
Explicit Strong LTCs with inverse poly-log rate and constant

soundness

Michael Viderman∗

June 5, 2018

Abstract

An error-correcting code C ⊆ Fn is called (q, ε)-strong locally testable code (LTC) if there
exists a tester that makes at most q queries to the input word. This tester accepts all codewords
with probability 1 and rejects all non-codewords x /∈ C with probability at least ε · δ(x,C),
where δ(x,C) denotes the relative Hamming distance between the word x and the code C. The
parameter q is called the query complexity and the parameter ε is called soundness.

Goldreich and Sudan (J.ACM 2006) asked about the existence of strong LTCs with constant
query complexity, constant relative distance, constant soundness and inverse polylogarithmic
rate. They also asked about the explicit constructions of these codes.

Strong LTCs with the required range of parameters were obtained recently in the works of
Viderman (CCC 2013, FOCS 2013) based on the papers of Meir (SICOMP 2009) and Dinur
(J.ACM 2007). However, the construction of these codes was probabilistic.

In this work we show that codes presented in the works of Dinur (J.ACM 2007) and Ben-
Sasson and Sudan (SICOMP 2005) provide the explicit construction of strong LTCs with the
above range of parameters. Previously, such codes were proven to be weak LTCs. Using the
results of Viderman (CCC 2013, FOCS 2013) we prove that such codes are, in fact, strong LTCs.

∗Yahoo Research, Haifa, Israel. Email: viderman@oath.com

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 20 (2015)

Contents

1 Introduction 3
1.1 Locally Testable Codes . 3
1.2 Preliminaries . 5

1.2.1 Tensor Product of Codes . 6
1.3 Robust Testing . 6
1.4 Main Result . 7

2 Overview of the Proof 7

A Proof of Theorem 1.5 12
A.1 Preliminary notations: Core Oriented LTCs and Core Oriented Robustness 12

A.1.1 Core Oriented Robust Testing of COLTCs . 13
A.1.2 Star Products . 13

A.2 Abstraction over the codes of [11] . 14
A.3 The codes of [11] are COLTCs — Main Technical ingredient 15
A.4 Relaxed LTCs and the Gap Amplification . 17

B A building block for robustness result in [11] 18

C Auxiliary statements 19

2

1 Introduction

Probabilistically Checkable Proof (PCP) systems [2, 3, 21] (a.k.a. Holographic Proofs [4]) are proof
systems that allow efficient probabilistic verification of a claim by reading few symbols of the proof.
The celebrated PCP theorem [2, 3] is one of the main breakthrough results in complexity theory.
This theorem asserts that for every language inNP there exists a polynomial-time PCP verifier that
queries the polynomial length proof in a constant number of locations. The verifier is guaranteed
to always accept valid proofs of true statements, and to accept any claimed proof of false assertions
with low probability. The theorem has found many applications in theoretical computer science,
especially in establishing lower bounds for approximation algorithms [6, 5, 21, 29].

Informally, most of the PCP constructions were achieved using error-correcting codes, possessing
nice properties. Let us first give some auxiliary definitions regarding error-correcting codes.

A code over a finite alphabet Σ is a subset C ⊆ Σn. A linear code over a finite field F is a
linear subspace C ⊆ Fn. In this case, n is the blocklength of the code C, denoted by blocklength(C).
The dimension of a linear code C, denoted by dim(C), is its dimension as a vector space and is
equal to log|F| |C|. The dimension of a non-linear code C over the alphabet Σ is defined to be

dim(C) = log|Σ| |C|. The rate of a code C, denoted by rate(C), is defined to be dim(C)
blocklength(C) = dim(C)

n .

We define the distance between two words x, y ∈ Fn to be ∆(x, y) = |{i | xi 6= yi}| and the

relative distance to be δ(x, y) = ∆(x,y)
n . The distance of C is defined by ∆(C) = min

x 6=y∈C
∆(x, y) and

its relative distance is defined by δ(C) = ∆(C)
n . The Hamming weight of a word x ∈ Fn is denoted by

|x| and defined to be |x| = |{i ∈ [n] | xi 6= 0}|. We note that if C is linear then ∆(C) = min
c∈C\{0}

{|c|}.

One is typically interested in codes whose distance is linear to the blocklength of C, i.e., Ω(n).
For x ∈ Fn and C ⊆ Fn, let δ(x, C) = min

y∈C
{δ(x, y)} denote the relative distance of x from the

code C. If δ(x, C) ≥ ρ, we say that x is ρ-far from C and otherwise x is ρ-close to C.
Given a field F, we say that there exists an explicit construction of a family of linear codes

{Cn ⊆ Fn}n∈N+ if there exists an algorithm that on infinitely many inputs n ∈ N+ outputs the
generating matrix of Cn.

1.1 Locally Testable Codes

Most of the PCP constructions (e.g., [7, 11, 18, 27]) are tightly related to a special kind of error-
correcting codes possessing some testability properties. These codes are called locally testable.

In other words, locally testable codes (LTCs) are error correcting codes that have a tester, which
is a randomized algorithm with oracle access to the received word x. The tester reads a sublinear
amount of information from x and based on this “local view” decides if x ∈ C or not. It should
accept codewords with probability one, and reject words that are far (in Hamming distance) from
the code with noticeable probability. Such codes are of interest in computer science due to their
numerous connections to probabilistically checkable proofs (PCPs) and property testing (see the
surveys [41, 24] for more information). LTCs were implicit already in [4] (cf. [24, Sec. 2.4]) and
they were explicitly studied by Goldreich and Sudan [27] (see also [22, 39]).

By now several different constructions of LTCs are known including codes based on low-degree
polynomials over finite fields and affine-invariant codes [1, 2, 16, 9, 8, 15, 28, 31, 33, 30, 38],
constructions based on PCPs of proximity/assignment testers [7, 19, 18]1, sparse random linear

1As was pointed out in [27], not all PCP constructions are known to yield LTCs, but some of them (e.g., PCPs of

3

codes [14, 32, 35] and tensor products of codes [10, 12, 13, 20, 36, 43, 34].
Basically, there are two kinds of LTCs: weak and strong. A code C is said to be (q, ε, ρ)-weak

LTC if there exists a randomized algorithm T , called tester, that makes at most q queries to the
input word w. If w ∈ C then T accepts w with probability 1, but if w is ρ-far from C the tester T
rejects w with probability at least ε. Let us notice that the tester is not required to reject when
0 < δ(w, C) < ρ. This is the reason why such codes are called weak LTCs.

In contrast to weak LTCs, the testers for strong LTCs are required to reject all non-codewords
with corresponding probability. More formally, a code C is called (q, ε)-strong LTC if there exists
a tester T that makes at most q queries to the input word w. If w ∈ C then T accepts w with
probability 1, but if w /∈ C then T rejects w with probability at least ε · δ(w, C). The parameter q
is called the query complexity and the parameter ε is called soundness.

Informally, we say that a code C is a weak LTC if it has a linear distance and there exist
constants q, ε > 0 and ρ ≤ δ(C)/3 such that C is a (q, ε, ρ)-weak LTC. 2 Similarly, we say that a
code C is a strong LTC if it has a linear distance and there exist constants q, ε > 0 such that C is a
(q, ε)-strong LTC.

LTCs were explicitly studied in the work of Goldreich and Sudan [27], who presented prob-
abilistic construction of strong LTCs. These LTCs achieve constant query complexity, constant

soundness and rate
1

exp(Õ(
√

log n))
, where n denotes the blocklength.

Later, other constructions of LTCs [11, 18, 36] succeeded to obtain the rate
1

polylog(n)
together

with constant query complexity and soundness, however these codes were weak LTCs. It can be
verified that every strong LTC is also a weak LTC, but some weak LTCs are not strong LTCs [45].
So, strong LTCs are strictly stronger objects than weak LTCs. As was pointed out by Goldreich
[23], strong LTCs correspond to proximity oblivious testers [26] whereas weak LTCs are even weaker
than ordinary testers, i.e., the testers for weak LTCs are supposed to work only for a fixed value
of the proximity parameter. In the journal version of [27], the authors pointed out that all known
LTCs that achieve inverse polylogarithmic rate are weak LTCs, and asked about the existence of
strong LTCs with polylogarithmic rate and, in particular, about the explicit construction of such
codes [27, Section 6].

The previous papers of the author [45, 44] showed a probabilistic construction of binary linear
3-query strong LTCs with inverse polylogarithmic rate, constant soundness and constant relative
distance. In this paper (Section 1.4), we show the explicit construction of linear strong LTCs with
constant query complexity, constant soundness, polylogarithmic rate and constant relative distance
over a fixed field, therefore resolving a question raised by Goldreich and Sudan [27].3 We would
like to stress that the codes we refer to were, in fact, only a special case of PCPs and PCPs of
proximity constructed in [11, 18]. Therefore, this work discovers strong local testability properties
in the objects tightly related to the short PCPs and so, might be useful for the future PCPs related
applications.

proximity/assignment testers) can be adapted to yield LTCs.
2The parameter ρ is required to be less than δ(C)/2 to avoid trivial solutions like claiming that every perfect

code C is a (0, 1, δ(C)/2)-weak LTC. Recall that a code C ⊆ Fn is called perfect if there are no words in Fn that are
(δ(C)/2)-far from C. So, in this case one could say that no queries are needed and all (δ(C)/2)-far words are rejected
with probability 1 vacuously.

3A suggestion to show such explicit construction was raised in personal discussion with Or Meir, and later was
asked in [44].

4

As was mentioned previously, we prove that the codes of [11, 18] yield explicit strong LTCs.
To do that we want to reuse the arguments of [45, 44] to prove that the codes of [11, 18] are
explicit strong LTCs. These codes (as well as codes of [36, 45, 44]) involve two kind of symbols:
code symbols and proof symbols (called also core symbols and non-core symbols, respectively, in
[45]). 4 However, the codes of [11] have good distance only on the code symbols with no guarantee
on the proof symbols, while the arguments used in [45] require both good distance on the code
coordinates and on the proof coordinates. Therefore, our main technical ingredient in this work is
observing that the results of [45] can be reproved with only requirement of good distance on the
code coordinates.

The rest of the paper is organized as follows. We provide the necessary definitions in Section 1.2
and state our main result (Theorem 1.5) in Section 1.4. The main ideas and the overview of the
proof of Theorem 1.5 are given in Section 2. The proof of Theorem 1.5 is postponed to Section A.

1.2 Preliminaries

Let [n] be the set {1, . . . , n}. For w ∈ Fn, let supp(w) = {i ∈ [n] | wi 6= 0} and |w| = | supp(w)|. For
u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ Fn let 〈u, v〉 denote the bilinear function from Fn × Fn

to F defined by 〈u, v〉 =
n∑
i=1

uivi. The dual code is defined by C⊥ = {u ∈ Fn | ∀c ∈ C : 〈u, c〉 = 0}.

Similarly, we define C⊥≤t =
{
u ∈ C⊥ | |u| ≤ t

}
. For w ∈ Fn and S = {j1, j2, . . . , jm} ⊆ [n] we

let w|S = (wj1 , wj2 , . . . , wjm), where j1 < j2 < . . . < jm, be the restriction of w to the subset
S. Similarly, we let C|S = {c|S | c ∈ C} denote the projection of the code C onto S. We define
C|−S = C|[n]\S , i.e., projection of the code C to all coordinates besides S. For A ⊆ N and b ∈ N we
let A + b = b + A = {a+ b | a ∈ A}. For a code C we let coord(C) to be a coordinate set of the
code, e.g., if C ⊆ Fn then coord(C) = [n].

For the distribution D over the subsets of [n] we let D(I) to denote the probability that a
subset I ⊆ [n] is selected by D and supp(D) = {I ⊆ [n] | D(I) > 0}. For i ∈ [n] we let ND(i) =
{I ∈ supp(D) | i ∈ I}.

Now we define testers and LTCs (see [27, 45] for the justification of this definition).

Definition 1.1 (LTCs and Testers). A q-query tester for a code C ⊆ Fn is a distribution D over
subsets I ⊆ [n] such that |I| ≤ q. A q-query tester D is a (q, ε, ρ)-weak tester if for all w ∈ Fn,
δ(w, C) ≥ ρ we have Pr

I∼D
[w|I /∈ C|I] ≥ ε. A q-query tester D is a (q, ε)-strong tester if for all w ∈ Fn

we have Pr
I∼D

[w|I /∈ C|I] ≥ ε · δ(w, C).
A code C ⊆ Fn is a (q, ε, ρ)-weak LTC if it has a (q, ε, ρ)-weak tester. A code C ⊆ Fn is a

(q, ε)-strong LTC if it has a (q, ε)-strong tester.

Remark 1.2. Although the tester in Definition 1.1 does not output accept or reject, the way a
standard tester does, it can be converted to output accept, reject as follows. Whenever the task is
to test whether w ∈ C and a subset I ⊆ [n] is selected by the tester, the tester can output accept if
w|I ∈ C|I and otherwise output reject. In this manner, the tester always accepts the codewords of
C.

4The concepts like ’code’ and ’proof’ coordinates appear in PCP related literature, but might appear under
different names (statement and proof) and with slightly different meaning as well.

5

It is not hard to see that every strong LTC is a weak LTC, but not vice versa [45, Proposition
B.1].

The support of the tester DC for the code C ⊆ Fn is denoted by supp(DC) and defined to
be supp(DC) = {I ⊆ [n] | DC(I) > 0}. We say that DC is uniform over its support if for each
I1, I2 ∈ supp(DC) we have DC(I1) = DC(I2). The test neighbors of the coordinate i ∈ [n] are
defined by NDC (i) = {I ⊆ [n] | DC(I) > 0, i ∈ I}.

1.2.1 Tensor Product of Codes

The definitions appearing here are standard in the literature on tensor-based LTCs (e.g., [10, 36,
45, 20, 43, 12]). For x ∈ Fn1 and y ∈ Fn2 we let x ⊗ y denote the tensor product of x and y (i.e.,
the matrix M with entries M(i, j) = xj · yi where (i, j) ∈ [n2] × [n1]). Let R ⊆ Fn1 and C ⊆ Fn2

be linear codes. We define the tensor product code R⊗C to be the linear space spanned by words
r ⊗ c ∈ Fn2×n1 for r ∈ R and c ∈ C. Some known facts regarding the tensor products (see e.g.,
[20]):

• The code R⊗C consists of all n2 × n1 matrices over F whose rows belong to R and columns
belong to C,

• dim(R⊗ C) = dim(R) · dim(C),

• rate(R⊗ C) = rate(R) · rate(C) and

• δ(R⊗ C) = δ(R) · δ(C).

We let C⊗1 = C and C⊗m = C⊗(m−1) ⊗ C for m > 1. Note by this definition, C⊗20 = C and
C2m = C⊗2m−1 ⊗ C⊗2m−1

for t > 0. We also notice that for a code C ⊆ Fn and m ≥ 1 it holds that
rate(C⊗m) = (rate(C))m, δ(C⊗m) = (δ(C))m and the blocklength of C⊗m is nm. We notice that if
coord(C) = [n] then the coordinate set of C ⊗ C is coord(C ⊗ C) = [n]× [n].

1.3 Robust Testing

In this section we define some properties of codes that are sufficient for robust testing. We start
this section by defining the notion of robustness (Definition 1.4) as was introduced in [10] following
[7]. To do that we provide the definition of local distance (Definition 1.3), which will be used in
Definition 1.4 and later in our proofs. In this section we use n to denote the blocklength of the
code C, i.e., n = |coord(C)|. Without loss of generality we assume that coord(C) = [n].

Definition 1.3 (Local distance). Let C ⊆ Fn be a code and w|I be the view on the coordinate
set I ⊆ [n] obtained from the word w ∈ Fn. The local distance of w from C with respect to I is
∆(w|I , C|I) = min c ∈ C{∆(w|I , c|I)} and similarly the relative local distance of w from C with
respect to I is δ(w|I , C|I) = minc∈C {δ(w|I , c|I)}.

Informally, we say that a tester is robust if for every word that is far from the code, the tester
view is far on average from any consistent view. This notion was defined for LTCs following an
analogous definition for PCPs [7, 18]. We are ready to provide a general definition of robustness.

6

Definition 1.4 (Robustness). Given a tester (i.e., a distribution) D for the code C ⊆ Fn, we let

ρD(w) = E
I∼D

[δ(w|I , C|I)] be the expected relative local distance of input w.

We say that the tester D has robustness ρD(C) on the code C if for every w ∈ Fn it holds that
ρD(w) ≥ ρD(C) · δ(w,C). Let {Cn}n be a family of codes where Cn is of blocklength n and Dn is a
tester for Cn. A family of codes {Cn}n is robustly testable with respect to testers {Dn}n if there
exists a constant α > 0 such that for all n we have ρDn(Cn) ≥ α.

1.4 Main Result

In this paper we show the explicit construction of strong LTCs over a fixed field with a range of
parameters asked by Goldreich and Sudan [27]. Although the requested range of parameters was
achieved for the probabilistic construction of strong LTCs [45, 44], explicit strong LTCs with this
range of parameters was not obtained.

Theorem 1.5 (Main Theorem). There exist constants q, d, ε, γ > 0 and a constant size field F such
that for infinitely many n ∈ N+ we have an explicit construction of a linear code C ⊆ Fn, where

• C is a (q, ε)-strong LTC,

• δ(C) ≥ γ and rate(C) ≥ 1
logd n

.

The proof of Theorem 1.5 is given in Section A. Before we are going over the proof let us present
the overview and the main ideas of this proof in Section 2.

2 Overview of the Proof

Roughly speaking, to prove Theorem 1.5 we apply the arguments of [45, 44] to the construction
of [18] (which was obtained by applying the gap amplification procedure on the codes of [11]).
However, it is impossible to use the observations of [45, 44] as is since there are considerable
differences between the construction of [11] and the construction of [45, 44] (based on [36]).

The first obstacle is that the codes of [11] were obtained from iterative polynomial constructions,
while the codes appeared in [45, 44] (based on [36]) are tensor products of general error correcting
codes. This issue is resolved since the construction of [11] can be viewed as a kind of tensoring
over a large field (see [36, Section 7.2]). It is worth to mention that while [45, 36] used iterative
3-wise tensor products for the code construction, [11] can be viewed as iterative 2-wise tensor
products (see Section A.2). In general, codes composed as 2-wise tensor products might be not
testable [17, 42, 25], however, there are still ways to use such kind of code products to obtain locally
testable codes, e.g., [20, 12, 13, 36].

The second difficulty is that both kind of constructions have the ’code’ coordinates and ’proof’
coordinates. While there is no distance guarantee on the proof coordinates in [11], the constant
relative distance on these coordinates is required in the works of [45, 44]. More formally, consider
a code C ⊆ Fn from [11] and assume that [n] is partitioned to code coordinates set s1 and proof
coordinates set s2, i.e., s1 ∪ s2 = [n], s1 ∩ s2 = ∅. So, while nothing could be guaranteed regarding
δ(C|s2), to use the arguments of [45, 44] we need to know that δ(C|s2) is constant, or in words,
C|s2 has constant relative distance.

7

In [45] there was suggested a way to slightly modify the construction of [36] to ensure the good
distance on the proof coordinates. However, it would be much more problematic to modify a part of
coordinates in the construction of [11] since it has very concrete and non-flexible polynomial-based
structure. Therefore, the main technical ingredient in our work is the modification of the arguments
of [45, 44] to avoid ’good distance’ requirement from the proof coordinates. We succeed to prove
that it was redundant requirement and only a good distance on the code coordinates is sufficient.

So far, the proof (presented in Section A) is starting from presenting central concepts which
play crucial role in the proof. After these concepts are presented, the rest of the proof is done in 3
stages. The first stage (Section A.2) argues that a construction of [11] can be viewed as iterative
tensoring with some “smart” projection procedure, where in every iteration a tensoring is done
only over the code coordinates and a part of the symbols are moved from the code coordinates part
to the proof coordinates part.

The second stage (Section A.3) is to recall the arguments of [45] to argue that codes of [11]
are COLTCs (Definition A.3). This stage reproves one of the technical ingredients of [45] without
“good” distance requirement from the proof coordinates, and in particular, Corollary A.14 shows
that the codes of [11] are COLTCs (and hence strong LTCs) even though no distance is guaranteed
on the proof coordinates.

Finally, in Section A.4 we recall the arguments of [44] to argue that when the gap amplification
procedure of [18] is applied to the codes of [11] it yields strong LTCs. In words, this section recalls
a relaxed LTC (rLTC) concept (Definition A.15) from [44], and the observation that strong LTCs
are also relaxed LTCs with the corresponding range parameters. Theorem A.17 and its Corollary
A.18 claim that the gap amplification of Dinur [18] can be applied to the codes of [11], proven
to be COLTCs in Corollary A.14 (and thus are strong LTCs and rLTCs), and yields rLTCs with
the constant first soundness parameter and inverse poly-log second soundness parameter. Corollary
A.20 implies that such rLTCs can be explicitly converted to the required strong LTCs with constant
soundness.

The fact that the codes construction of [11] and the gap amplification procedure are determin-
istic, yields explicit strong LTCs.

Theorem 1.5 will follow from Corollary A.18 and Corollary A.20.

Acknowledgements

The author thanks Or Meir for raising the suggestion to obtain an explicit construction of strong
LTCs by applying the arguments of [45, 44] to the codes of [11]. We would like to thank the
anonymous reviewers for their valuable comments.

References

[1] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing Reed-
Muller codes. IEEE Transactions on Information Theory, 51(11):4032–4039, 2005.

[2] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
Verification and the Hardness of Approximation Problems. Journal of the ACM, 45(3):501–
555, May 1998.

8

[3] Sanjeev Arora and Shmuel Safra. Probabilistic Checking of Proofs: A New Characterization
of NP. Journal of the ACM, 45(1):70–122, January 1998.

[4] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking Computations
in Polylogarithmic Time. In Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing (STOC), May 5-8, 1991, New Orleans, Louisiana, USA, pages 21–31. ACM, 1991.

[5] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically checkable proofs
and applications to approximation. In Proceedings of the 25th Annual ACM Symposium on
Theory of Computing (STOC), pages 294–304, New York, 1993. ACM SIGACT, ACM Press.

[6] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free Bits, PCPs, and Nonapproximability—
Towards Tight Results. SIAM Journal on Computing, 27(3):804–915, June 1998.

[7] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Robust
PCPs of Proximity, Shorter PCPs, and Applications to Coding. SIAM Journal on Computing,
36(4):889–974, 2006.

[8] Eli Ben-Sasson, Elena Grigorescu, Ghid Maatouk, Amir Shpilka, and Madhu Sudan. On sums
of locally testable affine invariant properties. In Proceedings of Approximation, Randomiza-
tion, and Combinatorial Optimization (APPROX-RANDOM), volume 6845 of Lecture Notes
in Computer Science, pages 400–411. Springer, 2011.

[9] Eli Ben-Sasson, Noga Ron-Zewi, and Madhu Sudan. Sparse affine-invariant linear codes are
locally testable. In FOCS, pages 561–570. IEEE Computer Society, 2012.

[10] Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and products of codes.
Random Struct. Algorithms, 28(4):387–402, 2006.

[11] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM J.
Comput, 38(2):551–607, 2008.

[12] Eli Ben-Sasson and Michael Viderman. Composition of Semi-LTCs by Two-Wise Tensor
Products. In Proceedings of Approximation, Randomization, and Combinatorial Optimization
(APPROX-RANDOM), volume 5687 of Lecture Notes in Computer Science, pages 378–391.
Springer, 2009.

[13] Eli Ben-Sasson and Michael Viderman. Tensor Products of Weakly Smooth Codes are Robust.
Theory of Computing, 5(1):239–255, 2009.

[14] Eli Ben-Sasson and Michael Viderman. Low rate is insufficient for local testability. In
Proceedings of Approximation, Randomization, and Combinatorial Optimization (APPROX-
RANDOM), volume 6302 of Lecture Notes in Computer Science, pages 420–433. Springer,
2010.

[15] Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and David Zuck-
erman. Optimal testing of reed-muller codes. In FOCS, pages 488–497. IEEE Computer
Society, 2010.

9

[16] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. Journal of Computer and System Sciences, 47(3):549–595, December
1993.

[17] Don Coppersmith and Atri Rudra. On the Robust Testability of Product of Codes. Electronic
Colloquium on Computational Complexity (ECCC), (104), 2005.

[18] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12:1–12:44,
June 2007.

[19] Irit Dinur and Omer Reingold. Assignment Testers: Towards a Combinatorial Proof of the
PCP Theorem. SIAM Journal on Computing, 36(4):975–1024, 2006.

[20] Irit Dinur, Madhu Sudan, and Avi Wigderson. Robust Local Testability of Tensor Products
of LDPC Codes. In Proceedings of Approximation, Randomization, and Combinatorial Opti-
mization (APPROX-RANDOM), volume 4110 of Lecture Notes in Computer Science, pages
304–315. Springer, 2006.

[21] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Interactive
proofs and the hardness of approximating cliques. Journal of the ACM, 43(2):268–292, 1996.

[22] Katalin Friedl and Madhu Sudan. Some improvements to total degree tests. In Third Israel
Symposium on Theory of Computing and Systems, ISTCS 1995, Tel Aviv, Israel, January 4-6,
1995, Proceedings, pages 190–198, 1995.

[23] Oded Goldreich. Home page.

[24] Oded Goldreich. Short Locally Testable Codes and Proofs (Survey). Electronic Colloquium on
Computational Complexity (ECCC), (014), 2005.

[25] Oded Goldreich and Or Meir. The tensor product of two good codes is not necessarily robustly
testable. Inf. Process. Lett, 112(8-9):351–355, 2012.

[26] Oded Goldreich and Dana Ron. On proximity-oblivious testing. SIAM J. Comput, 40(2):534–
566, 2011.

[27] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear length.
Journal of the ACM, 53(4):558–655, July 2006.

[28] Elena Grigorescu, Tali Kaufman, and Madhu Sudan. Succinct representation of codes with
applications to testing. SIAM J. Discrete Math, 26(4):1618–1634, 2012.

[29] Johan H̊astad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859,
2001.

[30] Tali Kaufman and Shachar Lovett. New Extension of the Weil Bound for Character Sums
with Applications to Coding. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, (FOCS), pages 788–796. IEEE, 2011.

[31] Tali Kaufman and Dana Ron. Testing polynomials over general fields. SIAM J. Comput,
36(3):779–802, 2006.

10

[32] Tali Kaufman and Madhu Sudan. Sparse Random Linear Codes are Locally Decodable and
Testable. In FOCS, pages 590–600. IEEE Computer Society, 2007.

[33] Tali Kaufman and Madhu Sudan. Algebraic property testing: the role of invariance. In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), Victoria,
British Columbia, Canada, May 17-20, 2008, pages 403–412. ACM, 2008.

[34] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally cor-
rectable and locally testable codes with sub-polynomial query complexity. J. ACM, 64(2):11:1–
11:42, 2017.

[35] Swastik Kopparty and Shubhangi Saraf. Local list-decoding and testing of random linear
codes from high error. In Proceedings of the 42nd ACM Symposium on Theory of Computing
(STOC), pages 417–426. ACM, 2010.

[36] Or Meir. Combinatorial Construction of Locally Testable Codes. SIAM J. Comput, 39(2):491–
544, 2009.

[37] Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs. In
Proceedings of the 26th Annual Symposium on the Theory of Computing, pages 194–203, New
York, May 1994. ACM Press.

[38] Noga Ron-Zewi and Madhu Sudan. A new upper bound on the query complexity for testing
generalized reed-muller codes. In Proceedings of Approximation, Randomization, and Com-
binatorial Optimization (APPROX-RANDOM), volume 7408 of Lecture Notes in Computer
Science, pages 639–650. Springer, 2012.

[39] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM J. Comput., 25(2):252–271, 1996.

[40] Madhu Sudan. Algorithmic introduction to coding theory, Lecture notes, 2001.

[41] Luca Trevisan. Some Applications of Coding Theory in Computational Complexity, Septem-
ber 23 2004.

[42] Paul Valiant. The Tensor Product of Two Codes Is Not Necessarily Robustly Testable. In
Proceedings of Approximation, Randomization, and Combinatorial Optimization (APPROX-
RANDOM), volume 3624 of Lecture Notes in Computer Science, pages 472–481. Springer,
2005.

[43] Michael Viderman. A combination of testability and decodability by tensor products. In
Proceedings of Approximation, Randomization, and Combinatorial Optimization (APPROX-
RANDOM), volume 7408 of Lecture Notes in Computer Science, pages 651–662. Springer,
2012.

[44] Michael Viderman. Strong LTCs with inverse poly-log rate and constant soundness. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS, Berkeley, CA, USA,
26-29 October, 2013, pages 330–339, 2013.

[45] Michael Viderman. Strong LTCs with inverse polylogarithmic rate and soundness. In Proceed-
ings of the 28th Conference on Computational Complexity, CCC, Palo Alto, California, USA,
5-7 June, 2013, pages 255–265, 2013.

11

A Proof of Theorem 1.5

In this section we present the proof of Theorem 1.5 which contains three parts. Let us first present
in Section A.1 the central concepts from [45] which play the important part in this work as well.

A.1 Preliminary notations: Core Oriented LTCs and Core Oriented Robustness

Definition A.1 (A core of the code). Let C ⊆ Fn be a linear code. A core of the code C, denoted
by A(C), is a nonempty subset of [n] such that dim(C) = dim(C|A(C)), i.e., any assignment to the
entries of A(C) uniquely determines the entries of [n] \A(C). In particular, for any c ∈ C there is
no c′ ∈ C such that c|A(C) = c′|A(C) and c|[n]\A(C) 6= c′|[n]\A(C).

We say that A(C) is a γ-core of the code C if A(C) is a core of C, δ(C|A(C)) =
∆(C|A(C)

|A(C)| ≥ γ.

Clearly, there might be many options for A(C), and in this case we fix only one such option. If
A(C) = [n] then for any w,w′ ∈ Fn we let δ(w|[n]\A(C), w

′|[n]\A(C)) = δ(w|[n]\A(C), C|[n]\A(C)) = 0.
We let residue(C) = [n] \A(C) to be the non-core coordinates of C.

Usually, in the locally testable codes the distance is measured exactly as in the general error-
correcting codes, i.e., with respect to the entire blocklength. However, when we consider a specific
subset of coordinates, called the core of the code, we need to define a new concept of distance (used
in [45]).

Definition A.2 (Core oriented distance). Assume C ⊆ Fn is a linear code and A(C) is its core.
We define a core oriented distance between two words w,w′ ∈ Fn to be

δA(C)(w,w
′) = max

{
δ(w,w′), δ(w|A(C), w

′|A(C))
}
,

and a core oriented distance between the word w ∈ Fn and the code C to be

δA(C)(w,C) = min
c∈C

(δA(C)(w, c)).

We note that for every code C ⊆ Fn with a core A(C) and w ∈ Fn it holds that δA(C)(w,C) ≥
δ(w,C). In particular, if w is δ-close to C with respect to the core oriented distance then w is
δ-close to C with respect to the “standard” distance δ(w,C).

An important building block in the proof is a new kind of local testable code defined in [45].

Definition A.3 (Core Oriented LTC (COLTC)). Let C ⊆ Fn be a linear code and let D be a
distribution over subsets I ⊆ [n] such that |I| ≤ q. A D is a (q, ε)-COLTC tester if, given that
A(C) is a core of C, for all w ∈ Fn we have

Pr
I∼D

[w|I /∈ C|I] ≥ ε · δA(C)(w,C).

A code C ⊆ Fn is called a (q, ε)-COLTC if it has a (q, ε)-COLTC tester.

Let C be a linear code and A(C) be its core. If C is a (q, ε)-COLTC (with respect to the tester
DC) then C is a (q, ε)-strong LTC. To see this let w ∈ Fn and note that

Pr
I∼DC

[w|I ∈ C|I] ≥ ε · δA(C)(w, c) ≥ ε · δ(w,C).

12

A.1.1 Core Oriented Robust Testing of COLTCs

Now we present one of the central concepts in [45] called “core robustness”. Before that recall the
more standard notion of robust testing (Definition 1.4) used e.g., in [10, 20, 12, 36].

In contrast to robust testing, in a core oriented robust testing (Definition A.4) we pay a special
attention on the core of the code and consider a core oriented distance rather than a standard
distance as in Definition 1.4.

Definition A.4 (Core robustness). Assume that D is a tester (i.e., a distribution) for the linear
code C ⊆ Fn with a core A(C). Assume that for every subset I ⊆ [n] such that D(I) > 0 it holds
that C|I is a linear code with a core A(C|I). We let

ρDA(C)(w) = E
I∼D

[
δA(C|I)(w|I , C|I)

]
be the expected core oriented relative local distance of input w. We say that the testerD for the code
C has core robustness ρDA(C)(C) if for every w ∈ Fn it holds that ρDA(C)(w) ≥ ρDA(C)(C) ·δA(C)(w,C).

It turns out that a combination of core robustness with COLTCs is highly useful.

Claim A.5 (Claim 7.2 in [45]). Let C be a (q, ε)-COLTC and let DC be its tester. Let Ĉ ⊆ Fcoord(Ĉ)

be a linear code with a core A(Ĉ) and let DĈ be its tester. Assume that ρ
DĈ
A(Ĉ)

(Ĉ) ≥ α and for every

local view I ⊆ coord(Ĉ) such that DĈ(I) > 0 it holds that Ĉ|I = C. Then Ĉ is a (q, α · ε)-COLTC.

A.1.2 Star Products

Now we provide a definition of star products from [45]. These products of codes are very similar
to ones used in [36, Section 4], although there exist minor differences. We notice that in this work
we are interested mainly in such products of second power (and will not consider m-wise products
for m ≥ 3 as in [45]).

Informally, 2-star product of C ∈ Fn is defined by taking tensor product on its core coordinates
A(C) and appending its non-core parts (residues) [n] \ A(C) to every row/column of such tensor
product. This tensor product becomes a core of the obtained start product, and all appended
residues are the residue of the star product.

Definition A.6 (Star Products - C?2). . Let C ⊆ Fn be a linear code with a γ-core A(C), where
γ > 0 is a constant.

We let C?2 to be a linear code over F such that its core and residue will be defined as follows.
we let the core coordinates A(C?2) = A(C)×A(C), and the projection of the code on the core

coordinates is C?2|A(C?2) = C|A(C) ⊗ C|A(C). The residue of C?2 (residue(C?2)) is defined by the
residue of every codeword c ∈ C?2 as follows:

view every such codeword c|A(C?2) ∈ C?2|A(C?2) as a matrix of size |A(C)|×|A(C)|. Its residue(c)
is defined by appending for every row r of c|A(C?2) attach residue residue(r) such that both parts
together is a codeword in C, i.e., (r, residue(r)) ∈ C. Since A(C) is a core, the residue(r) is defined
uniquely given r.

The blocklength of C?2 is |A(C)|2 + 2 ·A(C) · (n−A(C)).

Now, let us define formally the tester for the star product.

13

Definition A.7 (Tester for Star Product). Let DC be a tester for a linear code C ∈ Fn with core
A(C). Then, a tester for C?2, denoted by DC?2 , is defined by:

• pick random r ∈ {0, 1}

– if r = 0 pick random row of A(C?2) and its residue.

– else pick random column of A(C?2) and its residue.

Notice that for every local view I ⊆ coord(C?2) such that DC?2(I) > 0 it holds that C?2|I = C.
I.e., a local view of such a tester on any codeword of C?2 is always a codeword of C.

The rest of the proof is organized as follows. A first part of the proof (Section A.2) argues
that codes of [11] can be viewed as tensoring over sufficiently large field, together with the explicit
projection step. The purpose of this part is to define the required abstraction over the codes of [11]
needed for our work.

A second part is presented in Section A.3, where it is explained that the codes of Ben-Sasson
and Sudan [11] are COLTCs, however, their parameters range is not sufficiently nice. Here we
use the fact that their construction can be viewed as a repetitive tensoring as was explained in
Section A.2.

Finally, Section A.4 recalls the notion of a relaxed LTC and some related results [44]. It shows
that a work of Dinur [18] can be used to improve that soundness of the relaxed LTCs. It turns out
that this improvement is sufficient to change the codes of [11] to relaxed LTCs with good enough
parameters (which is what we need by Corollary A.20). Since the gap amplification technique is
explicit, it yields explicit construction of relaxed LTCs. Corollary A.20 proves that relaxed LTCs
with sufficiently nice parameters can be converted to strong LTCs with constant soundness. That
proves Theorem 1.5.

A.2 Abstraction over the codes of [11]

Let us recall an auxiliary procedure that will be used in the code constructions.

Definition A.8 (Projection of core symbols). Given a linear code C ⊆ Fn with a code A(C), the
projection(C) ⊆ Fn is a linear code with a new core A′ = A′(C) ⊆ A(C), i.e., some core symbols
moved to the non-core part.

The abstraction assumed in this Section described in [36, Section 7.2]. For the sake of com-
pleteness we give the required details in this section.

Let δ, γ > 0 be constants and F be sufficiently large field. 5

The explicit construction of [11] can be viewed in the following way. It started from an
error-correcting code of constant size blocklength C1 ⊆ Fn1 such that A(C1) = [n1], and for
i = 2 . . . log log n the following holds.

• Ti = C?2i−1, i.e., tensoring is done over the core coordinates and residue coordinates are just
appended to every row/column code.

5The codes of [11] are constructed over fields of size linear in a blocklength of the code. The folklore statement
(Theorem C.1) says it is not hard to explicitly convert such strong LTCs to be over a constant size field with similar
parameters.

14

• Ci+1 = projection(Ti), where a constant fraction of the code coordinates are moved from
the “core” part (A(Ti)) to the “residue” part (residue(Ti)). Notice that projection is the
explicitly defined procedure.

• A(Ci+1) is a γ-core of Ci+1, and in particular, δ(Ci|A(projection(Ci))) ≥ γ.

• dim(Ci+1) = dim(Ci)
2

• It is known that rate(Ci|A(projection(Ci)))) ≥ δ

• It is known that rate(Ci+1) ≥ δ · rate(Ci)

It was proved in [11] that if w ∈ Fni and w|A(Ci) /∈ Ci|A(Ci) it holds that the local view of the
testerDCi is far from the corresponding code, and this distance is proportional to δ(w|A(Ci), Ci|A(Ci)).
For more details please see Section B.

Claim A.9 ([11]). Let i be the number of iteration in the code construction of [11]. Let Ci ⊆ Fni be
the [11] code from ith iteration and A(Ci) its γ-core for a constant γ > 0. There exists a constant
εγ depending only on γ such that for every M ∈ F|A(Ci)|×|A(Ci)| the random row/column of M is
ε · δ(M,Ci|A(Ci) ⊗ Ci|A(Ci)) close to Ci|A(Ci).

In the classical PCPP structure [11], i.e., the distance is measured only between the core coordi-
nates, and proof (non-core) coordinates help only to test, without being involved into the distance
calculations. In our scenario (strong locally testable codes) we need to take the proof coordinates
into consideration as well.

It is not hard to verify that the above codes construction has the following properties.

Claim A.10. Let C ⊆ Fn be the code from the above construction and DC be its tester. Then,

• DC is uniform over supp(DC), and

• for each i ∈ [n] we have |NDC (i)| ≤ O(poly log(n)).

Proof. The construction has O(log log(n)) iterations. Every iteration, the tester has uniform dis-
tribution over all its local views, and this invariant holds during the entire construction. Ev-
ery iteration the maximal number of tests querying a coordinate is at most doubled. Hence,
after O(log log(n)) iterations, it holds that for any i ∈ [n] we have |NDC (i)| ≤ 2O(log log(n)) =
polylog(n).

A.3 The codes of [11] are COLTCs — Main Technical ingredient

Now we reprove Theorem A.12 ([45]) showing that the star products are robustly testable with
respect to “core robustness” (see Definition A.4). Then one can conclude that if C is a q-query
COLTC, then C?2 is a q-query COLTC.

Claim A.11 (Unique decoding w.r.t. core). Let C ⊆ Fn be a linear code and let A(C) be its
γ-core. Assume x ∈ Fn such that δA(C)(x,C) < γ/2 and δ(x|A(C), c|A(C)) < γ/2 for some c ∈ C.
Then, c is the unique closest codeword of C to x w.r.t. core distance and in particular, it holds that
δ(x|A(C), c|A(C)) ≤ δA(C)(x, c) < γ/2.

15

Proof. Assume to the contrary, i.e., there exists c′ ∈ C such that c′ 6= c and δ(x|A(C), c
′|A(C)) ≤

δ(x|A(C), c|A(C)) < γ/2.
Since A(C) is a γ-core Definition A.1 implies that δ(C|A(C)) ≥ γ and hence c′|A(C) = c|A(C).

Then, again Definition A.1 implies that c′ = c since any assignment to the entries of A(C) uniquely
determines the entries of [n] \A(C). Contradiction.

We claim it holds that δA(C)(x, c) < γ/2 because otherwise, by Definition A.2 we have δ(x, c) >=
γ/2. However, by the assumption of Claim A.11 there exists c′′ ∈ C such that δA(C)(x, c

′′) < γ/2,
but then, again δ(x|A(C), c

′′|A(C)) < γ/2 and c′′ = c. Contradiction.
Finally, notice that by Definition A.2 we have δ(x|A(C), c|A(C)) ≤ δA(C)(x, c).

We are ready to prove that the star product of codes has the core robustness.

Theorem A.12 (Star Products has core robustness). Let C be a linear code with a γ-core A(C).
Assume that D is the star product tester for the code C?2. Let εγ be a constant from Claim A.9.
Then,

ρDA(C?2)(C
?2) ≥ εγ · γ

10
.

Proof. Let M ∈ Fcoord(C?2) be an input word and α = ρDA(C?2)(M). If α ≥ εγ ·γ
10 we are done.

Otherwise, assume that α <
εγ ·γ
10 for the rest of the proof. We need to prove that δA(C?2)(M,C?2) ≤

α
εγ ·γ
10

.

Recall that a local view of the tester D is either row or column of M |A(C?2) with its residue.
We say the local view x of the tester D is bad if δ(x,C) ≥ γ/2. Therefore, the fraction of bad local
views is at most α

γ/2 .

By Definition A.4 it holds that the average local view (row/column with its residue) is α-close to
C with respect to core distance δA(C)(·, ·). By Claim A.9 we have δ(M |A(C?2), C

?2|A(C?2)) ≤ α/εγ .
Let X be the closest codeword to M |A(C?2).

That means δ(M |A(C?2), X) ≤ α/εγ . Namely, at most (α/εγ)-fraction of symbols of M |A(C?2)

should be changed in order to get X. Since the coordinates of M |A(C?2) form a matrix, it holds that
a typical row is (α/εγ)-close to corresponding row in X, and a typical column is (α/εγ)-close to the
corresponding row in X. The number of rows/columns that are γ/2-far from the corresponding
row/column of X is at most α

εγ ·γ/2 .

Claim A.11 implies that

δA(C?2)(M,C?2) ≤ α

γ/2
+α/(εγ ·γ/2)+δ(M |A(C?2), C

?2|A(C?2)) ≤
α

εγ · γ/2
+

α

εγ · γ/2
+
α

εγ
≤ α

εγ · γ/10
.

We are done.

The following simple claim from [45] says that COLTC properties are preserved after projection.

Claim A.13. Let C ⊆ Fn be a linear code and A(C) be its γ-core. Let β > 0 be a constant. Let
A′(C) ⊆ A(C) be a new γ-core of C, s.t. |A′(C)| ≥ |A(C)| · β. Then, if C is a (q, ε)-COLTC w.r.t.
the core A(C), then C is a (q, ε · β)-COLTC w.r.t. the core A′(C).

Proof. The fact that C is a (q, ε)-COLTC w.r.t. the core A(C) guarantees that there exists a
(q, ε)-COLTC tester DC w.r.t. the core A(C). The same tester DC is also a (q, ε ·β)-COLTC tester
w.r.t. the core A′(C) since for every w ∈ Fn the rejection probability of the tester remains the
same regardless of the core (since it is the same tester), and on the other hand, β · δA(C)(w,C) ≤
δA′(C)(w,C). The last statement holds since β · δ(w|A(C), C|A(C)) ≤ δ(w|A′(C), C|A′(C)).

16

We are ready to claim that the codes of [11] are COLTCs with constant query complexity and
inverse poly-log soundness.

Corollary A.14 (The codes of [11] are COLTCs). Let C ⊆ Fn be obtained from the construction in
Section A.2 after O(log log n) iterations. Then, C is a (q, 1

poly logn)-COLTC and as a consequence

a (q, 1
poly logn)-strong LTC. Moreover, by Claim A.10 we have

• DC is uniform over supp(DC), and

• for each i ∈ [n] we have |NDC (i)| ≤ O(poly log(n)).

Proof. The statement follows since the query complexity remains the same during the iterations,
and the constructions start with a constant blocklength code, i.e., constant query complexity.
The soundness parameter is reduced by a constant every iteration. Therefore, after O(log log n)
iterations, the soundness parameter of a C is 1

poly logn .

A.4 Relaxed LTCs and the Gap Amplification

First, we recall a notion of relaxed LTCs (rLTCs) Definition A.15 from [44]. Intuitively, relaxed
LTCs have two kind of coordinates: those with good testability and those which worse (but non-
trivial) testability (see Definition A.15). Then, we state Theorem A.17 and its Corollary A.18 saying
that the gap amplification of [18] when applied on the codes of [11] yields rLTCs with constant first
soundness parameter and inverse poly-log second soundness parameter.

Finally, we recall an Observation A.19 and its Corollary A.20 from [44] saying that such relaxed
LTCs can be easily converted to strong LTCs with constant soundness. Hence Theorem 1.5 follows.

Definition A.15 (Relaxed LTC). A q-query tester D is a (q, ε1, ε2)-rLTC tester for a linear code
C ⊆ Fn with a core A(C), if for every w ∈ Fn there exists c ∈ C such that Pr

I∼D
[w|I /∈ C|I] ≥

max
{
ε1 · δ(w|A(C), c|A(C)), ε2 · δ(w|−A(C), c|−A(C))

}
. A code C ⊆ Fn with a core A(C) is a (q, ε1, ε2)-

rLTC if it has a (q, ε1, ε2)-rLTC tester.
The parameter q is called the query complexity, ε1 is called the first soundness parameter and

ε2 is called the second soundness parameter.

Intuitively, think that ε1 is a constant, but ε2 is sub-constant.
The following simple observation [44] says that any strong LTC is also a relaxed LTC with

similar parameters.

Observation A.16 (Strong LTCs are relaxed). If C ⊆ Fn is a (q, ε)-strong LTC then it is also a
(q, ε, 1)-rLTC with regards to the code A(C) = [n].

The observation follows immediately from the definition of relaxed LTCs (Definition A.15).
In [44] it was explained that the gap amplification of Dinur can be applied to strong LTCs with

inverse poly-log soundness, which can be considered as relaxed LTCs (Observation A.16). In this
case, the gap amplification preserves it to be an rLTC where first soundness parameter increased
by a constant, while the second parameter decreased by a constant. In particular, the arguments
of Section 4 and Section 5 in [44] can be summarized to the following theorem describing the affect
of the gap amplification technique when applied to the codes from Section A.2.

17

Theorem A.17 (Stated in [44], Section 5). Let q >= 2 be a constant. Assume C ⊆ Fn is a
(q, 1

polylog(n))-strong LTC and DC its tester such that it holds that

• rate(C) = 1
polylog(n) and δ(C) ≥ Ω(1)

• DC is uniform over supp(DC) and for each i ∈ [n] we have |NDC (i)| ≤ O(log n).

Then the following holds.
For constant q ≥ 2, ε > 0, a fixed field F and infinitely many n ∈ N+ we have explicit con-

struction for a linear code C ′ ⊆ Fn with a core A(C ′) such that C ′ is a (q, ε, 1
polylog(n))-rLTC,

δ(C ′|A(C′)) = Ω(1) and rate(C ′) = 1
polylog(n) .

Since Corollary A.14 satisfies the assumption of Theorem A.17, we conclude the following corol-
lary.

Corollary A.18. For constant q ≥ 2, ε > 0, a fixed field F and infinitely many n ∈ N+ we have
explicit construction for a linear code C ⊆ Fn with a core A(C) such that C is a (q, ε, 1

polylog(n))-

rLTC, δ(C|A(C)) = Ω(1) and rate(C) = 1
polylog(n) .

An observation made in [44] was that a relaxed LTC with sub-constant second soundness pa-
rameter can be easily converted to a strong LTC with a constant soundness.

Observation A.19 (A conversion of rLTCs to strong LTCs). Let q ≥ 2 and C ⊆ Fn be a linear
(q, ε1, ε2)-rLTC with a core A(C). Then there exists a linear (q, ε1/6)-strong LTC C ′ ⊆ Fn′, where
n ≤ n′ ≤ 12

ε2
· n, dim(C ′) = dim(C), rate(C ′) ≥ ε2

12 · rate(C) and δ(C ′) ≥ 0.9 · δ(C|A(C)). Moreover,
the construction of C ′ from C is explicit and done in time O(n′).

Based on Observation A.19, [44] proved the following corollary that will play a crucial role in
the proof of Theorem 1.5.

Corollary A.20. Assume that for constants q ≥ 2, ε > 0, field F and infinitely many n ∈ N+ we
have a linear code C ⊆ Fn with a core A(C) such that C is a (q, ε, 1

polylog(n))-rLTC, δ(C|A(C)) = Ω(1)

and rate(C) = 1
polylog(n) . Then, there exists C ′ ⊆ Fn′ such that n ≤ n′ ≤ n · polylog(n), C ′ is a

(q, ε/6)-strong LTC, δ(C ′) = Ω(1) and rate(C ′) = 1
polylog(n′) . Moreover, C ′ is constructed explicitly

from C.

Theorem 1.5 follows from Corollary A.18 and Corollary A.20.

B A building block for robustness result in [11]

To present more detailed explanation, let us recall the definition of the Reed-Solomon codes.

Definition B.1 (Reed-Solomon codes). LetK denote a finite field, let S ⊆ K and let d < |S| denote
a natural number. The Reed-Solomon codeRSK,S,d : Kd+1 → K |S| is defined as follows: Suppose we

wish to encode a message a ∈ Kd+1 with RSK,S,d. We define the polynomial Pa(X) =
∑d

i=0 aiX
i,

and set the codeword RSK,S,d(a) to consist of the evaluations of Pa at each of the elements of S.
The relative distance of RSK,S,d is 1− d+1

|S| (see [40, Lecture 4]).

18

The work of Ben-Sasson and Sudan [11] used as one of the building blocks the following result
of Polishchuk and Spielman [37].

Theorem B.2 (Theorem 9 in [37]). Let F be a field, let X = {xl, ..., xn} ⊆ F, and let Y =
{yl, ..., yn} ⊆ F. Let R(x, y) be a polynomial over F of degree (d, n) and let C(x, y) be a polynomial
over F of degree (n, d). If

Pr
(x,y)∈X×Y

[R(x, y) 6= C(x, y)] < δ2,

and n > 2δn+ 2d, then there exists a polynomial Q(x, y) of degree (d, d) such that

Pr
(x,y)∈X×Y

[
R(x, y) 6= Q(x, y) or C(x, y) 6= Q(x, y) < 2δ2.

]
This result was one of the main technical ingredients which allowed a composition in the work

of Ben-Sasson and Sudan [11]. Informally, it says that given a word, which is candidate to be
tensoring of two single polynomials, if a typical “row” is close to d-degree polynomial, and a typical
“column” is close to d-degree polynomial, then the candidate word is close to be the tensoring of
two d-degree polynomials. That means that the tensor product of RS codes can be tested using
the row/column verifier.

Main Result of [11]. In [11] it was shown that certain Reed-Solomon codes can provide weak
LTCs (using repetitions of some coordinates). More precisely, they showed the following result.

Theorem B.3 (Theorem 4 in [11]). Let K = GF (2l) and let L ⊆ K be a GF (2)-linear subspace
of K. Then for any d < |L| the code RSK,L,d is a PCP of proximity with query complexity O(1),
rejection ratio 1/poly(log |L|), randomness complexity log |L|+O(log log |L|) and proof length |L| ·
poly(log |L|).

We note that PCP of proximity gives immediately a weak LTC with similar parameters range
by repetition of code coordinates a number of times [11].

The parameters range we are interested in is obtained by choosing d = O(|L|), so one gets
a PCP of proximity with constant query complexity and inverse poly-log rejection ratio, with an
alphabet of a super-constant size (since a Reed-Solomon code of block length n must be over an
alphabet of size at least n).

Although the construction of [11] is done over a large field (|F| = O(n)), it can be reduced to
the field of constant size, where the blocklength is increased by poly-log factor and the soundness
parameter is decreased by poly-log factor (see the folklore Theorem C.1). This preserves the strong
LTC to have inverse poly-log rate and soundness.

C Auxiliary statements

Theorem C.1 (Folklore). Let C ⊆ Fnpt be an explicit linear (q, ε)-strong LTC, where q ≥ 3. Then

the code C ′ ⊆ Ftnp can be explicitly constructed from C such that

• C ′ is a (q, ε′)-strong LTC, where ε′ = Ω(ε/t)

• δ(C ′) = Ω(δ(C))

19

• rate(C ′) ≥ Ω(rate(C)/t)

Proof Sketch: The code C ′ is constructed from C by encoding every element of Fpt by an LDPC

code R ⊆ FO(t)
p , i.e., by O(t) elements of Fp, such that dim(R) = t, and the blocklength of R is

O(t). Since R is an LDPC it has a set U = {u1, . . . , ub−r} ⊆ R⊥≤q such that span(U) = R⊥. The
tester for R on the input word w picks a random u ∈ U and accepts if and only if 〈w, u〉 = 0. It is
not hard to see that the soundness of this tester is at least 1/|U | ≥ 1/b and its query complexity is
at most q. The tester of C ′ combines the testers of R and C.

20

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

