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Abstract

An error-correcting code C ⊆ Fn is called (q, ε)-strong locally testable code (LTC) if there
exists a tester that makes at most q queries to the input word. This tester accepts all codewords
with probability 1 and rejects all non-codewords x /∈ C with probability at least ε · δ(x,C),
where δ(x,C) denotes the relative Hamming distance between the word x and the code C. The
parameter q is called the query complexity and the parameter ε is called soundness.

Goldreich and Sudan (J.ACM 2006) asked about the existence of strong LTCs with constant
query complexity, constant relative distance, constant soundness and inverse polylogarithmic
rate. They also asked about the explicit constructions of these codes.

Strong LTCs with the required range of parameters were obtained recently in the works of
Viderman (CCC 2013, FOCS 2013) based on the papers of Meir (SICOMP 2009) and Dinur
(J.ACM 2007). However, the construction of these codes was probabilistic.

In this work we show that codes presented in the works of Dinur (J.ACM 2007) and Ben-
Sasson and Sudan (SICOMP 2005) provide the explicit construction of strong LTCs with the
above range of parameters. Previously, such codes were proven to be weak LTCs. Using the
results of Viderman (CCC 2013, FOCS 2013) we prove that such codes are, in fact, strong LTCs.
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1 Introduction

Probabilistically Checkable Proof (PCP) systems [2, 3, 20] (a.k.a. Holographic Proofs [4]) are proof
systems that allow efficient probabilistic verification of a claim by reading few symbols of the proof.
The celebrated PCP theorem [2, 3] is one of the main breakthrough results in complexity theory.
This theorem asserts that for every language in NP there exists a polynomial-time PCP verifier
that queries the proof in a constant number of locations. The verifier is guaranteed to always
accept valid proofs of true statements, and to accept any claimed proof of false assertions with low
probability. The theorem has found many applications in theoretical computer science, especially
in establishing lower bounds for approximation algorithms [6, 5, 20, 24].

Informally, most of the PCP constructions were achieved using error-correcting codes, possessing
nice properties. Let us first give some auxiliary definitions regarding error-correcting codes.

A code over a finite alphabet Σ is a subspace C ⊆ Σn. A linear code over a finite field F is a
linear subspace C ⊆ Fn. In this case, n is the blocklength of the code C, denoted by blocklength(C).
The dimension of a linear code C, denoted by dim(C), is its dimension as a vector space and is
equal to log|F| |C|. The dimension of a non-linear code C over the alphabet Σ is defined to be

dim(C) = log|Σ| |C|. The rate of a code C, denoted by rate(C), is defined to be dim(C)
blocklength(C) = dim(C)

n .

We define the distance between two words x, y ∈ Fn to be ∆(x, y) = |{i | xi 6= yi}| and the

relative distance to be δ(x, y) = ∆(x,y)
n . The distance of C is defined by ∆(C) = min

x 6=y∈C
∆(x, y) and

its relative distance is defined by δ(C) = ∆(C)
n . We note that if C is linear then ∆(C) = min

c∈C\{0}
{|c|}.

One is typically interested in codes whose distance is linear to the blocklength of C, i.e., Ω(n).
For x ∈ Fn and C ⊆ Fn, let δ(x, C) = min

y∈C
{δ(x, y)} denote the relative distance of x from the

code C. If δ(x, C) ≥ ρ, we say that x is ρ-far from C and otherwise x is ρ-close to C.

1.1 Locally Testable Codes

Most of the PCP constructions (e.g., [7, 11, 17, 22]) are tightly related to a special kind of error-
correcting codes possessing some testability properties. These codes are called locally testable.

In other words, locally testable codes (LTCs) are error correcting codes that have a tester, which
is a randomized algorithm with oracle access to the received word x. The tester reads a sublinear
amount of information from x and based on this “local view” decides if x ∈ C or not. It should
accept codewords with probability one, and reject words that are far (in Hamming distance) from
the code with noticeable probability. Such codes are of interest in computer science due to their
numerous connections to probabilistically checkable proofs (PCPs) and property testing (see the
surveys [35, 21] for more information). LTCs were implicit already in [4] (cf. [21, Sec. 2.4]) and
they were explicitly studied by Goldreich and Sudan [22].

By now several different constructions of LTCs are known including codes based on low-degree
polynomials over finite fields and affine-invariant codes [1, 2, 16, 9, 8, 15, 23, 26, 28, 25, 33],
constructions based on PCPs of proximity/assignment testers [7, 18, 17]1, sparse random linear
codes [14, 27, 30] and tensor products of codes [19, 13, 12, 31, 36, 29].

Basically, there are two kinds of LTCs: weak and strong. A code C is said to be (q, ε, ρ)-weak
LTC if there exists a randomized algorithm T , called tester, that makes at most q queries to the

1As was pointed out in [22], not all PCP constructions are known to yield LTCs, but some of them (e.g., PCPs of
proximity/assignment testers) can be adapted to yield LTCs.
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input word w. If w ∈ C then T accepts w with probability 1, but if w is ρ-far from C the tester T
rejects w with probability at least ε. Let us notice that the tester is not required to reject when
0 < δ(w, C) < ρ. This is the reason why such codes are called weak LTCs.

In contrast to weak LTCs, the testers for strong LTCs are required to reject all non-codewords
with corresponding probability. More formally, a code C is called (q, ε)-strong LTC if there exists
a tester T that makes at most q queries to the input word w. If w ∈ C then T accepts w with
probability 1, but if w /∈ C then T rejects w with probability at least ε · δ(w, C). The parameter q
is called the query complexity and the parameter ε is called soundness.

Informally, we say that a code C is a weak LTC if it has a linear distance and there exist
constants q, ε > 0 and ρ ≤ δ(C)/3 such that C is a (q, ε, ρ)-weak LTC. 2 Similarly, we say that a
code C is a strong LTC if it has a linear distance and there exist constants q, ε > 0 such that C is a
(q, ε)-strong LTC.

LTCs were explicitly studied in the work of Goldreich and Sudan [22], who presented prob-
abilistic construction of strong LTCs. These LTCs achieve constant query complexity, constant

soundness and rate
1

exp(Õ(
√

log n))
, where n denotes the blocklength.

Later, other constructions of LTCs [11, 17, 31] succeeded to obtain the rate
1

polylog(n)
together

with constant query complexity and soundness, however these codes were weak LTCs. It can be
verified that every strong LTC is also a weak LTC, but some weak LTCs are not strong LTCs
[38]. In the journal version of [22], the authors pointed out that all known LTCs that achieve
inverse polylogarithmic rate are weak LTCs, and asked about the existence of strong LTCs with
polylogarithmic rate and, in particular, about the explicit construction of such codes [22, Section
6].

The previous papers of the author [38, 37] showed a probabilistic construction of binary linear
3-query strong LTCs with inverse polylogarithmic rate, constant soundness and constant relative
distance. In this paper (Section 1.3), we show the explicit construction of linear strong LTCs with
constant query complexity, constant soundness, polylogarithmic rate and constant relative distance
over a fixed field, therefore resolving a question raised by Goldreich and Sudan [22].3

As was mentioned previously, we prove that the codes of [11] can yield strong LTCs. These
codes (as well as codes of [31, 38, 37]) involve two kind of symbols: core symbols and non-core
symbols [38] (called code symbols and proof symbols, respectively, in [31]). We want to use the
arguments of [38, 37] to prove our main result. However, the codes of [11] have good distance only
on the core symbols with no guarantee on the non-core symbols, while the arguments used in [38]
require both good distance on the core coordinates and on the non-core coordinates. Our main
technical ingredient in this work is observing that the results of [38] can be reproved with only
requirement of good distance on the code coordinates.

2The parameter ρ is required to be less than δ(C)/2 to avoid trivial solutions like claiming that every perfect
code C is a (0, 1, δ(C)/2)-weak LTC. Recall that a code C ⊆ Fn is called perfect if there are no words in Fn that are
(δ(C)/2)-far from C. So, in this case one could say that no queries are needed and all (δ(C)/2)-far words are rejected
with probability 1 vacuously.

3A suggestion to show such explicit construction was raised in personal discussion with Or Meir, and later was
asked in [37].
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1.2 Preliminaries

Let [n] be the set {1, . . . , n}. For w ∈ Fn, let supp(w) = {i ∈ [n] | wi 6= 0} and |w| = | supp(w)|. For
u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ Fn let 〈u, v〉 denote the bilinear function from Fn × Fn

to F defined by 〈u, v〉 =
n∑
i=1

uivi. The dual code is defined by C⊥ = {u ∈ Fn | ∀c ∈ C : 〈u, c〉 = 0}.

Similarly, we define C⊥≤t =
{
u ∈ C⊥ | |u| ≤ t

}
. For w ∈ Fn and S = {j1, j2, . . . , jm} ⊆ [n] we

let w|S = (wj1 , wj2 , . . . , wjm), where j1 < j2 < . . . < jm, be the restriction of w to the subset
S. Similarly, we let C|S = {c|S | c ∈ C} denote the projection of the code C onto S. We define
C|−S = C|[n]\S , i.e., projection of the code C to all coordinates besides S. For A ⊆ N and b ∈ N we
let A+ b = b+A = {a+ b | a ∈ A}.

For the distribution D over the subsets of [n] we let D(I) to denote the probability that a
subset I ⊆ [n] is selected by D and supp(D) = {I ⊆ [n] | D(I) > 0}. For i ∈ [n] we let ND(i) =
{I ∈ supp(D) | i ∈ I}.

Now we define testers and LTCs (see [22, 38] for the justification of this definition).

Definition 1.1 (LTCs and Testers). A q-query tester for a code C ⊆ Fn is a distribution D over
subsets I ⊆ [n] such that |I| ≤ q. A q-query tester D is a (q, ε, ρ)-weak tester if for all w ∈ Fn,
δ(w, C) ≥ ρ we have Pr

I∼D
[w|I /∈ C|I ] ≥ ε. A q-query tester D is a (q, ε)-strong tester if for all w ∈ Fn

we have Pr
I∼D

[w|I /∈ C|I ] ≥ ε · δ(w, C).
A code C ⊆ Fn is a (q, ε, ρ)-weak LTC if it has a (q, ε, ρ)-weak tester. A code C ⊆ Fn is a

(q, ε)-strong LTC if it has a (q, ε)-strong tester.

Remark 1.2. Although the tester in Definition 1.1 does not output accept or reject, the way a
standard tester does, it can be converted to output accept, reject as follows. Whenever the task is
to test whether w ∈ C and a subset I ⊆ [n] is selected by the tester, the tester can output accept if
w|I ∈ C|I and otherwise output reject. In this manner, the tester always accepts the codewords of
C.

It is not hard to see that every strong LTC is a weak LTC, but not vice versa [37].

1.3 Main Result

In this paper we show the explicit construction of strong LTCs over a fixed field with a range of
parameters asked by Goldreich and Sudan [22]. Although the requested range of parameters was
achieved for the probabilistic construction of strong LTCs [38, 37], explicit strong LTCs with this
range of parameters was not obtained.

Theorem 1.3 (Main Theorem). There exist constants q, d, ε, γ > 0 and a constant size field F such
that for infinitely many n ∈ N+ we have an explicit construction of a linear code C ⊆ Fn, where

• C is a (q, ε)-strong LTC,

• δ(C) ≥ γ and rate(C) ≥ 1
logd n

.

The proof of Theorem 1.3 is given in Section 2.
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2 Proof of Theorem 1.3

The proof of Theorem 1.3 contains three parts. In Section 2.1 we recall the notion of relaxed LTCs
and some related results [37]. In particular, this section shows that in order to get desired explicit
string LTCs it is sufficient to get explicit relaxed LTCs with sufficiently good parameters range (see
Corollary 2.5).

A second part is presented in Section 2.2, where it is explained that the result of Ben-Sasson
and Sudan [11] gives explicit relaxed LTCs, however their parameters range is not sufficiently nice.

Finally, Section 2.3 shows that a work of Dinur [17] can be used to improve that soundness of
the relaxed LTCs. It turns out that this improvement is sufficient to change the codes of [11] to
relaxed LTCs with sufficiently good parameters (which is what we need by Corollary 2.5). Since
the gap amplification technique is explicit, it yields explicit construction of relaxed LTCs.

2.1 Relaxed LTCs.

First, we recall a notion of relaxed LTCs [37]. Intuitively, relaxed LTCs have two kind of coordinates:
those with good testability and those which worse (but non-trivial) testability (see Definition 2.2).
Then, we recall an observation and its corollary (Corollary 2.5) of [37] saying that such relaxed
LTCs can be easily converted to strong LTCs. Hence, all we need to prove Theorem 1.3 is to
construct relaxed LTCs with a corresponding range of parameters.

Before we present Observation 2.4, we recall some concept used in [37].

Definition 2.1 (A core of the code). Let C ⊆ Σn be a code. A core of the code C, denoted by
A(C), is a nonempty subset of [n] such that if A(C) 6= [n] then any assignment to the entries of A(C)
uniquely determines the entries of [n] \A(C) and vice versa. I.e., if A(C) 6= [n] then for any c ∈ C
there is no c′ ∈ C such that c|A(C) = c′|A(C) and c|[n]\A(C) 6= c′|[n]\A(C), or c|[n]\A(C) = c′|[n]\A(C)

and c|A(C) 6= c′|A(C).
Clearly, there might be many options for A(C), and in this case we fix only one such option. If

A(C) = [n] then for any w,w′ ∈ Σn we let δ(w|[n]\A(C), w
′|[n]\A(C)) = δ(w|[n]\A(C), C|[n]\A(C)) = 0.

Now we recall the concept of a relaxed LTC (rLTC).

Definition 2.2 (Relaxed LTC). A q-query tester D is a (q, ε1, ε2)-rLTC tester for a linear code
C ⊆ Fn with a core A(C), if for every w ∈ Fn there exists c ∈ C such that Pr

I∼D
[w|I /∈ C|I ] ≥

max
{
ε1 · δ(w|A(C), c|A(C)), ε2 · δ(w|−A(C), c|−A(C))

}
. A code C ⊆ Fn with a core A(C) is a (q, ε1, ε2)-

rLTC if it has a (q, ε1, ε2)-rLTC tester.
The parameter q is called the query complexity, ε1 is called the first soundness parameter and

ε2 is called the second soundness parameter.

Intuitively, think that ε1 is a constant, but ε2 is sub-constant.
The following simple observation [37] says that any strong LTC is also a relaxed LTC with

similar parameters.

Observation 2.3 (Strong LTCs are relaxed). If C ⊆ Fn is a (q, ε)-strong LTC then it is also a
(q, ε, 1)-rLTC with regards to the code A(C) = [n].

The observation follows immediately from the definition of relaxed LTCs (Definition 2.2).
An observation made in [37] was that a relaxed LTC with sub-constant second soundness pa-

rameter can be easily converted to a strong LTC with a constant soundness.
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Observation 2.4 (A conversion of rLTCs to strong LTCs). Let q ≥ 2 and C ⊆ Fn be a linear
(q, ε1, ε2)-rLTC with a core A(C). Then there exists a linear (q, ε1/6)-strong LTC C ′ ⊆ Fn′, where
n ≤ n′ ≤ 12

ε2
· n, dim(C ′) = dim(C), rate(C ′) ≥ ε2

12 · rate(C) and δ(C ′) ≥ 0.9 · δ(C|A(C)). Moreover,
the construction of C ′ from C is explicit and done in time O(n′).

Based on Observation 2.4, [37] proved the following corollary that will play a crucial role in the
proof of Theorem 1.3.

Corollary 2.5. Assume that for constants q ≥ 2, ε > 0, field F and infinitely many n ∈ N+ we have
a linear code C ⊆ Fn with a core A(C) such that C is a (q, ε, 1

polylog(n))-rLTC, δ(C|A(C)) = Ω(1)

and rate(C) = 1
polylog(n) . Then, there exists C ′ ⊆ Fn′ such that n ≤ n′ ≤ n · polylog(n), C ′ is a

(q, ε/6)-strong LTC, δ(C ′) = Ω(1) and rate(C ′) = 1
polylog(n′) . Moreover, C ′ is constructed explicitly

from C.

2.2 Construction of [11] gives relaxed LTCs

We take the construction of Ben-Sasson and Sudan as [11] as a main ingredient of the proof. We
show that such codes have stronger testability properties that were proven in [11].

To present more detailed explanation, let us define the Reed-Solomon codes.

Definition 2.6 (Reed-Solomon codes). Let K denote a finite field, let S ⊆ K and let d < |S| denote
a natural number. The Reed-Solomon codeRSK,S,d : Kd+1 → K |S| is defined as follows: Suppose we

wish to encode a message a ∈ Kd+1 with RSK,S,d. We define the polynomial Pa(X) =
∑d

i=0 aiX
i,

and set the codeword RSK,S,d(a) to consist of the evaluations of Pa at each of the elements of S.
The relative distance of RSK,S,d is 1− d+1

|S| (see Lecture 4 in [34]).

In [11] it was shown that certain Reed-Solomon codes can provide weak LTCs (using repetitions
of some coordinates). More precisely, they showed the following result (the statement uses a concept
CWP, defined in [31], which is almost identical to the PCP of proximity).

Theorem 2.7 (Theorem 4 in [11]). Let K = GF (2l) and let L ⊆ K be a GF (2)-linear subspace of
K. Then for any d < |L| the code RSK,L,d is a CWP with query complexity O(1), rejection ratio
1/poly(log |L|), randomness complexity log |L|+O(log log |L|) and proof length |L| · poly(log |L|).

We note that CWP gives immediately a weak LTC with similar parameters range by repetition
of code coordinates a number of times [31].

The parameters range we are interested in is obtained by choosing d = O(|L|), so one gets a
CWP with constant query complexity and inverse poly-log rejection ratio, with an alphabet of a
super-constant size (since a Reed-Solomon code of block length n must be over an alphabet of size
at least n).

As was pointed out by Meir [31], the construction of Ben-Sasson and Sudan [11] can be viewed
as iterative construction of Reed-Solomon codes, where every step, a tensor product and a deter-
ministic projection are applied. Besides being explicit, such a construction has similar properties
to the construction of [38] and it can be proved similarly, that it gives strong LTCs with inverse
poly-log soundness. More formally, the following theorem can be proved.

Theorem 2.8. For some constant q, d ∈ N+, a fixed field F and infinitely many n ∈ N+ there
exists an explicit linear code C ⊆ Fn and its tester D such that
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• C is a (q, 1
logd n

)-strong LTC with respect to D,

• δ(C) = Ω(1),

• rate(C) = 1
logd n

,

• | supp(D)| ≤ n logd n and for every u ∈ supp(D) it holds that D(u) ≤ logd n
n , and

• for every i ∈ [n] we have |ND(i)| ≤ logd n.

The proof of Theorem 2.8 appears in Section A.
Although the construction of [11] is done over a large field (|F| = O(n)), it can be reduced to

the field of constant size, where the blocklength is increased by poly-log factor and the soundness
parameter is decreased by poly-log factor (see the folklore Theorem B.1). This preserves the strong
LTC to have inverse poly-log rate and soundness.

We notice that by Observation 2.3, Theorem 2.8 gives also explicit (O(1), 1
polylog(n) , 1)-rLTCs

with the same properties stated in the Theorem.

2.3 Gap Amplification of Dinur [17]

In [37] it was explained that the gap amplification of Dinur can be applied to strong LTCs with
inverse poly-log soundness, which can be considered as a relaxed LTC (Observation 2.3). In this
case, the gap amplification preserves it to be an rLTC where first soundness parameter is increased
for a constant, while the second parameter is decreased only by a poly-log factor. In particular,
Section 4 and Section 5 in [37] show that the gap amplification technique can be applied to the
codes from Theorem 2.8 such that the following theorem follows.

Theorem 2.9. For constant q ≥ 2, ε > 0, a fixed field F and infinitely many n ∈ N+ we have
explicit construction for a linear code C ⊆ Fn with a core A(C) such that C is a (q, ε, 1

polylog(n))-

rLTC, δ(C|A(C)) = Ω(1) and rate(C) = 1
polylog(n) .

Theorem 1.3 follows from Theorem 2.9 and Corollary 2.5.
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A Proof of Theorem 2.8

First, let us state one of the results in the work of Polishchuk and Spielman [32].

Theorem A.1 (Theorem 9 in [32]). Let F be a field, let X = {xl, ..., xn} ⊆ F, and let Y =
{yl, ..., yn} ⊆ F. Let R(x, y) be a polynomial over F of degree (d, n) and let C(x, y) be a polynomial
over F of degree (n, d). If

Pr
(x,y)∈X×Y

[R(x, y) 6= C(x, y)] < δ2,

and n > 2δn+ 2d, then there exists a polynomial Q(x, y) of degree (d, d) such that

Pr
(x,y)∈X×Y

[
R(x, y) 6= Q(x, y) or C(x, y) 6= Q(x, y) < 2δ2.

]
This result was one of the main technical ingredients which allowed a composition in the work

of Ben-Sasson and Sudan [11]. Informally, it says that given a word, which is candidate to be
tensoring of two single polynomials, if a typical “row” is close to d-degree polynomial, and a typical
“column” is close to d-degree polynomial, then the candidate word is close to be the tensoring of
two d-degree polynomials.

Now, let us recall some definitions from [38].
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Definition A.2 (Core oriented distance). Assume C ⊆ Fn is a linear code and A(C) is its core.
We define a core oriented distance between two words w,w′ ∈ Fn to be

δA(C)(w,w
′) = min

{
δ(w,w′), δ(w|A(C), w

′
A(C))

}
.

and a core oriented distance between the word w ∈ Fn and the code C to be

δA(C)(w,C) = min
c∈C

{
δA(C)(w, c)

}
.

Definition A.3 (Core Oriented LTC (COLTC)). Let C ⊆ Fn be a linear code and let D be a
distribution over subsets I ⊆ [n] such that |I| ≤ q. A D is a (q, ε)-COLTC tester if, given that
A(C) is a core of C, for all w ∈ Fn we have

Pr
I∼D

[w|I /∈ C|I] ≥ ε · δA(C)(w,C).

A code C ⊆ Fn is called a (q, ε)-COLTC if it has a (q, ε)-COLTC tester.

Let C be a linear code and A(C) be its core. If C is a (q, ε)-COLTC (with respect to the tester
DC) then C is a (q, ε)-strong LTC. To see this let w ∈ Fn and note that

Pr
I∼DC

[w|I ∈ C|I ] ≥ ε · δA(C)(w, c) ≥ ε · δ(w,C).

In [38] it was proved that tensoring of two core oriented LTCs stays to be a core oriented
LTC, where the soundness parameter is reduced by a constant. Also, “random projection” always
preserves this property. It is also the case with the work of Ben-Sasson and Sudan [11], where the
tensoring is made over polynomials and the “projection” stage is explicit. The main difference is
that in [11] the testability is preserved in the composition due to Theorem A.1, while in [38] the
testability is preserved due to [10, 36].

Thus, similarly to [38] it can be proved that the construction of [11] provides core oriented
LTCs with constant query complexity and inverse poly-log soundness. Also, since the construction
includes O(log log(n)) iterations of tensoring and “explicit projections”, assuming we obtain the
code C ⊆ Fn with a tester D, it holds that for some constant d ∈ N+ we have

• | supp(D)| ≤ n logd n and for every u ∈ supp(D) it holds that D(u) ≤ logd n
n , and

• for every i ∈ [n] we have |ND(i)| ≤ logd n.

This is true since every iteration the ratio of a support of a tester divided by the blocklength of
a code is increased only by a fixed constant. Similar things hold with the probability that the tester
takes a fixed test or a fixed coordinate is selected. InSection A.1 we reprove the main technical
theorem from [38] without requiring good distance on the non-core symbols.

A.1 Main Technical ingredient

Now we reprove Theorem A.4 ([38]) that shows that the star products are robustly testable with
respect to “core robustness” (see Definition in [38]). Then one can conclude [38]) that if C?2 is a
q-query COLTC, then C?4 is a q-query COLTC.

12



Theorem A.4. Let C be a linear code with a γ2-core A(C) such that C|A(C) = R⊗2 for a linear
code R ⊆ FnR

2 . Assume that D is the star-tester for the code C?m, where m ≥ 3. Then,

ρDA(C?m)(C
?m) ≥ γ2m

7 ·m2
.

Proof. We know that δ(C|A(C)) ≥ γ2 (see Definition 2.1). Since δ(C|A(C)) = (δ(R))2 we know that
δ(R) ≥ γ.

Let M ∈ Fcoord(C?m)
2 be an input word and α = ρDA(C?m)(M). If ρDA(C?m)(M) ≥ γ2m

7·m2 we are

done. Otherwise, assume that α = ρDA(C?m)(M) < γ2m

7·m2 for the rest of the proof.

In the rest of the proof, when we say “a hyperplane” the intention is “(m − 1)-dimensional
hyperplane”. Notice that the local views selected by the tester can be denoted by (τ, residuem−1(τ))
for a hyperplane τ selected at random. Recall that τ ⊆ A(C?m). We have

α = ρDA(C?m)(M) = E
(τ∪residuem−1(τ))∼D

[
δA(C?(m−1))(M |(τ∪residuem−1(τ)), C

?(m−1))
]
.

In particular, it holds that E
τ

[
δ(M |τ , C?(m−1)|A(C?(m−1)))

]
= E

τ

[
δ(M |τ , R⊗(m−1))

]
≤ α. That

means for a typical hyperplane τ (local view: (τ∪residuem−1(τ))) we have a codeword cτ ∈ C?(m−1)

such that δA(C?(m−1))(M |τ∪residuem−1(τ), cτ ) ≤ α, i.e., δ(M |τ , cτ ) ≤ α and δ(M |τ∪residuem−1 , cτ |τ∪residuem−1(τ)) ≤
α.

Let us call the local view (τ ∪ residuem−1(τ)) far if

δ
(
M |(τ∪residuem−1(τ)), C

?(m−1)|(τ∪residuem−1(τ))

)
≥ γm−1

2
or δ(M |τ , X ′|τ ) = δ(M |τ , X|τ ) ≥ γm−1

2
,

and otherwise it is close. This implies that the fraction of far local views is at most

β = α · 2

γm−1
+ α · 2m2

γm
· 2

γm−1
.

Theorem 6.2 [38] implies the existence X ∈ C?m|A(C?m) = R⊗m such that δ(M |A(C?m), X) ≤
α · 2m2

γm , where we used the fact that δ(R) ≥ γ. Let X ′ ∈ C?m be the corresponding codeword to

X, i.e., X ′|A(C?m) = X. So, we obtain

δ
(
M |A(C?m), X

′|A(C?m)

)
≤ α · 2m2

γm
.

The crucial point is that Theorem 6.2 [38] shows the existence of this X by arguing that many
close local views will be decoded exactly to the closest codeword. The large distance of R implies
that such ’closest’ codeword is unique for every close local view. Therefore, if (τ ∪ residuem−1(τ))
is a close local view, then

δ
(
M |(τ∪residuem−1(τ)), X

′|(τ∪residuem−1(τ))

)
= δA(C?(m−1))

(
M |(τ∪residuem−1(τ)), C

?(m−1)
)
,

while for a far local view (τ∪residuem−1(τ)) we have δ
(
M |(τ∪residuem−1(τ)), X

′|(τ∪residuem−1(τ))

)
≤ 1.
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By Claim ??, δ
(
C?m|τ∪residuem−1(τ)

)
= δ

(
C?(m−1)

)
≥ γm−1, δ (C?m|τ ) = δ

(
C?(m−1)|A(C?(m−1))

)
≥

γm−1 and hence δA(C?(m−1))

(
C?m|τ∪residuem−1(τ)

)
≥ γm−1.

We conclude that δ(M,X ′) ≤ α+ (α · 2m2

γm ·
2

γm−1 + α·2
γm−1 ) · 1 ≤ α · 7m2

γ2m
and

δA(C?m)(M,C?m) ≤ δA(C?m)(M,X ′) = max
{
δ
(
M |A(C?m), X

′|A(C?m)

)
, δ(M,X ′)

}
≤

≤ α · 7m2

γ2m
= ρDA(C?m)(M) · 7m2

γ2m
.

This proves that ρDA(C?m)(M) ≥ γ2m

7m2
· δA(C?m) (M,C?m) and completes the proof of Theorem

A.4.

B Auxiliary statements

Theorem B.1 (Folklore). Let C ⊆ Fnpt be an explicit linear (q, ε)-strong LTC, where q ≥ 3. Then

the code C ′ ⊆ Ftnp can be explicitly constructed from C such that

• C ′ is a (q, ε′)-strong LTC, where ε′ = Ω(ε/t)

• δ(C ′) = Ω(δ(C))

• rate(C ′) ≥ Ω(rate(C)/t)

Proof Sketch: The code C ′ is constructed from C by encoding every element of Fpt by an LDPC

code R ⊆ FO(t)
p , i.e., by O(t) elements of Fp, such that dim(R) = t, and the blocklength of R is

O(t). Since R is an LDPC it has a set U = {u1, . . . , ub−r} ⊆ R⊥≤q such that span(U) = R⊥. The
tester for R on the input word w picks a random u ∈ U and accepts if and only if 〈w, u〉 = 0. It is
not hard to see that the soundness of this tester is at least 1/|U | ≥ 1/b and its query complexity is
at most q. The tester of C ′ combines the testers of R and C.

14

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


