
Complexity of Regular Functions

Eric Allender and Ian Mertz

Department of Computer Science
Rutgers University

Piscataway, NJ 08854, USA
allender@cs.rutgers.edu, iwmertz@gmail.com

Abstract. We give complexity bounds for various classes of functions
computed by cost register automata.

Keywords: computational complexity, transducers, weighted automata

1 Introduction

We study various classes of regular functions, as defined in a recent series of
papers by Alur et al. [8, 10, 9]. In those papers, the reader can find pointers to
work describing the utility of regular functions in various applications in the
field of computer-aided verification. Additional motivation for studying these
functions comes from their connection to classical topics in theoretical computer
science; we describe these connections now.

The class of functions computed by two-way deterministic finite transducers
is well-known and widely-studied. Engelfriet and Hoogeboom studied this class
[18] and gave it the name of regular string transformations. They also provided an
alternative characterization of the class in terms of monadic second-order logic.
It is easy to see that this is a strictly larger class than the class computed by
one-way deterministic finite transducers, and thus it was of interest when Alur
and Černý [5] provided a characterization in terms of a new class of one-way
deterministic finite automata, known as streaming string transducers; see also
[6]. Streaming string transducers are traditional deterministic finite automata,
augmented with a finite number of registers that can be updated at each time
step, as well as an output function for each state. Each register has an initial value
in Γ ∗ for some alphabet Γ , and at each step receives a new value consisting of
the concatenation of certain other registers and strings. (There are certain other
syntactic restrictions, which will be discussed later, in Section 2.)

The model that has been studied in [8, 10, 9], known as cost register automata
(CRAs), is a generalization of streaming string transducers, where the register
update functions are not constrained to be the concatenation of strings, but
instead may operate over several other algebraic structures such as monoids,
groups and semirings. Stated another way, streaming string transducers are cost
register automata that operate over the monoid (Γ ∗, ◦) where ◦ denotes concate-
nation. Another important example is given by the so-called “tropical semiring”,
where the additive operation is min and the multiplicative operation is +; CRAs

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 18 (2015)

2 E. Allender and I. Mertz

over (Z∪{∞},min,+) can be used to give an alternative characterization of the
class of functions computed by weighted automata [8].

The cost register automaton model is the main machine model that was ad-
vocated by Alur et al. [8] as a tool for defining and investigating various classes
of “regular functions” over different domains. Their definition of “regular func-
tions” does not always coincide exactly with the CRA model, but does coincide
in several important cases. In this paper, we will focus on the functions computed
by (various types of) CRAs.

Although there have been papers examining the complexity of several deci-
sion problems dealing with some of these classes of regular functions, there has
not previously been a study of the complexity of computing the functions them-
selves. There was even a suggestion [4] that these functions might be difficult or
impossible to compute efficiently in parallel. Our main contribution is to show
that most of the classes of regular functions that have received attention lie in
certain low levels of the NC hierarchy.

2 Preliminaries

The reader should be familiar with some common complexity classes, such as
L (deterministic logspace), and P (deterministic polynomial time). Many of the
complexity classes we deal with are defined in terms of families of circuits. A
language A ⊆ {0, 1}∗ is accepted by circuit family {Cn : n ∈ N} if x ∈ A
iff C|x|(x) = 1. Our focus in this paper will be on uniform circuit families;
by imposing an appropriate uniformity restriction (meaning that there is an
algorithm that describes Cn, given n) circuit families satisfying certain size and
depth restrictions correspond to complexity classes defined by certain classes of
Turing machines.

For more detailed definitions about the following standard circuit complexity
classes (as well as for motivation concerning the standard choice of the UE-
uniformity), we refer the reader to [24, Section 4.5].

– NCi = {A : A is accepted by a UE-uniform family of circuits of bounded
fan-in AND, OR and NOT gates, having size nO(1) and depth O(logi n)}.

– ACi = {A : A is accepted by a UE-uniform family of circuits of unbounded
fan-in AND, OR and NOT gates, having size nO(1) and depth O(logi n)}.

– TCi = {A : A is accepted by a UE-uniform family of circuits of unbounded
fan-in MAJORITY gates, having size nO(1) and depth O(logi n)}.

We remark that, for constant-depth classes such as AC0 and TC0, UE-uniformity
coincides with UD-uniformity, which is also frequently called DLOGTIME-uni-
formity.) We use these same names to refer to the associated classes of functions
computed by the corresponding classes of circuits.

We also need to refer to certain classes defined by families of arithmetic
circuits. Let (S, +,×) be a semiring. An arithmetic circuit consists of input
gates, + gates, and × gates connected by directed edges (or “wires”). One gate is
designated as an “output” gate. If a circuit has n input gates, then it computes

Complexity of Regular Functions 3

a function from Sn → S in the obvious way. In this paper, we consider only
arithmetic circuits where all gates have bounded fan-in.

– #NC1
S is the class of functions f :

⋃
n Sn → S for which there is a UE-

uniform family of arithmetic circuits {Cn} of logarithmic depth, such that
Cn computes f on Sn.

– By convention, when there is no subscript, #NC1 denotes #NC1
N, with the

additional restriction that the functions in #NC1 are considered to have
domain

⋃
n{0, 1}n. That is, we restrict the inputs to the Boolean domain.

(Boolean negation is also allowed at the input gates.)
– GapNC1 is defined as #NC1 −#NC1; that is: the class of all functions that

can be expressed as the difference of two #NC1 functions. It is the same as
#NC1

Z restricted to the Boolean domain. See [24, 1] for more on #NC1 and
GapNC1.

The following inclusions are known:

NC0 ⊆ AC0 ⊆ TC0 ⊆ NC1 ⊆ #NC1 ⊆ GapNC1 ⊆ L ⊆ AC1 ⊆ P.

All inclusions are straightforward, except for GapNC1 ⊆ L [19].

2.1 Cost-register automata

A cost-register automaton (CRA) is a deterministic finite automaton (with a
read-once input tape) augmented with a fixed finite set of registers that store
elements of some algebraic domain A. At each step in its computation, the
machine

– consumes the next input symbol (call it a),
– moves to a new state (based on a and the current state (call it q)),
– based on q and a, updates each register ri using updates of the form ri ←

f(r1, r2, . . . , rk), where f is an expression built using the registers r1, . . . , rk

using the operations of the algebra A.

There is also an “output” function µ defined on the set of states; µ is a partial
function – it is possible for µ(q) to be undefined. Otherwise, if µ(q) is defined,
then µ(q) is some expression of the form f(r1, r2, . . . , rk), and the output of the
CRA on input x is µ(q) if the computation ends with the machine in state q.

More formally, here is the definition as presented by Alur et al. [8].
A cost-register automaton M is a tuple (Σ, Q, q0, X, δ, ρ, µ), where

– Σ is a finite input alphabet.
– Q is a finite set of states.
– q0 ∈ Q is the initial state.
– X is a finite set of registers.
– δ : Q×Σ → Q is the state-transition function.
– ρ : Q × Σ × X → E is the register update function (where E is a set of

algebraic expressions over the domain A and variable names for the registers
in X).

4 E. Allender and I. Mertz

– µ : Q→ E is a (partial) final cost function.

A configuration of a CRA is a pair (q, ν), where ν maps each element of X
to an algebraic expression over A. The initial configuration is (q0, ν0), where
ν0 assigns the value 0 to each register (or some other “default” element of the
underlying algebra). Given a string w = a1 . . . an, the run of M on w is the
sequence of configurations (q0, ν0), . . . (qn, νn) such that, for each i ∈ {1, . . . , n}
δ(qi−1, ai) = qi and, for each x ∈ X, νi(x) is the result of composing the expres-
sion ρ(qi−1, ai, x) to the expressions in νi−1 (by substituting in the expression
νi−1(y) for each occurrence of the variable y ∈ X in ρ(qi−1, ai, x)). The out-
put of M on w is undefined if µ(qn) is undefined. Otherwise, it is the result of
evaluating the expression µ(qn) (by substituting in the expression νn(y) for each
occurrence of the variable y ∈ X in µ(qn)).

It is frequently useful to restrict the algebraic expressions that are allowed
to appear in the transition function ρ : Q×Σ ×X → E. One restriction that is
important in previous work [8] is the “copyless” restriction.

A CRA is copyless if, for every register r ∈ X, for each q ∈ Q and each
a ∈ Σ, the variable “r” appears at most once in the multiset {ρ(q, a, s) : s ∈ X}.
In other words, for a given transition, no register can be used more than once
in computing the new values for the registers. Following [9], we refer to copyless
CRAs as CCRAs. Over many algebras, unless the copyless restriction is imposed,
CRAs compute functions that can not be computed in polynomial time. For
instance, CRAs that can concatenate string-valued registers and CRAs that can
multiply integer-valued registers can perform “repeated squaring” and thereby
obtain results that require exponentially-many symbols to write down.

3 CRAs over Monoids

In this section, we study CRAs operating over algebras with a single operation.
We focus on two canonical examples:

– CRAs operating over the commutative monoid (Z,+).
– CRAs operating over the noncommutative monoid (Γ ∗, ◦).

3.1 CRAs over the integers

Additive CRAs (ACRAs) are CRAs that operate over commutative monoids.
They have been studied in [8, 10, 9]; in [10] the ACRAs that were studied oper-
ated over (Z,+), and thus far no other commutative monoid has received much
attention, in connection with CRAs.

Theorem 1. All functions computable by CCRAs over (Z,+) are computable
in NC1. (This bound is tight, since there are regular sets that are complete for
NC1 under projections [11].)

Complexity of Regular Functions 5

Proof. It was shown in [8] that CCRAs (over any commutative semiring) have
equivalent power to CRAs that are not restricted to be copyless, but that have
another restriction: the register update functions are all of the form r ← r′ + c
for some register r′ and some semiring element c. Thus assume that the function
f is computed by a CRA M of this form. Let M have k registers r1, . . . , rk.

It is straightforward to see that the following functions are computable in
NC1:

– (x, i) 7→ q, such that M is in state q after reading the prefix of x of length i.
– (x, i) 7→ Gi, where Gi is a labeled bipartite graph on [k] × [k], with the

property that there is an edge labeled c from j on the left-hand side to ` on
the right hand side, if the register update operation that takes place when
M consumes the i-th input symbol includes the update r` ← rj + c. If the
register update operation includes the update r` ← c, then vertex ` on the
right hand side is labeled c. (To see that this is computable in NC1, note
that by the previous item, in NC1 we can determine the state q that M
is in as it consumes the i-th input symbol. Thus Gi is merely a graphical
representation of the register update function corresponding to state q.) Note
that the indegree of each vertex in Gi is at most one. (The outdegree of a
vertex may be as high as k.)

Now consider the graph G that is obtained by concatenating the graphs Gi

(by identifying the right-hand side of Gi with the left-hand side of Gi+1 for each
i). This graph shows how the registers at time i + 1 depend on the registers
at time i. G is a constant-width graph, and it is known that reachability in
constant-width graphs is computable in NC1. Note that we can determine in
NC1 the register that provides the output when the last symbol of x is read. By
tracing the edges back from that vertex in G (following the unique path leading
back toward the left, using the fact that each vertex has indegree at most one) we
eventually encounter a vertex of indegree zero. In NC1 we can determine which
edges take part in this path, and add the labels that occur along that path. This
yields the value of f(x). ut

We remark that the NC1 upper bound holds for any commutative monoid where
iterated addition of monoid elements can be computed in NC1.

A related bound holds, when the copyless restriction is dropped:

Theorem 2. All functions computable by CRAs over (Z,+) are computable in
GapNC1. (This bound is tight, since there is one such function that is hard for
GapNC1 under AC0 reductions.)

Proof. We use a similar approach as in the proof of the preceding theorem. We
build a bipartite graph Gi that represents the register update function that is
executed while consuming the i-th input symbol, as follows. Each register update
operation is of the form r` ← a0+ri1 +ri2 +. . . rim

. Each register rj appears, say,
aj times in this sum, for some nonnegative integer aj . If r` ← a0 +

∑k
j=1 aj · rj

is the update for r` at time i, then if aj > 0, then Gi will have an edge labeled

6 E. Allender and I. Mertz

aj from j on the left-hand side to ` on the right-hand side, along with an edge
from 0 to ` labeled a0, and an edge from 0 to 0. Let the graph Gi correspond to
matrix Mi. An easy inductive argument shows that (

∑k
j=0(

∏t
i=1 Mi))j,` gives

the value of register ` after time t. The upper bound now follows since iterated
multiplication of O(1)×O(1) integer matrices can be computed in GapNC1 [16].

For the lower bound, observe that it is shown in [16], building on [13], that
computing the iterated product of 3× 3 matrices with entries from {0, 1,−1} is
complete for GapNC1. More precisely, taking a sequence of such matrices as input
and outputting the (1,1) entry of the product is complete for GapNC1. Consider
the alphabet Γ consisting of such matrices. There is a CRA taking input from
Γ ∗ and producing as output the contents of the (1, 1) entry of the product of
the matrices given as input. (The CRA simulates matrix multiplication in the
obvious way.) ut

3.2 CRAs over (Γ ∗, ◦)

Unless we impose the copyless restriction, CRAs over this monoid can generate
exponentially-long strings. Thus in this subsection we consider only CCRAs.

CCRAs operating over the algebraic structure (Γ ∗, ◦) are precisely the so-
called streaming string transducers that were studied in [6], and shown there
to compute precisely the functions computed by two-way deterministic finite
transducers (2DFAs). This class of functions is very familiar, and it is perhaps
folklore that such functions can be computed in NC1, but we have found no
mention of this in the literature. Thus we present the proof here.

Theorem 3. All functions computable by CCRAs over (Γ ∗, ◦) are computable
in NC1. (This bound is tight, since there are regular sets that are complete for
NC1 under projections [11].)

Proof. Let M be a 2DFA computing a (partial) function f , and let x be a string
of length n. If f(x) is defined, then M halts on input x, which means that M
visits no position i of x more than k times, where k is the size of the state set
of M .

Define the visit sequence at i to be the sequence q(i,1), q(i,2), . . . q(i,`i) of length
`i ≤ k such that q(i,j) is the state that M is in the j-th time that it visits position
i. Denote this sequence by Vi.

We will show that the function (x, i) 7→ Vi is computable in NC1. Assume for
the moment that this is computable in NC1; we will show how to compute f in
NC1.

Note that there is a planar directed graph G of width at most k having vertex
set

⋃
i Vi, where all edges adjacent to vertices Vi go to vertices in either Vi−1

or Vi+1, as follows: Given Vi−1, Vi and Vi+1, for any q(i,j) ∈ Vi, it is trivial to
compute the pair (i′, j′) such that, when M is in state q(i,j) scanning the i-th
symbol of the input, then at the next step it will be in state q(i′,j′) scanning the
i′-th symbol of the input. (Since this depends on only O(1) bits, it is computable
in UE-uniform NC0.) The edge set of G consists of these “next move” edges from

Complexity of Regular Functions 7

q(i,j) to q(i′,j′). It is immediate that no edges cross when embedded in the plane
in the obvious way (with the vertex sets V1, V2, . . . arranged in vertical columns
with V1 at the left end, and Vi+1 immediately to the right of Vi, and with the
vertices q(i,1), q(i,2), . . . q(i,`i) arranged in order within the column for Vi).

Let us say that (i, j) comes before (i′, j′) if there is a path from q(i,j) to q(i′,j′)

in G. Since reachability in constant-width planar graphs is computable in AC0

[12], it follows that the “comes before” predicate is computable in AC0.
Thus, in TC0, one can compute the size of the set {(i′, j′) : (i′, j′) comes before

(i, j) and M produces an output symbol when moving from q(i′,j′)}. Call this
number m(i,j). Hence, in TC0 one can compute the function (x,m) 7→ (i, j) such
that m(i,j) = m. But this allows us to determine what symbol is the m-th symbol
of f(x). Hence, given the sequences Vi, f(x) can be computed in TC0 ⊆ NC1.

It remains to show how to compute the sequences Vi.
It suffices to show that the set B = {(x, i, V) : V = Vi} ∈ NC1. To do this, we

will present a nondeterministic constant-width branching program recognizing
B; such branching programs recognize only sets in NC1 [11]. Our branching
program will guess each Vj in turn; note that each Vj can be described using
only O(k log k) = O(1) bits, and thus there are only O(1) choices possible at any
step. When guessing Vj+1, the branching program rejects if Vj+1 is inconsistant
with Vj and the symbols being scanned at positions j and j + 1. When i = j
the branching program rejects if V is not equal to the guessed value of Vi. When
j = |x| the branching program halts and accepts if all of the guesses V1, . . . , Vn

have been consistent. It is straightforward to see that the algorithm is correct.
ut

4 CRAs over Semirings

In this section, we begin the study of CRAs operating over algebras with two
operations satisfying the semiring axioms. We focus on three such structures:

– CRAs operating over the commutative ring (Z,+,×) (Section 4.1).
– CRAs operating over the commutative semiring (Z ∪ {∞},min,+): the so-

called “tropical” semiring (Section 5).
– CRAs operating over the noncommutative semiring (Γ ∗∪{⊥},max, ◦) (Sec-

tion 6).

There is a large literature dealing with weighted automata operating over semir-
ings. It is shown in [8] that the class of functions computed by weighted automata
operating over a semiring (S, +,×) is exactly equal to the class of functions
computed by CRAs operating over (S, +,×), where the only register operations
involving × are of the form r ← r′ × c for some register r′ and some semiring
element c. Thus for each structure, we will also consider CRAs satisfying this
restriction.

We should mention the close connection between iterated matrix product
and weighted automata operating over commutative semirings. As in the proof
of Theorem 2, when a CRA is processing the i-th input symbol, each register

8 E. Allender and I. Mertz

update function is of the form r` ← a0 +
∑k

j=1 aj · rj , and thus the register
updates for position i can be encoded as a matrix. Thus the computation of
the machine on an input x can be encoded as an instance of iterated matrix
multiplication. In fact, some treatments of weighted automata essentially define
weighted automata in terms of iterated matrix product. (For instance, see [22,
Section 3].) Thus, since iterated product of k × k matrices lies in #NC1

S for
any commutative semiring S, the functions computed by weighted automata
operating over S all lie in #NC1

S . (For the case when S = Z, iterated matrix
product of k × k matrices is complete for GapNC1 for all k ≥ 3 [16, 13].)

4.1 CRAs over the integers.

First, we consider the copyless case:

Theorem 4. All functions computable by CCRAs over (Z,+,×) are computable
in GapNC1. (Some such functions are hard for NC1, but we do not know if any
are hard for GapNC1.)

Proof. Consider a CCRA M computing a function f , operating on input x. There
is a function computable in NC1 that maps x to an encoding of an arithmetic
circuit that computes f(x), constructed as follows: The circuit will have gates
rj,i computing the value of register j at time i. The register update functions
dictate which operations will be employed, in order to compute the value of rj,i

from the gates rj′,i−1. Due to the copyless restriction, the outdegree of each gate
is at most 1 (which guarantees that the circuit is a formula).

It follows from Lemma 5 below that f ∈ GapNC1. ut

Lemma 5. If there is a function computable in NC1 that takes an input x and
produces an encoding of an arithmetic formula that computes f(x) when evalu-
ated over the integers, then f ∈ GapNC1.

Proof. By [15], there is a logarithmic-depth arithmetic-Boolean formula over the
integers, that takes as input an encoding of a formula F and outputs the integer
represented by F . An arithmetic-Boolean formula is a formula with Boolean
gates AND, OR and NOT, and arithmetic gates +,×, as well as test and select
gates that provide an interface between the two types of gates. Actually, the
construction given in [15] does not utilize any test gates [14], and thus we need
not concern ourselves with them. (Note that this implies that there is no path
in the circuit from an arithmetic gate to a Boolean gate.)

A select gate takes three inputs (y, x0, x1) and outputs x0 if y = 0 and outputs
x1 otherwise. In the construction given in [15], select gates are only used when
y is a Boolean value. When operating over the integers, then, select(y, x0, x1)
is equivalent to y × x1 + (1 − y) × x0. But since Boolean NC1 is contained in
#NC1 ⊆ GapNC1 (see, e.g., [1]), the Boolean circuitry can all be replaced by
arithmetic circuitry. (When operating over algebras other than Z, it is not clear
that such a replacement is possible.) ut

Complexity of Regular Functions 9

We cannot entirely remove the copyless restriction while remaining in the
realm of polynomial-time computation, since repeated squaring allows one to
obtain numbers that require exponentially-many bits to represent in binary.
However, as noted above, if the multiplicative register updates are all of the
form r ← r′ × c, then again the GapNC1 upper bound holds (and in this case,
some of these CRA functions are complete for GapNC1, just as was argued in
the proof of Theorem 2).

5 CRAs over the tropical semiring.

In this section, we consider CRAs operating over the tropical semiring. We show
that the functions computable by such CRAs have complexity bounded by the
complexity of functions in #NC1, and thus lie in L. In order to state a more pre-
cise bound on the complexity of these functions, we introduce the class #NC1

trop,
and we prove some basic propositions about arithmetic circuits over the tropical
semiring.

5.1 Arithmetic Circuit Preliminaries

Functions in #NC1
trop have complexity in some sense intermediate between NC1

and #NC1. Proposition 6 shows that there are some functions in #NC1
trop that

are hard for NC1, and Lemma 9 shows that, if the values at the input level of
#NC1

trop circuits have binary representation of only O(log n) bits, then #NC1
trop

circuits are no harder to evaluate than #NC1 functions. (Without this restric-
tion, the best known upper bound is AC1; see, e.g. [2, Lemma 5.5].) It is worth
remarking that it has been conjectured that #NC1 consists of precisely the func-
tions computable in NC1; see [1]. Thus the lower and upper bounds of NC1 and
#NC1 are not very far apart.

Recall that the accepted convention for #NC1 is that inputs are restricted
to be in {0, 1}, and that for every Boolean input xi the negated input ¬xi is
also available. In order to simplify the statement of the following results, we
allow #NC1

trop circuits to take arbitrary elements from Z ∪ {∞} as input (as in
the standard setting for arithmetic circuit complexity). But sometimes it is also
convenient to consider #NC1

trop as a class of languages, in which case we will
follow the same convention as for #NC1, and restrict the inputs to be in {0, 1},
where for every Boolean input xi the negated input ¬xi is also available.

Proposition 6. NC1 ⊆ #NC1
trop.

Proof. Recall first that the inclusion NC1 ⊆ #NC1 is proved by observing that
NC1 circuits can be assumed without loss of generality to be “unambiguous”, in
the sense that each OR gate that evaluates to one always has exactly one child
that evaluates to one. (That is, a∨b is replaced by (¬a∧b)∨(a∧¬b)∨(a∧b); see,
e.g., [1].) Thus consider any language L ∈ NC1, and consider the “unambiguous”
NC1 circuit family {Cn} accepting L. If we simply replace each AND gate by
min, and we replace each OR gate by +, then the resulting #NC1

trop circuit is
equivalent to Cn. ut

10 E. Allender and I. Mertz

Now, we consider the problem of evaluating #NC1
trop circuits. We note first

that determining if the output is ∞ can be accomplished in NC1.

Proposition 7. The problem of taking as input an arithmetic formula φ (with
assignments to all of the input variables), and determining if φ evaluates to ∞
is in NC1.

Proof. Given φ, replace each finite input with 0, and replace each ∞ input with
1. Change each min gate to AND, and change each + gate to OR. Call the
resulting formula φ′; it is easy to see that φ′ evaluates to 1 iff φ evaluates to ∞.
Now, by [15], φ′ can be evaluated in NC1. ut

Thus, if we want to evaluate a #NC1
trop formula, it suffices to focus on the

case where the formula evaluates to a value other than∞. A very powerful result
by Elberfeld, Jakoby, and Tantau [17, Theorem 5] can be used to show that some
closely-related problems reduce to the computation of #NC1 functions, but we
find that there are enough complications caused by the presence of∞-inputs and
negative inputs, so that it is simpler to present a direct argument rather than
to invoke [17]. Thus our next lemma says that evaluating a #NC1

trop formula
that takes on a finite value is no harder than evaluating a #NC1 expression. The
following definition makes precise what is meant by “no harder than” in this
context.

Definition 8. Let x be a non-zero dyadic rational. That is, x can be expressed
as x =

∑m
i=−m bi2i for some m, where bi ∈ {0, 1} for all i. Define low.order(x)

to be the least i ∈ {−m, . . . ,m} such that bi = 1. If φ is an arithmetic formula,
then low.order(φ) is defined to be low.order(z) for the number z that is represented
by φ.

Observe that low.order(xy) = low.order(x) + low.order(y). Observe also that
low.order(x + y) = min{low.order(x), low.order(y)} if low.order(x) 6= low.order(y),
but if low.order(x) = low.order(y), then it is not obvious how to obtain a use-
ful bound on low.order(x + y). For this reason, in the following lemma, we will
introduce the notion of “spread”.

Lemma 9. Let c and ` be natural numbers. There is a function f computable in
NC1 that takes as input a #NC1

trop formula φ of depth c log n, where each finite
input to φ is in the range [−n`, n`], and produces as output a #NC1 formula
φ′ and numbers m, r such that, if φ evaluates to a finite value z, then zr ≤
low.order(φ′)−m < (z + 1)r. (In other words, z = b(low.order(φ′)−m)/rc.)

Proof. The argument we present is very similar to a proof that is presented in
[21] (where they are working over the (max,+) algebra, instead of (min,+)).

Let the #NC1
trop formula φ be given, of depth c log n, where each input that

is not∞ lies in the range [−n`, n`]. We first build an arithmetic formula φ0 over
the dyadic rationals, and then modify φ0 to obtain the desired #NC1 formula
φ′.

Complexity of Regular Functions 11

We assume without loss of generality that φ is a complete binary tree, where
all paths from input gates to the output have length c log n, and we also assume
that φ is composed of alternating layers of + and min gates. (This normal form
can be obtained by at most doubling the depth, by inserting dummy gates, using
the rules min(x, x) = x and x + 0 = x; the modified formula can be obtained
from φ in NC1.) Thus φ has nc input gates, each of which takes on a value in
[−n`, n`] ∪ {∞}.

Let r = (n` +1)n2c +1. The formula φ0 is obtained from φ by changing each
+ gate of φ to a × gate, and changing each min gate of φ to a + gate. At the
input level, each input of φ that has some finite value a is replaced by the value
2ra. (Note, it is possible that a < 0.) Each input of φ that is labeled with ∞ is
replaced by the value 2(n`+1)ncr.

First, we observe that each gate g of φ0 evaluates to a dyadic rational in the
range [2−rn`nc

, 2r(n`+1)n2c

]. This is because all inputs to φ0 are positive. The
output cannot be larger than the result of multiplying together nc values of size
2(n`+1)ncr (which is the value that replaces ∞), and it cannot be smaller than
multiplying together nc values of size 2−rn`

.
Before we proceed to our inductive argument showing that the output of φ0

encodes the value of φ, it is necessary to prove some results showing how the
values stored in the gates of φ0 evolve as the computation progresses. Given a
gate g0 of φ0 whose value is encoded in binary as

∑m
i=−m bi2i, define spread(g0)

to be the largest j < r such that bblow.order(g0)/rcr+j = 1. Here is some intuition
about spread(g0). Think of the binary representation of the value of g0 as a
bit string divided into subfields of length r. All of the fields to the right of
low.order(g0) are all zero. The field corresponding to positions

blow.order(g0)/rcr + (r − 1), . . . blow.order(g0)/rcr + 1, blow.order(g0)/rcr

is where the useful information is stored. If g0 is an input gate, then this field
is very “clean”; it is of the form 0r−11. If g0 appears at a higher depth in the
circuit, this field can be a bit messy. However, the high-order bits of this field are
all going to be 0, and the 1’s can only appear in positions blow.order(g0)/rcr + j
for 0 ≤ j ≤ spread(g0).

Claim. If g0 is a gate at depth d of φ0, then spread(g0) ≤ 2d.

Note that, since d = c log n, 2d < r.

Proof. The proof of the claim is by induction on d. When d = 0, spread(g0) =
0 < 2d.

If g0 is a + gate at depth d, say g0 = h0 + k0, where the claim holds at h0

and k0, then either

spread(g0) = max{spread(h0), spread(k0)},

or
spread(g0) = max{spread(h0), spread(k0)}+ 1.

12 E. Allender and I. Mertz

In either case, by the induction hypothesis we have spread(g0) ≤ 2d−1 + 1 ≤ 2d.
So in either case the claim holds at g0.

If g0 is a × gate at depth d, say g0 = h0×k0, where the claim holds at h0 and
k0, then spread(g0) = spread(h0) + spread(k0). (To see this, consider the binary
representation of the product h0 × k0 as divided up into fields of length r, and
similarly divide h0 and k0 into fields of length r. Let xh and xk be the contents
of the fields containing low.order(h0) and low.order(k0), respectively. Then the
field containing low.order(h0× k0) consists of the low-order r bits of the product
xh × xk. The length of the non-zero part of the product xh × xk is exactly
spread(h0) + spread(k0).)

By induction, spread(g0) = spread(h0) + spread(k0) ≤ 2d−1 + 2d−1 = 2d. ut

Next, we claim that the circuit the value of φ can easily be extracted from
the value of φ0.

Claim. If φ evaluates to a finite value z, then zr ≤ low.order(φ0) < z(r + 1).
Thus z = blow.order(φ0)/rc (since z < r).

Proof. This claim follows immediately from the following statement, which we
prove by induction on d:

For all d, if gate g at depth d takes on a finite value z in φ, then zr ≤
low.order(g0) < zr + 2d (where g0 is the value that the gate corresponding
to g takes on in φ0), and if g (at depth d) takes on the value ∞ in φ, then
low.order(g0) ≥ (n` + 1)ncr − dn`.

This suffices to prove the claim, since the output gate has depth d = c log n
and thus 2d = nc < r. The claim holds at the input level (where d = 0).

Now let g be a + gate at depth d computing h+k, where the inductive hypoth-
esis holds at h and k. If g takes on a finite value z, then both h and k take on finite
values, call them zh and zk. By induction, we have z = zh +zk, and g0 = h0×k0,
where zhr ≤ low.order(h0) < zhr + 2d−1 and zkr ≤ low.order(k0) < zkr + 2d−1.
Observe that low.order(g0) = low.order(h0 × k0) = low.order(h0) + low.order(k0).
Thus zr = zhr + zkr ≤ low.order(h0) + low.order(k0) = low.order(g0) < zhr +
2d−1 + zkr + 2d−1 = (zh + zk)r + 2d = zr + 2d.

If g takes on the value∞, then either h or k also takes on the value∞. Assume
without loss of generality that h = ∞. Then, by induction low.order(h0) ≥
(n` + 1)ncr − (d − 1)n`. Thus low.order(g0) = low.order(h0) + low.order(k0) ≥
((n` + 1)ncr − (d− 1)n`) + (−n`) = (n` + 1)ncr − dn`.

Next let g be a min gate at depth d, computing min(h, k), where the inductive
hypothesis holds at h and k. If g takes on a finite value z, then at least one of
h and k takes on a finite value. Assume without loss of generality that h is the
minimum, and that h takes the value zh, and let zk be the value of gate k. By
induction, we have z = zh, and g0 = h0 × k0, where zhr ≤ low.order(h0) <
zhr + 2d−1. If zk is finite, then zkr ≤ low.order(k0) < zkr + 2d−1, and otherwise
low.order(k0) ≥ (n` + 1)ncr − (d− 1)n`.

If low.order(h0) 6= low.order(k0) (which is the case, in particular, if k = ∞),
then low.order(g0) = low.order(h0), and the inductive hypothesis holds at g0.

Complexity of Regular Functions 13

Thus assume that low.order(h0) = low.order(k0). Thus zr = zhr ≤ low.order(h0) ≤
low.order(g0), and thus the first inequality of the claim holds at g0.

Also low.order(g0) ≤ blow.order(h0)/rcr+spread(h0)+1 ≤ blow.order(h0)/rcr+
2d−1+1 by Claim 5.1. By induction, we have low.order(g0) ≤ b(zhr+2d−1)/rcr+
2d−1 + 1 = zhr + 2d−1 + 1 = zr + 2d−1 + 1 < zr + 2d, as desired.

If g takes on the value∞, then both h and k also evaluate to∞. By the induc-
tive hypothesis, low.order(h0) ≥ (n` +1)ncr−(d−1)n` and low.order(k0) ≥ (n` +
1)ncr−(d−1)n`. It follows that low.order(g0) ≥ min{low.order(h0), low.order(k0)} ≥
(n` + 1)ncr − (d − 1)n` > (n` + 1)ncr − dn`. This completes the proof of the
inductive step, and establishes how the value of φ can be obtained from the value
of φ0. ut

However, φ0 operates over the dyadic rationals, and it still remains for us to
produce a formula φ′ over N.

Let q be the least natural number, such that no input to φ0 has a label less
than 2−qr. Let φ′ be φ0, where each input x of φ0 is replaced by 2qrx. Clearly,
φ′ operates over N. Since φ was assumed to have alternating levels of + and min
gates, φ′ has alternating levels of × and + gates. At the input level, the value
of each gate of φ0 can be obtained by dividing the value of the corresponding
gate of φ′ by 2qr. More generally, if g0 is a gate of φ0 such that paths from the
input level to g0 encounter d × gates, then the the value of g0 can be obtained
by dividing the value of the corresponding gate of φ′ by 22dqr.

The proof is completed, by setting m equal to 2dqr, where d is c
2 log n. ut

5.2 Tropical CRAs

Having established the facts that we need about #NC1
trop, we return to the

task of giving a bound on the complexity of CRAs operating over the tropical
semiring.

Again, we first consider the copyless case.

Theorem 10. All functions computable by CCRAs over the tropical semiring
are computable in NC1(#NC1

trop), and are computable in L.

Here, NC1(#NC1
trop) refers to the class of functions expressible as g(f(x)) for

some functions f ∈ NC1 and g ∈ #NC1
trop.

Proof. The L upper bound follows easily, because the only operation that in-
creases the value of a register is a + operation, and because of the copyless
restriction the value of a register after i computation steps can be expressed as
a sum of iO(1) values that are present as constants in the program of the CRA.
Thus, in particular, the value of a register at any point during the computation
on input x can be represented using O(log |x|) bits. Thus a logspace machine can
simply simulate a CRA directly, storing the value of each of the O(1) registers,
and computing the updates at each step.

Another way of obtaining the L upper bound follows from Lemma 9, because,
when we establish the NC1(#NC1

trop) upper bound, we use #NC1
trop circuits

14 E. Allender and I. Mertz

where all of the finite input values are small. Thus, not only are these functions
computable in L, but they can easily be computed from functions in #NC1.

For the NC1(#NC1
trop) upper bound, first note that there is a function h com-

putable in NC1 that takes x as input, and outputs a description of an arithmetic
formula F over the tropical semiring that computes f(x). This is exactly as in
the first paragraph of the proof of Theorem 4.

Next, as in the proof of Lemma 5, recall that, by [15], there is a uniform
family of logarithmic-depth arithmetic-Boolean formulae {Cn} over the tropical
semiring, that takes as input an encoding of a formula F and outputs the integer
represented by F . Furthermore, each arithmetic-Boolean formula Cn has Boolean
gates AND, OR and NOT, and arithmetic gates min,+, as well as select gates,
and there is no path in Cn from an arithmetic gate to a Boolean gate.

Let {Dn} be the uniform family of arithmetic circuits, such that Dn is the
connected subcircuit of Cn consisting only of arithmetic min and + gates. We
now have the following situation: The NC1 function h (which maps x to an
encoding of a formula F having some length m) composed with the circuit Cm

(which takes F as input and produces f(x) as output) is identical with some
NC1 function h′ (computed by the NC1 circuitry in the composed hardware for
Cm(h(x))) feeding into the arithmetic circuitry of Dm. Each select gate with
inputs (y, x0, x1) can be simulated by the subcircuit min(x0 + z(y), x1 + z(¬y))
where z(v) is the NC1 function that takes the Boolean value v as input, and
outputs 0 if v = 0, and outputs ∞ otherwise. This is precisely what is needed,
in order to establish our claim that f ∈ NC1(#NC1

trop). ut

Unlike the case of CRAs operating over the integers, CRAs over the tropical
semiring without the copyless restriction compute only functions that are com-
putable in polynomial time (via a straightforward simulation). We know of no
better upper bound than P in this case, and we also have no lower bounds.

As noted above at the beginning of Section 4, if the “multiplicative” register
updates (i.e., + in the tropical semiring) are all of the form r ← r′+c, then even
without the copyless restriction, the computation of a CRA function f reduces to
iterated matrix multiplication of O(1)×O(1) matrices over the tropical semiring.
Again, it follows easily that the contents of any register at any point in the
computation can be represented using O(log n) bits. Thus the upper bound of L
holds also in this case.

6 CRAs over the max-concat semiring.

As in Section 3.2, we consider only CCRAs.

Theorem 11. All functions computable by CCRAs over (Γ ∗,max, ◦) are com-
putable in AC1.

Proof. Let f be computed by a CCRA M operating over (Γ ∗,max, ◦).
We first present a logspace-computable function h with the property that

h(1n) is a description of a circuit Cn computing f on inputs of length n. The

Complexity of Regular Functions 15

input convention is slightly different for this circuit family. For each input symbol
a and each i ≤ n there is an input gate gi,a that evaluates to λ (the empty string)
if xi = a, and evaluates to ⊥ otherwise. (This provides an “arithmetical” answer
to the Boolean query “is the i-th input symbol equal to a?”)

Assume that there are gates r1,i, r2,i, . . . , rk,i storing the values of each of
the registers at time i. For i = 0 these gates are constants. For each input
symbol a and each j ≤ k, let Ea,j(r1,i, . . . , rk,i) be the expression that describes
how register j is updated if the i + 1-st symbol is a. Then the value rj,i+1 =
maxa{gi,a ◦ Ea,j(r1,i, . . . , rk,i)}. This yields a very uniform circuit family, since
the circuit for inputs of length n consists of n identical blocks of this form
connected in series. That is, there is a function computable in NC1 that takes
1n as input, and produces an encoding of circuit Cn as output.

Although the depth of circuit Cn is linear in n, its algebraic degree is only
polynomial in n. (Recall that the additive operation of the semiring is max and
the multiplicative operation is ◦. Thus the degree of a max gate is the maximum
of the degrees of the gates that feed into it, and the degree of a ◦ gate is the sum
of the degrees of the gates that feed into it.) This degree bound follows from the
copyless restriction. (Actually, the copyless restriction is required only for the ◦
gates; inputs to the max gates could be re-used without adversely affecting the
degree.)

By [2, Proposition 5.2], arithmetic circuits of polynomial size and algebraic
degree over (Γ ∗,max, ◦) characterize exactly the complexity class OptLogCFL.
OptLogCFL was defined by Vinay [23] as follows: f is in OptLogCFL if there is a
nondeterministic logspace-bounded auxiliary pushdown automaton M running
in polynomial time, such that, on input x, f(x) is the lexicographically largest
string that appears on the output tape of M along any computation path. The
proof of Proposition 5.2 in [2], which shows how an auxiliary pushdown au-
tomaton can simulate the computation of a max-concat circuit, also makes it
clear that an auxiliary pushdown machine, operating in polynomial time, can
take a string x as input, use its logarithmic workspace to compute the bits of
h(1|x|) (i.e., to compute the description of the circuit C|x|), and then to produce
C|x|(x) = f(x) as the lexicographically-largest string that appears on its output
tape along any computation path. That is, we have f ∈ OptLogCFL.

By [2, Lemma 5.5], OptLogCFL ⊆ AC1, which completes the proof. ut

Acknowledgments

This work was supported by NSF grant CCF-1064785 and an REU supplement.
We thank Samir Datta for calling our attention to [21] and for his comments
on an earlier version of this work [3]. We also thank Till Tantau for helpful
comments.

References

1. Allender, E.: Arithmetic circuits and counting complexity classes. In: Kraj́ıček, J.
(ed.) Complexity of Computations and Proofs, Quaderni di Matematica, vol. 13,

16 E. Allender and I. Mertz

pp. 33–72. Seconda Università di Napoli (2004)

2. Allender, E., Jiao, J., Mahajan, M., Vinay, V.: Non-commutative arithmetic cir-
cuits: Depth reduction and size lower bounds. Theoretical Computer Science 209(1-
2), 47–86 (1998)

3. Allender, E., Mertz, I.: Complexity of regular functions. In: Proc. 9th International
Conference on Language and Automata Theory and Applications (LATA). pp.
449–460. No. 8977 in Lecture Notes in Computer Science, Springer (2015)

4. Alur, R.: Regular functions (2013), lecture presented at Horizons in TCS: A Cel-
ebration of Mihalis Yannakakis’s 60th Birthday, Center for Computational In-
tractability, Princeton, NJ

5. Alur, R., Cerný, P.: Expressiveness of streaming string transducers. In: Confer-
ence on Foundations of Software Technology and Theoretical Computer Science
(FST&TCS). LIPIcs, vol. 8, pp. 1–12. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2010)

6. Alur, R., Cerný, P.: Streaming transducers for algorithmic verification of single-
pass list-processing programs. In: 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL). pp. 599–610 (2011)

7. Alur, R., D’Antoni, L., Deshmukh, J.V., Raghothaman, M., Yuan, Y.: Regu-
lar functions, cost register automata, and generalized min-cost problems. CoRR
abs/1111.0670 (2011)

8. Alur, R., D’Antoni, L., Deshmukh, J.V., Raghothaman, M., Yuan, Y.: Regular
functions and cost register automata. In: 28th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS). pp. 13–22 (2013), see also the expanded
version, [7].

9. Alur, R., Freilich, A., Raghothaman, M.: Regular combinators for string transfor-
mations. In: Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic and the Twenty-Ninth Annual ACM/IEEE Symposium
on Logic in Computer Science, (CSL-LICS). p. 9. ACM (2014)

10. Alur, R., Raghothaman, M.: Decision problems for additive regular functions. In:
ICALP. pp. 37–48. No. 7966 in Lecture Notes in Computer Science, Springer (2013)

11. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. Journal of Computer and System Sciences 38,
150–164 (1989)

12. Barrington, D.A.M., Lu, C.J., Miltersen, P.B., Skyum, S.: Searching constant width
mazes captures the AC0 hierarchy. In: 15th International Symposium on Theoret-
ical Aspects of Computer Science (STACS). pp. 73–83. No. 1373 in Lecture Notes
in Computer Science, Springer (1998)

13. Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant number of
registers. SIAM Journal on Computing 21(1), 54–58 (1992)

14. Buss, S.: Comment on formula evaluation (2014), personal communication.

15. Buss, S.R., Cook, S., Gupta, A., Ramachandran, V.: An optimal parallel algorithm
for formula evaluation. SIAM Journal on Computing 21(4), 755–780 (1992)

16. Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1 com-
putation. Journal of Computer and System Sciences 57(2), 200–212 (1998)

17. Elberfeld, M., Jakoby, A., Tantau, T.: Algorithmic meta theorems for circuit classes
of constant and logarithmic depth. In: STACS’12 (29th Symposium on Theoretical
Aspects of Computer Science). vol. 14, pp. 66–77. LIPIcs (2012)

18. Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Log. 2(2), 216–254 (2001)

Complexity of Regular Functions 17

19. Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold
circuits for division and iterated multiplication. Journal of Computer and System
Sciences 65, 695–716 (2002)

20. Jakoby, A., Tantau, T.: Computing shortest paths in series-parallel graphs in loga-
rithmic space. In: Complexity of Boolean Functions, 12.03. - 17.03.2006. Dagstuhl
Seminar Proceedings, vol. 06111. Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2006)

21. Jakoby, A., Tantau, T.: Logspace algorithms for computing shortest and longest
paths in series-parallel graphs. In: Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FST&TCS). pp. 216–227. No. 4855 in
Lecture Notes in Computer Science, Springer (2007), the proof of Lemma 4 can be
found as the proof of Lemma 3.5 in [20].

22. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: On the complex-
ity of equivalence and minimisation for Q-weighted automata. Logical Methods in
Computer Science 9(1) (2013)

23. Vinay, V.: Counting auxiliary pushdown automata. In: Proceedings of the Sixth
Annual Structure in Complexity Theory Conference, Chicago, Illinois, USA, June
30 - July 3, 1991. pp. 270–284 (1991), http://dx.doi.org/10.1109/SCT.1991.160269

24. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer-
Verlag New York Inc. (1999)

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

