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Abstract

Nisan (STOC 1991) exhibited a polynomial which is computable by linear sized non-
commutative circuits but requires exponential sized non-commutative algebraic branching pro-
grams. Nisan’s hard polynomial is in fact computable by linear sized skew circuits (skew circuits
are circuits where every multiplication gate has the property that all but one of its children is an
input variable or a scalar). We prove that any non-commutative skew circuit which computes
the square of the polynomial defined by Nisan must have exponential size.

As a further step towards proving exponential lower bounds for general non-commutative
circuits, we also extend our techniques to prove an exponential lower bound for a class of circuits
which is a restriction of general non-commutative circuits and a generalization of non-commutative
skew circuits. More precisely, we consider non-commutative circuits of small non-skew depth,
which denotes the maximum number of non-skew gates on any path from the output gate to
an input gate. We show that for any k < d, there is an explicit polynomial of degree d over n
variables that has non-commutative circuits of polynomial size but such that any circuit with
non-skew depth k must have size at least nΩ(d/k). It is not hard to see that any polynomial of
degree d that has polynomial size circuits has a polynomial-sized circuit with non-skew depth d.
Hence, our results should be interpreted as proving lower bounds for the class of circuits with
non-trivially small non-skew depth.

As far as we know, this is the strongest model of non-commutative computation for which we
have superpolynomial lower bounds.

1 Introduction

If we want to design an efficient algorithm for a computational problem that is naturally stated
as a polynomial — such as the determinant or the permanent, matrix multiplication, Fast Fourier
Transform, etc. — then arithmetic circuits capture most natural candidate algorithms that we
might consider. An arithmetic circuit is an algorithm that starts with the input variables and
possibly some constants in the underlying field, and iteratively applies addition and multiplication
operations until it computes the desired polynomial. There has been a large body of work proving
upper and lower bounds on the arithmetic circuit complexity of various polynomials (see, e.g. the
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surveys [21, 6]). In particular, proving explicit superpolynomial lower bounds for general arithmetic
circuits is a celebrated open question in complexity theory and one of the possible approaches to
the P versus NP question (see, e.g., [4]). However, despite more than three decades of intensive
study, it has seen little tangible progress (in the sense of concrete lower bounds for general circuits).

In this paper, we concentrate on non-commutative arithmetic circuits, which compute polynomials
in the non-commutative polynomial ring F〈X〉: here, variables do not commute upon multiplication;
that is, xy and yx (for distinct x, y ∈ X) are distinct monomials. There are two reasons for looking
at such circuits. The first is that such circuits yield algorithms for polynomial functions over
non-commutative algebras, which arise naturally and can even have applications for commutative
computations (see [7, 2], in particular the use of non-commutative determinants to approximate
the commutative permanent). The second reason is that proving explicit lower bounds for non-
commutative arithmetic circuits is formally an easier problem than that of proving lower bounds
for (commutative) arithmetic circuits described in the previous paragraph, and it is hoped that
techniques discovered in the course proving non-commutative lower bounds will be useful in the
commutative setting as well.

The works of Hyafil [10] and Nisan [14] were among the first to motivate the study of arithmetic
circuits from this latter point of view. In a breakthrough result, Nisan [14] showed exponential
lower bounds for non-commutative arithmetic formulas (a restriction of general non-commutative
arithmetic circuits) and more generally for non-commutative algebraic branching programs (ABPs).
This might have led one to think that a superpolynomial lower bound for general (non-commutative)
arithmetic circuits1 was also close at hand. However, Nisan also showed using the same techniques
that general arithmetic circuits are exponentially more powerful than arithmetic formulas and ABPs,
hinting that his techniques are not sufficient to prove lower bounds for general arithmetic circuits.
Indeed, there is no known lower bound for general non-commutative arithmetic circuits that is
stronger than those that we already have for general commutative arithmetic circuits.

In a more recent work, Hrubeš, Wigderson, and Yehudayoff [9] suggested a new line of attack on
the general arithmetic circuit lower bound question. Their result introduces a “product lemma” for
general arithmetic circuits that generalizes a decomposition of ABPs due to Nisan [14]. Using this
lemma, they are able to show that superpolynomial lower bounds for general arithmetic circuits
would follow from a strong enough lower bound for the classical Sum-of-squares problem. However,
as of now, this approach has not yielded superpolynomial arithmetic circuit lower bounds. Therefore,
the strongest known computational model for which we have superpolynomial lower bounds remains
the ABPs from the work of Nisan [14].

In this work, we prove exponential lower bounds for skew circuits. Skew circuits are arithmetic
circuits where every multiplication involves at least one argument2 that is either an input variable
or a field element. They are a well-studied model of computation [22, 13, 1, 12], especially in the
commutative setting, where they are equivalent in power to ABPs and to the evaluation of the
determinant polynomial. However, the picture seems more complicated in the non-commutative
setting. Nisan [14] has shown that skew circuits are exponentially more powerful than ABPs. Thus,
our lower bound for this model can be seen as one step towards the goal of superpolynomial lower

1From here on, all circuits, formulas, ABPs, and polynomials, unless explicitly mentioned otherwise, will be
non-commutative.

2We assume fan-in 2 for all gates.
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bounds for general non-commutative circuits.3

Our result also clarifies the relative power of skew circuits vis-à-vis general arithmetic circuits.
In fact, our lower bound shows that skew circuits are exponentially less powerful than circuits with
just one non-skew gate (that is, neither of its arguments is an input variable or field element).
This is because the explicit polynomial for which we prove a lower bound is just the square of a
polynomial considered by Nisan, and this polynomial in turn has skew circuits of linear size.

We also consider the problem of extending our lower bound to more powerful classes of circuits.
A natural way to do this (and one that is analogous to many works in the Boolean circuit setting;
see, e.g. [3, 5, 11]) is to augment a circuit for which we do have lower bounds with a few “powerful”
gates and see if one can still prove a lower bound. We therefore consider the problem of proving
lower bounds for skew circuits with a “few” non-skew multiplication gates.

We say that the non-skew depth of a non-commutative circuit is the maximum number of
non-skew gates on a path from a variable to the output gate in the DAG underlying the circuit. We
prove that for infinitely many d ∈ N and any k, n ∈ N, there exists a polynomial of degree d on n
variables which is computable by a polynomial sized non-commutative circuit of non-skew depth
O(k) but requires size nΩ(d/k) for any non-commutative circuit of non-skew depth k.

In particular our result implies that there exists a polynomial of degree d which is computable
by a polynomial sized non-commutative circuit of non-skew depth d, but requires a superpolynomial
size for any non-commutative circuit of non-skew depth k(d) = o(d). It is not hard to see that any
polynomial of degree d that can be computed by a polynomial-sized arithmetic circuit can also be
computed by a polynomial-sized arithmetic circuit of non-skew depth d: hence, strengthening our
lower bound substantially would prove lower bounds for general non-commutative circuits.

We also show that the determinant polynomial can simulate our hard polynomial, thus completing
the picture in the non-commutative setting by showing that skew circuits are exponentially less
powerful than the determinant polynomial. Finally, we show that to prove superpolynomial lower
bounds for general non-commutative circuits, our complexity measure (to be defined formally in
the upcoming section) will need to be further refined. Slightly more precisely, we show that there
is a polynomial that has polynomial-sized non-commutative circuit, but for which our complexity
measure is as large as possible.

The rest of the paper is organized as follows. We start with a proof outline in Section 2. We then
present some definitions in Section 3 and preliminaries in Section 4. The proof of the lower bound
for skew circuits is presented in Section 5 and the proof for the lower bound for non-skew depth
bounded circuits is presented in Section 64. Finally, we extend the lower bound to the permanent
and determinant polynomials in Section 7.

3A superpolynomial lower bound for non-commutative skew circuits was claimed by Allender et al. [1], but,
unfortunately, the proof of this particular result in the paper (Theorem 7.12) seems to fail because it did not take into
account possible cancellations (Meena Mahajan, personal communication).

4As skew circuits are a subset of bounded non-skew depth circuits, our lower bound for bounded non-skew depth
circuits subsumes the lower bound for skew circuits. However, for the sake of exposition we first describe the lower
bound proof for skew circuits and then prove the lower bound for bounded non-skew depth circuits.
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2 Proof Outline

Our overall proof strategy is similar to that of Nisan [14] for non-commutative formulas and
algebraic branching programs (ABPs). In his work, Nisan considered the partial derivative matrix
corresponding to a homogeneous polynomial f ∈ F〈X〉 of degree d — originally introduced by
Hyafil [10] — which is defined to be an nd/2 × nd/2 matrix M [f ] where the rows and columns are
labelled by monomials in X of degree d/2. The (m1,m2)th entry of the matrix M [f ] is defined to
be the coefficient of the monomial m1m2 in f .5

Nisan observed that if f has a formula or ABP of small size, then f can be decomposed as a
small sum of polynomials of the form g · h where g and h are homogeneous polynomials of degree
d/2. Crucially, it may be seen that for any such g, h the matrix M [g · h] has rank 1 and hence, by
subadditivity of rank, M [f ] has small rank. Thus, choosing an f such that rank(M [f ]) is large gives
us a lower bound.

Intuitively speaking, the rank of the matrix M [f ] is a measure of how “correlated” the first half
of a monomial appearing in f is with its second half: M [f ] being full rank would mean that they
are perfectly correlated, whereas M [f ] being low rank would mean that they are not very correlated
at all. Nisan’s argument shows that small ABPs have “information bottlenecks” at degree d/2 (and
indeed at any degree d′ ≤ d), and hence the amount of correlation is small.

A natural question to ask is if this argument can give a lower bound for non-commutative
skew circuits as well. Unfortunately, the answer is no, as is already implicit in Nisan’s work.
Consider the Palindrome polynomial PALd/2(X), which is the sum of all monomials of degree d
that are palindromes when viewed as strings of length d over the alphabet X. Nisan observed that
PALd/2(X) has a skew circuit of linear size but at the same time M [PALd/2(X)] has full rank: in fact,
M [PALd/2(X)] is a permutation matrix since the first half of a palindrome uniquely determines the
second half (thus, the first and second halves of monomials appearing in f are perfectly correlated).
Hence, the partial derivative matrix of polynomials with small skew circuits can have as large a
rank as possible. This means that in our lower bound argument for skew circuits, we need to use a
different measure of complexity.

The measure that we use is a modified version of the partial derivative matrix, defined as follows:
let f ∈ F〈X〉 be a homogeneous polynomial of degree d over n variables, and given an ordered
partition Π = (Y,Z) of [d] into two parts, we define M [f,Π] to be the matrix whose rows and
columns are indexed by monomials in X of degree |Y | and |Z| respectively. The (m1,m2)th entry
of M [f,Π] is defined to the coefficient of the unique monomial m of degree d which equals m1 if
we keep only the variables indexed by locations in Y and delete the others, and equals m2 if we
only keep the variables indexed by locations in Z. As above, the rank of M [f,Π] measures the
correlation between the restriction of a monomial to the locations in Y and the locations in Z. We
are usually interested in Π where |Y | ≤ |Z|, since in this case we know that the maximum possible
rank is min{n|Y |, n|Z|} ≤ n|Y |.

In this notation, the measure of complexity used by Nisan is rank(M [f, ([d/2], [d] \ [d/2])]) and
we have seen above that this measure is as large as it can be for, say, the Palindrome polynomial
PALd/2(X), which has a small skew circuit. However, it is an easy observation that if one considers

5More generally, Nisan also considered the matrix where the rows and columns are labelled by monomials of degree
d′ ≤ d and d− d′ respectively.
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the partition Π0 = (Y0, Z0) where Z0 := [d/4 + 1, 3d/4] and Y0 := [d] \ Z0, then M [PALd/2(X),Π0]
has rank 1.

Thus, we might hope that for every polynomial f that has a small skew circuit, we could find a
Π such that M [f,Π] has low rank. We are in fact able to show something much stronger: we can
show in general that if f has a small skew circuit, then rank(M [f,Π0]) is ‘small’ for the particular
Π0 defined above. (Here, ‘small’ means that the rank is much smaller than full rank.)

In terms of correlation, this statement could be interpreted as saying that though skew circuits
can compute polynomials that are perfectly correlated w.r.t. Nisan’s partition ([d/2], [d] \ [d/2]),
they can only do so by correlating the initial few indices in the monomial with the final few indices,
as in the Palindrome polynomial. Consequently, these “extreme” indices end up uncorrelated with
those in the middle. This is the weakness of skew circuits that we exploit in our lower bound.

The proof of this fact rests on a decomposition of skew circuits that is motivated by the similar
ABP decomposition mentioned above. Like in the ABP decomposition, we can show that given
any homogeneous polynomial f of degree d that has a small skew circuit and any degree parameter
d′ ∈ [d], we can decompose f as a small sum of polynomials of the form g ×j h where g and h are
polynomials of degree d′ and d− d′ respectively (we refer the reader to Section 3 for the definition of
×j , but it intuitively means that the polynomial g is multiplied on the left by the sum of the prefixes
of the monomials of h of degree j and on the right by the sum of the suffixes of degree d− d′ − j).
The proof of this lemma is obtained by specializing the proof of a lemma of Hrubeš, Wigderson and
Yehudayoff [9] regarding general non-commutative arithmetic circuits to the case of skew circuits,
where it yields a stronger conclusion.

Given this decomposition lemma, we prove the lower bound as follows. We apply the lemma with
d′ being a large number close to d: for concreteness, say d′ = 3d/4. In other words, we decompose f
as a small sum of polynomials g ×j h where g and h are homogeneous polynomials of degrees 3d/4
and d/4 respectively. In each such polynomial, a set Ig ⊆ [d] of 3d/4 indices corresponds to g and a
set Ih = [d] \ Ig corresponds to the polynomial h as shown below:

d/4 d/2 d/4

[d] \ Y0:Y0:

Ig

As we mentioned above, we will consider the rank of the matrix M [g ×j h,Π0]. Now, it is easy
to show that

rank(M [g ×j h,Π0]) = rank(M [g,Πg]) · rank(M [h,Πh])

where the partitions Πg = (Yg, Zg) and Πh = (Yh, Zh) are the natural restrictions of Π0 to Ig and Ih
respectively.

Note that if rank(M [g ×j h,Π0]) is to be close to full — i.e. n|Y0| — then we need both
rank(M [g,Πg]) and rank(M [h,Πh]) to be close to n|Yg | and n|Yh| respectively. However, it is easily
seen that, irrespective of the value of j, the matrix M [h,Πh] is always a rank 1 matrix (this happens
since Yh occupies all of Ih and thus Zh = ∅) and hence rank(M [g ×j h,Π0]) falls exponentially short
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of its maximum possible value. Since f is a small sum of such polynomials, the same is true of
rank(M [f,Π0]) as well. More generally, the same strategy shows that rank(M [f,Π]) is small as
long as Π = (Y,Z) has the “left-right monochromatic” form (LRM partitions for short) shown in
Figure 1 (for d1, d2 large enough).

d1 d2

Y or Z:Y :

Figure 1: Left-right monochromatic (LRM) partitions, where segments on both the left and right
ends are contained in Y

The above argument implies a strong exponential lower bound on the size of a skew circuit
computing any homogeneous polynomial F of degree d such that M [F,Π0] is full rank. It is easy
to find explicit examples of such polynomials: for example, we could take F to be the square of
PALd/4(X) or the Lifted Identity polynomial of Hrubeš et al. [9]. In either of these cases, it can
be checked that M [F,Π0] is again a permutation matrix and hence full rank. Since (PALd/4(X))2

can be computed by a small circuit with just a single non-skew gate, this also gives an exponential
separation between skew circuits and circuits with one non-skew gate. However, this also implies
that if we want to extend our lower bound to non-commutative circuits of small non-skew depth,
then we need to modify our measure further.

We prove our lower bound for circuits of small non-skew depth by induction on the non-skew
depth k of the circuit. As in the skew case, we choose a partition Πk of [d] such that no small
non-skew depth k circuit can compute a polynomial that has large rank w.r.t. the partition Πk. The
inductive argument is based on showing that if a non-skew depth k circuit C computes a polynomial
of large rank w.r.t. Πk, then it must contain a depth k − 1 circuit that computes a polynomial of
large rank w.r.t. Πk−1 (or an even ‘harder’ partition). We then apply the inductive hypothesis to
prove the lower bound.

Let us consider the problem of constructing such a partition in the case k = 1 (i.e. non-skew
depth 1). Ideally, we would like to construct a partition Π1 such that if C is a circuit of non-skew
depth 1 that is high rank w.r.t. Π1, then a sub-circuit of C is high rank w.r.t. an LRM partition as
in Figure 1 (with perhaps a slightly smaller degree). However, it can be checked that we cannot
choose such a partition even if we know beforehand that C is just a product of two skew circuits.
That is, for any candidate partition Π1, there are skew circuits of degree d′ ≤ d and d−d′ computing
polynomials g1 and g2 such that neither the partition restricted to g1, nor the partition restricted to
g2, is LRM.

Hence, we are first led to the problem of enlarging the family of partitions that are hard for skew
circuits. Building on the techniques outlined for skew circuits above, we can also show that small
skew circuits cannot compute high rank polynomials w.r.t. the larger family of “extended LRM”
(XLRM) partitions — illustrated in Figure 2 — which are obtained by extending an LRM partition
on the left and right sides with segments of length ` that are contained in Y and Z respectively.6

Intuitively, a skew circuit that computes a large rank polynomial w.r.t. such a partition would try to

6The actually family of partitions we consider is a little more general.
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pairwise correlate indices in the segments (of length `) on the two extremes. However, after having
done this, it is still left with the task of computing a high rank polynomial w.r.t. an LRM partition,
which we know to be a hard problem.

d1 d2` `

Y or Z:Y : Z:

Figure 2: Extended left-right monochromatic (XLRM) partitions

We are now ready to tackle the problem of proving lower bounds for circuits of non-skew depth
k. We choose our hard partition Πk = (Yk, Zk) to have the form shown in Figure 3. That is,
starting from the left, our partition assigns an initial segment of length roughly d/4 to Yk. The
remaining indices are assigned to Yk and Zk in k′ pairs of segments of length roughly d/4k′ and
d/2k′ respectively — for k′ = O(k) — so that overall we have |Yk| = |Zk| = d/2. Note that Πk is in
particular an XLRM partition, and hence is clearly hard for skew circuits. We show that any small
circuit C of non-skew depth at most k cannot compute a polynomial of large rank w.r.t. Πk.

To get an idea of the proof, consider first the easier case when the output of C is a non-skew
homogeneous multiplication gate and hence C is a product of two homogeneous polynomials g1

and g2 that have small circuits of non-skew depth at most k − 1. In this case, the indices in [d]
are distributed between g1 and g2 as shown in Figure 3. Now, as we have argued previously, if the
polynomial f computed by C is to have rank nearly n|Yk| w.r.t. Πk, then rank(M [gi,Πk,i]) should be

close to n|Y
(i)
k | where Πk,i = (Yk,i, Zk,i) is the natural restriction of Πk to the indices corresponding

to gi for i ∈ [2]. For this to occur, however, we must have |Yk,i| ≈ |Zk,i| for each i: since otherwise
for some i, we will have |Zk,i| much smaller than |Yk,i|, and then rank(M [gi,Πk,i]) ≤ n|Zk,i| � n|Yk,i|.
However, it is easy to check that if |Yk,i| ≈ |Zk,i| for each i, then the only possibility is that one of
g1 or g2 — say g1 for concreteness — has very small degree and the other “occupies” almost all the
indices in [d] and is hence already computing a polynomial of large rank w.r.t. Πk. Since g2 has a
small skew circuit of non-skew depth at most k − 1, this allows us to induct on g2.

· · ·

d/4k′d/4 d/2k′

g1 g2

Y : Z:

Figure 3: The partition Πk

The general case puts together a couple of arguments we have already outlined. Using a
decomposition lemma that is similar in spirit to the skew circuit decomposition lemma described
above, we can show that any homogeneous polynomial f of degree d computed by a small circuit of
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non-skew depth at most k can be written as a small sum of polynomials of the form

(g1 · g2)×j h

where g1 and g2 are homogeneous polynomials computed by small circuits of non-skew depth at
most k − 1 and h has a small skew circuit. In the easy case above, we have already handled the
case when deg(h) = 0, and so now we try to see how h can help produce a polynomial of large rank
w.r.t. the partition Πk. As in the proof of the hardness of XLRM partitions, one would guess that
the worst that h could do is to match up the d/2k′ indices in Y and Z on either extreme. In this
case, we can argue as in the easier case above that one of g1 or g2 occupies all that is remaining,
which corresponds to a partition that is hard for non-skew depth at most k − 1, as desired.

As might be expected, the actual proof is not quite as neat, since we need to handle some other
cases that we have not describe above. It turns out, however, that these cases are easy, even if
somewhat tedious, to handle.

3 Definitions

Throughout, fix the set X = {x1, . . . , xn} of indeterminates. We work over the non-commutative
ring of polynomials F〈X〉.

For i, j ∈ N, we define [i, j] to be the set {i, i+ 1, . . . , j} (the set is empty if i > j). We also use
the standard notation [i] to denote the set [1, i].

For d ∈ N, we use Md(X) to denote the set of monomials over the variables in X of degree
exactly d.

Definition 1 (j-products). Given homogeneous polynomials g, h ∈ F〈X〉 of degrees dg and dh
respectively and an integer j ∈ [0, dh], we define the j-product of g and h — denoted g ×j h — as
follows:

• When g and h are monomials, then we can factor h uniquely as a product of two monomials
h1h2 such that deg(h1) = j and deg(h2) = dh− j. In this case, we define g×j h to be h1 ·g ·h2.

h1 g h2

j dg dh − j

Figure 4: j product for monomials g, h

• The map is extended bilinearly to general homogeneous polynomials g, h. Formally, let g, h
be general homogeneous polynomials, where g =

∑
` g`, h =

∑
i hi and g`, hi are monomials

of g, h respectively. For j ∈ [0, dh], each hi can be factored uniquely into hi1 , hi2 such that
deg(hi1) = j and deg(hi2) = dh − j. And g ×j h is defined to be

∑
i

∑
` hi1g`hi2.

Note that g ×0 h and g ×dh h are just the products g · h and h · g respectively.

The following easily verifiable facts about j-products will be useful:
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Fact 2. 1. The operator ×j is bilinear: i.e. (g1 +g2)×j h = g1×j h+g2×j h and g×j (h1 +h2) =
g ×j h1 + g ×j h2 provided that g, g1, g2, h, h1, h2 are such that all the above expressions are
well defined.

2. Assume g and h are such that g ×j h is defined and let f be a homogeneous polynomial of
degree d. Then (g ×j h) · f = g ×j (h · f) and f · (g ×j h) = g ×d+j (f · h).

3. Assume g and h are as above and further that g = g1 · g2. Then g ×j h = g1 ×j (g2 ×j
h) = g2 ×j+dg1 (g1 ×j h) where dg1 = deg(g1). If instead we have g = g1 ×k g2, then
g ×j h = g1 ×j+k (g2 ×j h).

Given a monomial m = xi1xi2 · · ·xid ∈ F〈X〉 and a subset S ⊆ [d], we denote by mS the product
of all the variables in the locations indexed by S: i.e. mS =

∏
j∈S xij where the product is taken in

increasing order of j.
For any pair of subsets S, I ⊆ [d] such that S ⊆ I, we denote by Collapse(S, I) the subset of

[|I|] which contains the ranks of all elements in I which are contained in S. Formally,

Collapse(S, I) = {j ∈ [|I|] | S contains the jth smallest element of I}.

Let Π denote a partition of [d] given by an ordered pair (Y, Z), where Y ⊆ [d] and Z = [d] \ Y .
In what follows we only use partitions of sets into two parts.

Definition 3 (Partial Derivative matrix). Let f ∈ F〈X〉 be a homogeneous polynomial of degree
d. Given a partition Π = (Y,Z) of [d], we define a n|Y | × n|Z| matrix M [f,Π] with entries from
F as follows: the rows of M [f,Π] are labelled by monomials from M|Y |(X) and the columns by
elements of M|Z|(X). Let m′ ∈ M|Y |(X) and m′′ ∈ M|Z|(X); the (m′,m′′)th entry of M [f,Π] is
the coefficient in the polynomial f of the unique monomial m such that mY = m′ and mZ = m′′.

We will use the rank of the matrix M [f,Π] (for a suitably defined Π = (Y,Z)) as a measure of
the complexity of f . Note that since the rank of the matrix is at most the number of rows, we have
for any f ∈ F〈X〉

rank(M [f,Π]) ≤ n|Y |

As in many works on multilinear formulas and circuits [15, 16, 17, 18, 19, 8], we will be interested
in how close the rank of M [f,Π] can be to this trivial upper bound.

Definition 4 (Relative Rank). Let f ∈ F〈X〉 be a homogeneous polynomial of degree d. For any
Y ⊆ [d], we define the relative rank of f w.r.t. Π = (Y,Z) — denoted rel-rank(f,Π) — to be

rel-rank(f,Π) :=
rank(M [f,Π])

n|Y |

Clearly, rel-rank(f,Π) ∈ [0, 1] for any f and Y as above. Furthermore, note that since
rank(M [f,Π]) is also bounded by n|Z| — the number of columns in the matrix — when |Y | > d−|Y |,
this measure cannot approach 1 for any choice of f .
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d/4 d/2 d/4

Z:Y :

Figure 5: Example of Y for which rel-rank(PAL2
d/4, (Y, Z)) = 1

Notation Fix any homogeneous polynomials g, h ∈ F〈X〉 of degree dg and dh respectively and
f = g ×j h, where j ∈ [0, dh]. Let d denote deg(f) = dg + dh and I denote [j + 1, j + dg]. For any
partition Π = (Y, Z) of [d] we use Yg to denote Collapse(Y ∩I, I), i.e. the set of ranks of indices that
g occupies in g ×j h which overlap with Y . Similarly, we use Yh to denote Collapse(Y \ I, [d] \ I),
i.e. the set of ranks of indices that h occupies in g ×j h which overlap with Y . Also we denote
[dg] \Yg by Zg and [dh] \Yh by Zh. Finally, we use Πg,Πh to denote partitions (Yg, Zg) and (Yh, Zh),
respectively.

The non-skew depth of a non-commutative circuit C is the maximum number of non-skew gates
on a path from a variable to the output gate in the DAG underlying C.

4 Preliminaries

We need the following lemmas that are straightforward adaptations of previous work.

Lemma 5 (Homogenization Lemma [9]). Let f ∈ F〈X〉 be a homogeneous polynomial of degree d
computed by a non-commutative circuit C of size s. Then there is a homogeneous non-commutative
circuit C ′ of size at most O(sd2) computing f . Moreover, if C has non-skew depth at most k, then
so does C ′. In particular, if C is a skew circuit, then so is C ′.

Lemma 6 (Tensor Lemma). Let g, h ∈ F〈X〉 be homogeneous polynomials of degree dg and dh
respectively and let f = g ×j h for j ∈ [0, dh]. Let d denote deg(f) = dg + dh. Fix any partition
Π = (Y, Z) of [d]. Then,

rank(M [f,Π]) = rank(M [g,Πg]) · rank(M [h,Πh])

where Πg,Πh are as defined in Section 3.

Proof. We observe that under a suitable labelling of the rows and columns of the matrices, the
matrix M [f,Π] = M [g,Πg] ⊗M [h,Πh], where ⊗ represents the standard tensor (or Kronecker)
product of matrices. This will prove the lemma.

Let I denote the interval [j + 1, j + dg].
For each of the matrices M [f,Πf ],M [g,Πg] and M [h,Πh], we have labellings from the definitions

of these matrices: i.e., the rows and columns of M [f,Πf ] are labelled by elements of M|Yf | and
M|Zf | respectively; and similarly for M [g,Πg] and M [h,Πh]. For M [f,Π], we note that each
monomial m ∈ M|Y | can be identified with a pair of monomials (m′,m′′) of degree |Yg| and |Yh|
respectively using the map m 7→ (mY ∩I ,mY \I); this map is a bijection and hence, we also have an
alternate labelling of the rows of M [f,Π] by M|Yg | ×M|Yh|; similarly, we also obtain a labelling of
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the columns of M [f, Y ] by M|Zg | ×M|Zh|. Under this alternate labelling for M [f,Π], we show that
M [f,Π] = M [g,Πg]⊗M [h,Πh].

By the bilinearity of both the ⊗ and ×j maps, it suffices to do this when g and h are both
monomials. In this case, M [g,Πg] is a 0-1 matrix with a 1 only in the (gYg , gZg)th entry and similarly
for M [h,Πh]. Since f is also a monomial, the matrix M [f,Π] is also a 0-1 matrix with a 1 only in
the (fY , fZ)th entry according to the original labelling. Under our alternate labelling of M [f,Π],
this corresponds to the ((fY ∩I , fY \I), (fZ∩I , fZ\I))th entry of M [f,Π]. It can be checked from the
definition of ×j that

fY ∩I = gYg , fZ∩I = gZg , fY \I = hYh , fZ\I = hZh

Thus, f has a 1 in only the ((gYg , hYh), (gZg , hZh
))th entry and hence, M [f,Π] is the tensor

product of M [g,Πg] and M [h,Πh] as claimed. This completes the proof of the lemma.

Corollary 7. Assume that f, Y, dg, dh are as in the statement of Lemma 6. Then

rel-rank(f,Π) = rel-rank(g,Πg) · rel-rank(h,Πh) ≤ min {rel-rank(g,Πg), rel-rank(h,Πh)} .

Moreover, we also have rank(M [g,Πg]) ≤ n|Zg | and rank(M [h,Πh]) ≤ n|Zh|. Hence,

rel-rank(f,Π) ≤ min
{
n−(|Yg |−|Zg |), n−(|Yh|−|Zh|)

}
.

4.1 Hard polynomials

Let w = (w1, w2, . . . , wd) be a string in [n]d and let wR denote the reverse of the string w,
i.e., (wd, wd−1, . . . , w1). Let x̃w denote the monomial xw1xw2 . . . xwd

over the variable set X =
{x1, x2, . . . , xn}. We consider the n-variable palindrome polynomial :

PALd(X) =
∑
w∈[n]d

x̃w · x̃wR .

Nisan [14] studied the palindrome polynomial for n = 2. We denote by PAL2
d(X) the squared

palindrome polynomial.

PAL2
d(X) = (PALd(X))2 =

∑
w1,w2∈[n]d

x̃w1 · x̃wR
1
· x̃w2 · x̃wR

2
.

5 Lower bound for skew circuits

In this section, we prove an exponential lower bound for skew circuits. We start by giving a
decomposition lemma for such circuits. A similar decomposition was given by Nisan [14] for
non-commutative ABPs. More recently Hrubeš et al. [9] proved a decomposition lemma for
general non-commutative circuits. Our result can be thought of as an interpolation between the
decomposition for ABPs and that for general non-commutative circuits.

We then formally define left-right monochromatic (LRM) partitions and prove that any skew
circuit of ‘small’ size has ‘small’ relative rank with respect to LRM partitions. Finally, we give an
explicit polynomial which has full relative rank with respect to a suitably chosen LRM partition.
This gives a lower bound for skew circuits.
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Lemma 8 (Decomposition Lemma for skew circuits). Let f ∈ F〈X〉 be a homogeneous polynomial
of degree d ∈ N computed by a homogeneous skew circuit C of size s. Fix any d′ ∈ [d]. Let g1, . . . , gt
(t ≤ s) be the intermediate polynomials of degree d′ computed by C. Then, there exist homogeneous
polynomials hi,j (i ∈ [t], j ∈ [0, d− d′]) of degree d− d′ such that

f =
∑
i∈[t]

∑
j∈[0,d−d′]

gi ×j hi,j

Furthermore, each hi,j can be computed by a skew circuit of size at most sd.

Proof. Let v1, . . . , vs be a topological ordering of the gates in C that furthermore satisfies deg(fp) ≤
deg(fq) for all p ≤ q, where fk is the polynomial computed by gate vk. Further, let dk denote
deg(fk) for any k ∈ [s].

We show by induction on k ∈ [s] the following statement that immediately implies the lemma:

if dk ≥ d′, then there exist polynomials h
(k)
i,j (i ∈ [t], j ∈ [0, dk − d′]) of degree dk − d′ such that

fk =
∑
i∈[t]

∑
j∈[0,dk−d′]

gi ×j h(k)
i,j (1)

Furthermore, for each k as above and i ∈ [t], there is a skew circuit C
(k)
i of size at most kd that

computes all the polynomials in the set S
(k)
i = {h(`)

i,j | ` ∈ [k], d` ≥ d′, j ∈ [d` − d′]}.
We define the polynomials h

(k)
i,j by induction on k. The construction of the skew circuits

computing S
(k)
i will follow directly from the definitions of these polynomials. Since there is nothing

to prove for k such that dk < d′, we may take the base case of the induction to be the least k such
that dk ≥ d′; say this gate is vk0 . We claim that dk0 = d′. To see this, observe that if d′ ≥ 2 then vk0
must be a multiplication gate with both inputs being polynomials of degree at least 1 (i.e. neither
input is a field element). Since C is a skew circuit we have fk0 = fp · fq — with p, q < k0 — where
either dp or dq is equal to 1. We assume that dp = 1 (the case when dq = 1 is similar). Since dq < d′

by our choice of k0, we must have dk0 = d′. If d′ = 1, then it is easy to see that vk0 is just a variable
and therefore dk0 = d′ trivially follows.

Hence, the gate vk0 computes a polynomial gi0 for some i0 ∈ [t]. In this case, we can take

h
(k0)
i0,0

= 1 and h
(k0)
i,0 = 0 for i 6= i0. Equation (1) clearly holds with this choice of polynomials and

each h
(k0)
i,0 has a skew circuit C

(k0)
i of size 1, which is at most k0 · d. Since S

(k0)
i = {h(k0)

i,0 }, this
completes the base case of the induction.

Now for the inductive argument. Fix any k > k0. By our ordering of the vertices, we have
dk ≥ dk0 = d′. The rest of the argument is based on a case analysis depending on the type of the
gate vk:

• vk is a product gate of degree dk = d′: In this case, the argument proceeds exactly as in

the base case and each h
(k)
i,0 can be computed by a skew circuit of size 1. Adding this gate to

the circuit C
(k−1)
i gives the circuit C

(k)
i .

• vk is a product gate of degree dk > d′: So fk = fp · fq where we assume that dp ≤ dq (the
other case is similar) and hence dp ≤ 1. We divide this case further into subcases depending
on whether dp = 0 or 1.
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– dp = 0: In this case, fp is a scalar from the field F and dq = dk > d′. By the induction

hypothesis, we have polynomials h
(q)
i,j for each (i, j) ∈ [t]× [0, dk − d′] satisfying

fq =
∑
i∈[t]

∑
j∈[0,dk−d′]

gi ×j h(q)
i,j

Thus, we have

fk = fp · fq =
∑
i∈[t]

∑
j∈[0,dk−d′]

gi ×j (fp · h(q)
i,j )

It can thus be seen that the polynomials h
(k)
i,j := fp · h(q)

i,j satisfy (4).

– dp = 1: This case is quite similar, except that we only have h
(q)
i,j for (i, j) ∈ [t]× [0, dk −

d′ − 1]. Again, we have

fk = fp · fq =
∑
i∈[t]

∑
j∈[0,dk−d′−1]

fp · (gi ×j h(k)
i,j ) =

∑
i∈[t]

∑
j∈[0,dk−d′−1]

gi ×j+1 (fp · h(q)
i,j )

where we use Fact 2 for the final equality.

Thus, we define h
(k)
i,j := fp · h(q)

i,j−1 for j ∈ [1, dk − d′] and h
(k)
i,0 = 0.

• vk is a sum gate of degree dk ≥ d′: In this case, vk = vp + vq where dp = dq = dk ≥ d′ (by
the homogeneity of C). Hence, the induction hypothesis is applicable to both vp and vq. It

can now be easily checked that setting h
(k)
i,j := h

(p)
i,j + h

(q)
i,j gives the required polynomials.

To see that the circuits constructed this way have the required properties, it suffices to note that to

construct C
(k)
i from C

(k−1)
i using the above definition of the h

(k)
i,j polynomials requires us to add

exactly dk − d′ ≤ d− 1 many skew multiplication gates and one variable or constant (in case vk is a
product gate) or dk − d′ + 1 ≤ d homogeneous addition gates (in case vk is a sum gate). Hence, in

each case, we add at most d gates to obtain the circuit C
(k)
i .

Definition 9. We say that a partition Π = (Y,Z) of [d] is a (d1, d2)-left right monochromatic
partition ((d1, d2)-LRM) if [d1] ∪ [d− d2 + 1, d] ⊆ Y .

Figure 6 gives an illustration of a (d1, d2)-LRM partition.

Lemma 10 (Main Lemma: Relative rank of skew circuits). Let f ∈ F〈X〉 be a homogeneous
polynomial of degree d ∈ N computed by a homogeneous skew circuit C of size s. For any (d1, d2)-
LRM partition Π of [d] such that d1 + d2 ≤ d

rel-rank(f,Π) ≤ sd · n−min{d1,d2}.

Proof. Assume that D = min{d1, d2}. Apply the Decomposition Lemma for skew circuits (Lemma 8)
to C with d′ = d−D to get polynomials gi and hi,j for (i, j) ∈ [t]× [0, D] as in the statement of the
lemma. By the subadditivity of rank, we have

rel-rank(f,Π) ≤
∑

(i,j)∈[t]×[0,D]

rel-rank(gi ×j hi,j ,Π) (2)
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j dh − j

d1

gi

d2

Y or Z:Y :

Figure 6: For fixed d1, d2, a generic positioning of gi of degree d′ in gi ×j hi,j

Fix any (i, j) and consider rel-rank(gi ×j hi,j ,Π). By Corollary 7, we have

rel-rank(gi × hi,j ,Π) ≤ n−(|Yh|−|Zh|). (3)

where Yh = Collapse(Y \ [j + 1, j + d′], [d] \ [j + 1, j + d′]) and Zh = [D] \ Yh. Note, however, that
since Y contains [d1] ∪ [d − d2 + 1, d], we have Y \ [j + 1, j + d′] = [d] \ [j + 1, j + d′] and hence
Yh = [D] and Zh = ∅. Using (3), we see rel-rank(gi × hi,j ,Π) ≤ n−D and hence by (2), we have the
claimed upper bound on rel-rank(f,Π).

Theorem 11 (Lower bound for skew circuits). Any skew circuit for PAL2
d/4(X) must have size

Ω̃(nd/4) where the Ω̃(·) hides poly(d) factors.

Proof. Let C be any skew circuit computing PAL2
d/4(X) and let s denote its size. By Lemma 5, we

know that there is a homogeneous circuit of size s′ = O(sd2) computing the same polynomial.
Let Y = [d/4] ∪ [3d/4 + 1, d], Z = [d] \ Y , Π = (Y,Z). Note that Π is a (d/4, d/4)-LRM

partition of [d]. Apply Lemma 10 to the circuit C ′ with d1 = d2 = d/4. The lemma implies that
rel-rank(PAL2

d/4(X),Π) ≤ (s′d) · n−d/4.

On the other hand, it is easy to verify that M [PAL2
d/4(X),Π] is a square permutation matrix

and hence rel-rank(PAL2
d/4(X),Π) = 1, which implies the claimed lower bound on s.

Remark 12. It is not hard to see that the lower bound of Theorem 11 is close to tight, since
PAL2

d/4(X) does have a skew circuit of size O(nd/4).

A similar theorem can be proved for the Lifted Identity polynomial of Hrubeš et al. [9].

6 Lower bounds for circuits with small non-skew depth

We call a gate v in C top-most if there is a path from v to the output gate in C that does not pass
through any non-skew gates other than possibly v itself.

6.1 A decomposition lemma for circuits of non-skew depth k

Lemma 13 (Decomposition Lemma for circuits with non-skew depth k). Let f ∈ F〈X〉 be a
homogeneous polynomial of degree d computed by a homogeneous circuit C of non-skew depth at
most k. Let g1, . . . , gt (t ≤ s) be the polynomials computed by the top-most non-skew gates in C and

14



let d′i = deg(gi) for i ∈ [t]. Then, there exist homogeneous polynomials hi,j (i ∈ [t], j ∈ [0, d− d′i]) of
degree d− d′i and h0 of degree d such that

f =
∑
i∈[t]

∑
j∈[0,d−d′i]

gi ×j hi,j + h0.

Furthermore, each hi,j and h0 can be computed by a homogeneous skew circuit of size at most sd.

Proof. The proof is quite similar to that of Lemma 8, so we omit some of the details. As there, we
let v1, . . . , vs be a topological ordering of the gates in C that satisfies deg(fp) ≤ deg(fq) for all p ≤ q,
where fk is the polynomial computed by gate vk; further, let dr denote deg(fr) for any r ∈ [s].

Let T ⊆ V be the set of all top-most gates. In particular, T contains the output gate of C and
also the set of all the top-most non-skew gates.

We show by induction on r ∈ [s] the following stronger statement: if vr ∈ T , then there exist

homogeneous polynomials h
(r)
i,j (i ∈ [t], j ∈ [0, dr − d′i]) of degree dr − d′i and h

(r)
0 of degree dr such

that
fr =

∑
i∈[t]

∑
j∈[0,dr−d′i]

gi ×j h(r)
i,j + h

(r)
0 (4)

Furthermore, for each r as above and i ∈ [t], there is a homogeneous skew circuit C
(r)
i of size at most

rd that computes all the polynomials in the set S
(r)
i = {h(`)

i,j | ` ∈ [r], v` ∈ T, j ∈ [0, d` − d′i]} and

also a homogeneous skew circuit C
(r)
0 of size at most rd computing S

(r)
0 = {h(`)

0 | ` ∈ [r], v` ∈ T}.
We define the polynomials h

(r)
i,j and h

(r)
0 by induction on r. The skew circuits computing S

(r)
i

(i ∈ [0, t]) can be constructed easily from these definitions.
The base case of the induction r = 1 is trivial since the polynomial f1 is just a variable or a

scalar from F: we simply set h
(1)
0 = f1 and h

(1)
i,j = 0. We can use this reasoning in general when fr

is a variable or a scalar.
So we consider the inductive case. Say r > 1. If vr 6∈ T , then again there is nothing to prove. So

assume vr ∈ T . Consider the following cases:

• vr is a non-skew gate: Since vr ∈ T , it must be that vr is a top-most non-skew gate. Hence,

fr = gi0 for some i0 ∈ [t]. Hence, we can set h
(r)
i0,0

= 1 and all the other h
(r)
i,j and h(0) to 0.

• vr is a skew multiplication gate: We have vr = vp × vq where at least one of fp and fq
is either a variable or scalar. We assume that fp is such a polynomial (the other case is
similar). Since vr ∈ T and skew, we see that vq ∈ T as well. Hence, we can apply the induction

hypothesis to vq as well. Having done so, we can choose the h
(r)
i,j like in Lemma 8 as follows:

h
(r)
i,j =


fp · h(q)

i,j if dp = 0,

fp · h(q)
i,j−1 if dp = 1 and j ∈ [dr − d′i],

0 if dp = 1 and j = 0.

We also choose h
(r)
0 = fp · h(q)

0 .
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• vr is a sum gate: Since C is homogeneous, we know that vr = vp + vq for p, q < r such that
dp = dq = dr. Moreover, since vr ∈ T and is not a non-skew gate, we see that vp, vq ∈ T as

well. Hence, we can apply the induction hypothesis to these gates and set h
(r)
i,j = h

(p)
i,j + h

(q)
i,j

and h
(r)
0 = h

(p)
0 + h

(q)
0 .

6.2 More partitions w.r.t. which small skew circuits are low rank

For any n ∈ N+ and θ ∈ R, we use expn(θ) to denote nθ.

Definition 14. We say that a partition Π = (Y, Z) of [d] is a (d1, d2, `1, `2)-extended left right
monochromatic ((d1, d2, `1, `2)-XLRM) partition if [d1 + `1] ∪ [d− d2 − `2 + 1, d− `2] ⊆ Y .

Given below is an example of a (d1, d2, `1, `2)-XLRM partition.

d1 d2`1 `2

Y or Z:Y :

Figure 7: Extended left-right monochromatic (XLRM) partitions

Lemma 15 (Generalization of Lemma 10). Let f ∈ F〈X〉 be a homogeneous polynomial of degree
d ∈ N computed by a homogeneous skew circuit C of size s. Let Π = (Y,Z) be a (d1, d2, `1, `2)-XLRM
partition, where d1, d2, `1, `2 are positive integers such that 8|d1, 8|d2, `2 ≤ `1, and d ≥ d1+d2+`1+`2.
Then

rel-rank(f,Π) ≤ (sd)2+O(
`2
D

) · expn

{
−Ω

(
min

{
d1, d2,

d1D

`2

})}
.

where D denotes min{d1, d2}.

We will only apply the above lemma when d2 = Θ(d1) and `2 = O(d1), in which case the upper
bound on rel-rank(f,Π) is (sd)O(1) · expn(−Ω(d1)).

Proof. Fix d1, d2 as in the statement of the lemma. We want to bound the quantity ρ(d, `1, `2) :=
supf,Π rel-rank(f,Π) where f,Π are chosen as above.

More generally for (possibly negative) integers p1, p2 such that pi > −di (for i ∈ [2]) and e ∈ N
such that d1 + d2 + p1 + p2 ≤ e, we can define ρ(e, p1, p2) := supF,Π′ rel-rank(F,Π′), where F is
chosen to be a homogeneous polynomial of degree e computed by a skew circuit of size at most s and
Π′ = (U, V ) is a partition of [e] such that U ⊆ [e] satisfies [d1+p1]∪[e−d2−p2+1,min{e, e−p2}] ⊆ U .
When p2 ≥ 0, this is just the condition that [d1 + p1]∪ [e− d2− p2 + 1, e− p2] ⊆ U . Moreover, when
p2 ≤ 0, the partition Π′ is an LRM partition.

We will be interested in reducing the problem of bounding rel-rank(f,Π) to bounding ρ(e, p1, p2)
for p2 ≤ 0, because in this setting we have an LRM partition and hence by Lemma 10, we immediately
get
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Claim 16. Fix e, p1, p2 as above and further assume p2 ≤ 0 and d1 + p1, d2 + p2 > 0. Then
ρ(e, p1, p2) ≤ (sd) · expn{−Ω(min{d1 + p1, d2 + p2})}.

To reduce to the above setting, we will prove the following claim:

Claim 17. Fix any p1 ∈ Z and e, p2 ∈ N such that p1 ≥ −d1/2 and e ≥ d1 + d2 + p1 + p2. For any
b, a ∈ N such that b ≤ a ≤ D/2 we have

ρ(e, p1, p2) ≤ s · (a+ 1) · n−b + s · (a+ 1) · max
a1,a2:

a1+a2=a
a1≤a2+b

ρ(e− a, p1 − a1, p2 − a2).

We will prove the claim below. First, we use the claim to finish the proof of the lemma. The
idea is to apply the above claim repeatedly until we can apply Lemma 10.

We start by defining a few parameters. Let a = D/2, N = 1+b4`2/ac, and b = min{dd1/4Ne, a/4}.
Define e(0) = d, p

(0)
1 = `1 and p

(0)
2 = `2. It can be checked that Claim 17 can be applied with

e = e(0), p1 = p
(0)
1 , and p2 = p

(0)
2 . We thus can apply Claim 17 and use the fact that a+ 1 ≤ d to

obtain
ρ(e(0), p

(0)
1 , p

(0)
2 ) ≤ sd · n−b + sd · ρ(e(0) − a, p(0)

1 − a
(0)
1 , p

(0)
2 − a

(0)
2 ).

for some a
(0)
1 , a

(0)
2 ∈ N such that a

(0)
1 + a

(0)
2 = a and a

(0)
1 ≤ a

(0)
2 + b. Define e(1) = e(0) − a,

p
(1)
1 = p

(0)
1 − a

(0)
1 , and p

(1)
2 = p

(0)
2 − a

(0)
2 . Note that we still have e(1) ≥ d1 + d2 + p

(1)
1 + p

(1)
2 . Also

note that p
(1)
1 ≥ p(1)

2 − b.
We repeat the above process to define e(i+1), p

(i+1)
1 , p

(i+1)
2 from e(i), p

(i)
1 , p

(i)
2 as long as p

(i)
1 ≥

−d1/2 and p
(i)
2 > 0. After i ≥ 1 such iterations, we have

ρ(e(0), p
(0)
1 , p

(0)
2 ) ≤

 i∑
j=1

(sd)j+1

 · n−b + (sd)i · ρ(e(i), p
(i)
1 , p

(i)
2 ) (5)

Note, moreover, that we also have the following

e(i) = e(i−1) − a, p
(i)
1 ≥ p

(i)
2 − ib, p

(i−1)
2 − a ≤ p(i)

2 = p
(0)
2 −

∑
j<i

a
(j)
2 ≤ p

(0)
2 − ia/4 (6)

For the last two inequalities, we have used the fact that for any j < i, a
(j)
2 ≤ a; and also

a = a
(j)
1 + a

(j)
2 ≤ 2a

(j)
2 + b and since b ≤ a/4, we have a

(j)
2 ≥ a/4.

We terminate the process when either p
(i)
1 < −d1/2 or p

(i)
2 ≤ 0. Let i0 be the number of iterations

in the above procedure. It can be verified using the last inequality in (6) that p
(i)
2 ≤ 0 after at most

N iterations and hence i0 ≤ N . Furthermore, we have

p
(i0)
1 = p

(i0−1)
1 − a(i0)

1 ≥ p(i0−1)
2 − (i0 − 1)b− a ≥ −(N − 1)b− a ≥ −d1/4− d1/4 ≥ −d1/2

where the first inequality follows from (6) and the fact that a
(i0)
1 ≤ a, the second from the fact that

p
(i0−1)
2 ≥ 0 (by the definition of i0) and i0 ≤ N and the third by the definitions of a, b, and N above.
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Thus, after i0 ≤ N iterations, we will have p
(i0)
2 ≤ 0 and p

(i0)
1 ≥ −d1/2; furthermore, by

(6), we have p
(i0)
2 ≥ p

(i0−1)
2 − a ≥ −a ≥ −d2/2. By Claim 16, we have ρ(e(i0), p

(i0)
1 , p

(i0)
2 ) ≤

(sd) · expn{−Ω(min{d1 + p
(i0)
1 , d2 + p

(i0)
2 })}. Since p

(i0)
1 ≥ −d1/2 and p

(i0)
2 ≥ p

(i0−1)
2 − a ≥ −d2/2,

we have d1 + p
(i0)
1 ≥ d1/2. Hence, we have shown that

ρ(e(i0), p
(i0)
1 , p

(i0)
2 ) ≤ (sd) · expn{−Ω(min{d1, d2})}

Plugging the above into (5) with i = i0, we have

ρ(e(0), p
(0)
1 , p

(0)
2 ) ≤

 i0∑
j=1

(sd)j+1

 · n−b + (sd)i0+1 · expn{−Ω(min{d1, d2})}

≤ (sd)N+1 · expn{−Ω(min{d1, d2, b})}

≤ (sd)2+O(`2/D) · expn

{
−Ω

(
min

{
d1, d2,

d1D

`2

})}
.

as claimed. For the last inequality, we have used the fact that b = min{a/4, dd1/4Ne} =
Ω(min{d1, d2, (d1D/`2)}).

6.2.1 Proof of Claim 17

We have ρ(e, p1, p2) = supF,Π′ rel-rank(F,Π′) where F and Π′ = (U, V ) are as mentioned above. We

apply Lemma 8 to F with d′ = e−a to get a decomposition of the form F =
∑t

i=1

∑
j∈[0,a] gi×j hi,j ,

where t ≤ s and the polynomials gi (i ∈ [t]) are intermediate polynomials computed by the circuit
computing F and hence have skew circuits of size at most s. By the subadditivity of matrix rank,
we have

rel-rank(F,Π′) ≤
t∑
i=1

∑
j∈[0,a]

rel-rank(gi ×j hi,j ,Π′) (7)

Fix any (i, j) ∈ [t]× [0, a]. We upper bound rel-rank(gi ×j hi,j ,Π′) based on j as follows.
We first consider the case when j is large: more precisely, we assume that j ≥ (a− j) + b. In

this case, we use the following consequence of Corollary 7:

rel-rank(gi ×j hi,j ,Π′) ≤ n−(|Uh|−|Vh|), (8)

where Uh = Collapse(U \ [j + 1, j + d′], [e] \ [j + 1, j + d′]) and Vh = [a] \Uh. Since U ⊇ [d1 + p1] ⊇
[d1/2] ⊇ [D/2] ⊇ [a] ⊇ [j], we have |Uh| ≥ j and consequently, |Vh| = a−|Uh| ≤ (a−j) ≤ j−b by our
assumption that j is large. Thus, |Uh|− |Vh| ≥ b and hence (8) implies that rel-rank(gi×j hi,j ,Π′) ≤
n−b.

Now consider the case when j is small: i.e., j ≤ (a− j) + b. In this case, by Corollary 7, we have

rel-rank(gi ×j hi,j ,Π′) ≤ rel-rank(gi,Π
′
g) (9)

for Π′g = (Ug, Vg) where Ug = Collapse(U ∩ [j + 1, j + d′], [j + 1, j + d′]). Note that gi is a
homogeneous polynomial of degree e− a computed by a skew circuit of size at most s. Furthermore,
since U ⊇ [d1 + p1] ∪ [e− d2 − p2 + 1, e− p2], it follows from some simple analysis that

Ug ⊇ [d1 + p1 − j] ∪ [(e− a)− d2 − (p2 − (a− j)) + 1,min{e− a, e− a− (p2 − (a− j))}]
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Thus, it follows that

rel-rank(gi,Π
′
g) ≤ ρ(e− a, p1 − j, p2 − (a− j)) ≤ max

a1,a2:
a1+a2=a
a1≤a2+b

ρ(e− a, p1 − a1, p2 − a2)

where for the last inequality we have used the fact that j is small.
Hence, we have shown that for every i, j,

rel-rank(gi ×j hi,j ,Π′) ≤ n−b + max
a1,a2:

a1+a2=a
a1≤a2+b

ρ(e− a, p1 − a1, p2 − a2).

The claim now follows from (7).

6.3 The candidate hard partition for circuits of non-skew depth at most k

Throughout, let d0 ∈ N+ be a fixed parameter.
Let d ∈ N. Given an (ordered) partition Π = (Y, Z) of [d], we define the signature of Π to be

the sequence sgn(Π) = σ = (i1, i2, . . . , ip) of non-negative integers such that the first i1 elements of
[d] belong to Y , the next i2 elements belong to Z, the next i3 again to Y , and so on. Formally,

Y =
⋃
q odd

[
∑
j<q

ij + 1,
∑
j≤q

ij ].

We denote by |σ| the quantity
∑

q≤p iq = d and use |σ|0 to denote p.

Given two signatures σ1 ∈ Nn and σ2 ∈ Nm, we use σ1 ◦σ2 ∈ Nm+n to denote their concatenation.
We also use σr1 to denote the r-fold repetition of σ1.

Given a signature σ = (i1, . . . , ip), we say that a signature τ is a prefix of σ if τ = (i′1, . . . , i
′
q) for

q ≤ p, where i′j = ij for j < q and i′q ≤ iq.
Clearly, we may define a partition Π of [d] using its signature. For any k ∈ N, we now define a

partition Πk = (Yk, Zk) of [d] (for suitable d) such that small circuits of non-skew depth at most k
computing a homogeneous polynomial of degree d have low rank w.r.t. Πk.

Fix any k ∈ N and let Dk = 8d0 + 12d0k. We define the partition Πk = (Yk, Zk) of [Dk] so that

sgn(Πk) = (3(k + 1)d0, 2d0) ◦ (d0, 2d0)1+3k

Note that |Yk| = |Zk| = Dk/2. Figure 8 illustrates the partition Π0 and also the relation between
the partitions Πk and Πk−1, which will be important in our lower bound.

We will later show that small circuits of non-skew depth at most k computing a homogeneous
polynomial of degree Dk cannot compute a polynomial that has high relative rank w.r.t. Πk. In the
remainder of this section, we show that there are small circuits of non-skew depth O(k) (in fact,
circuits using only O(k) many non-skew gates) that can compute a homogeneous polynomial fk of
degree Dk that has full rank w.r.t. Πk. The basic ‘gadget’ in this construction is the palindrome
polynomial, and the construction of fk involves ‘wrapping’ a copy of PALDk/4(X) around O(k)
copies of PALd0(X).
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d03d0 2d0 2d0

Πk−1

d03d0 2d0

Y : Z:

Figure 8: The partition Π0 (above) and constructing Πk from Πk−1 (below)

Lemma 18. Fix any positive integers k, d0 and let Dk be as above. Then, there is a homogeneous
polynomial fk ∈ F〈X〉 of degree Dk that is computable by a non-commutative arithmetic circuit of
size O(nDk) with O(k) many non-skew gates and s.t. rel-rank(fk,Πk) = 1.

Proof. We define the polynomials fk inductively. For k = 0, we define

f0 := (PAL2d0(X) · PALd0(X))×d0 PALd0(X)

In the notation of Section 4.1, we can write f0 as

f0 =
∑

w1,w2,w3,w4∈[n]d0

x̃w1 · x̃w2 · x̃w3 · x̃wR
3
· x̃wR

2
· x̃w4 · x̃wR

4
· x̃wR

1

Figure 9 illustrates the positioning of the segments of the monomial corresponding to w1, w2, w3,
and w4 w.r.t. the partition Π0.

w1 w2 w3 wR
3 wR

2 w4 wR
4 wR

1

fk−1

w1 w2 w3 w4 wR
4 wR

3 w5 wR
5 wR

2 w6 wR
6 wR

1

Figure 9: The construction of polynomials f0 (above) and fk from fk−1 (below)

We observe that f0 can be computed by a homogeneous non-commutative arithmetic circuit of
size O(nD0) = O(nd0) with exactly one non-skew gate. To see this, note that g0 := (PAL2d0(X) ·
PALd0(X)) can be computed by first computing each of the terms of the product using homogeneous
skew circuits of size O(nd0) and then multiplying them using exactly one non-skew gate. We can
then compute f0 by using g0 and only homogeneous skew multiplication gates by using the following
inductive definitions:

g
(0)
0 := g0

g
(i+1)
0 :=

n∑
j=1

xj · g(i)
0 · xj
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The polynomial g
(d0)
0 is exactly f0. Note that computing g

(i+1)
0 from g

(i)
0 requires only O(n)

additional gates. Thus, the size of the circuit computing f0 is O(nd0).
For k > 0, we define the polynomial fk inductively as follows. The construction is illustrated in

Figure 9.

fk :=
∑

w1,w2,w3,w4,w5,w6∈[n]d0

(x̃w1 x̃w2 x̃w3) · fk−1 · (x̃w4 x̃wR
4

) · x̃wR
3
· (x̃w5 x̃wR

5
) · x̃wR

2
· (x̃w6 x̃wR

6
) · x̃wR

1

It can be easily checked that the matrix M [fk,Πk] is an nDk/2 × nDk/2 permutation matrix and
hence rel-rank(fk,Πk) = 1.

We need to check that fk defined as above has a small non-commutative circuit with O(k) many
non-skew gates. For k ≥ 1, we define

hk := (fk−1 · PALd0(X))×d0 PALd0(X)

gk := (hk · PALd0(X))×d0 PALd0(X)

Note that
fk = (gk · PALd0(X))×d0 PALd0(X)

The circuit for hk is obtained from the circuit for fk−1 in a manner similar to the construction
of the circuit for f0, and similarly, we can obtain a circuit for gk and then a circuit for fk. We omit
the details. It is easy to check that only 3 additional non-skew multiplication gates are used by the
above procedure and hence the number of non-skew gates used overall is O(k).

6.4 The lower bound for circuits of non-skew depth k

In this section, we show that small non-commutative circuits of non-skew depth k computing a
homogeneous polynomial of degree Dk cannot compute a polynomial that has high relative rank
w.r.t. Πk. Throughout, let d0 ∈ N be a fixed parameter.

For ` ∈ N+, we say that a pair (g,Π) is `-good if g ∈ F〈X〉 is a homogeneous polynomial with
deg(g) = D ≥ D` and Π = (Y,Z) is a partition of [D] such that sgn(Π) = (a, 2d0) ◦ (d0, 2d0)1+3`+r ◦
(b, c) where

• a ≥ 3(`+ 1)d0, r ≥ 0, and

• either c = 0 and b ∈ [d0] or b = d0 and c ∈ [2d0 − 1].

Intuitively, the (g,Π) being `-good means that D ≥ D` and Π ‘contains’ a copy of Π` as a sub-
segment and Π is furthermore similarly contained in Π`′ for some `′ ≥ `. See Figure 10, where the
top partition corresponds to the case c = 0 and the bottom one to the case b = d0 as mentioned
above.

The main lemma is the following:

Lemma 19 (Main Lemma for circuits of non-skew depth k). Assume k, d0 ∈ N such that 64|d0.
Let f ∈ F〈X〉 be any homogeneous polynomial of degree Dk computed by a non-commutative circuit
C of size at most s with non-skew depth at most k and let Πk = (Yk, Zk) be the partition defined
above. Then, rel-rank(f,Πk) ≤ (sDk)

O(1) · n−Ω(d0).
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Π` · · ·

Π` · · ·
D`

Figure 10: Partitions that arise in `-good pairs

The basic idea of the proof is to repeatedly use Lemma 13 to decompose the polynomial f
as a sum of polynomials computed by circuits with smaller non-skew depth. When we apply
Lemma 13, we repeatedly obtain polynomials of the form g ×j h where g and h are homogeneous
polynomials of degree dg and Dk−dg respectively and j ∈ [0, Dk−dg]. Given a polynomial g ∈ F〈X〉,
j ∈ [0, Dk − dg], and ` ∈ [0, k], we say that the pair (g, j) is `-admissible if the pair (g,Πg) is `-good,
where Πg = (Yg, Zg) for Yg := Collapse(Yk ∩ [j + 1, j + dg], [j + 1, j + dg]) and Zg := [dg] \ Yg. See
Figure 11.

Π` · · ·

g
j

Πk

Figure 11: Example of an `-admissible pair (g, j)

Proof. First let us introduce some notation. Let the non-skew depth of a node v of C be the maximum
number of non-skew gates on any path from a leaf to v. For ` ∈ [k], let G` (resp. G=`) be the set of
all polynomials computed by gates in the circuit that have non-skew depth at most ` (resp. exactly `);
note that |G=`| ≤ |G`| ≤ s. We also denote by A` the set {(g, j) | g ∈ G` and (g, j) is `-admissible}.
Finally, we define V` by

V` = {
∑

(g,j)∈A`

g ×j Hg
j | H

g
j ∈ F〈X〉 homogeneous of degree exactly (Dk − deg(g))}

Note that V` ⊆ F〈X〉 is a vector space over F.
Our proof proceeds in two steps:

1. We first show that for each ` ∈ [0, k], the polynomial f can be decomposed as f = p`+e` where
p` ∈ V` and e` is such that rel-rank(e`,Πk) is small. The proof is by downward induction on `.

2. We then show that rel-rank(p0,Πk) is small for each p0 ∈ V0. Along with the above decompo-
sition, this will finish the proof.

We start with 1. above. Formally, we prove that there are absolute constants α, β > 0 such that
for each ` ∈ [0, k], the polynomial f can be written as

f = p` + e` (10)
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where p` ∈ V` and e` ∈ F〈X〉 is homogeneous of degree D0 and satisfies

rel-rank(e`,Πk) ≤ (sDk)
α · (k − `) · n−βd0 . (11)

The proof is by downward induction on `. We will choose α, β so that they satisfy some
constraints that come up during the course of the proof. The base case when ` = k is trivial, since
we can choose pk = f ∈ Vk and ek to be the zero polynomial. Both (10) and (11) are thus satisfied
for any choice of α, β.

Now for the induction case. Say that ` ∈ [0, k − 1]. By the induction hypothesis we have
f = p`+1 + e`+1, where p`+1 ∈ V`+1 and rel-rank(e`+1,Πk) ≤ (sDk)

α · (k − ` − 1) · n−βd0 . By the
definition of V`+1, we know that

p`+1 =
∑

(g,j)∈A`+1

g ×j Hg
j

=
∑

(g,j)∈A′`+1

g ×j Hg
j +

∑
(g,j)∈A`

g ×j Hg
j︸ ︷︷ ︸

p′`+1∈V`

(12)

where A′`+1 := A`+1 \A` = {(g, j) | (g, j) is `+ 1-admissible and g ∈ G=`+1}. (Here, we have used
the fact that if (g, j) is (`+ 1)-admissible and g ∈ G`, then (g, j) is also `-admissible.)

As noted above, the terms corresponding to (g, j) ∈ A` already sum to a polynomial p′`+1 ∈ V`.
To prove the induction statement (10), it therefore suffices to decompose each polynomial g ×j Hg

j

where (g, j) ∈ A′`+1. To do this, we need the following claim, whose proof is deferred:

Claim 20. Fix any ` ∈ [k]. Also fix any g ∈ G=` of degree dg ∈ [D`, Dk], any homogeneous
polynomial H ∈ F〈X〉 of degree Dk−dg, and j such that (g, j) is `-admissible. Then, the polynomial
g ×j H can be decomposed as

g ×j H = p+ e

where p ∈ V`−1 and e ∈ F〈X〉 is homogeneous of degree Dk and satisfies rel-rank(e,Πk) ≤ (sDk)O(1) ·
n−Ω(d0).

Applying the above claim (with ` replaced by `+ 1) to each pair (g, j) ∈ A′`+1 from the right
hand side of (12), we obtain for each such (g, j) that

g ×j Hg
j = pgj + egj

where pgj ∈ V` and rel-rank(egj ,Πk) ≤ (sDk)
α1 · n−β1d0 for suitably large α1 > 0 and small β1 > 0.

Substituting in (12), we get

p`+1 = p′`+1 +
∑

(g,j)∈A′`+1

pgj︸ ︷︷ ︸
p`

+
∑

(g,j)∈A′`+1

egj︸ ︷︷ ︸
e′`

.
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Note that p` ∈ V` (since V` is a vector space). Also, as |A′`+1| ≤ (sDk), we have rel-rank(e′`,Πk) ≤
(sDk)

α1+1 · n−β1d0 ≤ (sDk)
α · n−βd0 for α ≥ α1 + 1 and β ≤ β1.

Setting p` as above and e` = e`+1 + e′`, we have the required decomposition. The inequality (11)
follows since rel-rank(e`,Πk) ≤ rel-rank(e`+1,Πk) + rel-rank(e′`,Πk). This finishes the proof of the
induction.

Thus, for ` = 0, we have
f = p0 + e0

for some p0 ∈ V0 and rel-rank(e0,Π0) ≤ k · (sDk)
α · n−βd0 ≤ (sDk)

α+1 · n−βd0 . To bound
rel-rank(f,Πk), we only need to bound rel-rank(p0,Πk). Since p0 ∈ V0, we have

p0 =
∑

(g,j)∈A0

g ×j Hg
j (13)

To analyze rel-rank(p0,Πk), we will need the following claim, the proof of which is also deferred:

Claim 21. Assume that h ∈ F〈X〉 of degree dh ∈ [D0, Dk] is computed by a homogeneous skew
circuit of size s1.

(a) Let Πh = (Yh, Zh) be any partition of [dh] such that (h,Πh) is 0-good. Then rel-rank(h,Πh) ≤
(s1Dk)

O(1) · n−Ω(d0).

(b) Let H ∈ F〈X〉 be a homogeneous polynomial of degree dH = Dk − dh. Given j ∈ [0, dH ] is such
that (h, j) is 0-admissible, we have rel-rank(h×j H,Πk) ≤ (s1Dk)

O(1) · n−Ω(d0).

Fix (g, j) ∈ A0 and consider the polynomial g ×j Hg
j in the right hand side of (13). By

Claim 21 and using the fact that g is computable by a skew circuit of size at most s, we know that
rel-rank(g ×j Hg

j ,Πk) ≤ (sDk)
O(1) · n−Ω(d0). Thus, we have

rel-rank(f,Πk) ≤ rel-rank(p0,Πk) + rel-rank(e0,Πk)

≤
∑

(g,j)∈A0

rel-rank(g ×j Hg
j ,Πk) + rel-rank(e0,Πk)

≤ (sDk)
O(1) · n−Ω(d0)

which finishes the proof of the lemma.

It remains to prove the two claims used in the proof of Lemma 19. We prove Claim 21 first and
then Claim 20.

Proof of Claim 21. We first prove Part (a) of the claim. Since (h,Πh) is 0-good, we have sgn(Πh) =
(a, 2d0) ◦ (d0, 2d0)1+r ◦ (b, c), for a ≥ 3d0, r ≥ 0 and b, c such that either c = 0 and b ∈ [d0] or b = d0

and c ∈ [2d0 − 1].
We need to show that

rel-rank(h,Πh) ≤ (s1Dk)
O(1) · n−Ω(d0), (14)

We divide the analysis into the following cases (see also Figure 12).
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· · ·

a ≥ 3d0 b ≥ d0/2

· · ·

b < d0/2

`1 d1 d2 `2

· · ·

c

`1 d1 d2 `2

Figure 12: Cases from Claim 21

• c = 0 and b ≥ d0/2: In this case, we can apply Lemma 10 with d1 = 3d0 and d2 = d0/2 to get
(14).

• c = 0 and b < d0/2: In this case, we apply Lemma 15 with d1 = d0/2, d2 = d0, `1 = 5d0/2,
and `2 = b+ 2d0 < 5d0/2. Note that Y ⊇ [3d0] ∪ [d− b− 3d0 + 1, d− b− 2d0] = [d1 + `1] ∪
[d− d2 − `2 + 1, d− `2] and hence Lemma 15 implies (14).

• b = d0 and c > 0: We apply Lemma 15 with parameters d1 = d2 = d0, `1 = 2d0, and
`2 = c < 2d0, which gives (14).

Part (b) of the claim follows from Part (a) as follows. Let Yh := Collapse(Yk∩ [j+1, j+dh], [j+
1, j + dh]), Zh := [dh] \ Yh, and Πh := (Yh, Zh). Since (h, j) is 0-admissible, we know that (h,Πh) is
0-good. By Corollary 7, we have

rel-rank(h×j H,Πk) ≤ rel-rank(h,Πh) ≤ (s1Dk)
O(1) · n−Ω(d0)

where the last inequality follows from Part 1.

Proof of Claim 20. Let Yg := Collapse(Yk∩ [j+1, j+dg], [j+1, j+dg]). Also define Zg := [dg]\Yg
and Πg := (Yg, Zg). Since (g, j) is `-admissible, we know that (g,Πg) is `-good.

Π` · · ·

Π`−1

3d0

Figure 13: The partition Πg (above) and the relation between Π` and Π`−1 (below)

To do this, consider the subcircuit Cg of C that computes g. Since g is at non-skew depth `,
we may assume that Cg has non-skew depth ` also by removing gates at larger non-skew depths.
Recall that C and hence Cg has size at most s.
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By applying Lemma 13 to the polynomial g, we can see that

g =
∑
i∈[t]

∑
m∈[0,dg−di]

gi ×m hi,m + h0

where g1, . . . , gt are the polynomials computed by the top-most non-skew gates in Cg and di = deg(gi).
Further, each of the hi,m and h0 have skew circuits of size at most sdg ≤ sDk. Thus, we have

g ×j H =
∑
i

∑
j,m

(gi ×m hi,m)×j H + h0 ×j H (15)

We argue that polynomial on the right hand side of (15) either belongs to V`−1 or has relative rank
at most (sDk)O(1) · n−Ω(d0) w.r.t. Yk. Since V`−1 is a vector space and rel-rank(·,Πk) is subadditive,
this will complete the proof.

We consider first the polynomial h0 ×j H. Note that (h0, j) is `-admissible — since (g, j) is —
and hence it is also 0-admissible. Moreover, h0 is computable by a skew circuit of size at most sDk.
Hence, by Claim 21, we have

rel-rank(h0 ×j H,Πk) ≤ (sDk)
O(1) · n−Ω(d0), (16)

which completes the analysis of this term.
Now consider any polynomial qi,m := (gi ×m hi,m) ×j H appearing in (15). For notational

simplicity, we let d′g := di = deg(gi) and d′h := deg(hi,m) = dg − di. We will show that either
qi,m ∈ V`−1 or rel-rank(qi,m,Πk) is small; to prove the latter, we will use the following inequalities
which follow from Lemma 6 and Corollary 7:

rel-rank(qi,m,Πk) ≤ rel-rank(gi ×m hi,m,Πg) ≤ min{rel-rank(gi,Π
′
g), rel-rank(hi,m,Π

′
h)}

≤ min{n−(|Y ′g |−|Z′g |), n−(|Y ′h|−|Z
′
h|)} (17)

where Π′g = (Y ′g , Z
′
g) and Π′h = (Y ′h, Z

′
h) are the natural restrictions of Πg to gi and hi,m respectively.

That is, Y ′g := Collapse(Yg ∩ [m + 1,m + d′g], [m + 1,m + d′g]), Y
′
h := Collapse(Yg \ [m + 1,m +

d′g], [dg] \ [m+ 1,m+ d′g]), and Z ′g and Z ′h denote [di] \ Y ′h and [di,m] \ Z ′h respectively.
Since (g,Πg) is `-good, we know that dg ≥ D` and, furthermore, we have sgn(Πg) = (a, 2d0) ◦

(d0, 2d0)1+3`+r ◦ (b, c) where a ≥ 3(` + 1)d0, r ≥ 0 and b, c such that either c = 0 and b ∈ [d0] or
b = d0 and c ∈ [2d0 − 1].

The upper bound on rel-rank(qi,m,Πk) is based on a case analysis.

1. m < 5d0/2 and dg − m − d′g < b + c + 3rd0 + 9d0: In this case sgn(Π′g) = (ag, 2d0) ◦
(d0, 2d0)1+3(`−1) ◦ σ, where ag ≥ (3` + 1/2)d0 and σ is some signature: in particular, d′g ≥
D`−1 + d0/2. In what follows, we will argue that either gi has low relative rank w.r.t. Π′g or
qi,m ∈ V`−1.

Since gi is computed by a top-most non-skew gate in the circuit Cg, we can write gi = gi,1 · gi,2
where gi,1 and gi,2 are homogeneous polynomials computed by homogeneous circuits of
size at most s and non-skew depth at most ` − 1. Let e1 and e2 = d′g − e1 denote the
degrees of gi,1 and gi,2 respectively. Let Π′g,1 = (Y ′g,1, Z

′
g,1) and Π′g,1 = (Y ′g,1, Z

′
g,1) be the
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induced partitions on gi,1 and gi,2 respectively: i.e., Y ′g,1 = Collapse(Y ′g ∩ [e1], [e1]) and
Y ′g,2 = Collapse(Y ′g ∩ [e1 + 1, d′g], [e1 + 1, dg]).

Our analysis is further divided into two cases depending on e1:

(i) e1 < d0/2: In this case, we see that e2 = d′g − e1 ≥ D`−1 and also sgn(Π′g,2) = GM:
(ag − e′, 2d0)
should be
(ag − e1, 2d0)?

(ag−e′, 2d0)◦(d0, 2d0)1+3(`−1)◦σ. Hence, (gi,2,Π
′
g,2) is (`−1)-good. Thus, the polynomial

qi,m — which by Fact 2 can be written as gi,2 ×j2 H2 for some homogeneous polynomial
H2 of degree Dk − d′g,2 and some j2 — belongs to V`−1 and hence we are done.

(ii) e1 ≥ d0/2: If sgn(Π′g,1) = (ag, 2d0) ◦ (d0, 2d0)1+3(`−1) ◦ σ′ for some signature σ′, then as
in the previous case, we have qi,m = gi,1 ×j1 H1 for some suitable H1 and j1, and hence
qi,m ∈ V`−1.

Otherwise, we can use the fact that sgn(Π′g,1) must be a prefix of (ag, 2d0)◦(d0, 2d0)1+3(k−1)

and using the fact that |sgn(Π′g,1)| = e1 ≥ d0/2, we see that |Y ′g,1| − |Z ′g,1| ≥ d0/2 and

therefore, we have rel-rank(gi,1,Π
′
g,1) ≤ n−(|Y ′g,1|−|Z′g,1|) ≤ n−Ω(d0). By Lemma 6, the

same bound holds for rel-rank(qi,m,Πk) as well.

Π`−1 . . .

m < 5d0/2 dg −m− d′ggi

gi,1 gi,2

Π`−1 . . .

gi,1 gi,2

Π`−1 . . .

gi,1 gi,2

Figure 14: The subcases in Case 1: The first figure represents Case 1(i), and the second and third
represent Case 1(ii).

2. m < 5d0/2 but dg−m−d′g ≥ b+ c+ 3rd0 + 3d0: In this case, it can be checked that sgn(Πg) is

a prefix of (ag, 2d0) ◦ (d0, 2d0)1+3(`−1) for some ag ≥ (3`+ 1/2)d0. We analyze in two different
ways depending on whether d′g is reasonably large or not.

(i) d′g ≥ d0/2: In this case, it follows that no matter what exactly sgn(Πg) is, we will always

have |Y ′g | − |Z ′g| ≥ d0/2 and hence by (17), we have rel-rank(gi ×m hi,m,Π
′
g) ≤ n−Ω(d0).

(ii) d′g < d0/2: In this case, it can be checked that d′h ≥ D`−1 and (h, sgn(Π′h)) is (`− 1, d′h)-
good and hence also (0, d′h)-good. Thus, we have

rel-rank(qi,m,Πk) = rel-rank((gi ×m hi,m)×j H,Πk) = rel-rank(gi ×j+m (hi,m ×j H),Πk)

≤ rel-rank(hi,m,Π
′
h) ≤ (sD)O(1) · n−Ω(d0)
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where the second equality uses Fact 2, the first inequality uses two applications of
Corollary 7, and the last inequality follows from Part 1 of Claim 21.

Π`−1 . . .

m dg −m− d′ggi

Π`−1 . . .

m gi

Figure 15: The subcases in Case 2: Case 2(i) above and Case 2(ii) below.

3. m ∈ [5d0/2, a]: In this case, we show that rel-rank(hi,m,Π
′
h) ≤ (sDk)

O(1) · n−Ω(d0). By (17),
the same upper bound holds for rel-rank(qi,m,Πk).

(i) dg − d′g − m < (5/2 − 1/8)d0: In this case, we have |Y ′h| ≥ m ≥ 5d0/2 and |Z ′h| ≤
dg− d′g−m < (5/2− 1/8)d0. Thus, we have |Y ′h|− |Z ′h| ≥ d0/8 and hence by Corollary 7,

rel-rank(hi,m,Π
′
h) ≤ n−Ω(d0). So, from now on, we assume that dg−d′g−m ≥ (5/2−1/8)d0.

In particular, d′h ≥ m+ (5/2− 1/8)d0 ≥ (5− 1/8)d0.

(ii) c = 0 and b < d0/4: In this case, it can be checked that Y ′h ⊇ [5d0/2] ∪ [d′h − b− 2d0 −
d0/8 + 1, d′h − b− 2d0]. We apply Lemma 15 with parameters `1 = (5/2− 1/4)d0, d1 =
d0/4, `2 = 2d0 + b < `1, and d2 = d0/8 to get rel-rank(hi,m,Π

′
h) ≤ (sDk)

O(1) · n−Ω(d0).

(iii) c = 0 and b ≥ d0/4: In this case, it can be checked that Y ′h ⊇ [d0/4]∪[d′h−d0/4+1, d′h], and
hence Lemma 10 implies that rel-rank(hi,m,Π

′
h) ≤ (s(d′h)2) · n−Ω(d0) ≤ (sDk)

2 · n−Ω(d0).

(iv) b = d0 and c ∈ [2d0 − 1]: In this case, we apply Lemma 15 with parameters `1 =
(2 + 1/4)d0, d1 = d0/4, `2 = c < 2d0 < `1, d2 = b = d0 to get rel-rank(hi,m,Π

′
h) ≤

(sD)O(1) · n−Ω(d0).

4. m > a: Here again we show that rel-rank(hi,m,Π
′
h) ≤ (sDk)

O(1) · n−Ω(d0). Consider the
partition Π′h = (a1, a2, . . . , ar). Each at (t ∈ [r]) corresponds to a segment of the partition Πg.
Observe that a1 = a ≥ 6d0 (see Figure 17).

We will be interested in finding the largest t ∈ [r] to be the largest odd integer such that
at ≥ d0/4; denote this t by t0 (note that t0 may even be 1); in other words, t0 indexes
the right most Y segment that has length at least d0/4. Let A =

∑
p>p0

at. To show that
rel-rank(hi,m,Π

′
h) is small, we apply Lemma 15 with parameters `1 = 5d0, d1 = d2 = d0/4, and

`2 = A. It can be checked by a further small case analysis that irrespective of the exact value
of m, d′g, b and c, we always have A < 5d0 and hence Lemma 15 is applicable. The lemma

gives us rel-rank(hi,m,Π
′
h) ≤ (sDk)

O(1) · n−Ω(d0), as required.

The main lower bound for non-commutative circuits of small non-skew depth follows.
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. . .

m gi

a ≤ (5/2− 1/8)d0

. . .

m gi

a b ≤ d0/4

. . .

m gi

a b > d0/4

. . .

m gi

a c 6= 0

Figure 16: The subcases of Case 3: Case 3(i),3(ii),3(iii), and 3(iv) in order.

. . . . . .

a

m gi

Π`−1

≥ 3d0 ≥ 3d0

Figure 17: Case 4

Theorem 22 (Lower bound for circuits of non-skew depth k). Let k, d ∈ N be any parameters
such that (8k + 12)|d and 64|(d/k). There is a homogeneous polynomial f ∈ F〈X〉 of degree d such
that f is computable by a homogeneous circuit of size O(nd) with O(k) non-skew gates but any
non-commutative circuit of skew depth at most k computing f must have size at least Ω̃(nΩ(d/k)),
where the Ω̃(·) hides poly(d) factors.

Proof. We let f = fk as defined above with d0 := d/(8k + 12) (and hence deg(fk) = Dk = d).
By Lemma 18, we know that f is computable by a homogeneous circuit of size O(nd) with O(k)
non-skew gates. Moreover, rel-rank(f,Πk) = 1, where Πk = (Yk, Zk) is the partition defined in
Section 6.3.

Let C be any non-commutative circuit of non-skew depth at most k computing f and let
s denote the size of C. By Lemma 5, we know that there is also a homogeneous circuit C ′ of
non-skew depth at most k and size at most sdO(1) computing f . Thus, Lemma 19 implies that
rel-rank(f,Πk) ≤ (sd)O(1)n−Ω(d0) = (sd)O(1)n−Ω(d/k). As rel-rank(f,Πk) = 1, we have the required
lower bound on s.
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7 Lower bound for the determinant and permanent

Nisan’s lower bounds from [14] held not only for the palindrome polynomial seen above, but also
for the permanent and the determinant polynomials, because it is easy to see that their partial
derivative matrices have high rank. In our case, we could also try to study the rank of the permanent
or the determinant, using our version of the partial derivative matrix. However it is simpler to use
the fact that the permanent and determinant can easily express the palindrome polynomial.

Recall the definitions of the non-commutative (Cayley) determinant and permanent of an n× n
matrix of variables X = (Xi,j)i,j∈[n]:

det(X) =
∑
σ∈Sn

sgn(σ)X1,σ(1) ·X2,σ(2) · · ·Xn,σ(n) per(X) =
∑
σ∈Sn

X1,σ(1) ·X2,σ(2) · · ·Xn,σ(n)

That is, we just take the commutative determinant and permanent and make it non-commutative
by ordering the variables in each monomial in increasing order of the rows in which they appear.

Lemma 23. Let Pd be the 2d× 2d matrix with x0 on the diagonal, x1 on the anti-diagonal, and 0
everywhere else. Let Dd be the 2d× 2d matrix with x0 on the diagonal, x1 on the first d positions
of the anti-diagonal and −x1 on the last d positions of the anti-diagonal. Then PALd(x0, x1) =
perPd = detDd.

Proof. The permanent of Pd can be obtained by choosing in each row of Pd a column index, while
ensuring that each column index is taken only once; multiplying the values obtained; and then
adding the results for all possible choices. Since there are only two non-zero values per row, for
the row i (with 1 ≤ i ≤ d), we can either choose the index i with value x0 or the index 2d+ 1− i
with value x1. In the first case, the column of index i is now forbidden and therefore for the row
2d+ 1− i the only available non-zero value is x0 with the column index 2d+ 1− i. In the the second
case, the column of index 2d+ 1− i is now forbidden and therefore for the row 2d+ 1− i the only
available non-zero value is x1 with column index i.

For the determinant, note that the above reasoning shows that a permutation yielding a non-zero
value is a combination of fixed points (when choosing the value x0 at row i in column i one must
then choose value x0 at row 2d+ 1− i in column 2d+ 1− i) and transpositions (when choosing the
value x1 at row 2d+ 1− i in column i one must then choose value x1 at row i in column 2d+ 1− i).
Therefore adding a minus sign to the last d values x1 cancels out the sign of the permutation in the
determinant.

Corollary 24. Let k, d ∈ N be any parameters such that (8k + 12)|d and 64|(d/k). Any circuit of
non-skew depth k for the permanent or the determinant of an d× d matrix must have size 2Ω(d/k).

Proof. Let us show the corollary for the permanent only, since the case for the determinant is similar.
We will show that there exists a matrix Pk such that the permanent of Pk is f ′k, where f ′k is fk but
built with the 2-variable palindrome polynomial (n = 2). We will follow the construction of fk from
the proof of Lemma 18. Lemma 23 shows that there exists a matrix of order d0 whose permanent is
PALd0(x0, x1). To get f ′0 from this polynomial, or to go from f ′k−1 to f ′k we basically need two types
of steps.
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1. Computing the product of two previously obtained polynomials. If we have already built
two matrices M and N whose permanents are f and g respectively, then clearly f · g is the
permanent of the block diagonal matrix with M and N on the diagonal. The order of the
block matrix is the sum of the orders of M and N .

2. Computing a j-product of a previously computed polynomial with a palindrome polynomial.
If we have already built a matrix M whose permanent is the polynomial f , then we can build

a matrix whose permanent is f ×d0 PALd0(x0, x1) by considering the block matrix
(
D 0 A
0 M 0
A 0 D

)
,

where D is the order-d0 matrix with x0 on the diagonal and A is the order-d0 matrix with x1

on the anti-diagonal (the reasoning is similar to the one in the proof of Lemma 23). The order
of this matrix is the order of M plus 2d0.

Thus f ′0 is the permanent of a matrix of order 8d0 and going from f ′k−1 to f ′k increases the size of
the matrix by 12d0 (refer once again to the proof of Lemma 18). The order of the matrix Pk whose
permanent is f ′k is thus d := Dk = (8 + 12k)d0. By Theorem 22, any circuit of non-skew depth k for
the permanent must have size 2Ω(d0) = 2Ω(d/k).

8 Full-rank with respect to all partitions

Our lower bound proofs have been based on showing that any arithmetic circuit of non-skew depth
at most k cannot compute a polynomial that has large rank w.r.t. some fixed partition Πk. We
can ask if this strategy can yield lower bounds for general non-commutative arithmetic circuits
(i.e., with no restrictions on non-skew depth) as well. Our aim in this section is to show that the
answer to this question is possibly no: we show that over any large enough field F and any set of
n variables X, there is a polynomial p ∈ F〈X〉 that has non-commutative arithmetic circuits of
polynomial size, but which furthermore satisfies the property that for all partitions Π = (Y,Z)
with |Y | ≤ |Z|, rel-rank(p,Π) = 1. This shows that we cannot even hope to prove that for any
polynomial p computed by a polynomial-sized non-commutative circuit, there exists some partition
with respect to which p has small rank.

The proof follows closely a very similar construction due to Raz and Yehudayoff from [18] in the
context of commutative multilinear circuits.

Notation. We first introduce some notation. Given a finite set S of even cardinality, we define
an S-matching to be an unordered partition of S into sets of size two: i.e., M is an S-matching if
M ⊆

(
S
2

)
and the sets in M partition S.

Fix any degree parameter d ∈ N that is even. For any i, j ∈ [d] with i < j and |[i, j]| = j − i+ 1
even, we define a set Mi,j of [i, j]-matchings as follows. The set Mi,j is defined by induction on
|[i, j]|. The base case is when j = i+ 1 and in this case, we set Mi,j = {{i, i+ 1}}. In the case that
j − i+ 1 = 2` for ` > 1, we define the set Mi,j as follows:

Mi,j ={M ∪M ′ | M ∈Mi,j′ ,M
′ ∈Mj′+1,j for some j′ ∈ {i+ 1, i+ 3, . . . , j − 2}}

∪ {M ∪ {{i, j}} | M ∈Mi+1,j−1}
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Now, fix any λe ∈ F for each e ∈
(

[d]
2

)
. Given any set M ⊆

(
[d]
2

)
, we denote by λM the product∏

e∈M λe. Finally, we define the polynomial pλ (where λ denotes the tuple (λ1,2, . . . , λd−1,d)) to be

pλ(X) =
∑

M∈M1,d

λM · pM (X) (18)

where pM is defined as follows.

pM (X) =
∑

w∈[n]d:wi=wj∀{i,j}∈M

x̃w

(Above, x̃w = xw1 · · ·xwd
as defined in Section 4.1.) 7

We will show that for any choice of λe (e ∈
(

[d]
2

)
), the polynomial pλ has a non-commutative

circuit of size poly(n, d). On the other hand, if the field F is large enough, then there exists a choice

of λe (e ∈
(

[d]
2

)
) such that for any partition Π = (Y,Z) with |Y | ≤ |Z|, rank(M [pλ,Π]) = n|Y | (i.e.,

rel-rank(pλ,Π) = 1.
The first lemma gives us the circuit upper bound.

Lemma 25. Fix any field F and d, n ∈ N such that d is even. For any choice of field elements
λe ∈ F (e ∈

(
[d]
2

)
), the polynomial pλ has a non-commutative arithmetic circuit of size poly(n, d).

Proof. We first define several intermediate polynomials that are computed in the course of computing
the polynomial pλ. For any i, j ∈ [d] such that i < j and ` := j− i+ 1 is even, define the polynomial

pλi,j to be

pλi,j(X) =
∑

M∈Mi,j

λM · pM (X)

where pM , for M ∈Mi,j is defined as

pM (X) =
∑

w∈[n]`:ws−(i−1)=wt−(i−1)∀{s,t}∈M

x̃w.

Note that pλ is the same as pλ1,d. Our circuit for pλ computes pλi,j for each i, j ∈ [d]. The construction
is increasing order of the parameter `.

When ` = 2 (the smallest value possible), the polynomial is simply pλi,i+1 = λ{i,i+1}
∑

x∈X xx,
which can be computed by a circuit of size O(n).

Now say we have a circuit C of size S that computes pλs,t when t− s+ 1 < `. To compute pλi,j
where j − i+ 1 = `, we use the following simple identity, which follows from the definition of Mi,j

pλi,j =

 ∑
j′∈{i+1,i+3,...,j−2}

pλi,j′ · pλj′+1,j

+ λi,j
∑
x∈X

x · pλi+1,j−2 · x

7The reader may find it instructive to note that each polynomial for which we have proved a lower bound so far
has been of the form pM for some [d]-matching M .
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Since each of the polynomials pλi,j′ , p
λ
j′+1,j , and pλi+1,j−2 have already been computed by the circuit

C, the additional size required to compute pλi,j is O(d + n). We continue this way until we have

computed all the pλi,j .

The total number of pairs i, j is O(d2) and hence the size of the circuit thus constructed is
O(d2(d+ n)) = poly(n, d).

The second lemma tells us that it suffices to consider only balanced partitions (Y, Z): i.e.,
partitions such that |Y | = |Z| = d/2.

Lemma 26. Let d ∈ N be even. Let f ∈ F〈X〉 be any homogeneous polynomial of degree d. If there
is a partition Π = (Y, Z) with |Y | ≤ |Z| such that rel-rank(f,Π) < 1, then for any balanced partition
Π′ = (Y ′, Z ′) such that Y ′ ⊇ Y , we have rel-rank(f,Π′) < 1.

Proof. Consider the matrix M [f,Π′]. Each row is labelled by a monomial m of degree |Y ′|, which
can be identified with a pair (m′,m′′) where m′ is the natural restriction of m to the locations in Y
and m′′ is the restriction to the locations in Y ′ \ Y .

Fix any m′′ and consider all the monomials m that give rise to this particular m′′. The resulting
matrix has exactly n|Y | rows and n|Z

′| columns. Each column is labelled by a monomial m′′′ of
degree |Z ′| and each row by a monomial m′ of degree |Y |. The (m′,m′′′)th entry of the the matrix
is the coefficient — in the polynomial f — of the monomial m which equals m′ when restricted to
Y , equals m′′ when restricted to Y ′ \ Y , and equals m′′′ when restricted to Z ′. It is not hard to
check that this matrix is a submatrix of the matrix M [f,Π] (obtained by removing some columns).
Since rel-rank(f,Π) < 1, we have rank(M [f,Π]) < n|Y |.

Thus, for any fixed m′′, the rank of the submatrix obtained as above has rank < n|Y |. Since
there are n|Y

′|−|Y | such matrices, the rank of M [f,Π′] is strictly less than n|Y
′|−|Y | · n|Y | = n|Y

′|.
Hence, we have rel-rank(f,Π′) < 1.

Lemma 27. Let d ∈ N be even and F be any field such that F is either infinite or |F| > d22d. Then,
there is a choice of field elements λe ∈ F (e ∈

(
[d]
2

)
) such that for any balanced partition Π, we have

rel-rank(pλ,Π) = 1.

Proof. We fix any finite subset F ⊆ F of size at least d22d + 1 and choose each λe (e ∈
(

[d]
2

)
)

independently and uniformly at random from F . We will show that pλ(X) has the required property
with non-zero probability over the choice of the λe.

Fix any balanced partition Π = (Y,Z). We say that a [d]-matching M is good for Π if, for each
i ∈ Y , there is a j ∈ Z such that {i, j} ∈M .

We use the following simple fact about the set of matchings M1,d.

Fact 28. For any balanced partition Π = (Y,Z), there is a matching M ∈M1,d that is good for Π.

By Fact 28, there is a matching M0 ∈ M1,d such that M0 is good for Π. It follows then
from the definition of pM0 above that the matrix M [pM0 ,Π] is a permutation matrix and hence
rank(M [pM0 ,Π]) = nd/2. We argue that, with high probability over the choice of λ, this is true of

the polynomial pλ as well.
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In order to do this, we consider det(M [pλ,Π]). By the definition of pλ, we have

M [pλ,Π] =
∑

N∈M1,d

λNM [pN ,Π] = λM0M [pM0 ,Π] +
∑

N∈M1,d\{M0}

λNM [pN ,Π]

Since M [pN ,Π] is a 0-1 matrix for each N , we see that det(M [pλ,Π]) is a polynomial in λe
(e ∈

(
[d]
2

)
) of degree at most d2d. We claim that this polynomial is in fact non-zero: to see this, note

that if we substitute λe = 1 for e ∈M0 and 0 for e 6∈M0 in the above expression for M [pλ,Π], we

obtain the matrix M [pM0 ,Π]; hence, under this substitution, the polynomial det(M [pλ,Π]) takes
the value det(M [pM0 ,Π]) which is non-zero since M0 is a permutation matrix. We have thus shown

that det(M [pλ,Π]) is a non-zero polynomial in λe (e ∈
(

[d]
2

)
). Since the degree of this polynomial is

at most d2d, for λe uniformly randomly chosen from F , we have by the Schwartz-Zippel lemma [20]

Pr
λ

[det(M [pλ,Π]) = 0] ≤ d2d

|F |
<

1

2d

since |F | > d22d. Union bounding over the
(
d
d/2

)
≤ 2d choices for Π, we see that with probability

greater than 0 over the choice of λ, we have det(M [pλ,Π]) 6= 0 for each balanced partition Π and

hence, rel-rank(pλ,Π) = 1 for every balanced partition Π.

Theorem 29. Let d ∈ N be even and F be any field such that F is either infinite or |F| > d22d. Let
X be any set of n variables. Then, there is a homogeneous polynomial p ∈ F〈X〉 of degree d such
that p has a circuit of size poly(n, d) but given any partition Π = (Y,Z) such that |Y | ≤ |Z|, we
have rel-rank(p,Π) = 1.

Proof. Follows directly from Lemmas 25, 26, and 27.
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