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Abstract

A c-short program for a string x is a description of x of length at
most C(x) + c, where C(x) is the Kolmogorov complexity of x. We show
that there exists a randomized algorithm that constructs a list of n el-
ements that contains a O(log n)-short program for x. We also show a
polynomial-time randomized construction that achieves the same list size
forO(log2 n)-short programs. These results beat the lower bounds shown
by Bauwens et al. [BMVZ13] for deterministic constructions of such lists.
We also prove tight lower bounds for the main parameters of our result.
The constructions use only O(log n) (O(log2 n) for the polynomial-time
result) random bits. Thus using only few random bits it is possible to do
tasks that cannot be done by any deterministic algorithm regardless of its
running time.

1 Introduction

The Kolmogorov complexity of a string x, denoted C(x), is the length of a
shortest description of x relative to a fixed universal Turing machine U . In
many applications, it is desirable to represent information x in a succinct form,
i.e., to find a string p such that U(p) = x (such a p is called a program for x) with
length |p| ≈ C(x). Unfortunately this is not possible: Not only is C(x) uncom-
putable, but it cannot be even approximated in a useful way. Indeed, while the
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upper bound C(x) < |x|+O(1) is immediate, Zvonkin and Levin [ZL70] have
shown that no unbounded computable function can lower bound C(x). Beigel
et al. [BBF+06] have investigated the list-approximability ofC(x), i.e., the possi-
bility of constructing a short list of numbers guaranteed to contain C(x). They
show that there exists a constant a (which depends on the universal machine
U ) such that any computable list containing C(x) has size n/a (where n is the
length of x). Since it is trivial to obtain a list of size n+O(1) that contains C(x),
the result of [BBF+06] implies that no list-approximation is possible with lists
significantly shorter than the trivial one.

In view of these strongly negative facts, the recent results of Bauwens,
Mahklin, Vereshchagin and Zimand [BMVZ13] and Teutsch [Teu14] are sur-
prising. They show that it is possible to effectively construct a short list guar-
anteed to contain a close-to-optimal program for x. Even more, in fact the short
list can be computed in polynomial time. More precisely, [BMVZ13] showed
that one can compute lists of quadratic size guaranteed to contain a program
of x whose length is C(x) + O(1) and that one can compute in polynomial-
time a list guaranteed to contain a program whose length is additively within
C(x) + O(log n). [Teu14] improved the latter result by reducing the O(log n)
term to O(1) (see also [Zim14] for a simpler proof).

In this paper, we investigate how short a computable list that contains a
succinct program for x can be. The size of the list in [BMVZ13] is quadratic
in n and in fact in the same paper it is shown that this is optimal because
any effectively computed list that contains a program that is additively c close
to optimal length must have size Ω(n2/(c + 1)2) (for any c). The size of the
list in the polynomial-time construction from [Teu14] is n7+ε and [Zim14] im-
proves it to O(n6+ε). We show here that the size of the list can be linear, thus
beating the above quadratic lower bound, if we allow probabilistic computation,
in fact even polynomial-time probabilistic computation. Namely, we show that
there exists a probabilistic algorithm that on input x of length n produces a
list of n elements, that, with high probability, contains a program of x which
is additively within O(log n) from optimal. We also show the existence of a
polynomial-time algorithm with the same property but for O(log2 n) closeness
to optimality. The lower bound mentioned above shows that such a list cannot
be deterministically computed regardless of the running time. Furthermore,
the first algorithm uses only O(log n) random bits, and the polynomial-time
algorithm uses only O(log2 n) random bits. The relevance of these facts will
be discussed shortly. These results are shown in Section 3. In Section 5, we
prove tight lower bounds which show that our results are essentially optimal.
More precisely, we consider the parameters c, T, r in our main result which
are defined as follows: (1) c is the closeness to C(x) of the length of the de-
sired succinct program, (2) T is the size of the list guaranteed to contain such
a succinct program, (3) r is the number of random bits used in the probabilis-
tic construction of the list. In the main result we obtain c = O(log n), T = n,
and r = O(log n). We show that essentially none of these parameters can be
improved while keeping the other two the same.

Discussion: The power of randomized computation. Can we solve us-
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ing randomness tasks that cannot be solved without? This is a foundational
question, and its exploration has an old history [dLMSS56, ZL70] and a recent
history [BP14, Bie13, RS13].

There are fields where randomness plays an essential role as a conceptual
tool, i.e., as an element introduced in the model. Pre-eminent examples are
Game Theory (the utilization of mixed strategy) and Cryptography (the uti-
lization of secret keys). The answer to the above general question is less clear
if we restrict to computational tasks. There is a common perception that ran-
domized computation is not fundamentally more powerful than deterministic
computation, in the sense that whenever a randomized process solves a task,
there also exists a deterministic solution (albeit, often, a slower one). This per-
ception is caused by the simple observation that a probabilistic algorithm can
be simulated deterministically after which one can take a majority vote. A
similar argument works for tasks computing an infinite object and the classi-
cal theorem of de Leeuw, Moore, Shannon and Shapiro [dLMSS56] states that
if a function can be computed by a probabilistic algorithm, then it can be com-
puted deterministically. However, these considerations only apply to tasks
admitting a unique solution. For tasks admitting multiple solutions, random-
ness could potentially be helpful.

The task of computing a string with high Kolmogorov complexity is usu-
ally given as an example to illustrate the power of randomized computation
(see for example [ZL70, RS13]): The task cannot be solved deterministically,
but an algorithm that tosses a coin does it easily by just printing the coin flips.
However this example is trivial and not very convincing because the noncom-
putable output of the above procedure is exactly the noncomputable part in-
troduced in the procedure. More precisely, if f is the probabilistic algorithm
with input x and random bits r, then f(x, r) = r. Let us consider another task:
On input x, find an extension of it called y such that y has larger complexity
than x. This second task can be solved in the same trivial way by obtaining
via coin tosses a string r and then taking y = xr. Note that this time we can
have |r| � |y|. For infinite objects, better examples are known. N.V. Petri
(see [RS13]) showed that with positive probability, one can enumerate a graph
of a total function f that exceeds all computable functions. The procedure uti-
lizes a polynomial number of random bits to generate f(x). Obviously, the
time to generate f(x) from x is not bounded by any computable function. The
reader can find other similar examples in [BP14].

So the interesting question is whether there are non-trivial computational
tasks involving finite objects that can be solved probabilistically (perhaps even
in polynomial time) but not deterministically. Furthermore, if the answer is
positive, can the amount of random bits necessary to solve such a task be very
low? In other words, is it the case that even very few random bits can solve a
non-trivial task, which is deterministically unsolvable? Our main results give
positive answers to these questions.

Any definition of trivial task is inherently debatable. For our discussion it is
sufficient to use an informal formulation whose requirements are so minimal
that it is unlikely to raise controversy. Intuitively, a task is trivial if a solution
for it can be “read” almost directly from the pair consisting of the input and
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a random string. For concreteness, we interpret “read” as the composition
of a projection and a permutation, or we can take a more general stance and
interpret it as the computation of a uniform boolean or arithmetic NC0 circuit.

Now consider the following task (which depends on a parameter c): Given
x of length n, find y, a list of n strings such that at least one of them is a program
for x of length bounded by C(x) + c.

For c = o(
√
n), by the lower bound from [BMVZ13], we know that it cannot

be solved by deterministic algorithms. The results in this paper show that, for
c = O(log n), the task is solvable by a randomized algorithm, which remark-
ably uses only O(log n) random bits. Furthermore, for c = O(log2 n), the task
is solvable by a polynomial-time algorithm that uses only O(log2 n) random
bits. The task appears to be non-trivial, at least we are not aware of any NC0

solution.
In Section 6, we elaborate the above example and present an even more

natural non-trivial task that (1) can be solved in polynomial time by a ran-
domized algorithm, and (2) cannot be solved by any deterministic algorithm
that runs in computably bounded time. This task asks that on every input
(x, `), if ` = C(x), a string z should be constructed such that z is a short pro-
gram for x. This is a promise problem, because in case ` 6= C(x), the algorithm
is not even required to halt, or, in case it halts, z can be an arbitrary string.
Note that on input (x, `), if ` = C(x), one can simply by exhaustive search
find a shortest program for x. However, the exhaustive search does not halt
if C(x) > `. Actually, we show that there is no deterministic algorithm that,
in case ` = C(x), runs in computably bounded time and constructs a o(n)-
short program for x. On the other hand, relying on the techniques used in
the proof of our main results, we present a randomized algorithm that runs in
polynomial time and constructs with probability (1 − δ) a O(log2(n/δ))-short
program for x, conditioned that the promise ` = C(x) holds. Furthermore,
the randomized algorithm uses only O(log2 n/δ) random bits. In fact, using
relativized versions of this task, we notice that polynomial-time randomized
computation can be more powerful than deterministic computation that lies
arbitrarily high in the arithmetic hierarchy.

It remains to investigate if there exist non-trivial tasks that cannot be solved
deterministically but that can be solved using even fewer random bits (e.g.,
o(log n) or even O(1) random bits). In the Appendix, we give an example that
can be solved with O(1) random bits, but it is still borderline trivial, because
the solution is obtained simply by dividing the input length by a constant.

2 Preliminaries

We fix a universal Turing machine U that is standard (meaning that for every
machine V there is a polynomial-time computable function t such that, for all
p, U(t(p)) = V (p) and |t(p)| = |p|+O(1).)

C stands for the plain Kolmogorov complexity relative to U . Thus, for any
string x, C(x) = min{|p| | U(p) = x}. If U(p) = x, we say that p is a program
for x. If in addition, |p| ≤ C(x) + c, then we say that p is a c-short program for
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x.
We use bipartite graphs G = (L,R,E ⊆ L× R) with L = {0, 1}n (or, a few

times, L ⊂ {0, 1}n), R = {0, 1}m and which are left-regular, i.e., all the nodes
in L have the same degree, which we denote 2d. We denote N = 2n,M =
2m, D = 2d.

As it is typically the case, we actually work with a family of graphs indexed
on n and such a family of graphs is constructible if there is an algorithm that on
input (x, y), where x ∈ {0, 1}n = L and y ∈ {0, 1}d, outputs the y-th neighbor
of x. Some of the graphs also depend on a rational 0 < δ < 1. A constructible
family of graphs is explicit if the above algorithm runs in time poly(n, 1/δ).

A (k, ε) extractor is a function E : {0, 1}n × {0, 1}d → {0, 1}m such that
for any distribution X on {0, 1}n with min-entropy H∞(X) ≥ k, E(X,Ud) is ε-
close to Um, where Ud (Um) is the uniform distribution on {0, 1}d (respectively,
{0, 1}m), i.e., for every A ⊆ R,∣∣∣∣Prob[E(X,Ud) ∈ A]− |A|

M

∣∣∣∣ < ε. (1)

It is known that it is enough to require that the condition holds for all distri-
butions X that are flat [CG88]. The value k + d −m is called the entropy loss
of the extractor. We remind the reader that H∞(X) ≥ k means that for any
x ∈ {0, 1}n, ProbX(x) ≤ 2−k and that a distribution is flat if it assigns equal
probability mass to each element in its support.

To an extractor E, we associate the bipartite graph GE with L =
{0, 1}n, R = {0, 1}m, such that for every x ∈ L, its neighbors are N(x) =
{E(x, y) | y ∈ {0, 1}d}.

In this paper we need extractors for which k + d − m = O(log(n/ε)), i.e.,
the entropy loss is at most logarithmic. Using standard probabilistic methods
the following extractor can be shown to exist, which has even smaller entropy
loss (see [RTS00]).

Theorem 2.1. For all n, k ≤ n, and ε > 0, there exists a (k, ε) extractor with
m = k + d− 2 log(1/ε)−O(1) and d = log(n− k) + 2 log(1/ε) +O(1).

The above result is existential, but using the fact that the number of flat
distributions with min-entropy k is finite, one can check effectively whether a
function is an extractor, and therefore one can effectively construct an extractor
with the parameters in Theorem 2.1. Such an exhaustive search can be done in
space 2O(n).

Moving to explicit (i.e., polynomial-time computable) extractors, the cur-
rently best result for extractors with O(log 1/ε) entropy loss is due to Gu-
ruswami, Umans, and Vadhan [GUV09]:

Theorem 2.2. For all n, k ≤ n, and ε > 0, there exists an explicit (k, ε) extractor
with m = k + d− 2 log(1/ε)−O(1) and d = log(n) +O(log k · log(k/ε)).

Note. In case k = Ω(n) (and constant ε), the extractor in Theorem 2.2 has
d = O(log2 n). This is the source of theO(log2 n) terms in our main result Theo-
rem 3.2. It is a major open problem to obtain explicit extractors withO(log 1/ε)
entropy loss that have d = O(log n). Such extractors would reduce the over-
head in our result to O(log n).

5



3 The upper bounds

The following two theorems are the main results.

Theorem 3.1. There exists a probabilistic algorithm that on input x ∈ {0, 1}n and
rational 0 < δ < 1, outputs a list with n elements which with probability at least
(1− δ) contains a O(log(n/δ))-short program for x.

Moreover, the algorithm uses O(log(n/δ)) random bits and can be executed in
space 2O(n).

Theorem 3.2. There exists a probabilistic polynomial-time algorithm that on input
x ∈ {0, 1}n and rational 0 < δ < 1, outputs a list with n elements which with
probability at least (1− δ) contains a O(log2(n/δ))-short program for x.

Moreover, the algorithm uses O(log2(n/δ)) random bits.

The proofs of these two results have a common structure. The key part is
building a bipartite graph with the “rich owner” property, roughly meaning
that no matter how we restrict the left side to a subset of a certain size, then,
in the restricted graph, most left nodes “own” most of their neighbors (in the
sense that these neighbors are not shared with any other node).

We start by defining precisely the “rich owner” property in a bipartite
graph G. Let B be a subset of left nodes. We say that a right node y is shared
in B if it has at least two neighbors in B. For any δ > 0, a left node x is δ-rich
in B if x ∈ B, it has at least one right neighbor, and at most a fraction δ of its
neighbors are shared in B (so it “owns” at least a fraction 1 − δ of its neigh-
bors). Later, we also use a refined version of these concepts. We say that a
right node is s-shared in B if it has at least s left neighbors in B. A left node x
is (s, δ)-rich in B if x ∈ B, it has at least one neighbor, and if at most a fraction
δ of its neighbors are s-shared in B. If the set B is omitted in these definitions,
B = L is assumed.

Definition 3.3. A bipartite graph G = (L,R,E) has the rich owner property for
parameters (`, c, δ) if for any left subset B of size at most 2`, all but at most 2`−c of its
elements are δ-rich in B.

For us the key parameters are the left degree D = 2d and m = log |R|,
because d corresponds to the number of random bits used in the main results
andm−` essentially gives the “quality” of the short program (i.e., the distance
between its length and C(x)). The following theorem, whose proof we defer
for Section 4, shows the existence of this type of graphs with parameters that
will allow us to establish the main results.1

Theorem 3.4. (1) (Constructible graphs with the rich owner property.) For all
n, `, c, δ > 0 there exists a family of graphs Gn,` = (L = {0, 1}n, R = {0, 1}m, E)

which have the rich owner property for (`, c, δ), with

m = `+O(c+ log(n/δ)) and
d = O(c+ log(n/δ))

1Such graphs can be obtained from the extractor-condenser pairs from [RR99], Theorem 5.1.
We give here a similar but slightly more efficient construction, with a proof tailored for our
purposes.
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The family is uniformly computable in n, `, c, δ.
(2) (Explicit graphs with the rich owner property.) For all n, `, c, δ > 0 there

exists a family of graphs Gn,` = (L = {0, 1}n, R = {0, 1}m, E) which have the rich
owner property for (`, c, δ), with

m = `+O(c+ log2(n/δ)) and
d = O(c+ log2(n/δ)).

The y-th neighbor E(x, y) of x (in the corresponding graph in the family) is com-
putable in time poly(n, c, 1/δ).

Equipped with graphs that have the rich owner property, we can prove our
main results.

of Theorem 3.1. We start by showing a weaker claim:

Claim 3.5. There exists a probabilistic algorithm that on input x, `, c, δ > 0 always
terminates and outputs a program of length `+O(c+ log(n/δ)), such that for all `, c
and n, for all but at most 2`−c strings x of length n with C(x) < `, with probability
1 − δ the algorithm outputs a program that computes x. Moreover, the probabilistic
algoritm uses O(log(c+ n/δ)) random bits.

If the algorithm was only required to terminate if C(x) < `, the claim
would be easy: run all programs of length less than ` in parallel, wait until
a program for x appears, and output this program; but this procedure never
terminates if C(x) ≥ `.

To show the claim, fix some `, c, δ, and n. Let Bn,` be the set of all n-bit
strings x with C(x) < `. Note that Bn,` can be enumerated uniformly in n
and ` and that |Bn,`| < 2`. Let Gn,` be the graph satisfying the conditions of
Theorem 3.4(1). Thus all but at most 2`−c nodes are δ-rich in Bn,`.

Consider a machine that given an encoding of `, c, δ, n and a right node z
of Gn,` does the following: it enumerates all x ∈ Bn,` and when the first such
neighbor x of z in Gn,` appears, it outputs x and halts. All but at most 2`−c

such nodes x are δ-rich in Bn,`, and for such x a fraction (1 − δ) of neighbors
are associated to programs for x as described above. The associated programs
can be assumed to have length ` + O (c+ log(n/δ)). On input x of length n,
and `, c, δ, the algorithm of the claim, using O(log n/δ) random bits, randomly
chooses a right neighbor z of x and outputs its associated program. (Note that
there is always at least one neighbor.) It remains to convert a program on this
special machine to a program for our standard reference machine U . This is
possible using the function t in the definition of standard machines; it increases
the length by O(1) and its computation time by a polynomial function. The
claim is proven.

We now proceed to the proof of Theorem 3.1. Let e be a constant such that
C(x) < |x|+ e for all x. For some x and c, we could apply the algorithm of the
claim for ` = e+1, e+2, . . . , |x|+ewith the same choice of random bits at each
iteration (so that the number of random bits remains O(log n/δ)). In this way
we obtain a list of |x| programs such that, with probability 1 − δ, one of them
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computes x. This has almost the desired effect, the only problem being that
the construction may fail on a 2−c fraction of strings x of some length (namely,
on the strings that are not rich owners).

To handle this, we modify the definition of Bn,` above. The idea is that
now Bn,` should not only contain strings of small complexity, but also the few
strings that are not δ-rich in Gn,`+1. More precisely, fix some n and apply
Theorem 3.4(1) with c = 2. For ` = e + 2, . . . , n + e + 1 let Bn,` be the union
of the set of all n-bit x with C(x) < `− 1 (first type) and those strings that are
not δ-rich in Gn,`+1 (second type). By downward induction we show that Bn,`
can be enumerated from n and `, and that the size of Bn,` is bounded by 2`.
Indeed, Bn,n+e+1 only contains strings of the first type and thus it satisfies the
conditions. Now assume the conditions hold for some ` ≤ n+e+1. Both types
of strings can be enumerated. Moreover, the number of strings in Bn,`−1 of the
first type is bounded by 2`−2. By the induction hypothesis,Bn,` has size at most
2`, thus the number of strings that are not rich in Gn,` is at most 2`−c = 2`−2.
Hence, the size of Bn,`−1 is at most 2`−2 + 2`−2 = 2`−1. This modification only
changes the programs associated to right nodes by some fixed instructions,
and this does not affect their length by more than a O(1) constant (and the
time to generate them by more than a polynomial factor).

of Theorem 3.2. It is the same proof as above, except that we use Theorem 3.4
(2). For later reference, we state explicitly the polynomial-time version of
claim 3.5.

Claim 3.6. There exists a probabilistic algorithm that on input x, `, c, δ > 0 outputs
in polynomial time a program of length ` + O(c + log2(n/δ)), such that for all `, c
and n, for all but at most 2`−c strings x of length n with C(x) < `, with probability
1 − δ the algorithm outputs a program that computes x. Moreover, the probabilistic
algoritm uses O(c+ log2(n/δ)) random bits.

4 Construction of graphs with the rich owner property

All that is left is to prove Theorem 3.4, i.e., to show the construction of graphs
with the rich owner property. We use the concept of a (s, δ)-rich node in B,
introduced earlier (also recall our convention that in case the set B of nodes is
omitted, it is assumed to be L, the set of left nodes).

Our proof has four steps which we describe roughly. First we show that
most of the left nodes in an extractor graph share their right neighbors with
a small number of other left nodes; i.e., most left nodes are (s, δ)-rich for ap-
propriate s and δ (Lemma 4.1). In the second step of the proof we split right
nodes (and edges) in a graph such that right nodes share less left neighbors.
We do this in a way such that any (s, δ)-rich node in some left subset becomes
a 2δ-rich node (Lemma 4.3). In the third step, we combine the previous results
to show that within a small computational cost, extractors can be converted to
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graphs with the rich owner property (Proposition 4.4). Finally, the theorem is
proven using extractors from Theorems 2.1 and 2.2.

Lemma 4.1. Let 0 < ε < 1. All but at most 2k left nodes of a (k, ε) extractor with
average right degree at most a are (a/ε, 2ε)-rich.

L

B

R

A

|A|
|R| ≤ ε

≥ 2ε

Figure 1: Sets B and A in the proof of Lemma 4.1.

Proof. It suffices to show the lemma for a equal to the average right degree,
because for larger a more left nodes are (a/ε, 2ε) rich. Let A be the set of right
nodes with degree at least a/ε. Note that |A|/|R| is at most ε. Let B be the
set of left nodes that are not (a/ε, 2ε) rich, i.e., have more than a fraction 2ε
of neighbors in A. Consider a flat distribution over all edges leaving from B.
Inequality (1) in the definition of a (k, ε) extractor is violated:∣∣∣∣Prob[E(X,Ud) ∈ A]− |A|

M

∣∣∣∣ > |2ε− ε| = ε .

This implies that B has less than 2k elements, and this implies the lemma.

In the second step, we split edges and right nodes of a graph. This splitting
satisfies the following property for all subsets B of left nodes: if a right node
has few neighbors inB, then most of the corresponding splitted nodes have no
or a unique neighbor inB. We do this using a technique from [BFL01] (and also
employed in [BMVZ13]). We hash the right nodes using congruences modulo
a small set of prime numbers. For this technique we need the following lemma.

Lemma 4.2. Let x1, x2 . . . , xs be distinct n-bit strings, which we view in some canon-
ical way as integers< 2n+1. Let pi be the i-th prime number and let L = {p1, . . . , pt},
where t = (1/δ) · s · n.

For every i ≤ s, for less than a fraction δ of p in L, the value of xi mod p appears
more than once in the sequence (x1 mod p, x2 mod p, . . . , xs mod p).

Proof. By the Chinese Remainder Theorem and taking into account that the xi
values are bounded by 2n+1, we notice that, for every xj 6= xi, “xi = xj mod p”
holds for at most n prime numbers p. Therefore, “∃xj 6= xi(xi = xj mod p)”
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holds for at most (s− 1)n prime numbers p. Since L contains (1/δ) · s ·n prime
numbers, it follows that

Probp∈L[xi mod p is not unique] ≤ (s− 1)n

(1/δ) · s · n
< δ.

Lemma 4.3. For any s, δ > 0 and (left-regular) graph G = (L = {0, 1}n, R,E), let
t = sn/δ. There exists a (left-regular) graph H = (L,R× S,E′) such that

1. The left degree of H is exactly t times the left degree of G,

2. The set S has size at most O
(
t3
)
,

3. If in G the i-th right node of a left node n can be constructed in time(n), the
same operation in H takes time(n) + poly(t), and

4. If a left node x is (s, δ)-rich in some B for G, then it is 2δ-rich in B for H .

L

x1

x2

xj

R

z

L

x1

x2

xj

R

p1 p2 p3 p4

z

Figure 2: Splitting of right nodes in the proof of Lemma 4.3.

Proof. Let G = (L,R,E) and let p1, p2, . . . , pt be the first t prime numbers. The
right set of H is given by

R× {p1, . . . , pt} × {0, 1, . . . , pt − 1} .

The edges of H are obtained by adding for each edge (x, z) in G the edges

(x, (z, p1, x mod p1)), (x, (z, p2, x mod p2)), . . . , (x, (z, pt, x mod pt))

in H (one can think that each edge (x, z) in G is split into t edges in H , see
Figure 2).

This operation increases the left degree by a factor of t, which implies (1).
The size of S = {p1, . . . , pt} × {0, 1, . . . , pt − 1} is bounded by pt

2. Because
pt ≤ t ln t + t ln ln t for t ≥ 6, this size is bounded by O(t3), which implies
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(2). Enumerating the first t prime numbers is possible in time poly(t), which
implies (3).

It remains to show why each (s, δ)-rich left node in some B in graph G, is
2δ-rich in B in graph H . The proof for general B follows the proof for B = L
which is presented here. Suppose a right node z in G is not s-shared, i.e., it has
s′ neighbors x1, . . . , xs′ with s′ ≤ s.

For some j ≤ s′, how many nodes (z, pi, xj mod pi) with i = 1, . . . , t are
shared? If for some pi the value xj mod pi appears more than once in x1 mod
pi, . . . , xs′ mod pi, then (z, pi, xj mod pi) is shared. By Lemma 4.2, at most a
fraction δ of nodes (z, pi, xj mod pi) in H are shared (red element in figure 2).

Let xj be a left node in G that is (s, δ)-rich.
Then at most a fraction δ of its right nodes in G are s-shared (denoted by

thick red edges in figure 2). By the previous paragraph, of the remaining 1− δ
fraction of nodes, at most a fraction δ are shared in H . Thus the total fraction
of shared nodes is at most δ + δ(1− δ) ≤ 2δ; i.e., xj is 2δ-rich for H .

Now we combine previous results to show that we can convert extractors
to graphs in which most left nodes in a sufficiently small set B are ε-rich for
some ε.

Proposition 4.4. Let E : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε) extractor, and let
G be the graph associated to E. For any natural number a, there exist a set S and a
non-empty (left-regular) graph H = (L,R× S,E′) such that

1. the left degree is at most O(2dan/ε2) and |S| ≤ O
(
(an/ε2)3

)
,

2. from n, k, ε, (x, y), one can compute a list of all s such that (x, (y, s)) ∈ E′ in
time poly(n, a, 1/ε),

3. if B ⊆ {0, 1}n is such that the average number of edges from B arriving in a
right node from G is at most a, then all but at most 2k left elements in B are
4ε-rich in B relative to H .

Proof. Note that after deleting some left nodes from a (k, ε) extractor graph,
what is left is still a (k, ε) extractor graph. More precisely, for any graph G =
(L,R,E), a subset L′ ⊆ L defines a subgraph G′ = (L′, R,E′ ⊆ E) where E′

are all edges in E leaving from L′. If G is an extractor graph, then also G′ is
an extractor graph: indeed, we must verify (1) for all B ⊆ L of size at least 2k

in G′ and A ⊆ R, but every element in B has the same edges in G′ and hence
defines the same probabilities.

Apply Lemma 4.3 with s = a/ε and δ = ε; thus t = sn/δ = an/ε2 and
this guarantees the existence of H such that conditions 1 and 2 are satisfied.
Clearly the graph is left regular, and because extractor-graphs are non-empty,
this also holds for H . To show item 3, we use Lemma 4.1. As discussed above,
the extractor property remains true if the left set is restricted to a subsetB, thus
we can apply Lemma 4.1. Hence, all but at most 2k nodes inB are (a/ε, 2ε)-rich
in B, and by the last part of Lemma 4.3, they are 4ε-rich in B relative to H .

Finally, we are ready to finish the proof.
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of Theorem 3.4. We prove (1), the proof for (2) is similar (we use the extractor
from Theorem 2.2 instead of Theorem 2.1).

Let G = (L = {0, 1}n, R = {0, 1}m, E) be an extractor satisfying the con-
ditions of Theorem 2.1 and suppose B is a subset of L of size at most 2k+c.
Let us compute an upper bound for the average right degree of the subgraph
containing all edges leaving from B:

|B|D
2m

≤ 2c
2kD

2m

i.e., 2c × 2(the entropy loss). Since the entropy loss in Theorem 2.1 is
2 log(1/ε) +O(1), the average right degree is O(2c/ε2).

Next we choose δ and `:

δ = 4ε and ` = k + c .

We apply Proposition 4.4 and conclude that all but at most 2`−c left nodes ofH
are δ-rich inB. Any left node in a non-empty left-regular graph has at least one
neighbor, thus the graph has the rich owner properties for parameters (l, c, δ).
It remains to check the claimed values for d and m.

In the extractor, the left degree D ≤ O(n/ε2) = Θ(n/δ2). The new graph
has left degree O(Dan/ε2) and

D · a · n/ε2 = O

(
n

δ2
2c

δ2
n

δ2

)
.

Hence, the logarithm of the left degree is d = O
(
logDan/ε2

)
= O (c+ log(n/δ)).

The logarithm of the size of the set of right vertices is

m = (k + logD − 2 log(1/ε) +O(1)) + log |S| .

Note that |S| ≤ O
(
(Dan/ε2)3

)
, so log |S| is O (c+ log(n/δ)). Similar for logD

and log(1/ε), and thus m = (`− c) +O (c+ log(n/δ)).

5 Lower bounds

There are three parameters of interest in the main result Theorem 3.1, which
on input x constructs with high probability a list containing a short program
for x:

T = the size of the list,
r = the number of random bits used in the construction, and
c = the closeness to C(x) of the short program guaranteed to exist in most

lists.
In Theorem 3.1, we show T = n, r = O(log n), and c = O(log n), where

n is the length of the string x (for simplicity, we have assumed here constant
error probability δ). We show here that Theorem 3.1 is tight, in the sense that,
essentially, none of these parameters can be reduced while keeping the other
two at the same level.
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To prove the lower bounds, we need to specify the model carefully. A
probabilistic algorithm that list-approximates short programs is given by a Turing
machineF that takes an input x, and a sequence ρ (of random bits) and satisfies
the following properties:

(a) |ρ| = r depends only on the length of x,
(b) for all x and ρ of length r, F (x, ρ) halts and outputs a finite set of strings

Lx,ρ (which we typically call a list),
(c) the size |Lx,ρ| = T , depends only on the length of x.
(d) for all x, at least 1/2 of the sets {Lx,ρ}|ρ|=r contain a c-short program for

x. (Since we seek lower bounds, assuming δ = 1/2, implies at least as strong
lower bounds for smaller δ).

After these preparations, we can state the lower bounds.

Theorem 5.1. For any probabilistic algorithm that list-approximates short programs
with parameters T , r and c,

(1) r ≥ 2 log n−log T−2 log c−O(1). In particular, if T = n, and c = O(log n),
then r ≥ log n−O(log log n).

(2) c ≥ log(n2/T ) − 2 log log(n2/T ). In particular, if T = O(n), then c ≥
log n− 2 log log n−O(1).

(3) T = Ω(n/(c+ 1)).

Proof. (1) The union L =
⋃
|ρ|=r Lx,ρ is a computable set with R · T ele-

ments, where R = 2r, and contains a c-short program for x. It is known
from [BMVZ13] that any such set must have size Ω(n2/(c+1)2). Thus for some
constant c1,R ·T ≥ c1 ·(n2/(c+1)2), and thus r ≥ 2 log n− log T−2 log c−O(1).

(2) Let P be the set of c-short programs for x. By a result of Chaitin [Cha76]
(see also Lemma 3.4.2 in [DH10]), we know that ` = |P| satisfies ` = O(2c).
Since at least half of the R = 2r lists Lx,ρ, with ρ ranging in {0, 1}r, contain an
element of P , there is some element of P that belongs to at least 1/(2`) fraction
of lists. Clearly the length of this element is bounded by n + d, where d is a
constant that depends on the universal machine. In steps m = 1, 2, . . . , n +
d, we select all the strings of length m that appear in at least 1/(2`) of the
lists. As argued above, there exists a c-short program for x among the selected
elements. Let us estimate how many strings have been selected. Let sm be
the number of elements selected at the m-th step of the selection procedure.
The elements selected at step m occur at least sm · R2` times in the union L =⋃
|ρ|=r Lx,ρ. Since |L| = R · T , we obtain

R · T ≥ s1 ·
R

2`
+ s2 ·

R

2`
+ . . .+ sn+d ·

R

2`
.

Thus, s1 + s2 + . . .+ sn+d ≤ T ·2`. By the same result from [BMVZ13], the total
number of selected elements is at least c1 · n2/(c + 1)2, for some constant c1,
because some c-short program is selected. Thus,

T · 2` ≥ s1 + s2 + · · ·+ sn+d ≥ c1
n2

(c+ 1)2
.
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It follows that 2c ≥ c′1 · n2 · (1/T ) · (1/(c + 1)2), for some constant c′1. The
conclusion follows after some simple calculations.

(3) Let L′x,ρ be the set of lengths of strings in Lx,ρ. We say that an integer m
has a pseudo-presence in L′x,ρ if at least one of the values m,m + 1, . . . ,m + c is
in L′x,ρ. Clearly, at most (c + 1)T integers have a pseudo-presence in L′x,ρ. We
say that m is significant if it has a pseudo-presence in at least half of the sets
L′x,ρ, |ρ| = r. Note that the set of significant integers containsC(x), because the
union of all lists contains a c-short program for x. By a result of [BBF+06], any
computable set containing C(x) must have size at least n/a for some constant
a. Thus, there are at least n/a significant integers. Each significant integers
has at least R/2 pseudo-presences in the union of all the lists. We obtain that
(n/a) · (R/2) ≤ R · (c+ 1)T , which implies T ≥ (1/(c+ 1)) · (n/(2a)).

Note. The lower bound in (3) holds even for randomized algorithm that
may not halt on some probabilistic branches. This can be proved in the same
way, taking advantage of the fact that the lower bound in [BBF+06] holds true
even for for algorithms that enumerate a list of possible values for C(x).

6 Randomized vs. deterministic computation

We present a non-trivial task that shows the superior power of randomized
algorithms versus deterministic algorithms. This task

(1) cannot be solved by any deterministic algorithm that runs in com-
putably bounded time, but

(2) can be solved by a randomized algorithm in polynomial time, and, fur-
thermore, the number of random bits is only polylogarithmic.
Moreover, the task is natural in the sense that it is not artificially constructed to
satisfy the conditions. The task is a promise problem, meaning that the input
is guaranteed to satisfy a certain property.

TASK T: On input (x,C(x)), generate a c(|x|)-short program for x.

If the input is of the form (x, `) with ` 6= C(x) (i.e., the promise is not sat-
isfied), then no output needs to be generated or the output can be an arbitrary
string. Note that in case the promise is satisfied, then by exhaustive search we
can always find a c(|x|)-short program even with c(|x|) = 0. However, we will
see in Lemma 6.2, that, for some c(n) = O(n), no deterministic algorithm can
succeed in computably bounded time.

First we show that for some c(n) = O(log2 n) task T can be solved in ran-
domized polynomial time using only a polylogarithmic number of random
bits.

Theorem 6.1. There exists a polynomial-time randomized algorithm that on input
(x,C(x), 1/δ) returns a string z that, with probability (1 − δ), is a O(log2(|x|/δ))-
short program for x. Furthermore, the algorithm uses O(log2(|x|/δ)) random bits.
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Proof. The result is a corollary of Claim 3.6. Let n be the length of x and we
apply the claim with ` = C(x) + 1 and c = 3 log n. The algorithm in the claim
provides

a O(log2(n/δ))-short program for x unless x belongs to some “bad” set of
at most 2`−c strings. We show that for large n and `, strings in this set satisfy
` > C(x) + 1, hence, x can not belong to this set.

Indeed, apply the algorithm of the claim on all strings of length n and all
random seeds of sufficient length. Subsequently, search for 2n − 2`−c strings x
for which at least a fraction 1 − δ of the generated programs print x. The
bad strings are contained in the remaining 2`−c strings. Hence, such strings x
satisfy

C(x) ≤ `− c+ 2 log n+ 2 log c+ 2 log(1/δ) < `− 1.

Next, we show that task T cannot be solved by an algorithm in computably
bounded time.

Lemma 6.2. For each standard machine U there exists an e such that there is no
computable function t(n) and no algorithm that on input (x,CU (x)) outputs a |x|/e-
short program for x in time t(|x|).

Proof. Suppose the lemma was false, and for some value 2e there exists a com-
putable function t that bounds the computation time of such an algorithm
computing an |x|/(2e)-short program. Then, there is a total computable func-
tion f such that for all x, the value f(x,C(x)) is a |x|/(2e)-short program. We
can assume |f(x, k)| ≤ k+ |x|/(2e), because if the length were larger, we could
replace it by any shorter string without affecting the assumption on f .

Fix some large length n and consider for all x the list

[f(x, n/(2e)− (e/2− 1)), f(x, n/(2e)− (e/2− 2)), . . . , f(x, n/(2e) + (e/2− 1))] .

This list contains at most e − 1 strings and the sum of the lengths is at most
n(e − 1)/e = n − n/e. Therefore, there are at most 2n−n/e distinct lists. In the
sequence of 2n lists that correspond to strings x of length n, we take L to be
the list that appears most often (if there is a tie, we break it in some canonical
way). Let S be the set of strings x that generate L. It follows from above that
S has size at least 2n/e.

Note that S can be computed from n and e. We show that for large e the
set S contains e strings, x1, x2, . . . , xe that have complexity between n/(2e) −
(e/2− 1) and n/(2e) + (e/2− 1). This leads to a contradiction because, by the
assumption on f , these e distinct strings must each have a program in L, but
L has only at most e− 1 members.

Let w be a string of length n/(2e) with C(w | n, e) ≥ n/(2e) (such a string
exists by a counting argument). We interpret w as a natural number (bounded
by 2n/(2e)), and for i = 1, . . . , e, let xi be the lexicographically (w+i)-th element
of S.

We now prove that for all i, C(xi) = n/(2e) ± O(log e). Because i ≤ e,
we have that C(w | n, e) = C(xi | n, e) + O(log e). The left hand side equals
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n/(2e) ± O(1), hence C(xi | n/(2e), e) = n/(2e) ± O(log e). We can eliminate
the n/(2e) in the conditioning by appending to the program that prints xi a
self-delimiting string of length O(log e) that represents the difference between
the length of the program and n/(2e) (so that the quantity n/(2e) present in
the condition can now be read from the modified program). Thus, C(xi | e) =
n/(2e)±O(log e), and therefore, as claimed, C(xi) = n/(2e)±O(log e).

Choose e large enough such that the value of theO(log e) term in the above
equation is at most e/2 − 1. (Note that the constant hidden in O(log e) is
machine dependent, and, consequently, so is e.) This implies, that indeed
|C(xi)− n/(2e)| ≤ (e/2 − 1), which, as we have seen, implies a contradic-
tion.

Note. Our methods show that randomized algorithms running in polyno-
mial time can be more powerful than deterministic machines in any level of
the arithmetic hierarchy at solving non-trivial tasks. For any m ≥ 0, let ∅(m)

denote as usual the m-th jump of the Halting Problem and let C(m)(x) de-
note the length of the shortest program that prints the string x relative to a
fixed standard oracle universal machine U that uses ∅(m) as an oracle. Thus
C(0)(x) = C(x), the usual Kolmogorov complexity. We define the notion of
c-short ∅(m)-program for a string x similarly to c-short programs except that we
allow U to use the oracle ∅(m). Let us consider the task T(m) (defined analo-
gously to the task T ):

TASK T(m): On input (x,C(m)(x)), generate a c(|x|)-short ∅(m)-program for
x.

Theorem 6.1 and Lemma 6.2 can be relativized in the straightforward way
to show that for any m ≥ 0,

(a) Task T(m) with parameter c(n) = O(log2 n) can be solved by a random-
ized algorithm (without any oracle) that runs in polynomial time and uses
O(log2 n) random bits (where n = |x|).

(b) Task T(m), for some parameter c(n) = O(n), cannot be solved by any
deterministic algorithm that uses ∅(m) as an oracle and runs in time bounded
by any ∅(m)-computable function.
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A Another non-computable task with trivial random-
ized solution

The task is to select for any x a value 0 < k ≤ |x| such that |C(x) − k| ≥
2 log |x|. It is probabilistically solvable with probability error at most ε by using
only a constant amount of random bits: Choose at random an integer r in the
range 0 < r ≤ 1/ε, and return εr|x|. By the following lemma this task is not
deterministically solvable.

Lemma A.1. There exist no computable function f such that 0 < f(x) ≤ |x| and
such that |f(x)− C(x)| ≥ 2 log |x| for all x.

Proof. Suppose such a computable function exists. Choose some large n and
consider the set of values f(x) for all x of length n. There is a value i that
appears at least 2n/n times and let S be the set of x of length n such that f(x)
equals i. Thus, |S| ≥ 2n/n. To obtain a contradiction, we consider two cases.
Assume i ≥ n − log n. Because |S| ≥ 2n/n, the set contains a string x with
C(x) ≥ n−log n. BecauseC(x) ≤ n+O(1), this implies |i−C(x)| ≤ log n+O(1),
and because f(x) = i this violates the assumption on f for large n. Now sup-
pose i < n− log n. Thus 2i ≤ 2n/n ≤ |S|. Consider the set of the lexicographic
first 2i strings in S This set can be computed from n and i (and i can be com-
puted from n using f ). Hence, there is an x such that C(x|n) = i + O(1). This
implies |C(x)− i| ≤ log n+O(log log n) and by construction f(x) = i and this
violates the assumption on f , a contradiction.
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