendix—in order to make this work self-contained—we reproduce the proof of Theorem 4
originally proved in [GLM+14] (as part of a more general result).

Theorem 4 ([GLM+14]). There is a gadget g on b = Θ(log n) bits so that for all f : {0, 1}n → {0, 1},

coNPcc(f ◦ gn) ≥ Ω(coNPdt(f) · b). (1)

9

We choose g to be the inner-product gadget on b := 100 log n bits per party:

g(x, y) := 〈x, y〉 mod 2, where x, y ∈ {0, 1}b.

Write G := gn for short. It is useful to think of a rectangle R = X × Y (where X,Y ⊆ {0, 1}bn) via
a pair of random variables xy where x and y are uniformly (or otherwise) distributed on X and Y .
A large rectangle corresponds to a pair xy where x and y have have high min-entropy, defined
by H∞(x) := minx log(1/Pr[x = x]) (see [Vad12] for more on min-entropy). We will use the fact
that, if R is large, the output z := G(x,y) has large support, that is, R accepts many different
inputs to the outer function f . This is formalised in Lemma 9 below.

A.1 Density lemma

For I ⊆ [n] and an input x ∈ {0, 1}bn, we write xI ∈ {0, 1}b|I| for the projection of x to the blocks
indexed by I. We say that a pair xy of random variables is δ-dense if for all I ⊆ [n] the blocks
xIyI have min-entropy rate at least δ, that is,

H∞(xIyI) ≥ δ · 2b|I|.

Lemma 9. If x and y are independent and xy is 0.6-dense, then z := G(x,y) has full support,
namely {0, 1}n.

Proof. [GLM+14, Lemma 13]. We actually prove a stronger claim: for ε = o(1), z is ε-uniform,
meaning that Pr[z = z] = (1± ε) · 2n for every z ∈ {0, 1}n. Clearly z has full support in this case.

First observe that for any I ⊆ [n] the parity of the output bits zI is simply 〈xI ,yI〉 mod 2. We
use the fact that inner-product is a good two-source extractor to argue that this parity is close to
an unbiased random bit. Indeed, by independence and 0.6-density we have H∞(xI) + H∞(yI) =
H∞(xIyI) ≥ 1.2 · b|I| and this implies by a basic theorem of Chor and Goldreich [CG88, Theorem
9] that for I 6= ∅, ∣∣ Pr[〈xI ,yI〉 mod 2 = 0]− 1/2

∣∣ ≤ 2−0.1·b|I|+1. (4)

This bound is enough to yield ε-uniformity for ε := 2−b/20, as we next verify using standard Fourier
analysis. Let D be the distribution of z. We think of D as a function {0, 1}n → [0, 1] and write it
in the Fourier basis as

D(z) =
∑
I⊆[n]

D̂(I)χI(z)

where χI(z) := (−1)
∑

i∈I zi and D̂(I) := 2−n
∑

z D(z)χI(z) = 2−n · Ez∼D[χI(z)]. Note that

D̂(∅) = 2−n because D is a distribution. In this language, property (4) says that, for all I 6= ∅,
2n · |D̂(I)| = |E[(−1)〈xI ,yI〉]| ≤ 2−0.1·b|I|+2, which is at most ε2−2|I| logn by our definition of b and ε.
Hence,

2n
∑
I 6=∅

|D̂(I)| ≤ ε
∑
I 6=∅

2−2|I| logn = ε

n∑
k=1

(
n

k

)
2−2k logn ≤ ε

n∑
k=1

2−k logn ≤ ε.

We use this to show that |D(z)− 2−n| ≤ ε2−n for all z ∈ {0, 1}n, which proves the lemma. To this
end, let U denote the uniform distribution (note that Û(I) = 0 for all I 6= ∅) and let 1z denote the
indicator for z defined by 1z(z) = 1 and 1z(z

′) = 0 for z′ 6= z (note that |1̂z(I)| = 2−n for all I).
We can now calculate

|D(z)− 2−n| = |〈1z,D〉 − 〈1z,U〉| = |〈1z,D − U〉| = 2n · |〈1̂z, D̂ − Û〉|

≤ 2n ·
∑

I 6=∅|1̂z(I)| · |D̂(I)| =
∑

I 6=∅|D̂(I)| ≤ ε2−n.

10

A.2 Proof of Theorem 4

Overview. Let Π be a covering of the 0-inputs of f ◦G using 2c rectangles. Our goal will be to
argue that for every z ∈ f−1(0) there is a small certificate for “f(z) = 0”. More precisely, we are
looking for a certificate C such that (i) C has size O(c/b), (ii) C accepts z, and (iii) C only accepts
0-inputs of f . To find such a certificate, we find a subrectangle R′ ⊆ R of some R ∈ Π such that
G(R′) equals the set of inputs accepted by some C satisfying the properties prescribed above. More
precisely, (i) G(R′) is a subcube of codimension O(c/b), that is, G(R′) is fixed on O(c/b) many
coordinates and has full support elsewhere, (ii) z ∈ G(R′), and (iii) G(R′) ⊆ f−1(0). Note that
any R′ ⊆ R ∈ Π contains only 0-inputs of f ◦G so that G(R′) contains only 0-inputs of f , that is,
property (iii) will hold automatically.

Finding R′. Fix z ∈ f−1(0) and let xy be uniformly distributed on G−1(z). Using the fact that
Π covers the whole support of xy, we can find some R ∈ Π such that Pr[xy ∈ R] ≥ 2−c. Denote
by (xy | xy ∈ R) the variables xy conditioned on the event “xy ∈ R”.

Let I ⊆ [n] be a maximum-size subset for which 0.8-density is violated for (xy | xy ∈ R), and
let α be an outcome witnessing this: Pr[xIyI = α | xy ∈ R] > 2−1.6b|I|. We claim that conditioning
further on the event “xIyI = α”, the remaining blocks indexed by Ī := [n] r I are 0.8-dense. Write
x′y′ := (xy | xy ∈ R, xIyI = α) for short.

Claim 10. x′
Ī
y′
Ī

is 0.8-dense.

Proof. Suppose not: there is some nonempty set J ⊆ Ī and a string β such that Pr[xJyJ = β |
xy ∈ R, xIyI = α] > 2−1.6b|J |. Now Pr[xIyI = α and xJyJ = β | xy ∈ R] = Pr[xIyI = α |
xy ∈ R] · Pr[xJyJ = β | xy ∈ R, xIyI = α] > 2−1.6b|I| · 2−1.6b|J | = 2−1.6b|I∪J |. But this means
that (xy | xy ∈ R) violates 0.8-density on I ∪ J , which contradicts the maximality of I.

Claim 11. |I| ≤ O(c/b).

Proof. Our gadget is almost balanced: g−1(1), g−1(0) ≥ 22b/4 = 22(b−1). It follows that H∞(xIyI) ≥
2(b− 1)|I| for all I ⊆ [n]. On the one hand, H∞(xIyI | xy ∈ R) ≥ H∞(xIyI)− log(1/Pr[xy ∈
R]) ≥ 2(b − 1)|I| − c, where we used the fact that conditioning on an event with probability p
lowers the min-entropy by at most log(1/p). On the other hand, H∞(xIyI | xy ∈ R) < 1.6b|I| as
(xy | xy ∈ R) violates 0.8-density on I. These two bounds imply the claim.

In summary, x′y′ is fixed on O(c/b) many blocks I, and 0.8-dense on the remaining blocks Ī.
To apply Lemma 9 we need a pair of independent random variables, and currently x′ and y′ are
highly correlated (e.g., G(x′,y′) = z). Let x′′ and y′′ be independent copies of x′ and y′.

Claim 12. x′′
Ī
y′′
Ī

is 0.6 dense.

Proof. Let J ⊆ Ī. We want to show H∞(x′′Jy
′′
J) ≥ 1.2b|J |. We calculate H∞(x′J) ≥ H∞(x′Jy

′
J)−

b|J | ≥ 1.6b|J | − b|J | = 0.6b|J |, where the first inequality follows since b|J | is an upper bound on the
support size of y′J (measured in bits) and the second inequality uses the 0.8-density of x′

Ī
y′
Ī
. The

same bound holds for H∞(y′J). Hence H∞(x′′Jy
′′
J) = H∞(x′′J) + H∞(y′′J) = H∞(x′J) + H∞(y′J) ≥

0.6b|J |+ 0.6b|J | = 1.2b|J |.

The subrectangle R′ ⊆ R we are looking for is now defined as the support of x′′y′′. We can
apply Lemma 9 to x′′

Ī
y′′
Ī

to deduce that G(x′′,y′′) ∈ G(R′) has full support on Ī. Moreover, by
construction, G(R′) is fixed on I and z ∈ G(R′). This concludes the proof of Theorem 4.

11

Acknowledgements

Thanks to Thomas Watson for many helpful comments on an early draft of this paper. Thanks also
to Siu Man Chan, T.S. Jayram, Toniann Pitassi, and Robert Robere for discussions.

References

[Ama14] Kazuyuki Amano. Some improved bounds on communication complexity via new
decomposition of cliques. Discrete Applied Mathematics, 166(0):249–254, 2014. doi:

10.1016/j.dam.2013.09.015.

[BdW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
a survey. Theoretical Computer Science, 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)

00144-X.

[BLT14] Nicolas Bousquet, Aurélie Lagoutte, and Stéphan Thomassé. Clique versus independent
set. European Journal of Combinatorics, 40(0):73–92, 2014. doi:10.1016/j.ejc.2014.02.003.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–261,
1988. doi:10.1137/0217015.

[Die10] Reinhard Diestel. Graph Theory. Springer, 4th edition, 2010. URL: http://

diestel-graph-theory.com/.

[GLM+14] Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman.
Rectangles are nonnegative juntas. Technical Report TR14-147, Electronic Colloquium on
Computational Complexity (ECCC), 2014. URL: http://eccc.hpi-web.de/report/2014/147/.

[HS12] Hao Huang and Benny Sudakov. A counterexample to the Alon–Saks–Seymour conjecture
and related problems. Combinatorica, 32(2):205–219, 2012. doi:10.1007/s00493-012-2746-4.

[Juk12] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of
Algorithms and Combinatorics. Springer, 2012.

[KLO99] Eyal Kushilevitz, Nathan Linial, and Rafail Ostrovsky. The linear-array conjecture in
communication complexity is false. Combinatorica, 19(2):241–254, 1999. doi:10.1007/

s004930050054.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, 1997.

[KW09a] Eyal Kushilevitz and Enav Weinreb. The communication complexity of set-disjointness
with small sets and 0-1 intersection. In Proceedings of the 50th Symposium on Foundations
of Computer Science (FOCS), pages 63–72, 2009. doi:10.1109/FOCS.2009.15.

[KW09b] Eyal Kushilevitz and Enav Weinreb. On the complexity of communication complexity.
In Proceedings of the 41st Symposium on Theory of Computing (STOC), pages 465–474,
2009. doi:10.1145/1536414.1536479.

12

http://dx.doi.org/10.1016/j.dam.2013.09.015
http://dx.doi.org/10.1016/j.dam.2013.09.015
http://dx.doi.org/10.1016/S0304-3975(01)00144-X
http://dx.doi.org/10.1016/S0304-3975(01)00144-X
http://dx.doi.org/10.1016/j.ejc.2014.02.003
http://dx.doi.org/10.1137/0217015
http://diestel-graph-theory.com/
http://diestel-graph-theory.com/
http://eccc.hpi-web.de/report/2014/147/
http://dx.doi.org/10.1007/s00493-012-2746-4
http://dx.doi.org/10.1007/s004930050054
http://dx.doi.org/10.1007/s004930050054
http://dx.doi.org/10.1109/FOCS.2009.15
http://dx.doi.org/10.1145/1536414.1536479

[KW14] Volker Kaibel and Stefan Weltge. A short proof that the extension complexity of the
correlation polytope grows exponentially. Discrete & Computational Geometry, To
appear, 2014. doi:10.1007/s00454-014-9655-9.

[NS94] Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polynomials.
Computational Complexity, 4(4):301–313, 1994. doi:10.1007/BF01263419.

[NW95] Noam Nisan and Avi Wigderson. On rank vs. communication complexity. Combinatorica,
15(4):557–565, 1995. doi:10.1007/BF01192527.

[Raz92] Alexander Razborov. On the distributional complexity of disjointness. Theoretical
Computer Science, 106(2):385–390, 1992. doi:10.1016/0304-3975(92)90260-M.

[SA14] Manami Shigeta and Kazuyuki Amano. Ordered biclique partitions and communication
complexity problems. Discrete Applied Mathematics, To appear, 2014. doi:10.1016/j.dam.

2014.10.029.

[Sav02] Petr Savický. On determinism versus unambiquous nondeterminism for decision trees.
Technical Report TR02-009, Electronic Colloquium on Computational Complexity
(ECCC), 2002. URL: http://eccc.hpi-web.de/report/2002/009/.

[Vad12] Salil Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1–3):1–336, 2012. doi:10.1561/0400000010.

[Yan91] Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs.
Journal of Computer and System Sciences, 43(3):441–466, 1991. doi:10.1016/0022-0000(91)

90024-Y.

13

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

http://dx.doi.org/10.1007/s00454-014-9655-9
http://dx.doi.org/10.1007/BF01263419
http://dx.doi.org/10.1007/BF01192527
http://dx.doi.org/10.1016/0304-3975(92)90260-M
http://dx.doi.org/10.1016/j.dam.2014.10.029
http://dx.doi.org/10.1016/j.dam.2014.10.029
http://eccc.hpi-web.de/report/2002/009/
http://dx.doi.org/10.1561/0400000010
http://dx.doi.org/10.1016/0022-0000(91)90024-Y
http://dx.doi.org/10.1016/0022-0000(91)90024-Y

