
Reliable Communication over

Highly Connected Noisy Networks

Noga Alon ∗, Mark Braverman†, Klim Efremenko‡, Ran Gelles§, and Bernhard Haeupler¶

January 15, 2015

Abstract

We consider the task of multiparty computation performed over networks in the presence of
random noise. Given an n-party protocol that takes R rounds assuming noiseless communica-
tion, the goal is to find a coding scheme that takes R′ rounds and computes the same function
with high probability even when the communication is noisy, while maintaining a constant
asymptotical rate, i.e., while keeping limn,R→∞R/R′ positive.

Rajagopalan and Schulman (STOC ’94) were the first to consider this question, and provided
a coding scheme with rate O(1/ log(d + 1)), where d is the maximal degree of connectivity in
the network. While that scheme provides a constant rate coding for many practical situations,
in the worst case, e.g., when the network is a complete graph, the rate is O(1/ log n), which
tends to 0 as n tends to infinity.

We revisit this question and provide an efficient coding scheme with a constant rate for
the interesting case of fully connected networks. We furthermore extend the result and show
that if the network has mixing time m, then there exists an efficient coding scheme with rate
O(1/m3 logm). This implies a constant rate coding scheme for any n-party protocol over a
network with a constant mixing time, and in particular for random graphs with n vertices and
degrees nΩ(1).
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1 Introduction

The field of coding for interactive communication, initiated by Schulman in the early 90’s [Sch92,
Sch93, Sch96], aims at performing arbitrary distributed computations when the communication
channels between the different nodes suffer from noise. For the case where two parties communicate
over a discrete memoryless channel (say, the binary symmetric channel that flips every bit with
an independent probability of ε, denoted BSCε), the scheme of [Sch96] provides an efficient coding
with good parameters: the coding of an R-round (noiseless) protocol takes only O(R) rounds, and
gives the correct outputs with probability 1− 2−Ω(R) over the noisy network.

In 1994, Rajagopalan and Schulman [RS94] extended the result to the multiparty case. Here
we are given a network with n nodes of some arbitrary topology, where each communication link
is an independent BSCε. In this case, any protocol of R rounds over the noiseless network can
be coded into a resilient protocol that takes O(R log(d + 1) + log n) rounds and succeeds with
probability 1− 2−Ω(R). The parameter d is the maximum degree of any node in the network, i.e.,
the maximal number of links connected to a single party. Although the scheme of [RS94] is not
efficient, Gelles, Moitra and Sahai [GMS11, GMS14] showed that it can be extended to a fully
efficient (randomized) scheme. The coding scheme of [RS94] has good parameters for any constant
number of parties, however it may not work as well when the number of parties is large. Indeed, in
highly connected networks, and in particular when the topology is a complete graph on n vertices,
the redundancy added by the coding becomes Θ(log n). In other words, the rate, the length of the
noiseless protocol divided by the length of the encoded protocol, is vanishing, being O(1/ log n).

We revisit the question of coding for multiparty interactive communication, and ask whether it
is possible to find efficient coding schemes with rate O(1) for the case where the network is highly
connected, for example, when the topology is a complete graph.

We answer the above in the affirmative.

Theorem 1.1 (coding over complete graphs). For any n-party protocol π that takes R-rounds over
the fully-connected (noiseless) network, and for any constant ε < 1/2, there exists a resilient proto-
col Π that simulates π over a fully connected network in which every link is a BSCε. The simulation
is computationally efficient, takes Oε(R) rounds and succeeds with probability 1− 2−Ω(

√
nR).

This result sheds some light on the differences between the case where each pair of parties share
a private (noisy) channel, and the case where all the parties share a joint (noisy) broadcast channel.
It was previously shown that if the users share a noisy broadcast channel then certain tasks, such
as computing the parity of all the inputs, or learning the input bit of all the parties can be done in
O(n log log n) noisy-broadcast rounds [Gal88]. Furthermore, these tasks cannot be done with fewer
rounds, i.e., the log log n blowup is tight [GKS08]. On the other hand the Θ(n log log n) bound no
longer holds in the setting of noisy private channels, as implied by Theorem 1.1

In order to prove Theorem 1.1, we show a coding that simulates a single round of the noiseless
protocol. Consider the neighborhood connectivity task in which each party holds one bit designated
to each one of its neighbors. It is easy to verify that sending each bit directly requires Ω(log n)
rounds in order to be decoded correctly with high probability. However, we show a coding proto-
col that solves the neighborhood-connectivity task over a noisy network with high probability in
O(1) rounds. Instead of transmitting each bit directly, we relay each bit through large portions of
the network using an appropriate (Shannon) error correcting code [Sha48]. To illustrate this simple
idea, consider a very simplified case in which some source s wishes to send a single bit to a target
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node t, over the noisy network. In order to complete this task in O(1) rounds, s can relay its bit
to all its n− 1 neighbors, and then they will send their (noisy) copy to t. Thus, in two rounds the
target node t receives n − 1 independent estimations of the bit, where each estimation is correct
with probability (1 − ε)2 + ε2; this allows t to correctly decode the bit with high probability by
taking the majority of the estimations.

With the above relaying technique in mind, we can design a coding scheme for the neighborhood
connectivity in O(1) rounds. Here is an outline. We describe the neighborhood connectivity task
as an n×n matrix where each row and column describes a specific party and the (i, j) entry is the
amount of bits the i-th party wants to communicate to the j-th party (in particular, the matrix
is all-ones in the case of a complete graph). We first divide the n parties into subsets of size

√
n.

This division can be seen as splitting the above matrix into n blocks of size
√
n by

√
n. Next, we

associate each such block with a specific party, or more accurately, we associate this party with the
n-bits of information defined by that block in the matrix. The coding will work in two symmetric
parts. First, each party (each row in the matrix) will encode each of the

√
n bits that belong to

a specific block and send it to the party associated with it. After this step, each party knows all
the n bits of the block associated to it. Next, each associated party of a specific block will encode
the
√
n bits designated to a specific party (that is, the bits that lie in a column of the matrix),

and send them to that party. Since both parts encode the bits prior to sending them, they will be
decoded correctly with high probability.

Note that using the above relaying technique, it is possible to send each of the encodings (of
length O(

√
n)) in a constant number of round. In fact, we can parallelize their transmissions and

communicate all the necessary information in a constant number of rounds.

In addition to the complete graph topology, we also consider highly-connected networks whose
topology is a d-regular graph with a small mixing time m (see Definition 5.1). We show a coding
scheme with rate O(1/(m3 logm)) that succeeds with high probability.

Theorem 1.2 (coding over d-regular graphs). Assume a network topology G of a d-regular graph
with mixing time m, and assume d > log1+Ω(1) n. For any n-party protocol π that takes R rounds
over the noiseless network and for any ε < 1/2, there exists a resilient protocol Π that simulates π
over the network G where every link is a BSCε. The simulation is computationally efficient, takes
Oε(Rm

3 logm) rounds and succeeds with probability 1− 2−Ω(dΩ(1)·R) > 1− n−ω(1)R.

For the case ofm = O(1), e.g., for random graphs with d = nα for some constant α > 0, Theorem 1.2

implies a coding scheme with a constant rate Θ(1), and a success probability of 1− 2−n
Ω(1)R. Note

that the rate obtained by the coding scheme of [RS94] for such networks is only O(1/ log d) =
O(1/ log nα) = o(1).

As in the case of complete graphs, it suffices to solve the neighborhood-connectivity task in O(1)
rounds in order to obtain a constant rate scheme over a d-regular graph, assuming a constant mixing
time m = O(1). However, the challenge here is bigger than in the complete graph case, as every
node is connected to a relatively small number of nodes, and it is not clear how to relay bits using
arbitrary portions of the network. Nevertheless, we show a way for large subsets of nodes to talk
with each other simultaneously without disturbing each other, in a reliable way. Specifically, assume
we have a list of (distinct) source-target pairs where each source node aims to send a total amount
of O(d) bits, and so that each node appears at most O(d/Λ) times in the list, for some parameter Λ.
First we encode each chunk of information using a standard error correcting code that has failure
probability 2−Ω(Λ) over a BSCε, and define a new list where each source-target pair appears with
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multiplicity which equals the number of bits to be transferred from that source to the target after
the encoding. Note that in the transformed list, each node may appear up to O(d) times. Next we
show that it is possible to choose a set of short paths, such that for every element in the list there
is a unique path connecting the source with the target (i.e., with parallel paths between multiple
occurrences of the same source and target), and yet these paths are jointly edge-disjoint. This
implies that we can deliver all the codewords to their destinations in O(1) rounds, and successfully
decode each codeword with high probability. Choosing a set of edge-disjoint paths applies a variant
of the methods used in the papers about finding edge-disjoint paths in expander graphs and in
particular [BFU94], see also [AC07] and the references therein. However, in our case we need all
the paths to be of constant length O(m), and we do not restrict the list of source-target pairs to be
disjoint. Our approach applies the Lovász Local Lemma, where the basic combinatorial statement
applied is the fact, first proved in [Alo88], that given any family of pairwise disjoint sets of vertices
in a graph, each of size somewhat larger than the maximum degree in the graph, there is always
an independent set containing a vertex from each of these sets. Moreover, such an independent set
can be found efficiently.

The above reliable coding is not enough to complete the proof: since we are restricted to source-
target lists where each node appears at most O(d/Λ) times, we cannot apply this method directly
to the neighborhood-connectivity task. Indeed, each party begins with one bit to send to each of
its d neighbors, and the O(d/Λ) restriction cannot hold.

Still, using the above coding we show how to perform a sequence of relays where each causes the
communication to be more “localized”. In other words, each relay splits the network into disjoint
subsets where the communication is guaranteed to occur only between parties of the same subset.
Each such a relay reduces the subset size by a factor of Λ

d and increases the communication by only

a constant factor. Since a mixing time m implies d > n1/m, after O(m) = O(1) relays (with the
right choice of Λ), each subset is of size at most O(d/Λ) while each party needs to communicate at
most O(d) bits. Now the communication demand satisfies the conditions of the coding scheme (i.e.,
every node appears at most O(d/Λ) times in the induced source-target list) and we can employ the
coding one last time to complete the task.

Related Work. As mentioned above, the task of coding for interactive communication in the
two party case, assuming random noise, was first considered by Schulman [Sch92, Sch93, Sch96].
These constructions either have non-constant rate, or they utilize a data structure named tree-code
for which no efficient construction is known. Later, Gelles, Moitra and Sahai [GMS11, GMS14]
provided a randomized relaxation for the tree code which can be constructed efficiently, thus solving
the task efficiently when the noise model is random.

Another interesting model for the two-party interactive communication task is when the noise is
not random but rather adversarial, where the only limit is on the total fraction of bit flips allowed.
The maximal noise that can be tolerated, and efficient schemes that tolerate a constant fraction
of noise (up to the possible limit) were considered in [BR11, BK12, BN13, GH14, BE14]. A long
sequence of works consider two-party interactive communication for various models and assump-
tions, e.g. when the parties are allowed to share a (private) random string [FGOS13, FGOS15],
the case of adaptive protocols [AGS13, GHS14], the case of erasure channels and channels with
feedback [FGOS15, GH15, EGH15], and the case of private computations [CPT13, GSW14]. The
capacity (the maximal rate) of interactive protocols in the two-party case was considered by [KR13,
Pan13, Hae14, GH15].
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Despite a large body of work on the two-party case, not too much is known for the multiparty
case, beyond the aforementioned result of Rajagopalan and Schulman [RS94], and its efficient
extension [GMS11, GMS14]. For the adversarial noise model, Jain, Kalai and Lewko [JKL15]
consider the case of multiparty interaction and show a tight Θ(1/n) bound on the fraction of noise,
for star topology networks in the asynchronous model. Hoza and Schulman [HS14] show a coding
scheme that applies to any network topology in the synchronous model, and resists a maximal
noise level of O(1/n) with rate O(n/m log n), where m is the number of edges in the network. In
addition, they provide a coding scheme, along with tight bounds on the permissible level of noise,
for the interesting case where the noise level per edge is bounded.

2 Model Definition and Preliminaries

Notations. Let us fix some notations used throughout. Let N = {0, 1, 2, . . .} denote the natural
numbers (including zero), and for any integer n ≥ 1, put [n] = {1, 2, 3, . . . , n}. We say that a
function f(n) is negligible in n, if f(n) ≤ n−ω(1); We will usually want our constructions to fail
with at most negligible probability in the number of parties. All logarithms throughout the paper
are in base 2.

Noisy Networks and Protocols. Given an undirected graph G = (V,E) we assume a network
with n = |V | parties, where u, v ∈ V share a communication channel if (u, v) ∈ E. In the case of a
noisy network, each such link is assumed to be a BSCε.

Definition 2.1. A binary symmetric channel with error probability ε, is a binary channel BSCε :
{0, 1} → {0, 1} such that for any b ∈ {0, 1}, it holds that Pr[BSCε(b) 6= b] = ε independently for
each instantiation of the channel.

A single round of communication in the network means the simultaneous transmission of 2|E|
messages: for any (u, v) ∈ E, u sends a message to v and receives a message from v. A protocol
of length m that computes f(x1, . . . , xn) = (y1, . . . , yn) is a distributed algorithm where each pi
begins the protocol with an input xi, and after m rounds of communication each pi outputs yi.

In order to ease notations we usually assume G contains self loops and that a party can “send”
a message to itself. Concretely for a complete graph, each node has n neighbors rather than n− 1.

Finally, we will be using a standard error correction code, implied by the work of Shannon.
Formally,

Lemma 2.2 (Shannon Coding Theorem [Sha48]). For any discrete memoryless channel T with
capacity C and any k, there exists a code ECC : {0, 1}k → {0, 1}n and ECC−1 : {0, 1}n → {0, 1}k
with n = O( 1

C k) such that for any m ∈ {0, 1}k it holds that,

Pr
[
ECC−1(T (ECC(m))) 6= m

]
< 2−Ω(n).

For a BSCε channel, the capacity C is given by 1 − H(ε) = 1 + ε log ε + (1 − ε) log(1 − ε). We
note that one can efficiently construct codes with the above parameters (and efficiently encode and
decode them), see, e.g., [Spi95, GI05].
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3 The Neighborhood Connectivity Task and Interactive Protocols

A trivial observation is that any R-round multiparty interactive protocol can be split into R basic
steps, in each of which every party has a single bit to send to any of its neighbors. We define this
task as the neighborhood connectivity task.

Formally, for any network with n nodes, the neighborhood connectivity task is defined by

Definition 3.1. Let ~ai = (ai,1, . . . , ai,di) where for any i ∈ [n], j ∈ [di] the bit ai,j ∈ {0, 1} is to be
interpreted as the input of party i which is designated to its j-th neighbor. The Neighbor function
is defined as:

Neighbor(~a1,~a2, . . . ,~an) = (~b1,~b2, . . . ,~bn).

where ~bi consists of the di bits designated to party i by its di neighbors.

We say that some protocol computes the Neighbor task over a BSCε, if it fails with a negligible
probability in n. Note that a successful computation of the Neighbor task implies that all parties
have received the correct output; this is different from the standard successful transmission which
usually accounts for only a single party, or a single bit transmission.

Composing R rounds of neighborhood connectivity immediately gives a coding scheme for any
R-round protocol, yet with a success probability that decreases with R.

Claim 3.2. For any network G and any R-round multiparty protocol π, if the neighborhood con-
nectivity task over G can be performed in k rounds with probability 1 − n−ω(1), then there exist a
coding Π that simulates π with O(kR) rounds and succeeds with probability 1−R · n−ω(1).

However in general the number of rounds R can be very large. We claim that even in this case,
obtaining a coding protocol that succeeds with high probability is possible. To this end we use a
result by Rajagopalan and Schulman [RS94] who showed an efficient coding scheme that succeeds
to simulate any protocol over a memoryless noisy channel as long as the probability of correctly
decoding a single transmission is at least 1− (d+ 1)−Ω(1), where d is the maximal degree of a node
in the network.

Theorem 3.3 ([RS94]). For any R round protocol π over any network G, there exists a coding
scheme Π, that takes O(R) rounds and succeeds with probability 1−n(2(d+ 1)p)Ω(R) given that any
symbol transmitted in the network is correctly received with probability 1−p where d is the maximal
degree of nodes in G.

Sketch of proof. The theorem is an immediate consequence of the analysis of [RS94]. Although not
written explicitly there, it easily follows from the analysis of Lemmas 5.1.1 and 5.1.2 in [RS94]; see
also the detailed analysis in [Raj94, Section 3]. We omit the details here. �

To bring the decoding probability of a single transmission to the required level of p < (2(d+ 1))−Ω(1),
Rajagopalan and Schulman simply use a Shannon code of length O(log(d+1)), thus obtaining a sim-
ilar overhead (see Lemma 5.1.2 in [RS94]). However, if we replace the Shannon code used in [RS94]
with O(1) rounds1 of the neighborhood connectivity task, we effectively reduce the probability of
a failed transmission to p < n−ω(1) � (d+ 1)−Ω(1). This immediately implies the following.

1Each transmission in [RS94] is of a symbol taken from a small finite alphabet. Hence, each such symbol can be
communicated with O(1) rounds of (bit) neighborhood connectivity.
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Corollary 3.4. For any network G and any R-round multiparty protocol π, if the neighborhood
connectivity task over G can be performed in k rounds with probability 1−p where p = n−ω(1), then
there exist a coding Π that simulates π with O(kR) rounds and succeeds with probability 1− p−Ω(R).

4 Resilient Communication over Complete Graphs

In this section we show a coding scheme for the neighborhood connectivity task that takesO(1) rounds
assuming the network has an underlying topology of a complete graph. Consider n parties where
each two are connected via a BSCε for some constant ε < 1/2. The neighborhood connectivity
task in the case of complete-graph networks can be described by giving each pi the n input bits
~ai ≡ (ai,1, ai,2, . . . , ai,n) where the i-th bit should be sent to the i-th party. Then,

Neighbor(~a1,~a2, . . . ,~an) = (~aᵀ1,~a
ᵀ
2, . . . ,~a

ᵀ
n),

where ~aᵀj ≡ (a1,j , a2,j , . . . , an,j).

Our main theorem in this section is a coding scheme that solves the Neighbor task in O(1)
rounds over complete graph noisy networks.

Theorem 4.1. For any constant ε < 1/2, the Neighbor task for n-parties can be efficiently computed
with probability 1− 2−Ω(

√
n) in Oε(1) communication rounds over a fully-connected network, where

each channel is a BSCε.

The above theorem along with Corollary 3.4 give a constant rate coding scheme for any multiparty
protocol over complete graphs, establishing Theorem 1.1.

Before we prove the theorem, let us begin by showing that any specific party can reliably transfer
a large amount of information to a single party, using O(1) rounds of communication. Assume p1

wishes to send n bits to p2. Obviously, p1 can send the information to p2 bit by bit, yet this would
take them n rounds. A different approach would be to relay the bits using the entire network.
That is, on the first round, p1 sends one bit of its input to all the other parties (e.g., the i-th bit is
sent to the i-th party). On the second round, all the parties relay the bit they have received at the
first round back to p2. This way, p2 gets all the n bits, where each bit is flipped with probability
2ε(1− ε). In order to send the information reliably, p1 can use a code ECC using Lemma 2.2. Such
an encoding increases the amount of information to be communicated to c ·n bits for some constant
c > 1, and thus requires repeating the above process c = O(1) times. We name the above approach
two-steps transfer.

An interesting observation is that during each round, we utilize only n links of the entire
networks (that has n2 links). This means that we can perform the above two-steps transfer n times
in parallel as long as no two instantiations have the same sender or the same receiver. Using this
observation, we can now describe the proof of Theorem 4.1.

Proof. Consider the n2 bits {ai,j} that have to be sent as the n × n matrix A. Let k =
√
n, and

split the matrix A into n disjoint sub-matrices Bt,l, each of size k × k. Specifically,

A =


B1,1 B1,2 · · · B1,k

B2,1 B2,2 · · · B2,k

. . .

Bk,1 Bk,2 · · · Bk,k

 ,
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where for any t, l ∈ [k] we let

Bt,l =


a(t−1)k+1,(l−1)k+1 a(t−1)k+1,(l−1)k+2 · · · a(t−1)k+1,lk

a(t−1)k+2,(l−1)k+1 a(t−1)k+2,(l−1)k+2 · · · a(t−1)k+2,lk
...

. . .
...

atk,(l−1)k+1 atk,(l−1)k+2 · · · atk,lk

 .

Associate each block Bt,l with a responsible party f(t, l) ∈ [n] in a bijective way, without loss
of generality, we can take f(t, l) = k(t− 1) + l. The protocol proceeds in two steps, each of which
takes O(1) rounds. In the first step, each party f(t, l) learns all the bits that belong to Bt,l with
high probability. In the second step, each such party distributes the bits of the appropriate matrix
Bt,l to their destinations.

The protocol uses an error correcting code ECC : {0, 1}k → {0, 1}k′ that, assuming a BSCε, fails
with probability at most 2−Ω(k); note that k′ = Oε(k) (see Lemma 2.2).

To explain the first step suppose, first, that we do not use the code and each party i wishes to
send the bit ai,j to party j. This can be done in two rounds as follows. In the first round, party
i sends the bit ai,j to party (ki+ j)(mod n). Note that here, crucially, each party i sends exactly
one bit to each other party, and that for each block Bt,l, no two bits of Bt,l reach the same party.
Thus the bits of Bt,l reach all the n parties, each getting exactly one bit. In the second step, each
party sends the unique bit from Bt,l that it received to the responsible party f(t, l). Clearly after
these two steps, f(t, l) receives all bits of the block Bt,l.

In the actual realization of the first step, each party i applies the code from Lemma 2.2 to the k
bits in each block in its row before transmitting them. Thus the bits ai,(l−1)k+1, ai,(l−1)+2, . . . , ai,lk
are first encoded to get k′ bits, which are sent using the above procedure, simulating each of the
two rounds by dk′/ke rounds. Once the party f(t, l) gets the bits of the encoded rows of the block
Bt,l, he can decode them, using the error correcting code, and get all the bits of the block Bt,l
correctly, with high probability.

The second step is performed in the same way, reversing the directions. Ignoring the encoding,
this can be done in two rounds as follows. In the first round, each party f(t, l) responsible to
the bits in the block Bt,l sends the bit ai,j of this block to party number (i + kj)(mod n). Note
that no two bits of the block have to be sent to the same destination, and hence this can indeed
be performed in one round. In the second round the party that got the bit ai,j sends it to its
destination: party number j. Since for distinct i, i′, (i+kj)(mod n) is not equal to (i′+kj)(mod n)
this can also be done in one round. To ensure that with high probability no errors will occur, the
party f(t, l) encodes each column of its block Bt,l before sending the bits of the encoded message.
As before, after the encoding each of these two rounds can be simulated by a constant number of
rounds. This completes the proof.

5 Resilient Communication over Highly Connected Graphs

In this section we generalize the above result, to the case where the underlying network is a d-regular
graph, rather than a complete graph. The overhead of the coding scheme in this case depends on
the mixing time of the network graph.
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Definition 5.1. Let Â be the normalized adjacency matrix of a graph G = (V,E) with n nodes.
Let ~u = (1/n, 1/n, . . . , 1/n). The graph G has mixing time m if, for any probability vector ~p,∥∥∥Âm~p− ~u∥∥∥

∞
≤ 1

2n
.

We note that if a d-regular graph has a mixing time m, then d > n
1
m . Also we note that a random

graph with d ≥ Ω((n log n)
1
m ) has mixing time at most m.

As before, we aim to solve the neighborhood connectivity task. That is, each party now begins
with d bits designated to his neighbors, and the goal is to reliably transfer all these n · d bits to
their destinations, in a number of rounds that only depends on m.

Theorem 5.2. For any constant ε < 1/2, the Neighbor task can be efficiently computed with

probability 1−mn22−d
Ω(1)

in O(m3 logm) communication rounds over any d-regular graph network
with a mixing time m, assuming each link is a BSCε.

For any graph with a constant mixing time m = O(1) (and thus, with d ≥ nα, for some
constant α > 0), Theorem 5.2 determines that we can solve the neighborhood connectivity task

in O(1) rounds and success probability 1− 2−n
Ω(1)

. By Corollary 3.4 the above implies a constant
rate coding scheme that succeeds with subexponentially high probability for any multiparty inter-
active protocol over G with the same parameters. In the general case, as long as d > log1+Ω(1) n,
Theorem 5.2 and Corollary 3.4 prove Theorem 1.2.

The proof of Theorem 5.2 is composed of two main parts. First, in Section 5.1 we show that for
any not-too-large list of pairs of nodes {(si, ti)}, it is possible to find disjoint paths between any
si and ti, such that the length of each such path is 2m. Then, in Section 5.2 we use these disjoint
paths (along with some standard coding) to reliably relay large chunks of information between any
two parties.

5.1 Finding disjoint paths

In this subsection we show how to find short edge disjoint paths for any list {(si, ti)} of source nodes
and target nodes, such that no node appears more than O(d/m) times in the list. It is important
that the paths are edge disjoint so that the coding scheme could send messages from each source
si to its target ti without colliding with a message sent from some other sj to tj .

More precisely, note that we do not need the paths to be fully disjoint. Assume all the paths
are of the same length, say `. Sending a message from si to ti would take ` rounds, where at the
k-th round 1 ≤ k ≤ ` the k-th link in the path is utilized, and the others are not. Therefore, it
suffices that every two paths are disjoint in their k-th edge, for all k ∈ [1, `]. We denote such paths,
whose k-th edges are disjoint (for all k ∈ [1, `]), as time-multiplexed edge disjoint.

Theorem 5.3. Let G = (V,E) be a d-regular graph with mixing time m. Let L = {(si, ti)} be a list
of pairs of nodes, si, ti ∈ V , such that every u ∈ V appears at most d

1600m times in the list. Then,
one can efficiently construct a set of time-multiplexed edge disjoint paths of length 2m, connecting
each (si, ti) ∈ L.

Proof. Fix a pair (si, ti). We count the number of paths of length 2m connecting these two nodes.
For any two nodes u, v define Pu,v(m) to be the set of all paths of length m connecting u and v.
Note that the paths are not necessarily simple, and are allowed to intersect themselves or even
repeat edges.

9



Claim 5.4. For any u, v ∈ V ,
1

2n
dm ≤ |Pu,v(m)| ≤ 2

n
dm.

Proof. Recall that G has a mixing time of m. Therefore, beginning at any node u, the probability
to reach v after m (uniformly random) steps is 1

n ±
1

2n . Since there are dm different paths of length
m starting at u, the claim follows.

Now, set P̃si,ti(2m) =
⋃
v∈V Psi,v(m)×Pv,ti(m) to be the set of all the paths of size 2m composed

as an m-long path from si to some middle point v concatenated to an m-long path from v to ti.
Clearly,

1

4n
d2m ≤ |P̃si,ti(2m)| ≤ 4

n
d2m.

Next, we would like to choose, for each i, one path out of P̃si,ti(2m) so that the collection of
joint paths are time-multiplexed edge disjoint. This can be done using the combinatorial result
from [Alo88], see also [AS08], Propostion 5.5.3, applied to the coincidence graph H described below.
It is also similar to the approach of [BFU94]. For completeness, we describe the argument, which
proceeds by bounding the dependency between the events of two paths sharing an edge, and then by
using the Lovász Local Lemma to prove there exists a set of paths that are jointly time-multiplexed
edge disjoint. The details follow.

Define the following coincidence graph H = (V ′, E′). For every i, every path in P̃si,ti(2m)
becomes a node in H, that is,

V ′ = {pi,j | pi,j is the j-th path in P̃si,ti(2m)}.

The edges E′ are defined as follows. For any i and i′ 6= i, we connect the node pi,j with pi′,j′ if, for
some 1 ≤ k ≤ 2m, these two paths share the k-th edge. We say that such paths are k-time-colliding.

Claim 5.5. The degree of each node in H is at most d2m

400n .

Proof. In the following we will fix a path p∗ (i.e., a node in H) and bound the number of paths
that k-time-collide with p∗, for some k ∈ [1, 2m]. Denote p∗ = (e1, e2, . . . , e2m), and consider the
k-th edge, ek. Let us assume that k ≤ m (the other case is symmetric). First, we note that there
are exactly dm−1 paths of length m, in which ek is the k-th edge. Denote them as,

P (ek, k) ,
{

(e′1, . . . , e
′
k−1, ek, e

′
k+1, . . . , e

′
m) | e′j ∈ E

}
.

If we fix a specific p ∈ P (ek, k), and assume its end nodes are (u, v), we can ask how many nodes
in H have p as their first half. Since fixing p fixes a specific starting node u and this node can
appear at most d/1600m times in L, it follows that p is the first half of at most

d

1600m
× 2

n
dm

paths in H. Summing over all possible p’s, the number of paths (nodes in H) whose first half is

some path in P (ek, k) is bounded by d2m

800nm . This is also the number of paths that k-time-collide
with p∗. Summing over all k ∈ [1, 2m] completes the claim.

Given the bound on the degree of each node in H, we can use the Lovász Local Lemma ([EL75],
c.f., also [AS08], Chapter 5) to show that we can pick, for every i, one node pi,j ∈ V ′ so that we
obtain an independent set. Such an independent set implies non-colliding paths in G.
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Lemma 5.6 (Lovász Local Lemma [EL75]). Let {Ai} be a finite set of events. If,

(1) ∀i, Pr[Ai] ≤ p,
(2) ∀i, Ai is mutually independent of all other events but at most d, and

(3) e(d+ 1)p < 1,

then, Pr[A1 ∧A2 ∧ · · · ] > 0.

Assume that for each (si, ti) we choose one of the paths in Psi,ti(2m) at random. For any two
time colliding paths pi,j , pi′,j′ denote by Aij,i′j′ the bad event that we choose pi,j for (si, ti) and
pi′,j′ for (si′ , ti′), thus

Pr[Aij,i′j′ ] ≤
1

|P̃si,ti(2m)|
· 1

|P̃si′ ,ti′ (2m)|
≤ 16n2

d4m
.

Each such a bad event is independent of all other events Aab,cd besides those with either a = i or

c = i′ (note that Aab,cd is the same as Acd,ab). Since each path collides with at most d2m

400n other
paths (Claim 5.5), each such bad event is independent of all but at most

deg(Aij,i′j′) ≤
(
|P̃si,ti(2m)|+ |P̃si′ ,ti′ (2m)|

)
· d

2m

400n
≤ d4m

50n2

others. It is easy to verify that the conditions of Lemma 5.6 are satisfied,

e · Pr[Aij,i′j′ ] · (deg(Aij,i′j′) + 1) < 1,

which implies we can pick paths that connect all pairs in L such that no two paths are time-colliding.
We note that finding such a set in our case can be done with high probability in quasilinear
time Õ(n), via the algorithm of Moser and Tardos [MT10]. A deterministic construction with
polynomial time is possible as well, as mentioned in [Alo91], see also [CGH13].

5.2 The coding scheme

The ability to find many time-multiplexed edge disjoint paths allows us to communicate large
chunks of information by relaying them through intermediate points in a way that resembles the
approach of Section 4. Specifically, if each party sends and receives O(d) bits from at most O(d/Λ)
different parties the communication can be done in a reliable way, except with probability n22−Ω(Λ).

Definition 5.7. A communication demand for a network with n parties, is a matrix A ∈ Nn×n
such that ai,j describes the amount of bits party i wishes to send to party j.

Proposition 5.8. Consider a d-regular graph G with mixing time m. Let A be a communication
demand matrix, and assume that for any j,

∑
i ai,j ≤ d and for any i,

∑
j ai,j ≤ d. Further-

more assume that every row and column in A has at most O(d/Λ) non-zero elements, for some
constant Λ > 1. Then, for any ε < 1/2, there exists a communication protocol that fulfills the
demand A in O(m2 logm) rounds, and succeeds with probability 1 − n22−Ω(Λ), over a network G
where each link is a BSCε.
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Proof. The idea of the coding scheme is to send each chunk of information (i.e., each ai,j bits
defined by the demand A), via O(d) disjoint paths given by Theorem 5.3. However, note that
each path given by that theorem consists of 2m cascaded BSCε. Such a cascade flips each bit with
probability (1− (1−2ε)2m)/2, and thus has a capacity C ≤ (1−2ε)4m, see e.g., [CT06, Chapter 7].
To overcome this error we can use a standard error correction, yet this will incur a blowup of 2O(m)

which we can substantially reduce by adding another layer of (trivial) encoding/decoding per BSCε
link. Indeed, in the following assume that each bit we communicate through a BSCε is first encoded
to length O(logm), sent over the network in O(logm) rounds and then decoded at the other side of
the link. Effectively, this reduces the error at each link to 1/m, so each link can be seen as BSC1/m.
Cascading 2m such channels is equivalent to BSCγ with γ = (1 − (1 − 2/m)2m)/2 ≈ (1 − e−4)/2,
that is, the error level is bounded by some constant independent of m.

The protocol for reliably delivering the communication demand A goes as follows. For any given
i, j, the i-th party encodes its ai,j bits targeted to the j-th party, using a Shannon error correction
code that succeeds with probability 1 − 2−Ω(Λ) assuming a BSCγ . Using Lemma 2.2, there exists
such a code that encodes ai,j bits into ãi,j = O(ai,j + Λ) bits. Observe that after this encoding,
each party i holds

∑
j ãi,j =

∑
j O(ai,j + Λ) = O(d) bits to communicate, since it is guaranteed

that the i-th party has at most O(d/Λ) parties j for which ai,j 6= 0, and that
∑

j ai,j ≤ d. Let Ã
be the communication demand defined by the above ãi,j .

Next, define O(m) matrices {Bk} such that any row and column in Bk sums up to at most
d/1600m and such that

∑
k Bk = Ã. This can be done (efficiently) by König’s Theorem, using any

efficient algorithm for edge coloring bipartite graphs. Communicating Ã is equivalent to commu-
nicating all the demands {Bk}, which we will do in a sequential manner. Each such Bk defines a
list Lk in which the pair (i, j) appears exactly (bi,j)k times in Lk. Since the sum of each row and
column in Bk is bounded by d/1600m, the list satisfies the conditions of Theorem 5.3. Thus, the
demand described by Bk can be transmitted by a sequence of 2m bit-transmissions over the noisy
network. Moreover, since there are at most O(m) many Bk’s, transmitting all of them sequen-
tially (i.e., unreliably fulfilling the communication demand defined by Ã) can be done in O(m2)
bit-transmissions. Recall that each bit-transmission consists of O(logm) rounds of communication,
and we get that the entire process takes O(m2 logm) rounds.

Last, we show that the entire process implies a reliable communication of the demand A. Recall
that each chunk of information in Ã is encoded to resist the noise γ, that is, the noise induced by
transferring each bit through the path of 2m consecutive independent BSC1/m links. It follows that

each encoded chunk (i.e., each ãi,j) is decoded correctly with probability 1−2−Ω(Λ). A union bound
on all the (< n2) different encoded transmissions {ãi,j} gives the claimed success probability.

As a corollary of the above theorem, note that the same result holds for any communication
demand A in which each row and column sums up to K ·d rather than d, in O(K ·m2 logm) rounds.
In that case, after encoding each chunk we get the demand Ã in which the sum of each row or
column is O(Km2), and thus it can be transmitted in O(Km2 logm) rounds.

We are now ready to complete the proof of Theorem 5.2.

Proof. (Theorem 5.2). Let A0 be the communication demand induced by the neighborhood connec-
tivity, thus for any j,

∑
i ai,j = d and for any i,

∑
j ai,j = d, since the network’s graph is d-regular.

The number of non-zero elements in every row or column is d, so we cannot apply Proposition 5.8
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directly. Instead, we perform a sequence of relays2, using Proposition 5.8, that converts the initial
communication demand A0 into one that satisfies the conditions of Proposition 5.8, i.e., where
each party has at most d bits to send to at most O(d/Λ) different destinations. Specifically, there
is a sequence of ` matrices A0, A1, . . . , A` such that for any l ∈ [`] we convert Al−1 into Al in
O(m2 logm) rounds, and where it holds that (1) each Al is a block-diagonal matrix with block size
at most n(d/Λ)−l; (2) the sum of each column in Al is d; and (3) the sum of each row in Al is at
most 4d.

Lemma 5.9. Let the communication demand Al ∈ Nn×n be block diagonal with block size b, and
assume that

∑
i(ai,j)l ≤ d and

∑
j(ai,j)l ≤ 4d. Then, it is possible to reliably relay information by

O(m2 logm) rounds of communication, so that Al+1 ∈ Nn×n describing the communication demand
after the relay is block diagonal with block size at most bΛ

d , and it holds that
∑

i(ai,j)l+1 ≤ d and∑
j(ai,j)l+1 ≤ 4d.

Proof. Consider the r-th block of Al, that is, the submatrix that contains the communication
between parties Pr ≡ {(r − 1)b + 1, (r − 1)b + 2, . . . , rb}; note that these parties wish to send
information only between themselves due to the block diagonal form of Al. Therefore, we can treat
each such block independently.

Split Pr into d/Λ disjoint subsets Pr,1, . . . , Pr,d/Λ of equal size, in an arbitrary way. For any
j = 1, . . . , d/Λ, each pi ∈ Pr will send all the information directed to parties in Pr,j , i.e.

∑
u∈Pr,j

ai,u
bits, to a single party of Pr,j . The recipient can be chosen in a “greedy” way: order the parties
of Pr,j in some order, say p′1, p

′
2, . . .; iterate over all pi ∈ Pr in an increasing order of the demand∑

u∈Pr,j
ai,u, and determine the recipient as the first p′ ∈ Pr,j that (i) is currently scheduled to

receive bits from less than 2d/Λ different parties, and (ii) will receive at most 4d bits (including
the

∑
u∈Pr,j

ai,u bits held by pi). Under these restrictions, we can use Proposition 5.8 to perform

the relay in O(m2 logm) rounds in a reliable way (with high probability).
To see that the greedy algorithm succeeds in accommodating the demand of all pi ∈ Pr, split

Pr into parties for which
∑

u∈Pr,j
ai,u ≤ Λ, denoted as the subset P< ⊆ Pr, and the other parties,

denoted P>. Parties in P< are aggregated in groups of size 2d/Λ. Note that the joint demand
of each such group never exceeds 2d bits. We need |P<|/(2d/Λ) ≤ bΛ/2d parties p′ ∈ Pr,j to
accommodate all these groups. Parties from P> are aggregated until adding an additional party
causes the demand to exceed 4d bits of information. Since we order the parties according to an
increasing order of demand, each assigned p′ (maybe, except one) accommodates at least 2d bits of
demand (and at most 4d bits). Also note that the total amount of bits to be sent by parties in P>
(to a specific Pr,j) is at most bΛ, since each column in Al sums up to at most d bits, and there are
at most b/(d/Λ) columns to be considered here. Thus, in order to accommodate all P> we need
at most bΛ/2d different parties p′ ∈ Pr,j . Summing these two parts, the total number of parties in
Pr,j needed to accommodate both P< and P>, is bounded by bΛ/d ≤ |Pr,j |.

The above is being performed, in parallel, for each block of Al. Recall that the block-diagonal
form ofAl implies a partition of the parties into disjoint sets {Pr} corresponding to each block, where
each relay happens only within the block. Moreover, within each block each party communicates
at most O(d) bits and at most O(d/Λ) different parties. Thus the joint communication demand
satisfies the conditions of Proposition 5.8, and we can perform the relay in O(m2 logm) rounds,

2In relay we mean that if party i wants to send a bit to party j, it can send that bit to some party k who will
later relay that bit to j. Thus, after sending the bit to k, the communication demand changes so that ai,j = 0 and
ak,j increases by one.
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reliably. At the end of this process, each block of size b is transformed into d/Λ disjoint blocks of
size at most bΛ/d. Note that all the parties reliably receive the information relayed to them, except
with a probability of n22−Ω(Λ).

We perform the above process of Lemma 5.9 recursively, starting from A0 being the incidence
matrix of the the underlying network (i.e., the demands induced by the Neighbor task). If we set
Λ = dc for some constant c < 1, then after ` = m/(1− c)− O(1) steps we reach a matrix A` that
is block diagonal with block size at most

n(d/Λ)−` = nd−m
d

Λ
≤ d/Λ

Specifically, each column in A` sums up to d, each row sums to 4d, and at each row/column
there are O(d/Λ) non-zero element. We can now use Proposition 5.8 one last time to fulfill the
communication demand A` and complete the proof. The entire scheme takes O((`+ 1)·m2 logm) =
O(m3 logm) rounds, and succeeds with probability 1−mn22−Ω(Λ) = 1 −mn22−Ω(dc). To succeed
with high probability we require d > log1+α n, for some α > 0 and c > 1/(1 + α).

It can be easily verified that each step of the protocol is computationally efficient, which makes
the entire simulation efficient.
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