
On Hardness of Approximating the Parameterized
Clique Problem

Subhash Khot ∗ Igor Shinkar †

January 28, 2015

Abstract

In the Gap-clique(k, k2) problem, the input is an n-vertex graph G, and the goal
is to decide whether G contains a clique of size k or contains no clique of size k

2 .
It is an open question in the study of fixed parameterized tractability whether the
Gap-clique(k, k2) problem is fixed parameter tractable, i.e., whether it has an algo-
rithm that runs in time f(k) ·nα, where f(k) is an arbitrary function of the parameter
k and the exponent α is a constant independent of k.

In this paper, we give some evidence that the Gap-clique(k, k2) problem is not fixed
parameter tractable. Specifically, we define a constraint satisfaction problem, which we
call Deg-2-sat, where the input is a system of k′ quadratic equations in k′ variables
over a finite field F of size n′, and the goal is to decide whether there is a solution
in F that satisfies all the equations simultaneously. The main result in this paper is
an “FPT-reduction” from Deg-2-sat to the Gap-clique(k, k2) problem. If one were
to hypothesize that the Deg-2-sat problem is not fixed parameter tractable, then
our reduction would imply that the Gap-clique(k, k2) problem is not fixed parameter
tractable either. The reduction relies on the algebraic techniques used in proof of the
PCP theorem.

∗Courant Institute of Mathematical Sciences, New York University. Research supported by NSF grants
CCF 1422159, 1061938, 0832795 and Simons Collaboration on Algorithms and Geometry grant.
†Courant Institute of Mathematical Sciences, New York University. Same funding as Subhash Khot.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 13 (2015)

1 Introduction

Parameterized complexity is a promising approach to cope with NP-hard problems [DF99,
FG06]. For many NP-hard problems, the input consists of a pair (x, k) where k is an integer
parameter and x is the “actual” input with size |x| = n. For instance, the input for the
vertex-cover problem is a pair (G, k) where G is an n-vertex graph, and the goal is to
decide whether G has a vertex cover of size at most k. This is a well-known NP-hard
problem and a brute-force algorithm that tries out all vertex subsets of size k runs in time
O(nk). It is not difficult to see that there is another algorithm that runs in time O(2k · n2):
pick an edge of the graph, choose one of its endpoints to include in the vertex cover, remove
all edges incident on the chosen endpoint, and repeat this step until at most k vertices are
chosen. The algorithm accepts if no edges are left in the graph. The factor 2k in the running
time corresponds to trying out each of the two choices in the (at most) k steps. Thus the
vertex-cover problem is tractable for “fixed” values of the parameter k.

More generally, a problem parameterized by k is said to be fixed-parameter tractable
(FPT) if it can be solved in time f(k) · nα, where f is an arbitrary function depending only
on k and α is a constant independent of k. For someNP-hard problems, e.g. vertex-cover
as mentioned above and Longest path as another example, such an algorithm exists, while
for some problems, e.g. Clique, such algorithm is not known. Downey and Fellows [DF95a,
DF95b] define a hierarchy of classes of parameterized problems

FPT ⊆ W [1] ⊆ W [2] ⊆ . . . ⊆ W [SAT] ⊆ W [P],

and identify complete problems for these classes. Each class inclusion above is believed to
be strict. In particular, classes FPT and W [1] are thought of as analogues of the classes P
and NP respectively, and are believed to be distinct. It has been shown in [DF95b] that the
Clique problem is W [1]-complete under “FPT-reduction” defined below.

Definition 1.1. Given two parameterized problems A and B, an FTP-reduction from A to
B is an algorithm that gets as input an instance (x, k) of A and outputs an instance (x′, k′)
of B such that:

1. (x, k) ∈ A if and only if (x′, k′) ∈ B.

2. k′ depends only on k, in an arbitrary manner, but not on x.

3. The running time of the reduction is f(k) · |x|β where f is an arbitrary function de-
pending only on k and β is a constant independent of k.

If such a reduction exists, then we write A 6FPT B.

It is easily seen that the class FPT of fixed parameterized tractable problems is closed
under FPT-reductions, that is, if B ∈ FPT and A 6FPT B, then A ∈ FPT. Since
Clique is W [1]-complete, it is considered unlikely that Clique has a FPT-algorithm. It is,
therefore, natural to ask whether Clique has a good “FPT approximation algorithm”, i.e.

2

given a graph G that is guaranteed to contain a clique of size k, the goal would be to find a
clique of size ρ(k) for some monotone function ρ(k), e.g. k

2
,
√
k or even log k. However, the

fixed parameter complexity of the approximation problem, for Clique as well as most other
natural problems, is poorly understood. In particular, no FPT approximation algorithm
is known for Clique for any unbounded function ρ(k) and on the other hand, there is no
evidence that the approximation problem is hard either [Mar08, CGG06].

1.1 Our result

In this paper, we give some evidence that the Clique problem is hard to approximate in the
parameterized setting. Specifically, we show that there is an FPT-reduction from a problem
that we call Deg-2-sat to the “gap version” of the Clique problem. We first define both
these problems and then remark on the plausible hardness of the Deg-2-sat problem.

Definition 1.2. For a constant 0 < ε < 1, Gap-clique(k, εk) is the following promise
problem: given a k-partite graph G with n-vertices in each part, the goal is to decide whether
G has a clique of size k or has no clique of size εk.

Clearly, Gap-clique(k, εk) can be solved in time O(nk) (or even O(nεk)). Next, we
define the Deg-2-sat problem that is central to this paper.

Definition 1.3. Deg-2-sat(F, k) is the following problem: given a finite field F of size n
and a system of k quadratic equations

p1(x1, . . . , xk) = 0, . . . pk(x1, . . . , xk) = 0,

in k variables x1, . . . , xk, the goal is to decide whether there is a solution x = (x1, . . . , xk) ∈ Fk
that satisfies all the equations simultaneously.

Note that Deg-2-sat, and also Deg-d-sat where the equations have degree d, has
a trivial algorithm with running time O(nk). The algorithm simply tries every possible
assignments to x1, . . . , xk ∈ F, and checks whether it satisfies all the equations. Solving
systems of polynomial equations is a classical and well studied problem. For a comprehensive
study of the topic, we refer to the book of von zur Gathen and Gerhard [vzGG03], and quote
a few of the known results here. Given a system of degree d equations over m variables, an
algorithm of Buchberger uses Gröbner basis to find a solution to the Deg-d-sat problem in
an extension field of F, if a solution exists, in time dexp(m) · poly log(|F|). However, note that
the algorithm does not necessarily find a solution in the field F. We also note that if the
number of solutions is finite in the closure of F (known as the “zero-dimensional” case), then
there are algorithms that find all the solutions in time f(d,m) ·poly log(|F|), see e.g., [Laz79].
Still, we are not aware of an FPT-algorithm for Deg-2-sat that finds a solution in the field
F, and it might be the case that no FPT-algorithm exists.

Note also that for a field F of size |F| = n and the parameter k, there are only nO(k3)

instances of the Deg-2-sat problem. This is because each of the k equations contains
O(k2) monomials and the instance is completely specified by O(k3) coefficients of all these

3

monomials. In this respect, the problem differs from the standard problems in W [1], e.g.
Clique, where there are exponentially many instances of size n. Nonetheless, we do not
know whether the fact that there are only nO(k3) instances necessarily rules out the possibility
that Deg-2-sat is hard, or even W [1]-hard. Indeed, a complexity class known as MINI[1]
defined in [DECF+03] has the property that the languages in MINI[1] contain only nk

instances of size n. It has been shown in [DECF+03] that FPT ⊆MINI[1] ⊆ W [1], and to
the best of our knowledge, it is plausible that the containments above are strict. The main
result in this paper is an FPT-reduction from Deg-2-sat to Gap-clique.

Theorem 1.4 (Main Theorem). Let k be a parameter and let F be a finite field. There is
an FPT-reduction

Deg-2-sat(F, k) 6FPT Gap-clique

(
k′,

k′

2

)
.

We note that, by definition of an FPT-reduction, k′ depends only on k but not on F.

Thus, if1 there is no FPT-algorithm for Deg-2-sat(F, k), then one may conclude that
there is no FPT-algorithm for Gap-clique

(
k′, k

′

2

)
either. For the Gap-clique problem,

the “gap” can be amplified by a standard graph product operation, so for any constant C, one
may conclude that there is no FPT-approximation for Clique with approximation factor C.
It is likely that hardness of approximating Clique implies hardness of approximating other
problems in parameterized setting, but we leave out this aspect from the current paper.

2 Proof of Theorem 1.4

Towards proving Theorem 1.4, we work with a more general version of the Deg-2-sat
problem than the version specified in Definition 1.3. The general version allows the number
of variables, the number of equations and the arity of equations to be separate parameters.
Also, the instance is supposed to be a “gap instance”, i.e. it is promised to be either fully
satisfiable or far from satisfiable, and the “gap” itself is an additional parameter.

Definition 2.1. An instance Φ of deg-2-sat(F, k, e, q, ε) consists of a system of quadratic
equations in k variables over the field F. The number of equations is e and each equation
depends on only q out of the k variables.

Let val(Φ) denote the maximum fraction of equations that can be satisfied by any assign-
ment (over the field F) to the variables. The instance is a promise instance where either
val(Φ) = 1 (the YES instance) or else val(Φ) 6 ε (the NO instance).

With this definition, we note that Deg-2-sat(F, k) as specified in Definition 1.3, is now
denoted as

deg-2-sat

(
F, k, e = k, q = k, ε = 1− 1

k

)
,

1We stress that we are not proposing this as conjecture.

4

i.e. the number of variables and equations in the system is both k, each equation may
depend on all q = k variables, and the instance is either satisfiable or not satisfiable, with
val(Φ) 6 1− 1

k
in the latter case. Note that there is really no “gap” here.

2.1 Overview of the overall reduction

Our reduction starts with an instance Φ of the deg-2-sat
(
F, k, e = k, q = k, ε = 1− 1

k

)
problem and then transforms it, through a sequence of steps, to an instance Φ′ that has a
constant gap and each equation has a constant arity. From the instance Φ′, it is easy to
construct an instance of Gap-clique by the well-known “FGLSS reduction”. We give a
quick overview of the steps involved before presenting the actual reductions.

Creating gap: In the first step, we give a FPT-reduction that “creates” a constant gap:

deg-2-sat(F, k, e = k, q = k, ε = 1− 1

k
) 6FPT deg-2-sat(F, k, e′ = 2k, q′ = k, ε′ = 0.5).

The number of variables stays the same, the number of equations doubles, each equation may
still depend on all the variables, but now, in the NO case, the instance is only 0.5-satisfiable.
The field F stays the same in this step as well as all the subsequent steps.

Simplifying equations: In the second step, we construct an instance where the equations
have a certain simplified form (the corresponding problem is referred to as simple-deg-2-sat):

deg-2-sat(F, k, e, q = k, ε = 0.5) 6FPT simple-deg-2-sat(F, k′, e′, q′ = k′, ε′ = 0.95).

The number of variables k′ and the number of equations e′ depend only on their initial
number k and e respectively, each equation may still depend on all the variables, and the
gap suffers (which is not much of an issue; it is still bounded away from 1). The main feature
of this reduction is that in the new instance, each equation is of the form

`1(x) = a · `2(x) · `3(x) + b · `4(x) + c,

where a, b, c ∈ F and `1, `2, `3, `4 are linear forms over the set of variables. Moreover, the
coefficients of these linear forms are from a subset L ⊆ F such that |L| is “small”, depending
only on k.

Reducing arity to constant: In the third step, starting with the “simple instance” as
above, we construct an instance where each equation depends only on a constant number of
variables:

simple-deg-2-sat(F, k, e, q = k, ε = 0.95) 6FPT deg-2-sat(F, k′, e′, q′ = O(1), ε′ = 0.999).

The soundness suffers, but is still a constant bounded away from 1. The number of variables
k′ and the number of equations e′ depend only on their initial number k and e respectively
and on |L| where L ⊆ F is the set of coefficients of the linear forms in the simple instance.

5

FGLSS reduction: Given a gap instance with equations of constant arity, it is straightfor-
ward to construct a gap instance of the Clique problem, with the same gap.

deg-2-sat(F, k, e, q = O(1), ε = 0.999) 6FPT Gap-clique(k′, 0.999k′).

The graph is k′-partite and either has a clique of size k′ or has no clique of size 0.999k′. Here
k′ = e and the number of vertices in each of the k′ groups of the k′-partite graph is at most
nO(1) where n = |F|.
Combining the sequence of four reductions above, we get the desired reduction

Deg-2-sat(F, k) 6FPT Gap-clique(k′, 0.999k′) 6FPT Gap-clique(k′′, 0.5k′′),

where, at the end, the gap in the Gap-clique problem is boosted from 0.999 to 0.5 by the
standard operation of graph products.

The reductions are based on standard techniques used in the algebraic proof of the PCP
Theorem [FGL+96, ALM+98, AS98], though there are some new variations and ingredients.
Of the four reductions, the first and the fourth are straightforward, so we present them first.

2.1.1 Creating gap

We present a FPT-reduction that creates a constant gap to begin with:

deg-2-sat

(
F, k, e = k, q = k, ε = 1− 1

k

)
6FPT deg-2-sat(F, k, e′ = 2k, q′ = k, ε′ = 0.5).

Let Φ be the instance of deg-2-sat
(
F, k, e = k, q = k, ε = 1− 1

k

)
with equations p1 =

0, . . . , pk = 0 in k variables over the field F. We may assume that |F| = n � 2k. We
take a 2k × k matrix M over the field F such that for every v ∈ Fk, v 6= 0, it holds that at
least half of the co-ordinates of Mv are non-zero. Such matrix can be constructed, e.g., by
taking the generator matrix of the degree-k Reed-Solomon code over the field F restricted to
2k elements in the field. More specifically, we can define M by taking 2k distinct elements
a1, . . . a2k ∈ F, and letting Mi,j = aj−1

i .
Now construct an instance Φ′ of deg-2-sat with the same set of variables as Φ, but

whose equations are linear combinations of equations of Φ using the rows of the matrix M
as coefficients. Specifically, for every i ∈ {1, . . . , 2k}, the instance Φ′ contains an equation
p′i = 0 where

p′i =
k∑
j=1

Mijpj.

Clearly, if Φ has a satisfying assignment, the same assignment also satisfies all the equations
of Φ′. On the other hand, if Φ has no satisfying assignment, any assignment x ∈ Fk satisfies
at most half of the equations in Φ′. This is because,

(p′1(x), . . . , p′k(x))T = M · (p1(x), . . . , pk(x))T,

and since the vector v = (p1(x), . . . , pk(x))T is non-zero, at least half of the co-ordinates of
Mv are non-zero, meaning at least half of the equations p′1(x) = 0, . . . , p′k(x) = 0 fail.

6

2.1.2 FGLSS reduction

We describe a FPT-reduction (known as the FGLSS reduction [FGL+96]) from deg-2-sat
with constant gap and constant arity to the Gap-clique problem:

deg-2-sat(F, k, e, q = O(1), ε = 0.999) 6FPT Gap-clique(k′, 0.999k′),

where k′ = e and the Gap-clique instance is a k′-partite graph with at most |F|q = nq

vertices in each group. Since q = O(1), the exponent of n is independent of the parameters
k and e.

Given an instance Φ of deg-2-sat(F, k, e, q = O(1), ε = 0.999), construct an e-partite
graph G = (V = (V1, . . . , Ve), E) as follows. For each equation pi = 0 of Φ, i ∈ {1, . . . , e},
the group of vertices Vi contains at most |F|q vertices, where each vertex corresponds to
a satisfying assignment to the variables of the equation pi = 0. We note here that pi
depends only on q variables. There is an edge between two vertices in the graph G if the
corresponding assignments to the variables are consistent, i.e., if the assignments agree on
the shared variables. It is easily seen that there is a one-to-one correspondence between
assignments that satisfy ` equations of Φ and cliques of size ` in G.

2.2 Simplifying equations

In this section, we describe the reduction that leads to quadratic equations with a very simple
structure:

Lemma 2.2. There is an FPT-reduction

deg-2-sat(F, k, e, q = k, ε = 0.5) 6FPT simple-deg-2-sat(F, k′, e′, q′ = k′, ε′ = 0.95),

mapping an instance Φ of deg-2-sat to an instance Φ′ of simple-deg-2-sat such that:

• k′, e′ depend only on k, e.

• Each equation may still depend on all the variables.

• Each equation is of the form:

`1 = a · `2 · `3 + b · `4 + c,

where a, b, c ∈ F and `1, `2, `3, `4 are linear forms over the set of variables. Moreover,
the coefficients of these linear forms are from a subset L ⊆ F such that |L| depends
only on k.

Proof. The reduction uses algebraic ingredients used to prove the PCP Theorem, in particu-
lar the polynomial encoding method and the sum check protocol [LFKN92, Sha92]. However,
we use these ingredients in a somewhat different and restricted manner. For convenience of
the reader, the reduction below is presented directly, without using the language of proba-
bilistic verifiers.

7

Let S = {s1, . . . , sk} ⊆ F be a subset of k field elements and H be a subset of 10k2 field
elements such that S ⊆ H ⊆ F. Denote a typical (quadratic) equation of Φ as p = 0 over
the variables x1, . . . , xk. We first define the variables of Φ′. There are two kinds of variables:

1. Let σ : {x1, . . . , xk} → F be a supposed satisfying assignment to Φ. Thus there exists a
(unique) univariate polynomial Q(z) of degree at most k−1 such that Q(si) = σ(xi) for
all i = 1, . . . , k. The instance Φ′ has variables q0, . . . , qk−1 representing the coefficients
of the polynomial Q(z), i.e. Q(z) =

∑k−1
i=0 qiz

i. To state differently, the instance Φ′ has

variables q0, . . . , qk−1 and the intention is that defining a polynomial Q(z) =
∑k−1

i=0 qiz
i,

the values Q(s1), . . . , Q(sk) serve as a supposed satisfying assignment to Φ.

2. Suppose a typical equation in Φ is p = 0 where

p(x1, . . . , xk) =
∑

16i,j6k

ci,jxixj +
∑

16i6k

cixi + c0.

Let C2(u, v) be a bi-variate polynomial of degree k − 1 in each variable such that
C2(si, sj) = ci,j for all i, j = 1, . . . , k. Similarly, let C1(u) be a univariate polynomial
of degree k− 1 such that C1(si) = ci for all i = 1, . . . , k. Note that the polynomials C1

and C2 depend only on the coefficients of p, and hence can be computed explicitly.

The instance Φ′ will have variables that represent the coefficients of a bi-variate poly-
nomial Ψp

2 and the intention is that

Ψp
2(u, v) = C2(u, v)Q(u)Q(v).

Note that Ψp
2 is intended to have degree at most 2k − 2 in each variable. Denote its

coefficients by {ψpi,j : i, j = 0, . . . , 2k− 2} so that these are variables of the instance Φ′

and Ψp
2(u, v) =

∑2k−2
i,j=0 ψ

p
i,ju

ivj.

Similarly the instance Φ′ will have variables that represent the coefficients of a univari-
ate polynomial Ψp

1 and the intention is that

Ψp
1(u) = C1(u)Q(u).

Note that Ψp
1 is intended to have degree at most 2k − 2. Denote its coefficients by

{ψpi : i = 0, . . . , 2k − 2} so that these are variables of the instance Φ′ and Ψp
1(u) =∑2k−2

i=0 ψpi u
i.

We describe the equations of Φ′ by describing how to pick one equation at random from
the set of its equations. To pick an equation of Φ′ at random, first pick an equation p = 0
of Φ at random and then, with probability 1

3
each, write one the three equations below:

• Write the equation ∑
u,v∈S

Ψp
2(u, v) +

∑
u∈S

Ψp
1(u) = −c0.

8

More concretely, the equation, in terms of variables ψpi,j and ψpi is

2k−2∑
i,j=0

ψpi,j

(∑
u,v∈S

uivj

)
+

2k−2∑
i=0

ψpi

(∑
u∈S

ui

)
= −c0.

.

• Pick u, v ∈ H at random and write the equation

Ψp
2(u, v) = C2(u, v)Q(u)Q(v).

More concretely, the equation, in terms of variables ψpi,j and q0, . . . , qk−1 is

2k−2∑
i,j=0

ψpi,j · uivj = C2(u, v) ·

(
k−1∑
i=0

qi · ui
)
·

(
k−1∑
j=0

qj · vj
)
,

where C2(u, v) ∈ F is explicitly computed.

• Pick u ∈ H at random and write the equation

Ψp
1(u) = C1(u)Q(u).

More concretely, the equation, in terms of variables ψpi and q0, . . . , qk−1 is

2k−2∑
i=0

ψpi · ui = C1(u) ·

(
k−1∑
i=0

qi · ui
)
,

where C1(u) ∈ F is explicitly computed.

This completes the description of the instance Φ′ and now we proceed to show the stated prop-
erties of the instance Φ′ and correctness of the reduction. Clearly, the number of variables
and equations in Φ′ depends only on their numbers in the instance Φ (strictly speaking, the
equations in Φ′ have weights, but making copies of equations proportional to their weights,
Φ′ can easily be turned into an un-weighted instance). Also, each equation is of the form

`1 = a · `2 · `3 + b · `4 + c,

with a, b, c ∈ F and `1, `2, `3, `4 are linear forms (possibly zero) in the variables of Φ′. Finally,
the coefficients of these linear forms are of the type∑

u,v∈S

uivj,
∑
u∈S

ui, uivj, ui, 0,

with u, v ∈ H and 0 6 i, j 6 2k − 2. There are at most O(k6) possibilities for these
coefficients. Now we prove the correctness of the reduction.

9

2.2.1 YES Case

We show that if val(Φ) = 1, then val(Φ′) = 1. This is simply by design, but we present
the details for the convenience of the reader. Let σ : {x1, . . . , xk} → F be an assignment
that satisfies every equation p = 0 in Φ. Define the assignment to variables of Φ′, i.e. to
the variables q0, . . . , qk−1, ψ

p
i,j, ψ

p
i so that (the polynomials C1, C2 depend on the equation p

though our notation suppresses this):

Q(z) =
k−1∑
i=0

qiz
i, Q(si) = σ(xi), Ψp

2(u, v) = C2(u, v)Q(u)Q(v), Ψp
1(u) = C1(u)Q(u).

Now, we verify that this assignment satisfies each of the three kinds of equations in Φ′. The
second and the third kind of equations are satisfied by definition of Ψp

2(u, v) and Ψp
1(u) as

above. For the equations of the first kind, we have∑
u,v∈S

Ψp
2(u, v) +

∑
u∈S

Ψp
1(u) =

∑
u,v∈S

C2(u, v)Q(u)Q(v) +
∑
u∈S

C1(u)Q(u)

=
k∑

i,j=1

C2(si, sj)Q(si)Q(sj) +
k∑
i=1

C1(si)Q(si)

=
k∑

i,j=1

ci,j · σ(xi)σ(xj) +
k∑
i=1

ci · σ(xi)

= −c0,

where in the last step, we used the fact that σ satisfies the equation p = 0.

2.2.2 NO Case

Now we show that if val(Φ) 6 0.5, then val(Φ′) 6 0.95. Suppose on the contrary that
val(Φ′) > 0.95 and fix a corresponding “highly satisfying” assignment to Φ′, i.e. it is an
assignment to the variables q0, . . . , qk−1, ψ

p
i,j, ψ

p
i . As before, p = 0 denotes a typical equation

in Φ. We may define formal polynomials

Q(z) =
k−1∑
i=0

qiz
i, Ψp

2(u, v) =
2k−2∑
i,j=0

ψpi,ju
ivj, Ψp

1(u) =
2k−2∑
i=0

ψpi u
i.

Since the assignment to Φ′ satisfies at least 0.95 fraction of its equations, by an averaging
argument, it must be the case that for at least 0.55 fraction of the equations p = 0 in Φ,
after picking the equation p = 0, for each of the three kinds of equations in Φ′, at least 0.5
fraction of the equations of that kind are satisfied. Fix any such “good” equation p = 0 in Φ.
Note that there is only one equation of the first kind, so that equation is satisfied. Since at
least 0.5 fraction of the equations of the second and the third kind are satisfied, we conclude
that

Pr
u,v∈H

[Ψp
2(u, v) = C2(u, v)Q(u)Q(v)] > 0.5, (1)

10

and
Pr
u∈H

[Ψp
1(u) = C1(u)Q(u)] > 0.5. (2)

Since the polynomials Ψp
2(u, v),Ψp

1(u), C2(u, v), C1(u), Q(u) all have degree at most 2k − 2
in each variable, and |H| = 10k2, by the Schwartz-Zippel lemma, we must have a formal
identity

Ψp
2(u, v) = C2(u, v)Q(u)Q(v), Ψp

1(u) = C1(u)Q(u).

Now, since the equation of the first kind is satisfied, we conclude

−c0 =
∑
u,v∈S

Ψp
2(u, v) +

∑
u∈S

Ψp
1(u)

=
∑
u,v∈S

C2(u, v)Q(u)Q(v) +
∑
u∈S

C1(u)Q(u)

=
k∑

i,j=1

C2(si, sj)Q(si)Q(sj) +
k∑
i=1

C1(si)Q(si)

=
k∑

i,j=1

ci,j ·Q(si)Q(sj) +
k∑
i=1

ci ·Q(si).

Thus, the assignment σ : {x1, . . . , xk} → F defined as σ(xi) = Q(si) satisfies the equation
p = 0 in Φ. Since at least 0.55 fraction of the equations p = 0 in Φ are “good”, it follows
that val(Φ) > 0.55, a contradiction.

2.2.3 The choice of the set L in Lemma 2.2

Note that we have some degree of freedom in the choice of the set L, which we discuss below.
The choices of the sets S ⊆ H were completely arbitrary as long as |S| = k and |H| = 10k2.
The set L contains the elements∑

u,v∈S

uivj,
∑
u∈S

ui, uivj, ui, 0, (3)

with u, v ∈ H and 0 6 i, j 6 2k − 2. Depending on whether the characteristic of the field F
is large or small, we choose the set L as below. Let C be a large enough constant chosen as
below.

• Large characteristic: If p = char(F) > kCk, then we choose S = {0, . . . , k − 1},
H = {0, . . . , 10k2 − 1}, and let L = {0, . . . , D} ⊆ Fp, where D = kO(k) is large enough
so that all the coefficients in (3) are contained in L. Our choice of the constant C will
be such that 3k2D 6 p.

• Small characteristic: If p = char(F) 6 kCk, then we choose S and S ⊆ H to be
arbitrary subsets of F of size k and 10k2 respectively. Then, we choose L to be the
linear span, over Fp, of all the, at most O(k6), elements in (3). Note that in this case,
L is closed under addition and |L| 6 kO(k7).

11

2.3 Reducing arity to constant

In this section, we describe the reduction that starts with an instance of simple-deg-2-sat
as in Lemma 2.2 and constructs an instance where the (quadratic) equations have constant
arity and the gap is bounded away from 1.

Lemma 2.3. There is an FPT-reduction

simple-deg-2-sat(F, k, e, q = k, ε = 0.95) 6FPT deg-2-sat(F, k′, e′, q′ = O(1), ε′ = 0.999),

mapping an instance Φ of simple-deg-2-sat to an instance Φ′ of deg-2-sat such that:

• k′, e′ depend only on k, e.

• Each equation depends only on a constant number of variables.

We sketch the main idea first. Consider the instance Φ of simple-deg-2-sat such that
each equation is of the form

`1(x) = a · `2(x) · `3(x) + b · `4(x) + c, (4)

where a, b, c ∈ F and the coefficients of the linear forms `i(x) are in L ⊆ F as in Lemma
2.2. Note that the linear forms are of the type `(x) =

∑k
i=1 uixi where ui ∈ L and x1, . . . , xk

are the variables of the instance Φ. Our reduction constructs a new instance Φ′ whose
variables are intended to be the values of all linear forms `(x) =

∑k
i=1 uixi over all choices

of u1, . . . , uk ∈ L. Alternately, we may think of the variables of Φ′ as the entries in the table
of values of a function f : Lk → F, where the intention is that f is a linear function defined
as

f(u1, . . . , uk) =
k∑
i=1

ui · σ(xi),

and σ : {x1, . . . , xk} → F is a supposed satisfying assignment to Φ. Now consider a typical
equation (4) in Φ. Since the values of the linear forms `i(x) are supposed to appear as
variables f(u(i)) in Φ′, the equation (4) is now a quadratic equation that depends only on 4
variables of Φ′, i.e. the new equations have constant arity! However, to ensure the correctness
of this reduction, one needs to ensure that the assignment to Φ′ (given by an adversary) is
indeed a linear function f : Lk → F, or “close” to being a linear function as we see next.

To ensure that f : Lk → F is close to a linear function, we perform a “linearity test” that
makes a constant number of queries to the table of f (three queries are enough). The test
itself is linear in the queries made by the tester. The tests are then thought of as equations
in the values of table f , i.e. the variables of Φ′. Such linearity tests are well-studied. In
particular, a three query test is known so that if the test passes with probability close to
1, then the function f agrees with a (unique) linear function g, say on 0.99 fraction of the
inputs in Lk. Having ensured that f is close to a linear function g, we are then faced with
another issue. Equation (4) involves values of f at specific inputs u ∈ Lk and even though
f is close to a linear function g, it might be the case that f(u) 6= g(u) at these specific

12

inputs that we are interested in. It turns out that there is a “self-correction” procedure, that
given a query access to a function f that is close to a linear function g, makes a constant
number of queries to f (two queries suffice) and outputs the “correct value” g(u) with high
probability. The linearity testing and self-correction procedures were first considered in the
paper of Blum, Luby, and Rubinfeld [BLR93].

This describes the main idea behind our reduction. We recall, from Section 2.2.3, that
if the field F has small characteristic, then L ⊆ F can be taken as an additive subgroup of
F. In this case, the linearity testing and the self-correction procedures are already known,
e.g. [BLR93, BOCLR08], and can be used directly. However, if the field F has large
characteristic p > 3k2D, then L = {0, 1, . . . , D} ⊆ Fp is not closed under addition. In
this case, we design new procedures for linearity testing and self-correction that might be of
independent interest. These procedures closely mimic the corresponding procedures when L
does have an additive group structure, but one main difference is that in addition to the table
of f : Lk → F, the “tester” needs access to additional, auxiliary table π : Γk → F, where
L ⊆ Γ = {0, 1, . . . , 3k2D} ⊆ Fp. The table π is supposed to be the same linear function
as f , but evaluated over a larger domain Γk. We summarize the linearity testing and the
self-correction procedures below in Lemma 2.4, prove Lemma 2.3, and then present a proof
of Lemma 2.4.

Lemma 2.4. Let F be a finite field. Let L ⊆ F and L ⊆ Γ ⊆ F be such that

• Either, L is an additive subgroup of F and Γ = L,

• Or else, p = char(F) > 3k2D, L = {0, 1, . . . , D}, Γ = {0, 1, . . . , 3k2D}.

There is a randomized 3-query test T that gets as input a query access to a function f :
Lk → F as well as an additional function π : Γk → F such that π|Lk = f , makes 3 queries to
(f, π) and has the following guarantee:

• The test is linear in the 3 queries.

• If f is linear, then there exists π such that T accepts with probability 1.

• For any ε > 0, if the test T accepts (f, π) with probability at least 1 − ε, then f
is (1 − 4ε)-close to some linear function g : Lk → F. Furthermore, there is a self-
correcting procedure C that for any input u ∈ Lk makes 2 queries to (f, π) and outputs
C(u) such that

Pr[C(u) = g(u)] > 1− (4ε+ 2/k),

where the probability is over the randomness of C. The output C(u) is linear in the 2
queries.

If L has a group structure, the additional function π is not really needed, i.e. all queries
are made to f and then the role of π is redundant. Lemma 2.4 is stated so that it conveniently
applies to both the cases, when L has a group structure as well as when it doesn’t. We now
show how Lemma 2.4 implies Lemma 2.3.

13

Proof of Lemma 2.3. Given an instance Φ of simple-deg-2-sat with variables x1, . . . , xk
and equations of the form

`1(x) = a · `2(x) · `3(x) + b · `4(x) + c,

we construct an instance Φ′ as follows. The variables of Φ′ will be the table of values of
f : Lk → F and the table of values of π : Γk → F as in Lemma 2.4. In order to describe the
equations of Φ′, we describe a tester that uses the linearity testing, self-correction primitives
as well as the equations of Φ. The equations of Φ′ then correspond to the tests on the queries
made by the tester. The tester works as follows:

1. With probability 0.5, perform linearity test T on (f, π) as in Lemma 2.4.

2. With probability 0.5, perform the following steps:

(a) Pick a random equation of Φ of the form

`1(x) = a · `2(x) · `3(x) + b · `4(x) + c.

(b) For each `j(x) let u(j) ∈ Lk be such that `j(x) =
∑k

i=1 u
(j)
i xi. Apply the self

correcting procedure C in Lemma 2.4 to obtain the value C(u(j)).

(c) Accept if and only if

C(u(1)) = a · C(u(2)) · C(u(3)) + b · C(u(4)) + c.

That is, the equations of Φ′ of the first type are independent of Φ. The second type
of equations do depend on Φ. Specifically, each equation of Φ chosen in step (a) induces a
collection of equations of Φ′ that come from the self-correcting procedure for each u(j). The
equation in step (c) depends on 8 variables of Φ′, since each C(u(j)) depends linearly on two
values of f and π. We now prove the correctness of the reduction.

Yes Case: If val(Φ) = 1, it is clear that val(Φ′) = 1. Indeed, if val(Φ) = 1, then there exists
an assignment σ(x1), . . . , σ(xk) ∈ F to the variables of Φ that satisfies all the equations, and
the corresponding assignment

∑k
i=1 ui · σ(xi) for both f(u), u ∈ Lk and π(u), u ∈ Γk, will

satisfy all equations of Φ′.

NO Case: Now suppose that val(Φ′) > 1− ε for ε = 0.001. Let f : Lk → F and π : Γk → F
be the assignment to the variables that satisfies 1 − ε of the equations of Φ′. Then, the
linearity test accepts (f, π) with probability at least 1 − 2ε, and so by Lemma 2.4, there
exists a linear function g : Lk → F that agrees with f on at least 1 − 8ε fraction of the
inputs.

Similarly, (f, π) satisfies at least 1 − 2ε fraction of the equations of the second type.
Consider now an equation of Φ and a collection of tests of Φ′ of the second type defined by
this equation. By an averaging argument, it follows that for 1−20ε fraction of the equations
of Φ chosen in step (a), the induced tests in step (c) accept with probability at least 0.9.
Call such an equation of Φ good. We show that values of g : Lk → F (at specific, relevant

14

inputs), when viewed as assignment to Φ, satisfy every good equation of Φ. Since 1 − 20ε
fraction of the equations of Φ are good, but val(Φ) 6 0.95, this would be a contradiction.

Indeed, fix a good equation of Φ so that the induced test in step (c) accepts with proba-
bility at least 0.9. Let E denote the event that the test accepts. By the “furthermore” part
of Lemma 2.4 and using a union bound for u(1), . . . , u(4) appearing in the equation in step
(c), we get that

Pr
[
C(u(i)) = g(u(i)) for all i = 1, . . . , 4

]
> 1− (32ε+ 8/k) > 0.5.

Let E ′ denote the event that C(u(i)) = g(u(i)) for all i = 1, . . . , 4 so that Pr[E ′] > 0.5. Thus,
with probability at least 0.4, both events E and E ′ occur, which is same as saying that the
values g(u(i)) satisfy the (good) equation. This completes the proof of Lemma 2.3.

2.4 Proof of Lemma 2.4 - Linearity-Testing and Self-Correcting

In this section, we prove Lemma 2.4. As we mentioned, when L has a group structure, the
lemma is well-known, e.g. in [BLR93, BOCLR08]. Therefore, we prove the lemma only for
the case when p = char(F) is large and the set L is of the form {0, 1 . . . , D} for some D � p.
The proof follows the outline from [BOCLR08] with appropriate modifications to our setting.
After presenting the proof, we also point out, for the benefit of non-expert readers, how the
proof works when L does have a group structure.

We recall that p = char(F) > 3k2D, L = {0, 1, . . . , D}, and Γ = {0, 1, . . . , 3k2D}. The
tester is given query access to function f : Lk → F and to π : Γk → F such that π|Lk = f .
Since the restriction of π to Lk coincides with f , in the following, we denote both f and π
by the same function f , keeping in mind that the “actual” function f is the restriction to
Lk. The tester T works as follows:

1. With probability 0.5, perform the following test T1.

(a) Pick x ∈ {0, 1, . . . , D}k, y ∈ {0, 1, . . . , k2D}k independently, uniformly at random.

(b) Accept if and only if f(x) + f(y) = f(x+ y).

2. With probability 0.5, perform the following test T2.

(a) Pick x, y ∈ {0, 1, . . . , k2D}k independently, uniformly at random.

(b) Accept if and only if f(x) + f(y) = f(x+ y).

That is, we perform the standard linearity testing as in [BLR93]. However, since the domain
of f does not have a group structure, we need to choose the distribution from which we
choose x and y carefully.

Clearly, if f is linear, i.e. f(u1, . . . , uk) =
∑k

i=1 σiui, σi ∈ F, then T always accepts.
Towards proving the soundness property, suppose now that T accepts f with probability

15

1 − ε. Note that this implies that both T1 and T2 accept with probability at least 1 − 2ε
each. Our goal is to prove that the restriction of f to {0, 1, . . . , D}k is close to a linear
function. Towards this goal, we define the following function g : {0, 1, . . . , D}k → F,

g(x) = Pluralityy(f(x+ y)− f(y)),

where the plurality is taken over a uniformly random y ∈ {0, 1, . . . , k2D}k. To clarify, the
plurality refers to the element in F that occurs most frequently as the value f(x+y)−f(y). A
tie is broken arbitrarily, but we show next, that the plurality is in fact always an overwhelming
majority.

Claim 2.5. For each x ∈ {0, 1, . . . , D}k, let

Px = Pr
y

[g(x) = f(x+ y)− f(y)],

where y is chosen uniformly at random from {0, 1, . . . , k2D}k. Then, Px > 1 − (4ε + 2/k)
for every x ∈ {0, 1, . . . , D}k.

Proof. Let Ax = Pry,z[f(x+y)−f(y) = f(x+z)−f(z)], where y, z are chosen independently
and uniformly from {0, 1, . . . , k2D}k. Note first that

Ax 6 Px. (5)

Indeed,

Ax =
∑
u∈F

Pr
y,z

[f(x+ y)− f(y) = u = f(x+ z)− f(z)]

=
∑
u∈F

Pr
y

[f(x+ y)− f(y) = u]2

6 max
u∈F

(
Pr
y

[f(x+ y)− f(y) = u]

)
·

(∑
u∈F

Pr
y

[f(x+ y)− f(y) = u]

)
= Px,

which proves (5). On the other hand, we have

1− Ax = Pr
y,z

[f(x+ y) + f(z) 6= f(x+ z) + f(y)]

6 Pr
y,z

[f(x+ y) + f(z) 6= f(x+ y + z)] + Pr
y,z

[f(x+ z) + f(y) 6= f(x+ y + z)]

= 2 · Pr
y,z

[f(x+ y) + f(z) 6= f(x+ y + z)].

Note that the quantity Pry,z[f(x + y) + f(z) 6= f(x + y + z)] is equal to Pry′,z[f(y′) +
f(z) 6= f(y′+ z)], where y′ is chosen in the domain {0, 1, . . . , k2D}k “shifted by x”. For this
distribution on y′ we have Pry′

[
y′ ∈ {0, 1, . . . , k2D}k

]
> (1− 1/k2)k > 1− 1/k. That is, the

16

distribution of y′ is close to the distribution of a query in T2 and the distribution of z is the
same as in T2. Thus, since T2 accepts f with probability at least 1− 2ε, it follows that

Pr
y,z

[f(x+ y) + f(z) 6= f(x+ y + z)] = Pr
y′,z

[f(y′) + f(z) 6= f(y′ + z)] 6 2ε+ 1/k,

and hence
Ax > 1− (4ε+ 2/k). (6)

Combining (5) with (6) we get that

Px > 1− (4ε+ 2/k),

as required.

Claim 2.6. Suppose that k > 20 and ε 6 0.02. Then Prx∈{0,1,...,D}k [f(x) 6= g(x)] 6 4ε.

Proof. Note that if we choose x ∈ {0, 1, . . . , D}k and y ∈ {0, 1, . . . , k2D}k according to the
distribution of T1 then

2ε > Pr
x,y

[T1 rejects]

> Pr
x,y

[f(x) 6= f(x+ y)− f(y)|f(x) 6= g(x)] · Pr[f(x) 6= g(x)]

> Pr
x,y

[g(x) = f(x+ y)− f(y)|f(x) 6= g(x)] · Pr[f(x) 6= g(x)]

> min
x∈{0,1,...,D}k

(Px) · Pr[f(x) 6= g(x)]

> (1− (4ε+ 2/k)) · Pr[f(x) 6= g(x)].

Therefore, if k is sufficiently large and ε is sufficiently small, then Prx∈{0,1,...,D}k [f(x) 6=
g(x)] 6 4ε and the claim follows.

Claim 2.7. Suppose that k > 20 and ε 6 0.02. Then, the restriction of g to {0, 1, . . . , D}k
is a linear function.

Proof. In order to prove that g is linear, it is enough to show that for every x ∈ {0, . . . , D}k
and for every i ∈ [k] it holds that g(x) + g(ei) = g(x + ei), where ei ∈ Fk is the vector
with 1 in the ith coordinate and 0 everywhere else. By Claim 2.5, we can write down the
following three inequalities. In the first inequality, ei + y is just a proxy for y and when
y ∈ {0, 1, . . . , k2D} is uniformly chosen, the distribution of ei + y is 1

k2 -close to that of y.
The extra 1

k2 on the R.H.S. of the first inequality accounts for this small difference.

Pr
y

[g(x) = f(x+ (ei + y))− f(ei + y)] > 1− (4ε+ 2/k + 1/k2)

Pr
y

[g(ei) = f(ei + y)− f(y)] > 1− (4ε+ 2/k)

Pr
y

[g(x+ ei) = f(x+ ei + y)− f(y)] > 1− (4ε+ 2/k)

17

Therefore, for ε sufficiently small and k sufficiently large, by the union bound, all three
events hold for the same y ∈ {0, 1, . . . , k2D}k, and thus

g(x)+g(ei) =
(
f(x+ei+y)−f(ei+y)

)
+
(
f(ei+y)−f(y)

)
= f(x+ei+y)−f(y) = g(x+ei).

Therefore, the restriction of g to {0, 1, . . . , D}k is a linear function, as required.

By combining Claim 2.6 with Claim 2.7 we conclude that if T accepts f with probability
1 − ε, then the restriction of f to {0, 1, . . . , D}k is 4ε-close to a linear function g(x) =∑k

i=1 g(ei)xi. The self-correcting procedure is straightforward: on input x ∈ {0, 1, . . . , D}k,

• Pick y ∈ {0, 1, . . . , k2D}k uniformly at random.

• Output C(x) = f(x+ y)− f(y).

Clearly, the procedure makes 2 queries to f and by Claim 2.5, it follows that Pr[C(x) =
g(x)] > 1− (4ε+ 2/k). This completes the “furthermore” part of Lemma 2.4.

Finally, we comment on how the testing and self-correction works when L has a group
structure. In this case, the tester is given query access to f : Lk → F and there is no
additional function π. The tester tests whether f(x) + f(y) = f(x + y) for uniformly
random x and y. A similar proof as above shows that if the tester accepts with probability
1 − ε, then f is (1 − O(ε))-close to a linear function g. Moreover, for every fixed x ∈ Lk,
g(x) = f(x+ y)− f(y) for (1−O(ε)) fraction of y ∈ Lk and this serves as the self-correction
procedure.

References

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification
and the hardness of approximation problems. Journal of the ACM, 45(3):501–
555, 1998.

[AS98] S. Arora and S. Safra. Probabilistic Checking of Proofs: A New Characterization
of NP. Journal of the ACM, 45(1):70–122, 1998.

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications
to numerical problems. J. Comput. Syst. Sci., 47(3):549–595, 1993.

[BOCLR08] M. Ben-Or, D. Coppersmith, M. Luby, and R. Rubinfeld. Non-abelian homo-
morphism testing, and distributions close to their self-convolutions. Random
Struct. Algorithms, 32(1):49–70, 2008.

[CGG06] Y. Chen, M. Grohe, and M. Grber. On parameterized approximability. In Pa-
rameterized and Exact Computation, volume 4169 of Lecture Notes in Computer
Science, pages 109–120. Springer Berlin Heidelberg, 2006.

18

[DECF+03] R. G. Downey, V. Estivill-Castro, M. Fellows, E. Prieto, and F.A. Rosamund.
Cutting up is hard to do: The parameterised complexity of k-cut and related
problems. Electronic Notes in Theoretical Computer Science, 78:209 – 222, 2003.

[DF95a] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness
I: basic results. SIAM J. Comput., 24(4):873–921, 1995.

[DF95b] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness
II: on completeness for W[1]. Theor. Comput. Sci., 141(1&2):109–131, 1995.

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,
1999.

[FG06] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag,
2006.

[FGL+96] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximating
Clique is almost NP-complete. Journal of the ACM, 43:268–292, 1996.

[Laz79] D. Lazard. Systems of algebraic equations. Symbolic and Algebraic Computation,
72:88–94, 1979.

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive
proof systems. J. ACM, 39(4):859–868, October 1992.

[Mar08] D. Marx. Parameterized complexity and approximation algorithms. The Com-
puter Journal, 51:60–78, 2008.

[Sha92] A. Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[vzGG03] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, New York, NY, USA, 2 edition, 2003.

19

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

